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The world is in a constant state of demographic flux. These demographic changes have profound

effects on economic growth, fiscal policy, returns to labor and capital, and asset prices. Dynamic

heterogeneous-agent models are widely used to study these issues. Demographic variables like

mortality and life expectancy are an important ingredient in heterogenous agent models because

they affect individual decisions, the composition and aggregation of individual decisions, and cohort

distributions.

A major shortcoming of many existing studies has been that it is difficult to compare the calibra-

tion of structural parameters and elasticities in these heterogeneous-agent models to the calibrated

parameters and elasticities of representative-agent frameworks. It is also hard to compare and scru-

tinize the quantitative results across studies because they adopt different approaches to building

in demographic variables.

Mortality and life expectancy affect individuals’ decision, but conditional mortalities used in cur-

rent studies are specific for particular countries at particular points in time, and are often reported

at five-year cohorts/intervals.

Economic data are usually reported at one-year or higher frequency. Most models and their

elasticity parameters are therefore calibrated to match moments at this or higher frequency. There

is no obvious way of comparing elasticity parameters and quantitative results of models with a

five-year frequency with those of a one-year frequency. And even if survival probabilities were

reported at an annual frequency in all countries, it would be hard to distinguish the effect of

elasticity estimates from the particularities of the data.

A precise formula for mortality at all ages is, obviously, impossible. In order to analyze the effect of

aging, it is, however, necessary to have a parsimonious representation of how age-specific mortality

evolves with life expectancy at birth. Using the observation that the logarithm of mortality rates

are almost linear in age Lee and Carter (1992) proposed a principal-components-based model,

which has become the “leading statistical model of mortality [forecasting] in the demographic

literature” (Deaton and Paxson, 2004). Lee and Carter developed their approach on historical

U.S. mortality data, 1933-1987. However, the method is now being applied to all-cause and cause-

specific mortality data from many countries and time periods (Girosi and King, 2008, p.34). It was

used as a benchmark for the Census Bureau population forecasts (Hollmann, Mulder, and Kallan,

2000), two U.S. Social Security Technical Advisory Panels, recommended its use, or the use of

a method consistent with it (Lee and Miller, 2001), and the United Nations Population Forecast

used it (Li and Gerland, 2011).



This note proposes a transparent method to compute representative age-dependent survival prob-

abilities as functions of life expectancy based on Lee and Carter (1992). This method makes it

possible to compute representative sequences of mortality at an annual frequency given reported

and projected life expectancies. This allows for a more transparent economic analysis of aging

and facilitates comparisons of elasticity estimates and results across models at different levels of

aggregation.

1 The Lee and Carter (1992) approach to forecast longevity

Lee and Carter (1992) suggested an approach to forecasting mortality changes for changes in

longevity. Denoting the central death rate for age x in year t, m(x, t), Lee and Carter (1992) fit

this matrix of death rates by the specification

ln[m(x, t)] = ax + bxkt + εx,t, (1)

for appropriately chosen sets of age-specific constants, ax and bx, and time-varying index kt where

kt+1 = kt + θ + εt, (2)

This model evidently is underdetermined. k is determined only up to a linear transformation, b

is determined only up to a multiplicative constant, and a is determined only up to an additive

constant. Lee and Carter (1992) normalized the bx to sum to unity and the k, to sum to 0, which

implies that the ax are simply the averages over time of the ln(mx,t). The model cannot be fit by

ordinary regression methods, because there are no given regressors; on the right side of the equation

we have only parameters to be estimated and the unknown index k(t). As Lee and Carter (1992)

point out, the optima can be found via a singular value decomposition (SVD) of the matrix of

centered age profiles.

2 Representative mortality for economic analysis

Whereas the evolution of longevity is a first-order question for demographers, there is not much

economists can add to this question. As economists we are mainly concerned with understanding

the economic implications of the demographic changes the demographers are predicting.

With the life expectancies at birth that demographers report we would like to compute a trans-

parent and representative sequence of one-year survival probabilities. The time-varying index kt

can therefore be replaced by the reported life expectancy at birth e0.
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It is well known among demographers that death rates increase exponentially with age, or, equiva-

lently, that the logarithm of death rates increases linearly with age. It was previously assumed that

mortality at advanced ages deviated from this log-linear relationship (“mortality deceleration”),

but as noted by among others Keilman (1997) official statistics have systematically underpredicted

number of old-age individuals. According to Gavrilov and Gavrilova (2011), as more data and bet-

ter statistical methods have become available, “mortality deceleration” appear to be an artifact

of mixing together several birth cohorts with different mortality levels and using cross-sectional

instead of cohort data.

