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Introduction 

According to a classical theorem of Perron and Frobenius [i, 81, a 
finite, positive square matrix A has one and only one eigenvalue with a 
positive1 eigenvector, and this eigenvalue is larger than the absolute value 
of any other eigenvalue of A .  This theorem is not true for a general infinite 
positive matrix. On the one hand such a matrix need not have any eigen- 
value at  all, as is seen from the example of the matrix with all its elements 
equal to unity. On the other hand such a matrix can have a continuum of 
positive eigenvalues with positive eigenvectors. This is seen from a recent 
result of Rosenblum [9], who has shown that the (generalized) Hilbert 
matrix 
(0.1) H ,  = ( ( i+~+ae ) - l ) ,  i, K = 0, i , 2 ,  I - - ,  e > 0, 

has all complex numbers A with B e  3, > 0 as eigenvalues and, in particular, 
that every real eigenvalue A 2 7c has a positive eigenvector. 

Rosenblum has obtained these results by solving the eigenvalue problem 
for the Hilbert matrix explicitly in terms of certain integrals involving 
Whittaker functions. Thus his method is not easily applicable to other 
matrices even those differing slightly from the Hilbert matrix. 

The object of the present paper is to show that there is a certain cIass of 
positive matrices, including the Hilbert matrix as a special case, having a 
continuum of positive eigenvalues with positive eigenvectors. 

It should be remarked that the analogues of these results have long been 

*This paper was written while the author was at the Institute of Mathematical Sciences. 
The work was supported in part by the U. S. Air Force, through the Air Force Office of 
Scientific Research of the Air Research and Development Command under Contract No. 

‘A vector or a matrix is here said to be positive if all its elements are positive. This is to 

*The notation is slightly different from that of the author’s previous paper [5].  
the previous paper [5j we proved that 1 = 7t is an eigenvalue with a positive eigen- 

vector of the Hilbert matrix H e  if 0 2 1/4. The present paper contains an independent proof 
that every J. h h has this property, see Examples 2 and 5 below. 
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be distinguished from the notion “positive-definite” applied to Hermitian matrices. 
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known for integral equations with a positive kernel. The Perron-Frobenius 
theorem holds for a certain class of completely continuous kernels (Jentsch 
[4]) 4 whereas the existence of a continuum of positive eigenfunctions has 
been proved by Hopf [3] for certain types of singular kernels. The method of 
Hopf is based exclusively on a positivity argument, and as such can be 
applied to matrix problems without modification. It appears, however, that 
there are some practical inconveniences in applying his method to matrices, 
owing to the simple fact that infinite series are often harder to handle tha.n 
integrals. In particular it is usually difficult to  find the two “trial vectors” 
which are needed to start the iteration procedure used in constructing the 
eigenvector for a given eigenvalue. 

In the method employed below we also resort to an iteration procedure, 
but we need only one trial vector, the convergence of the iteration being 
proved by an elementary theorem on linear operators of Banach space. 
We do not even have to assume that the matrix or the eigenvalue is positive. 
However, this simplicity is gained at  the cost of having to estimate the bound 
of the matrix regarded as a linear operator in the Banach space under con- 
sideration; this estimate is practicable only under certain additional assump- 
tions. 

For convenience we give here a brief account of the definitions and con- 
ventions to be used. We consider infinite vectors z = ( ~ ( i ) )  and infinite 
matrices A = ( a  (i, k ) )  with complex elements. T h e  indices i and k always 
take the values 0,  1, 2, - * . The transposed matrix of A is denoted by A’.  
The linear operations ctx+,!?y on vectors and ctA+,!?B on matrices, where 
a, ,!? are complex numbers, are defined in the usual way. The product Ax of a 
matrix A and a vector x is defined if and only if the series 

is convergent for each index i; then we set Ax = y = (y(i)) by definition. 
An iterated product such as ABCx is to be defined as equal to A [ B ( C x ) ]  
provided the latter is meaningful. In particular the A%, n = 1, 2,  3, * * - , 
are defined successively by Anx = A (A”-%) as long as this is possible. We 
do not make use of the product A B  of two matrices. A vector x # 0 is an 
eigenvector of a matrix A for the eigenvalzle 3, if and only if Ax exists and is 
equal to Ax. 

