# ------------------------------------------------------------------------------ # partialeq_main.R # Small open economy version of the OG model of capital flows # Written by Espen Henriksen, May 2011 # Adapted (slightly) by Dave Backus # ------------------------------------------------------------------------------ # 0. Preliminaries rm(list = ls()) setwd("C:/Users/dbackus/Documents/Papers/BCH/model/soe") # input functions source("partialeq.R") country <- c("GB") year <- c("1980") R <- 1.03 # Parametrize model # Preferences beta <- .98 sigma <- 4.0 # Technology alpha = 0.33 delta = .07 # Demographics I0 <- 20 I <- 101 load("cohorts.Rdata") load("sprobs.Rdata") mortality <- sprobs[,1:7,] rm(sprobs) dimnames(mortality)[[2]] <- c("CA","DE","FR","IT","JP","US","GB") dimnames(mortality)[[3]] <-{c("1950","1955","1960","1965","1970","1975", "1980","1985","1990","1995","2000","2005", "2010","2015","2020","2025","2030","2035", "2040","2045")} #NFAGDP <- array(0, dim=c(ny, nc), dimnames=list(years, countries)) imfgdp <- extract.imf.gpd(country,year) tfp <- array(0, dim=c(1, 1)) w <- array(0, dim = c(1, 101)) w[21:65] <- (1-alpha)*exp(tfp)*((R-(1-delta))/(alpha*exp(tfp)))^(alpha/(alpha-1)) h = 0 K <- array(0, dim = c(3, 1)) row.names(K) <- c("Supply","Demand","Diff") a <- compute.asset.holdings(R,w,h,beta,sigma,mortality[,country,year],I0,I) K[1] <- 0 for(ctr1 in 1 : 20){ for(ctr2 in 1 : 5){ K[1] <- K[1] + a[(ctr1-1)*5+ctr2]*cohorts[ctr1,country,year]/5 } } N <- sum(cohorts[5:13,country,year]) K[2] <- ((R - (1-delta))/(alpha*exp(tfp)))^(1/(alpha-1))*N K[3] <- K[2] - K[1]