From various data sources, we have annual data for realized and projected life expectancy. Mor-

tality probabilities (and accordingly survival probabilities) are much less frequent. We suggest the

following regression to predict survival probabilities for years in which they are not available.

log[m(x, e0)] = α + βe0x+ εx,t, (3)

where

βe0 = γ + θe0 + εe0 , (4)

All right-hand side variables are observable which allows ordinary regression methods to be used.

We suggest a two-stage estimation procedure. The first stage is an ordinary linear regression. In

this stage, the ranking criterion for the results is out-of-sample absolute deviation between life-

expectancy at birth life inputted to the model and life-expectancy at birth life predicted by the

model. In the second stage, a simulated method of moments procedure provides exact estimates

of life expectancy at birth.

2.1 Data

The World Health Organization Mortality Database provides data on five-year age-specific all-

cause mortality and life expectancy at birth by the member states in 1990, 2000, and 2010.

Summary statistics are presented in Table 1. Average life expectancy has increased from 1990

to 2010, both measured as the average, the media, and the max across countries. The difference

between the mean and the media also indicates negative skewness in the sample of countries.

Figure 1 shows death rates for Japan, which have the most data on advanced age mortality. The

figure shows how death rates increase log-linearly with age for all ages after early adulthood.
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2.2 First-stage estimation results

The results of estimating Equations (3) and (4) are presented in Column 1 of Table 1. All point

estimates are highly significant and the R2 is .79.

Mortality during the first year of life is substantially higher than at immediately higher ages. A

dummy variable is included for mortality for the first year of life

log[m(x, e0)] = α + βe0x+ δ11x=1 + εx,t, (5)

The results for this specification are presented in Column 2 of Table 1. All point estimates are

highly significant and the R2 improves to .93.

As is apparent from Figure 1 and well documented in the literature, mortality rates are particularily

high among teenagers and young adults and that for these age groups death rates deviate from

log-linear relationship. For these age groups, a set of dummy variables are included. All point

estimates are still highly significant and the R2 improves to .96.

Though highly significant and negative, the estimated coefficient for the interaction between the

slope and life expectancy at birth in the three first specifications is small. In the fourth specification,

this interaction term is substituted with variables that allow the intercept and slope to be functions

of life expectancy. All estimates are still highly significant and the R2 improves further to .98.

In order to better match mortality in the first year, a quadratic term is added for infant mortality

and a linear term for mortality of children between the ages of 1 and 5. The results for this

specification is reported in Column 5. The R2 increases slightly to .99.

2.3 Second-stage estimation results

Based on the predictions of the model, age-specific death rates are functions of given life expectancy.

With these age-specific death, rates life tables can be constructed and implied life expectancies

computed. Figure 2 shows the difference between given life expectancy ei and predicted life ex-

pectancy ẽ(ei) for the latest specification estimated in the first stage.

In the second stage, keeping all other estimates fixed, the intercept, αe0 , is re-estimated with the

following functional form

α̃e0 = λ0 + λ1e0 + λ2(e0)
2 (6)

in order to minimize deviations between given life expectancy ei and predicted life expectancy

ẽ(ei)

min
∑
i

‖ẽ(ei)− ei‖ (7)
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The objective function was minimized with the following estimates for α̃e0

α̃e0 = −4.46 + 0.127e0 − 0.00091(e0)
2

Figure 3 shows the difference between given life expectancy ei and predicted life expectancy ẽ(ei)

after the second stage estimation.

log[m(x, e0)] = −5.426− 0.057e0 + 0.088x+ . . .

. . .+



−1.151 + 0.287e0 − 0.003e20 if x = 1

5−x
5

(−1.151 + 0.287e0 − 0.003e20) + x
5

(10.632− 0.116e0) if 1 < x ≤ 5

10−x
5

(10.632− 0.116e0) + x−5
5

(1.002) if 5 < x ≤ 10

15−x
5

(1.002) + x−10
5

(0.47) if 10 < x ≤ 15

20−x
5

(0.47) + x−15
5

(0.887) if 15 < x ≤ 20

25−x
5

(0.887) + x−20
5

(0.774) if 20 < x ≤ 25

30−x
5

(0.774) + x−25
5

(0.443) if 25 < x ≤ 30

35−x
5

(0.443) if 30 < x ≤ 35

(8)

The resulting representative survival probabilities at different ages for different life expectancies

at birth are plotted in Figure 4.