In general we do not require that the vectors x have a finite “norm” of 
any kind. But we shall often make use of the fwv~rnz 

.____ 

*See also ICrein and Rutman [6]. 
should be noted that our method is also applicable to integral equations; again the 

situation is much simpler there than in the case of matrices. 
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llxllol = SUP I4lL 
i 

11x11, = I% l~( i ) lVl1 '*> 
i 

(0.3) 

where 1 5 p S co. As is well-known,6 p < q implies [ l x [ / ,  2 / Ix / l , .  The 
Banach space consisting of all vectors z with 1 1  x I 1, finite is as usual denoted 
by I ,  . We have 1, C I ,  for p < q. For convenience we denote by ID+o the 
intersection of all 1, with q > 9;  thus x e means that x E I ,  for all q > p .  
Obviously we have I ,  C A sequence (xn> of vectors will be said to con- 
verge to x in the p-norm (p-convergence) if / ]  x,-x 11, -+ 0 for n -+ a; here x ,  
and x need not belong to 1, separately. Obviously the p-convergence implies 
the component-wise convergence. 

A matrix A may (or may not) define a bounded linear operator on I ,  into 
itself. This is the case if A x  is defined for every x E I ,  and satisfies the in- 
equality 

(0.4) / I  AxII, I MIIxll, 
with a finite constant M.  In such a case we shall say that the matrix A is 
$-bounded. The smallest number M with this property is called the $-norm 
of A and denoted by 1 1  A I J p  . As is well known A is #-bounded, 1 2 p < 00, 

if (0.4) is true for every x with only a finite number of non-vanishing com- 
ponents. We also have (see footnote 6) 

(0 .5 )  IIAII, = /lA'll,, for p-l+$'-l = 1, 1 < p < a .  

A vector or a matrix is said to be positive (respectively non-negative) if 
all its elements are positive (respectively non-negative). We shall write 
x 5 y or A 5 B if y-x or B-A is non-negative. 

1. Theorems on Existence of Extra-Bound Eigenvalues 

The following is our basic theorem.' 
THEOREM 1. Let A be a q-bounded matrix for some q, 1 5 q 5 co. Let 

there exist a vector xo t 1, and a complex number ;Z such that I A I > 1 I A 1 I , , Ax0 
exists and A#-Axo E 1, . Then 1 i s  an eigenvalue of A. An associated eigen- 
vector x can be constrmted by iteration in the following way: the vectors 
(1.1) xn = A-nA"~O, n =  1 , 2 , 3 , - . . ,  

exist and we have 
lim xn = x # I , ,  x-XOE I , ,  A X  = AX, 

n-+m 
(1.2) 

where the limit em's& in the sense of q-convergence. I f ,  in particular, A ,  1 and xo 

?5ee Hardy, Littlewood and Polya [2]. 
7Actually Theorem 1 could be given a more abstract form. It is obvious from the proof 

given below bow such a generalization should be formulated. 
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are positive (respectively non-negative), the eigenvector x is  ulso positive (res- 
Pectively non-negative) . 

Remark. For convenience A will be called an extra-bound eigenvalue of A 
because 1 3, I > I I A ]  I,. It should be noticed that such an eigenvalue does not 
exist for a finite matrix A. We note also that, when A ,  A and xo are positive, 
we can employ a different normalization for the approximating vectors xn. 
For instance, on setting 

(1.3) yn  = [Anxo(0)]-lAnxo = xn(0)--lxn, y = x(O)-lx, 

(1.4) y"(0) = y(0)  = 1, limy" = y ,  AY = AY. 

we have 

where the limit exists also in the sense of q-convergence. This follows directly 
from the fact that lim xn(0) = x(0)  > 0.  

Proof of Theorem 1: Since A is q-bounded and z = Axo-lxO belongs to  
I , ,  Az exists and belongs to I , .  Hence A2xo = A z f  3,AxO exists and 
Az = A2x0--2Ax0. Repeating the same argument, we see that all Anxo, 
n = 1, 2, 3, - * * , exist. We now have 

a-I 
xn-xO = a-"AnXO-xO = 1-1 2 A-kAkz. 

k=O 

Since z E I, and 1 A 1 > I I A1 1, byhypothesis, the Neumann series u = zEo A-kAkkz 
is convergent in the q-norm and the sum ~ € 1 ,  satisfies the equation 
zc-1-1 Aa = z. Consequently lim xn = x exists in the sense of q-convergence 
and x-zo = F u .  Then A x  exists and 

A X  = AxO+A-~AU = A x ' - z + ~  = 1 x " f u  = A X .  

