Notes on Gertler's "OG" Model*

(Started: June 17, 2013; Revised: June 27, 2013)

Mark Gertler (Carnegie-Rochester, 1999) has a nice paper that simplifies the usual OG setup by giving people two types: working and retired. If working, there's a constant probability of becoming retired each period, and if retired, there's a constant probability of death. This retains the flavor of a life-cycle without having to keep track of people at lots of different ages.

1 Demography

At date t, we have N_t people working and R_t people retired. Working people have children at rate φ and retire at rate ω . Retired people die at rate μ . Therefore average time working is $1/\omega$ and average time retired is $1/\mu$ (they're geometric random variables).

The components of the population thus evolve according to

$$\left[\begin{array}{c} N_{t+1} \\ R_{t+1} \end{array}\right] = \left[\begin{array}{cc} 1+\varphi-\omega & 0 \\ \omega & 1-\mu \end{array}\right] \left[\begin{array}{c} N_t \\ R_t \end{array}\right].$$

Let all these parameters be positive, with $\varphi > \omega$. Then the population has a long-term growth rate of $1 + \varphi - \omega$, the maximal eigenvalue of the matrix. The stationary dependency ratio is therefore

$$R/N = \omega/(\varphi + \mu - \omega),$$

••

the associated eigenvector.

2 Preferences

Working-age agents supply one unit of labor inelastically. Agents of type

^{*}Working notes, no guarantee of accuracy or sense.