3 Conclusion

Across the world, longevity has increased substantially. Demographers project that longevity will

continue increasing in the years to come. This raises a range of important economic questions.

Representative sequences of mortality rates at one-year frequency is crucial for quantitatitve eco-

nomic analysis of the effects of aging and comparisons across models. This note has presented a

parsimonious method for economists to compute representative annual mortality rates as function

of life expectancy, taking demographers’ projections of life expectancy at birth as given.
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Table 1: Summary statistics

1990 2000 2010

mean 71.60 73.75 75.07
median 73.20 76.05 78.00
st.dev. 5.92 6.10 6.83
min 54.5 58.2 51.3
max 79.1 81.3 82.6
n obs. 44 44 44
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Figure 1: Natural logarithm of 1 - death rates: Japan
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Table 2: First-stage regression results

1 2 3 4 5
Estimate Estimate Estimate Estimate Estimate
(S.E.) (S.E.) (S.E.) (S.E.) (S.E.)

(Intercept) -7.884* -8.594* -9.534* -5.032* -5.426*
( 0.064) ( 0.039) ( 0.058) ( 0.129) ( 0.116)

γ 0.11* 0.12* 0.133* 0.088* 0.088*
( 0.007) ( 0.004) ( 0.003) ( 0.001) ( 0)

θ -0.001* -0.001* -0.001* . .
( 0) ( 0) ( 0)

δ0 . 4.437* 5.327* 11.064* -1.151
( 0.098) ( 0.089) ( 0.578) ( 4.724)

δ1 . . 2.361* 2.361* 10.632*
( 0.089) ( 0.059) ( 0.511)

δ2 . . 1.002* 1.002* 1.002*
( 0.086) ( 0.058) ( 0.051)

δ3 . . 0.47* 0.47* 0.47*
( 0.084) ( 0.056) ( 0.05)

δ4 . . 0.887* 0.887* 0.887*
( 0.082) ( 0.055) ( 0.048)

δ5 . . 0.774* 0.774* 0.774*
( 0.08) ( 0.054) ( 0.047)

δ6 . . 0.443* 0.443* 0.443*
( 0.078) ( 0.052) ( 0.046)

αeo . . . -0.063* -0.057*
( 0.002) ( 0.002)

δeo0 . . . -0.08* 0.287*
( 0.008) ( 0.139)

δeo1 . . . . -0.116*
( 0.007)

δ
(eo)2

0 . . . . -0.003*
( 0.001)

N 968 968 968 968 968
RMSE 1.054 0.597 0.455 0.305 0.269
R2 0.791 0.933 0.961 0.983 0.987
adj R2 0.791 0.933 0.961 0.983 0.986

* p ≤ 0.05
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Figure 2: After first-stage estimation: given and predicted life expectancy at birth
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The world is in a constant state of demographic flux. These demographic changes
have profound effects on economic growth, fiscal policy, 
returns to labor and capital, and asset prices. Dynamic heterogeneous-agent models
 are widely used to study these issues. Demographic variables like  mortality and
life expectancy are
 an important ingredient in  heterogenous agent
models because they affect individual decisions, the composition and
aggregation of individual decisions, and cohort distributions.


A major shortcoming of many existing studies has been that it is difficult
to compare the calibration of structural parameters and elasticities
in these heterogeneous-agent models to the calibrated parameters and
elasticities of
representative-agent frameworks. It is also hard to compare and
scrutinize the quantitative results across studies because they adopt
different approaches to building in demographic variables.

Mortality and life expectancy affect individuals' decision, but
conditional mortalities used in
current studies are specific for
particular countries at particular points in time, and are often
reported at five-year cohorts/intervals. 

Economic data are usually reported at one-year or higher frequency.
Most models and their elasticity parameters are therefore calibrated
to match moments at this or higher frequency.  There is no obvious way
of comparing elasticity parameters and quantitative results of models
with a five-year frequency with those of a one-year frequency.
And even if survival probabilities were reported at an
annual frequency in all countries, it would be hard to distinguish the
effect of elasticity estimates from the particularities of the data. 