Since xo # 1, and x-xo = A-'u E I ,  , x does not belong to 1, ; in particular 
x # 0 and x is an eigenvector of A for the eigenvalue 1. 

If A ,  A and xo are non-negative (actually this implies that 1 is positive 
because A > I I A I I , ) ,  x" is non-negative for every n. Hence the limit x is like- 
wise non-negative. If in addition A is positive, x = I-IAx is positive. This 
completes the proof. 

Theorem 1 is concerned with extra-bound eigenvalues of the matrix A.  
The following theorem and its corollary show that essentially all positive 
eigenvectors must have extra-bound eigenvalues when the matrix A is 
symmetric and non-negati.ve. 

THEOREM 2. Let A be a non-negative, symmetric matrix and let there exist 
a positive vector x sach that Ax  5 ux for some real number u < a. Then A is 
2-bounded with I I A 1 l 2  I. a.  

Proof: It is sufficient to show that I I z 1 l2 5 u I I y I 1 2 ,  where z = A y and y 
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5 a 2 2  IY (~ )12=~211YI I : .  
k 

COROLLARY. A non-negative, symmetric matrix A with a positive eigen- 
vector is necessarily 2-bounded. A n y  eigenvalue iz of A with a positive eigen- 
vector x cannot be smaller than 1 I A I 1 2 ,  and x does not belong to I, unless ;I = I I A I 1 2 .  

2. Matrices With a Homogeneous Principal Part 

Applying Theorem 1 we shall now establish the existence of eigenvalues 
of a certain class of matrices including the Hilbert matrix (0.1) as a special 
case. We consider matrices of the form 

(2.1) A = B-C, 
where B is the principal part of A and C is a small “perturbation” in a sense 
to be described below. 

The elements b( i ,  K )  of the principal part B are assumed to be given by 

(2.2) b( i ,  k )  = f( i+6, k + 6 ) ,  8 > 0,  i, k = 0, 1, 2,  . , 

where f (u,  v )  is a complex-valued function of two real variables defined for 
u, v > 0 and satisfying the following conditions:8 

(i) f(u, v )  is positive-homogeneous of degree -1, that is, 

f ( t u ,  t v )  = t-lf(u, v ) ,  t > 0,  

(ii) f ( t ,  1) and f (1, t )  are of bounded variation9 over the closed interval 

A direct consequence of these two conditions is that / ( t ,  l ) ,  f ( 1 ,  t ) ,  
t f (1 ,  t )  = f (t-1, l ) ,  t f ( t ,  1 )  = f (1 ,  t-l) are all of bounded variation and hence, 
in particular, bounded. 

The assumptions on the perturbing term C will be introduced later. 

[O, co] of t. 

*Similar matrices are considered in Hardy, Littlewood and Polya [2], p. 227, for different 

*This condition could be weakened, but we assume (ii) to avoid unnecessary complica- 
purposes. 

tions. 
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The main result to be proved in this section is that under some ad- 
ditional conditions the matrix A has the eigenvalue 

A,, = Jm/(lr t)t-ydt = J,"/(t,  l)ty-1dt, o < g e  y < 1. 

Here the two integrals are absolutely convergent by the remark above. 
Their equality is a consequence of condition (i). 

THEOREM 3. Let A = B-C be a matrix,  where B = ( b ( i ,  k ) )  i s  given by 
(2.2) with f satisfying the conditions (i) and (ii) and where C = ( c ( i ,  R ) )  is  a 
matrix which transforms every x E l D f O  into C x  E 1, for some constants p ,  q such 
that 1 < q 5 p < 00. Let y be a complex number with 9 e  y = p-l and 
11 A I 1, < 1 A ,  1, where A,, is given by (2.3). Then  A =  A,, is an eigenvalue of A with 
a n  eigenvector x = xA belonging to l,+o but -not to 1,. If in addition A and 1, are 
positive (respectively non-negative) and y i s  real, the eigenvector xA can be chosen 
fiositive (respectively non-negative). 

Remark. We could give several sufficiency conditions for C to map 
into 1,. Here we will mention only the following condition (iii), the 

sufficiency of which can easily be proved by Holder's inequality: 

(iii) 2 (2 Ic(i, R ) I ' )P /~  < GO for some r < p' = +&-1)-1. 

