Capital Inflows: A Threat to Growth?

David Backus, Thomas Cooley, and Espen Henriksen

Restoring Growth in Advanced Economies NCAER, World Bank, & NYU | October 7, 2010

This version: October 9, 2010

Capital inflows: sign of success?

Larry Summers, IMF, October 3, 2004:

There is a standard set of things that finance ministers of countries with significant current account deficits say. Perhaps the sharpest formulation is: "We live in a country that capital is trying to get into. Would you rather live in a country that capital is trying to get out of?" Capital inflows: portent of peril?

Daniel Gross, New York Times, May 8, 2005:

[US] imbalances are eerily reminiscent of recent economic crises. Could we see a perfect storm [for the US economy]? If so, what would it look like?

- Nouriel Roubini estimates that long-term interest rates in the US could rise by 200 basis points over a few months and the value of the dollar would fall.
- Said Barry Eichengreen: "The result would not be a full-blown financial crisis most likely, but it would still be a major recession."
- * Adds Jeffrey Frankel, "some of us have been warning of this hard-landing scenario for more than 20 years."

Facts about capital flows

What drives them?

- Business cycles
- Institutions
- Taxes and legal restrictions
- Commodity prices (oil)
- Political risk
- Exchange rates
- Anything that affects saving or investment

Some data to get us thinking...

Facts: current accounts

Facts: net foreign assets

Facts: current account spectrum

Capital flows are persistent

Demography inherently persistent, too

 \Rightarrow Could it play a role in capital flows?

Facts: age distributions

Backus, Cooley, and Henriksen (NYU)

8 / 23

Facts: dependency ratios

Dependency Ratio: Select Countries

Year

Facts: fertility

Fertility: Select Countries

Year

Facts: life expectancy

Life Expectancy: Select Countries

Year

Facts: life expectancy

Theory: economic structure

One-good world

National production functions

Unrestricted international capital flows

Overlapping generations

- Fertility, mortality, immigration tied to data
- Fixed retirement age (65)

Result: demographic differences generate capital flows

Theory: capital flows implied by demography

[Coming soon!!]

An "imbalance" to be managed?

A reflection of demography and life-cycle saving?

Or something completely different?

US household net worth

Year

US personal consumption

Year

Model...

The economy consists of overlapping generations of ex ante identical agents who live up to I periods, with ages denoted by $i \in I \equiv \{1, \ldots, I\}$.

At every point in time, there are I different cohorts alive. Individuals remain children for I_0 periods. As children they neither consume, accumulate capital nor supply labor. After I_0 periods the agents enter the economy as autonomous decision makers.

Demographics

The survival probability between age *i* and *i* + 1 is denoted $s_{i,t}$ and varies with ages *i* and time. The unconditional probability of reaching age *i* is denoted s^i and is the product of conditional survival probability rates; $s^i = \prod_{i=1}^{i-1} s_i$.

Let $x_t \in \mathbb{R}^l$ be the vector of number of members in each cohort in period t.

The demographic structure of the population changes through changes in fertility, mortality and immigration.

Let $m_t \in \mathbb{R}^l$ be a vector with each element representing the cohort specific number of net immigrants at time t. Denoting $\hat{\Gamma}_t$ the matrix of deterministic fertility and mortality rates at time t, the law of motion for the population may be written

$$\mathbf{x}_{t+1} = \hat{\Gamma}_t \mathbf{x}_t + \mathbf{m}_t.$$

Preferences and technology

Preferences of an agent born in period t may be summarized by a standard time-separable utility function with age specific weight β^i

$$\mathbf{E}_{t+l_0}\left\{\sum_{i=l_0+1}^{l}\beta^i s^i u_i\left(c_{i,t}\right)\right\},\tag{1}$$

where u_i is the instantaneous utility function, and $c_{i,t}$ is consumption and leisure of an agent of age *i* in period *t*.

The instantaneous utility function has the standard isoelastic specification

$$u(c_{i,t})=\frac{(c_{i,t})^{1-\sigma}-1}{1-\sigma},$$

Labor Supply

Each individual supplies labor inelastically to the market. The productivity and the rate of return on labor supplied changes with age according to a deterministic pattern. The vector of age specific efficiency units of labor is denoted $\{\epsilon_i\}_{i=1}^{I}$. An easy way to exogenously capture childhood inactivity and old age retirement is to set labor efficiency for those cohorts equal to zero.

Production

Country j time t

$$y_{j,t} = \theta_{j,t} K_{j,t}^{\alpha} N_{j,t}^{1-\alpha}.$$

Equilibrium

Individuals in each country choose optimal quantities of capital supplied (saved) given prices.

Combining the individuals' intratemporal optimality condition with the period-by-period budget constraint gives the following second-order difference equation

$$\begin{aligned} a_{i+1,t+1} &= a_{i,t}R_t + \epsilon_i w_t + h_t - \\ & \left(\frac{1}{\beta s_{i-1,t-1}R_t}\right)^{-\frac{1}{\sigma}} \left(a_{i-1,t-1}R_{t-1} + \epsilon_{i-1}w_{t-1} + h_{t-1} - a_{i,t}\right). \end{aligned}$$

Combined with the initial and terminal conditions, eq. (??), this uniquely defines the life-cycle savings (and consumption) sequence for given prices.

Firms in each country choose optimal quantities of capital demanded given prices

$$\mathsf{K}_{j,t}^{\mathsf{d}} = \left(\frac{\mathsf{r}_{j,t}}{\alpha \theta_{j,t}}\right)^{\frac{1}{\alpha-1}} \mathsf{N}_{j,t}.$$

ŀ