A precise formula for mortality at all ages is,
obviously, impossible.  In order to analyze the effect of aging, it
is, however, necessary to have a parsimonious representation of how
age-specific mortality evolves with life expectancy at birth.
Using the observation that the logarithm of mortality rates are
almost linear in age \citet{LeeCarter1992} proposed a
principal-components-based model, which has become the ``leading statistical model
of mortality [forecasting] in the demographic literature''
\citep{DeatonPaxson2004}. Lee and Carter developed their approach on
historical 
U.S. mortality data, 1933-1987.  However, the method is now being 
applied to all-cause and cause-specific mortality data  from many
countries and time periods \citep[][p.34]{GirosiKing2008}. It was used as a benchmark for the Census Bureau
population forecasts \citep{HollmannMulderKallan2000}, two
U.S. Social Security Technical Advisory Panels, recommended 
its use, or the use of a method consistent with it \citep{LeeMiller2001}, and the United Nations Population Forecast used it \citep{LiGerland2011}.


This note proposes a transparent method to
compute representative age-dependent survival probabilities as
functions of life expectancy based on \citet{LeeCarter1992}. This
method makes it possible to compute representative sequences of
mortality at an annual frequency given reported and projected life expectancies. This allows
for a more transparent economic analysis of aging and facilitates comparisons of elasticity estimates and
results across models at different levels of aggregation.

%  These
% representative demographics will be a potentially
% find stylized frameworks to compare
% quantitative results across modeling frameworks and different levels
% of aggregation.
% .... lack of transparency....
% aggregation and comparisons of parameters.... 
% Estimated life expectancies at birth are reported for most
% countries for most years, but i
% Sequences of survival probabilities, implicit life expectancies, and
% cohort distributions
% Even though e

\section{The Lee and Carter (1992) approach to forecast longevity}
\citet{LeeCarter1992}  suggested an approach to forecasting mortality
changes for changes in longevity. 
Denoting the central death rate for age $x$ in year
$t$, $m(x, t)$, \citet{LeeCarter1992} fit this matrix of death rates by the
specification
\begin{equation}
\ln [m(x, t)] = a_x + b_x k_t + \varepsilon_{x,t},
\end{equation}
for appropriately chosen sets of age-specific constants, ${a_x }$ and
${b_x}$, and time-varying index $k_t$ where
\begin{equation}
k_{t+1} = k_t + \theta +\epsilon_{t},
\end{equation}

This model evidently is underdetermined. $k$ is determined only up
to a linear transformation, $b$ is determined only up to a
multiplicative constant, and $a$ is determined only up to an additive
constant. \citet{LeeCarter1992} normalized the $b_x$ to sum to unity
and the $k$, to sum to $0$, which implies that the $a_x$ are simply the
averages over time of the $\ln (m_{x,t})$. The model cannot be fit by
ordinary regression methods, because there are no given regressors; on
the right side of the equation we have only parameters to be estimated
and the unknown index $k(t)$.  As \citet{LeeCarter1992}  point out,
the optima can be found via a singular value decomposition (SVD) of
the matrix of centered age profiles.


\section{{Representative mortality for economic analysis}}
Whereas the evolution of
longevity is a first-order question for demographers, there is not much economists can add to this question.  As
economists we are mainly concerned with understanding the economic
implications of the demographic changes the demographers are
predicting.

With the life expectancies at birth that demographers report we would like to compute a transparent and representative
sequence of one-year survival probabilities.  The
time-varying index $k_t$ can therefore be replaced by the reported
life expectancy at birth $e_0$.

It is well known among demographers that death rates increase exponentially with age,
or, equivalently, that the logarithm of death rates increases linearly with
age.  It was previously assumed that mortality at advanced ages
deviated from this log-linear relationship (``mortality
deceleration''), but as noted by among others \citet{Keilman1997}
official statistics have systematically underpredicted number of
old-age individuals. According to \citet{GavrilovGavrilova2011}, as more
data and better statistical methods have become available, ``mortality
deceleration'' appear to be an artifact of mixing together several
birth cohorts with different mortality levels and using
cross-sectional instead of cohort data. 