Proof of Theorem 3: Set 

0 
(2.3) 

i k  

(2.4) xo = ( x o ( i ) ) ,  x o ( i )  = ( i + e ) - Y ,  i = 0 , 1 , 2 , .  - ; 

xo does not belong to 1, because q W e  y = q9-l 5 1. Thus Theorem 3 follows 
from Theorem 1 if one can show that Ax0-Ayxo exists and belongs to I,. 
It should be recalled that the eigenvector x constructed in Theorem 1 has the 
property that x-xo E 1, . Since xo E la+O and xo f 1, because p W e  y = 1, 
and since p 2 q, this implies that x E I,+, and x d I, . 

Cxo belongs to I ,  because xo E I,,, . In order to show that Axo-A,xo E I , ,  
it  is therefore sufficient to prove that Bxo-A,xO E I , .  To this end we con- 
struct the partial sums of the series which defines the components of 
yo = Bxo obtaining 

n-1 n-1 
(i) = 2 b ( i ,  k ) x o ( k )  = 2 f (i+& k f O )  (k+O)-u. 

Since by (i), f (u, v )  is homogeneous of degree -1 we have 
k=O k=O 

The right side is an approximating sum for the integral Sk f(1, t)t-Ydi! con- 
structed with the mesh points t k  = (k+O) (i+O)-l, k = 0, 1, 2,  - * ., n, having 
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(2.7) 1 ( i+e)yY: ( ( i )  - S::t(i. t 1 t - w  

a constant mesh length h = ( i + O ) - I .  Such a sum can be estimated by 
means of the formula 

5 Ml(i+e)=-l, 

(2.6) 

where M,  is a constant independent of i. In virtue of (2.4), this implies that 
[BxO(i)--ilyxO(i)l sM2(i+8)-lyielding therequiredresult that Bzo-A,sO~Zq. 

3. Matrices With a Continuum of Positive Eigenvectors 

In order to apply Theorem 3 to a given matrix, we need some estimate 
for 1 1  A I I Q  . In general such an estimate must be sought independently. In 
certain cases, however, it is possible to estimate 1 1  A I j o  in terms of the quan- 
tity A, itself. The present section is devoted to the investigation of such 
a case. 

Suppose that the function f (u, v )  introduced in the preceding section 
satisfies one of the following additional conditions: 

(iv) f (u ,  u )  2 0 and both f ( t ,  1) and f ( 1 ,  t )  are non-increasing for 
O < t < o o ,  

(iv') f ( z a ,  v) 2 0 and both f ( t ,  1) and f (1 ,  t )  are convex functions of t 
for 0 < t < a. 

It should be noticed that conditions (i) and (iv) imply condition (ii) and 
that f (a, v )  vanishes nowhere unless f is identically zero. Similarly, condi- 
tions (i), (ii) and (iv') imply condition (iv) and hence again that f (u, v )  + 0 
unless f = 0. In what follows we shall exclude the trivial case f = 0. 

We can now prove the following lemmas. 
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LEMMA 1. Let B be a matrix with the elements ( 2 . 2 ) ,  where 8 2 1 and f is a 
function satisfying conditions (i) and (iv). T h e n  I [  B ] I v  5 Allv for every p ,  
1 < p < 00, where All9 i s  given by (2.3). 

LEMMA 1’. T h e  conclusion of Lemma 1 i s  trzGe already if 8 2 112 provided 
f satisfies conditions (i), (ii) and (iv’). 

Proof: Set x = ( x ( i ) )  and Bx = y = (y( i ) ) .  We have by the Holder 
inequality (writing a = p-1) 

We shall show that the sum of the series in the first brackets on the right 
does not exceed A,. This series is the same approximating sum for the 
integral 

(3 .2 )  Jomg(t)dt = 1, where g ( t )  = f ( 1 ,  t)t-” 

which appeared in the proof of Theorem 3. This time we note that 

because g ( t )  is non-increasing (see the remark above). Thus the sum of the 
series in question does not exceed (3.2) since t,--lz = (8-l)(i+t9)-1 2 0 in 
virtue of 8 2 1 (in the case of Lemma 1 ) .  If the stronger condition (iv’) is 
assumed (Lemma l‘), g( t )  is a convex, decreasing function so that (3.3) can 
be replaced by 