From various data sources, we have annual data for realized and
projected life expectancy.  Mortality probabilities (and accordingly survival
probabilities) are much less frequent. We suggest the following
regression to predict survival probabilities for years in which they
are not available. 
\begin{equation} \label{eq:logmxe}
\log [m (x, e_0) ] = \alpha + \beta^{e_0} x + \varepsilon_{x,t},
% + d_{1,e_0} + d_{2,e_0} + \cdots + d_{120,e_0}
\end{equation}
where
\begin{align} \label{eq:betae0}
\beta^{e_0} &= \gamma + \theta e_0 +\epsilon_{e_0},
% d_{i,e} & = \bar{\alpha_i} + \alpha_i e
\end{align}
All right-hand side variables are observable which allows ordinary
regression methods to be used.  

We suggest a two-stage estimation procedure.  The first stage is an
ordinary linear regression.  In this stage, the ranking criterion for
the results is out-of-sample absolute deviation between 
life-expectancy at birth life inputted to the model and
life-expectancy at birth life predicted by the model.  In the second
stage, a simulated method of moments procedure provides exact
estimates of life expectancy at birth.

\subsection{Data}
The World Health Organization Mortality Database provides data on
five-year age-specific all-cause mortality and life expectancy at
birth by the member states in 1990, 2000, and 2010.

Summary statistics are presented in Table \ref{tbl:summary}.  Average life expectancy
has increased from 1990 to 2010, both measured as the average, the
media, and the max across countries.  The difference between the mean
and the media also indicates negative skewness in the sample of countries.

Figure \ref{fig:log1minnmx} shows death rates for Japan, which have
the most data on advanced age mortality.  The figure shows how death
rates increase log-linearly with age for all ages after early adulthood.  

\subsection{First-stage estimation results}
The results of estimating Equations \eqref{eq:logmxe} and \eqref{eq:betae0} are
presented in Column 1 of Table 1.  All point estimates are highly
significant and the $R^2$ is .79.

Mortality during the first year of life is substantially higher than
at immediately higher ages.  A dummy variable is included for
mortality for the first year of life
\begin{equation} \label{eq:logmxedummy}
\log [m (x, e_0) ] = \alpha + \beta^{e_0} x + \delta_1 \mathbf{1}_{x=1} + \varepsilon_{x,t},
% + d_{1,e_0} + d_{2,e_0} + \cdots + d_{120,e_0}
\end{equation}
The results for this specification are
presented in Column 2 of Table 1.  All point estimates are highly
significant and the $R^2$ improves to .93.

As is apparent from Figure \ref{fig:log1minnmx} and well documented
in the literature, mortality rates are particularily high among
teenagers and young adults and that for these age groups death rates
deviate from log-linear relationship.  For these age groups, a set of
dummy variables are included.  All point estimates are still highly 
significant and the $R^2$ improves to .96.

Though highly significant and negative, the estimated coefficient for
the interaction between the slope and life expectancy at birth
in the three first specifications is small.  In the
fourth specification, this interaction term is substituted with
variables that allow the intercept and slope to be functions of life
expectancy. All estimates are still highly significant and the $R^2$
improves further to .98. 

In order to better match mortality in the first year, a quadratic term
is added for infant mortality and a linear term for mortality of
children between the ages of 1 and 5.  The results for this specification
is reported in Column 5.  The $R^2$ increases slightly to .99. 

\subsection{Second-stage estimation results}
Based on the predictions of the model, age-specific death rates are
functions of given life expectancy.  With these age-specific death,
rates life tables can be constructed and implied life expectancies
computed.  Figure \ref{fig:model4bcomppred} shows the difference
between given life expectancy $e_i$ and predicted life expectancy
$\tilde{e}(e_i)$ for the latest specification estimated in the first stage.

In the second stage, keeping all other estimates fixed,
the intercept, $\alpha^{e_0}$, is re-estimated with the following
functional form
\begin{equation}
\tilde{\alpha}^{e_0} = \lambda_0 + \lambda_1 e_0 + \lambda_2 (e_0)^2
\end{equation}
in order to minimize deviations between given life expectancy $e_i$ and predicted life expectancy
$\tilde{e}(e_i)$
\begin{equation}
\min \sum_{i} \| \tilde{e}(e_i) - e_i \|
\end{equation}

The objective function was minimized with the following estimates for $\tilde{\alpha}^{e_0}$
\begin{equation*}
\tilde{\alpha}^{e_0} = -4.46 + 0.127 e_0 - 0.00091 (e_0)^2
\end{equation*}

Figure \ref{fig:stage2comppred} shows the difference
between given life expectancy $e_i$ and predicted life expectancy
$\tilde{e}(e_i)$ after the second stage estimation.

\begin{multline} \label{eq:cases}
\log [m (x, e_0) ] = -5.426  - 0.057e_0 + 0.088x + \ldots \\
 \ldots +  \begin{cases}
     -1.151 + 0.287e_0 -0.003 e_0^2 & \text{ if } x = 1  \\
     \frac{5-x}{5}\left( -1.151 + 0.287e_0 -0.003 e_0^2\right) + \frac{x}{5}\left(10.632 -0.116 e_0\right)  & \text{ if } 1 < x \leq 5  \\
     \frac{10-x}{5}\left( 10.632 -0.116 e_0\right) +
     \frac{x-5}{5}\left(1.002\right)  & \text{ if } 5 < x \leq 10
\\
     \frac{15-x}{5}\left( 1.002\right) +
     \frac{x-10}{5}\left(0.47\right)  & \text{ if } 10 < x \leq 15
\\
     \frac{20-x}{5}\left( 0.47\right) +
     \frac{x-15}{5}\left(0.887\right)  & \text{ if } 15 < x \leq 20
\\
     \frac{25-x}{5}\left( 0.887\right) +
     \frac{x-20}{5}\left(0.774\right)  & \text{ if } 20 < x \leq 25
\\
     \frac{30-x}{5}\left( 0.774\right) +
     \frac{x-25}{5}\left(0.443\right)  & \text{ if } 25 < x \leq 30
\\
     \frac{35-x}{5}\left( 0.443\right)  & \text{ if } 30< x \leq 35
   \end{cases}
\end{multline}


The resulting representative survival probabilities at different ages
for different life expectancies at birth are plotted in Figure
\ref{fig:stage2survivalprobs}. 




\section{Conclusion}
Across the
world, longevity has increased substantially. Demographers project
that longevity will continue increasing in the years to come. 
This raises a range of important economic
questions. Representative sequences of mortality rates at
one-year frequency is crucial for quantitatitve economic analysis of
the effects of aging and comparisons across models.  
This note has presented a parsimonious method for economists to compute representative
annual mortality rates as function of life expectancy, taking
demographers' projections of life expectancy at birth as given.  

{
    \let\bibfont=\small
    \bibliographystyle{chicago}
    \bibliography{survprobs}
    \pdfbookmark[1]{References}{references}
}
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\vfill

\begin{table}[tph]
\centering
 \caption{Summary statistics}\label{tbl:summary}
\begin{tabular}{p{2.0cm} d{2.2} %
      d{2.2}  d{2.2} }%
    \toprule &  \multicolumn{1}{c}{1990} & \multicolumn{1}{c}{2000} & \multicolumn{1}{c}{2010} \\ \midrule
mean   & 71.60 & 73.75  & 75.07 \\
median  &73.20 & 76.05 & 78.00 \\
st.dev.  &5.92  & 6.10  & 6.83 \\
min     &54.5 & 58.2 & 51.3 \\
max    & 79.1 & 81.3 & 82.6 \\
n obs.  & 44 & 44 & 44 \\
\bottomrule
\end{tabular}
\end{table}

\vfill

\begin{figure}[bph]
\centering
\includegraphics[width=.90\linewidth]{figure1}
\caption{Natural logarithm of 1 - death rates: Japan}
\label{fig:log1minnmx}
\end{figure}

\input{table3.tex}

\begin{figure}[bph]
\centering
\includegraphics[width=.90\linewidth]{model4bcomppred}
\caption{After first-stage estimation: given and predicted life expectancy at birth}
\label{fig:model4bcomppred}
\end{figure}


\begin{figure}[bph]
\centering
\includegraphics[width=.90\linewidth]{stage2comppred}
\caption{After second-stage estimation: given and predicted life expectancy at birth}
\label{fig:stage2comppred}
\end{figure}

\begin{figure}[bph]
\centering
\includegraphics[width=.90\linewidth]{stage2survivalprobs}
\caption{After second-stage estimation: given and predicted life expectancy at birth}
\label{fig:stage2survivalprobs}
\end{figure}