Hence the sum in question does not exceed (3.2) even for 8 > 1/2 and we 
have 

The series with the index i on the right is the approximating sum for the 
integral J f ( t ,  l ) ta- ldt  = I ,  (see ( 2 . 3 ) )  and again does not exceed A, for the 
same reason as above. Hence 
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IIYII; 2 l:-lA,ll~ll:: = ~ : l l x l l ;  > 

which gives the required result IIBxl[, = Ilyll,  ~ l a ~ ~ x ~ ~ D .  
It is obvious that these lemmas can be used in estimating the bound 

I I A I Ip  needed in the application of Theorem 3. 
In  what follows we shall deduce a theorem which is rather special but 

convenient for applications. 
Before stating the theorem we note the following simple consequences 

of the assumption f ( z c ,  v) > 0. > 0 for 
0 < a < 1, and that 1, is a strictly convex function of a tending to infinity 
for a -+ 0 as well as a --f 1. Thus 1, takes on its minimum value w at a 
unique point a = a. , 0 < a. < 1. We set Po = a i l .  

We can now state 
THEOREM 4. Let B = ( b ( i ,  k ) )  be a matrix with the elements given by 

(2.2) where 0 > 1 and f (zc, v )  > 0 is a function satisfying conditions (i) and 
(iv). Let C = ( c ( i ,  k ) )  be a matriz szcch that 0 5 C 5 2B and I c(i, k)\' < 00 

for every r > 1. Let A, be defined by (2.3) and let w ,  a. be defined as above. 
Then  each A, such that lAyl > o as a n  eigenvalue of either A = B-C or 
its transpose A' according as g e  y 5 a,, or 9 e  y 2 a. , and there exists a n  
associated eigenvector belonging to I,, but not to 1, , where p-l  = W e  y or 
p - 1  = I - B e  y ,  resfiectively. I n  particular, every real numberlo A > w is an 
eigenvalue both for A and A',  and the associated eigenvectors can be chosen 
positive if A is positive. 

THEOREM 4'. Let f (u, v )  of Theorem 4 satisfy the additional condition (iv'), 
while the constant 0 is only required to satisfy 0 > 112. Then the conclusions of 
Theorem 4 remain true. 

The assumptions on C in these theorems are satisfied if 
0 5 C 5 2 B  and if C has only a finite number of non-vanishing elements. 
In other words, the theorems are true for the matrix A which arises from B 
by replacing a finite number of elements b( i ,  k )  by elements 4(i, k) such that 

Proof of Theorems 4 and 4': From the hypothesis it follows that 
-B 5 A 5 B,  and this implies that 1 1  All, 5 1 1  U 11, for any q. Lemma 1 
(or 1') shows that I I 6 I Is, 5 = w where fi;' = a. , hence 1 1  A ] I v o  5 w .  

Suppose now that I 1, I > w for some complex number y, 0 < W e  y < 1. 
We see from what we just proved that 11, I > 1 I A I I . On the other hand, i t  
follows from the hypothesis that C satisfies con$;ion (iii) for any p and g 
such that 1 < f ,  q < co. Thus Theorem 3 is applicable to  our A with the 
constants 9 = ( B e  y)-1 and q = po  = ail provided that f i  >= P o ,  that is, 

It follows from (2.3) that 

Remark. 

1 4(i ,  l+)l 5 b(i, h ) .  

1oIt is not known whether in general 1 = a, is an eigenvalue of A .  But, under certain 
additional assumptions (see Theorem 5), this can be proved. 
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provided 9 e  y 5 ,xo , leading immediately to the results stated in the 
theorems. If on the other hand 93% y 2 a0, we have [ I  A' I I D ;  = [ I A I{,, < I Ly I 
where fig1 + 1 (see (0.5)). Thus Theorem 3 can be applied to the 
matrix A' = B'-C' with p-1 = 1-  We y and q = ; it  is important to 
note here that Ly is changed into Ll-y  when B is replaced by B'. The last 
statement of Theorem 4 follows from the fact that any L > w can be put in 
the form L = Am with two different real values a, one in the interval (0, ao) 
and the other in (ao ,  1). 

Let us now apply the foregoing theorems to some simple examples. 

Example 1. Set 

(3.4) f ( w ,  v )  = [(aw)P + (bv)P]-'/p, a, b, p > 0. 