%\input{table2.tex}
\end{document}

\clearpage

\section{ nMx and nqx}
The difference between the age specific death rates (ASDR) or nMx and nqx is, simply, 
that with nMx the denominator is the population at the middle of the year, whereas in 
nqx the population at the start of the year is used as a denominator. Generally, nMx and 
nqx will be very similar in value with nqx slightly smaller in a population that is 
growing, and slightly higher in a declining population. Therefore, in the construction of 
life tables we have to adjust nMxs slightly to produce nqxs. The process of conversion 
is explained as follows by Newell (1988: p68, 69): 

\url{http://www.ethiodemographyandhealth.org/mortalitymeasures_andlevelsaynalemadugna.pdf}



\section{Estimation}
\subsection{Minimization Problem}
In order to find parameters of this model we set up the following minimization problem to solve for $\beta{_0}$ and $\beta{_1}$:\\
\begin{equation}
\min\sum_{i} \|\varepsilon{_i}\|{^2} = \min \sum_{i} \| \log M{_i} -  \beta{_0} - \beta{_1} L{_i}\|{^2}
\end{equation}
Data: We have access to mortality probabilities from 44 countries. They range over three years: 1990, 2000, and 2006 (which is matched with 2005 life expectancy data). In total this gives us 132 data points. After some simple data arrangement, we have matched 132 life expectancies and their associated mortality probability vector$s$ (by country). Next a function is defined in R (titled "error") which returns a scalar. 
\begin{equation}
error = \sum_{1}^{132} \|\varepsilon{_i}\|{^2} = \sum_{1}^{132} \|log M{_i} -  \beta{_0} - \beta{_1} L{_i}\|{^2}
\end{equation}
We use R's optimizer to calculate these parameters. They are given in the $Results$ workspace, titled ``o".

\subsection{Survival Probabilities for a Given Life Expectancy}
In the code, we also implement a function titled $SurvivalProbs()$ that takes a life expectancy value and outputs a vector of conditional survival probabilities. The outputted vector is {\bf not exactly equal to}: 1 - $\exp(\beta_{0} + \beta_{1} LE)$. Our goal here is to provide a close-enough vector of survival  probs that can be $reversed$ (by the definition of surv probs) to the originally-intended life expectancy. Our steps for a given LE, $x$.

\begin{enumerate}[(a)]
\item Calculate the mortality probability probabilities, $M = \exp\{\hat{\beta}_{0} + \hat{\beta}_{1} x\}$, an $n \times 1$ vector; round down any values higher than 1 to 1. From this calculate the survival probs, S = 1 - M. \\

($n$) is the number of age groups -- in the data, equal to 22. The age grid, $AGE = \{0, 1, 5, 10, 15, \dots, 90, 95, 100 \}$.

\item Note that the survival probabilities, $S$, are conditional probabilities. Calculate the $unconditional$ probability of surviving to the end of an age group $a$, $surv_{a}$ where:
\begin{eqnarray*}
surv_{a+1} = \prod_{i = 1}^{a} S_{i} \text{ for i = 1, \dots, 21}\\
\text{with the first element, } surv_{1} = 1.
\end{eqnarray*}
Given these unconditional survival probabilities, $surv$, find the $n-1$ vector of probabilities corresponding to passing away in the middle of an interval:
\begin{equation*}
d = surv[1:(n-1)] - surv[2:n]
\end{equation*}

\item Now we can use these two vectors to calculate the ``induced life expectancy", $ILE$, from $surv$ and $d$:
\begin{equation*}
ILE = \sum_{i=1}^{21} \left\{ surv_{i+1}(AGE_{i+1} - AGE_{i}) + d_{i}\left( \frac{AGE_{i+1} - AGE_{i}}{2}\right) \right\}
\end{equation*}
In the above sum, the first portion captures the expected gain in life expectancy over the age interval. The last portion provides the case of death in the $(i) \rightarrow (i+1) $ interval. The implicit assumption here is that if an individual dies in an interval, on average he passes away in the middle. \\

This previously described method of calculating LE from conditional survival probabilities is described in the WHO (maybe elsewhere?) tables.