It is easy to verify that f satisfies conditions (i), (ii) and (iv). The integral 
(2.3) gives 

r(i) r ( 5 )  
), = a-Yb7I-1 (3.5) Y 4;) * 

Let u) be the minimum of 2, for 0 < cc < 1. Theorem 4 shows that any num- 
ber 3, > w is an eigenvalue with a positive eigenvector both for the matrix B 
with the elements 
(3.6) b ( i ,  k )  = [ @ ( i + O ) P +  bP(k+e)P]-'/P, 8 2 1, 

and its transpose B'. The same is true if, for example, a finite number of 
elements b ( i ,  k )  are replaced by smaller non-negative numbers. If p 5 1, 
then f also satisfies condition (iv'). According to Theorem 4', the restriction 
8 2 1 can then be weakened to 8 2 1/2. 

Example 2. In the special case a = b = p = 1, the B of Example 1 
reduces to the Hilbert matrix (0.1); (3.5) becomes A y  = n/sinny and its 
minimum for real y is u) = n. Hence any number 1 > n is an eigenvalue of 
the Hilbert matrix (0.1) for 8 2 1/2 having a positive eigenvector. Actually 
this is true even for 8 2 1/4, which is a direct consequence of Theorem 3 
because it is knownll that 1 1  B 1 l 2  = n for 8 2 1/4. The matrix K may be 
modified without losing these properties in a manner described in Example 1. 

On the other hand B cannot have any positive eigenvector with an 
eigenvalue 2 < n; this follows immediately from the Corollary to Theorem 2 
in virtue of the fact that 1 1  B l l s  2 n €or any 8 > 0. Actually it is known (see 
footnote 11)  that 1 1  B 1/4. Thus in this case B 
has no positive eigenvector with the eigenvalue L < +in 2n8. 

= +in 2n8 for 0 < 8 

"See Schur [lo] and Magnus [7]. 
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It should be noted that Theorem 3 also gives some information on non- 
real eigenvalues of B. In fact, the function y -+ 1, = n/sin 7cy maps the 
strip 0 < We y < 1 onto the half-plane Be 1 > 0. Theorem 3 implies that 
any complex number 3, with 93% 3, > 0 and 13, I > 7c = 1 1  B 1 l 2  is an eigenvalue 
of B for 0 2 114. 

Examfile 3. The limiting case p --t co with a = b = 1 in Example 1 
gives 

(3.7) 
1 

b ( i ,  k) = 
max (i+e, k + 6 )  ’ 

1 a, = ____ 
Y P - Y )  ’ 

w = 4. 

Thus any number 3, > 4 is an eigenvalue of the matrix B given by (3.7) 
having a positive eigenvector. Again B may be modified to some extent pre- 
serving these properties. We can further obtain some information on non- 
real eigenvalues of B by considering the mapping (3.8) in the manner de- 
scribed in Example 2. 

Exnnrple 4. Set 

This function f satisfies conditions (i) and (ii) but not (iv). Indeed we have 

(3.10) I., = y-1, 

and hence lim 2, = 1 for a + 1, contrary to the situation in Theorem 4. 
In any case we can apply Theorem 3 to the matrix B with the elements 

((O+d)-I for i 5 K 
for i > k, b ( i ,  k )  = 

where we assume that 8 2 1. To this end we make use of the known result J 2  
that llBIl9S$, 1 < $  < co, for 8 = 1 and hence for all 8 2 1. 

For any A >  1 set y = 1-l and take a q > 1 such that q < A. Then 

that any number 3, > 1 is an eigenvalue of B with a positive eigenvector 
belonging to but not to I,. Again B may be modified to some extent as 
in Example 1. It should be pointed out that one can give an explicit solution 
to the eigenvalue problem for the unmodified B. But it would be of some 
interest to be able to deduce the main results from a general theorem. Notice 
also that Theorem 3 cannot give any information on the eigenvalue of B’; 
in fact B’ has actually only one eigenvalue I = 1. 

A = y -  - - 1, > q 2- I I B I and we can conclude, from Theorem 3, (set $ = A) Y 

-. 

IZSee Hardy. Littlewood and Polpa [2], p. 240. 
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4. Special Types of Positive Matrices 

For positive matrices A satisfying the assumptions of Theorem 4 every 
positive number 3, > o is an eigenvalue both for A and A' having positive 
eigenvectors. However, the relationship between different eigenvectors for 
different eigenvalues is not known in general. In order to give such a relation- 
ship it appears necessary to introduce further assumptions. 