\item For a given x, we calculate model implied survival probabilities and the resulting induced LE. Many times the $ILE \neq x$ and ideally we'd like this to match for the model implied survival probabilities. To allow for this and given the approximate fit of our model, we make small perturbations and repeat the above process (generate new reg. implied surv probs and new ILE) until we have $ILE \approx \text{desired } x$. This algorithm amounts to:
\begin{enumerate}[i]
\item Take $x$, calculate model surv. probs, and implied $ILE$
\item If: $(ILE - x > tol$), let $x =  x +\varepsilon$
\item Else If: $(ILE - x < -tol$), let $x = x - \varepsilon$
\item Else: Take model implied surv. probs
\item Repeat steps (i) - (iv).
\end{enumerate}
\end{enumerate}
In the $R$ file, there are two functions -- $InduceLE()$ and $SurvivalProbs()$. The first one takes a given life expectancy and spits out an induced LE, namely steps $(a)$ -- $(c)$ above. The latter function performs step $(d)$ alone.\\ 
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\begin{table}
 \caption{ First-stage regression results }\label{ regrlabl }
 \begin{center}
 \begin{tabular}{*{6}{l}}
 \hline
      & 1& 2& 3& 4& 5 \\
                  &Estimate   &Estimate   &Estimate   &Estimate   &Estimate  \\
                 &(S.E.)   &(S.E.)   &(S.E.)   &(S.E.)   &(S.E.)  \\
\hline 
\hline
  (Intercept)   &    -7.884*   &    -8.594*   &    -9.534*   &    -5.032*   &    -5.426* \\
    &   ( 0.064)   &   ( 0.039)   &   ( 0.058)   &   ( 0.129)   &   ( 0.116) \\
  $\gamma$   &    0.11*   &    0.12*   &    0.133*   &    0.088*   &    0.088* \\
    &   ( 0.007)   &   ( 0.004)   &   ( 0.003)   &   ( 0.001)   &   ( 0) \\
  $\theta$   &    -0.001*   &    -0.001*   &    -0.001*   & .    & .  \\
    &   ( 0)   &   ( 0)   &   ( 0)   &     &   \\
  $\delta_0$   & .    &    4.437*   &    5.327*   &    11.064*   &    -1.151 \\
    &     &   ( 0.098)   &   ( 0.089)   &   ( 0.578)   &   ( 4.724) \\
  $\delta_1$   & .    & .    &    2.361*   &    2.361*   &    10.632* \\
    &     &     &   ( 0.089)   &   ( 0.059)   &   ( 0.511) \\
  $\delta_2$   & .    & .    &    1.002*   &    1.002*   &    1.002* \\
    &     &     &   ( 0.086)   &   ( 0.058)   &   ( 0.051) \\
  $\delta_3$   & .    & .    &    0.47*   &    0.47*   &    0.47* \\
    &     &     &   ( 0.084)   &   ( 0.056)   &   ( 0.05) \\
  $\delta_4$   & .    & .    &    0.887*   &    0.887*   &    0.887* \\
    &     &     &   ( 0.082)   &   ( 0.055)   &   ( 0.048) \\
  $\delta_5$   & .    & .    &    0.774*   &    0.774*   &    0.774* \\
    &     &     &   ( 0.08)   &   ( 0.054)   &   ( 0.047) \\
  $\delta_6$   & .    & .    &    0.443*   &    0.443*   &    0.443* \\
    &     &     &   ( 0.078)   &   ( 0.052)   &   ( 0.046) \\
  $\alpha^{e_o}$   & .    & .    & .    &    -0.063*   &    -0.057* \\
    &     &     &     &   ( 0.002)   &   ( 0.002) \\
  $\delta_0^{e_o}$   & .    & .    & .    &    -0.08*   &    0.287* \\
    &     &     &     &   ( 0.008)   &   ( 0.139) \\
  $\delta_1^{e_o}$   & .    & .    & .    & .    &    -0.116* \\
    &     &     &     &     &   ( 0.007) \\
  $\delta_0^{(e_o)^2}$   & .    & .    & .    & .    &    -0.003* \\
    &     &     &     &     &   ( 0.001) \\
 \hline 
N   &    968   &    968   &    968   &    968   &    968 \\
 $RMSE$       & 1.054       & 0.597       & 0.455       & 0.305       & 0.269  \\
 $R^2$       & 0.791       & 0.933       & 0.961       & 0.983       & 0.987  \\
 adj $R^2$       & 0.791       & 0.933       & 0.961       & 0.983       & 0.986  \\
 \hline\hline
* $p \le 0.05$\end{tabular}
\end{center}
\end{table}
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