In conformity with the notation used in a previous paper [ 5 ] ,  we write 
A B for two positive matrices A = ( a ( i ,  k ) )  and B = ( b ( i ,  K)) if the ratio 
b ( i ,  K) /a ( i ,  K )  is a non-decreasing function of i and k.  Similarly, we write 
x << y for two positive vectors x = ( x ( i ) )  and y = (y(i)) if y ( i ) / x ( i )  is non- 
decreasing in i. The relation << is not changed when both sides are multiplied 
with (not necessarily equal) positive numbers. Also x << y implies x 5 y if 
x and y are normalized in such a way that x(0)  = y(0). A positive matrix 
A will be called a P-matrix if every minor determinant of A of order 2 
consisting of four neighboring elements is non-negative. The Hilbert matrix 
(0.1) is an example of a P-matrix. 

The following lemma was proved in [ 5 ]  for finite matrices, but its ex- 
tension to infinite matrices is obvious. 

LEMMA 3. Let A ,  B be positive matrices such that A << €3 and, moreovcr, 
Then let B be a P-matrix. Let x,  y be positive vectors sack that x << y .  

A x  << B y  whenever Ax  and B y  exist. 
We can, now prove 
THEOREM 5.  Let A be a P-matrix satisfying the condatiorts of Theorem 4 

(OT 4'). Then every nzlmber il 2 w is a n  eigenvahe of A as well as of A' with 
positive eigenvectors xA and xi, resfiectively, such that 

(4.1) xA << x p  , xi << x; for o 5 3, 5 p. 

Proof: The existence of the eigenvectors xA and xi for 1 > o has been 
proved in Theorem 4 (or 4'). We shall prove first (4.1) for the case 1 > O. 

Since with A ,  A' is also a P-matrix, it is sufficient to prove the first inequality. 
According to Theorems 1, 3, 4, ZA can be constructed by iteration 

starting with the vector = ( ( i + O ) - = ) ,  where u is a number such that 
A = & 9 0 < a < ~0 . As is stated in the remark after Theorem 1, the approx- 
imating vectors X l  I n = 1, 2, 3, * - - , can be normalized in such a way that 
$(o) = 1. We shall now show that 

Going to the limit n --f 00 we then get (4.1) for 3, > O. Relation (4.2) is true 
for n = 0 since we have xi = ( ( i+O)-")  and x; = ( ( i + O ) - B )  where cc, /? are 
such that 3, = A,, p = I ,  and u, ,b' < uo ; but ,I 5 p implies GC 2 /I be- 
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cause A, is a decreasing function of y for 0 < y < a. . Suppose now that 
(4.2) has been proved for an n; we shall show that it is also true for n re- 
placed by n+1, thus completing the induction. Since A is a P-matrix, it 
follows from Lemma 2 and (4.2) that Ax: <<Ax;,  which after normalization 
gives x:+I << xi+1. 

We can now establish the existence of the eigenvector xu and the 
validity of (4.2) for I = o. Since xA << a,, implies I; x,, in virtue of the 
normalization xA(0) = x,(O) = 1, each component x n ( i )  of x,, is a non- 
decreasing function of 1 for A > w. Therefore, the limit x,(i) = limA+u zA(i) 
exists for each i. The vector x, = (xu@)) satisfies the normalization condi- 
tion z,(O) = 1 and the inequality x, << xA for il 2 w. Furthermore, it 
follows easily from the monotonicity of xA that x ,  is an eigenvalue of A with 
the eigenvalue o. 

Incidentally this shows that x,  is actually positive, This completes the 
proof of Theorem 5. 

The following theorem can be proved in quite the same way. 

THEOREM 6. A = A ,  of Theorem 5 de$ends on the parameter 8 (see 
Theorems 4 or 4’). Assume that A ,  is always a P-matrix and that 8 < q 
implies A ,  << A , .  Denoting by x,,,, and xi,A the x,, and xl of Theorem 5 ,  
respectively, we then have 

(4.3) X8.A << $,,a 9 Xi,,, << for 8 5 7, w 5 A 5 p. 

Example 5 .  The Hilbert matrix H e  given by (0.1) satisfies the assump- 
tions of Theorems 6 and 6 at least for 8 2 112. Hence any number 3, 2 IC is 
an eigenvalue of H, with a positive eigenvector x,,,\ (see also Example 2) 
for which (4.3) holds. This is true even if H ,  is modified by the term C of 
Theorem 4’ as long as the modified matrix is a P-matrix satisfying the 
assumptions of Theorem 6. 
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