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The Annals of Probability 
1975, Vol. 3, No. 1, 146-158 

I-DIVERGENCE GEOMETRY OF PROBABILITY DISTRIBUTIONS 
AND MINIMIZATION PROBLEMS 

BY I. CSISZAR 

Mathematical Institute of the Hungarian Academy of Sciences 
Some geometric properties of PD's are established, Kullback's I-diver- 

gence playing the role of squared Euclidean distance. The minimum dis- 
crimination information problem is viewed as that of projecting a PD onto 
a convex set of PD's and useful existence theorems for and characteriza- 
tions of the minimizing PD are arrived at. A natural generalization of 
known iterative algorithms converging to the minimizing PD in special 
situations is given; even for those special cases, our convergence proof is 
more generally valid than those previously published. As corollaries of 
independent interest, generalizations of known results on the existence of 
PD's or nonnegative matrices of a certain form are obtained. The Lagrange 
multiplier technique is not used. 

1. Introduction. Capital P, Q, R will denote PD's (probability distributions) 
on a measurable space (X, Z2) which will not be mentioned in the sequel. If 
P < Q (or Q < R,. etc.) the corresponding density (Radon-Nikodym derivative) 
will be denoted by pQ(x) (or qf(x), etc.); the argument x will be omitted if this 
does not cause ambiguity. 

The I-divergence or Kullback-Leibler information number I(P jj Q)-also 
called information for discrimination, information gain or entropy of P relative 
to Q-is defined as 
(1.1l) I(P I IQ) = 5 logpQ dP = 5 pQ logpQ dQ if P < Q 

-?00 if P Qu. 
If R is any PD with P < R, Q < R (1.1) may be equivalently written as 

(1.2) ( I IQ) pR log dR. 
qR 

Here and in the sequel we understand 

(1.3) logo =-oo, log a = +oo , O . (+oo) = . 
0 

I(P I Q) is always nonnegative and vanishes only for P = Q. 
We shall not be concerned with the information theoretic significance of I- 

divergence; rather, we look at it simfply as a quantity measuring how much P 
differs from Q. Given a PD R, the set of PD's 

(1.4) S(R,p)={P:I(PIIR)<p} (O< p<0) 

Received February 20, 1973; revised December 27, 1973. 
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I-DIVERGENCE GEOMETRY OF DISTRIBUTIONS 147 

will be called an I-sphere with center R and radius p. If W is a convex set of 
PD's intersecting S(R, oo), a PD Q e W satisfying 

(1.5) I(Q I I R) = mine _ I(P I I R) 

will be called the I-projection of R on W. If such Q exists, the convexity of W 
guarantees its uniqueness since I(P I R) is strictly convex in P, as one immediately 
sees from (1. 1). 

As demonstrated by Kullback [14], minimization problems of type (1.5) play 
a basic role in the information-theoretic approach to statistics (see also [7], [9], 
[13], [17] etc.); they frequently occur also elsewhere, e.g., in the theory of large 
deviations, cf. Sanov [20], and in statistical physics, as maximization of entropy, 
cf. Jaynes [10]. In physics, the measure R is often not a PD; R(X) may even 
be infinite. This does not make much difference in most respects, except that in 
the latter case the integral (1.1) may be negative, even - oo (which corresponds 
to infinite entropy), or undefined. 

Let us emphasize that I-divergence is not a metric and in general the I-spheres 
S(R, p) do not even define a topology (as a base of the neighborhood system of 
R). This negative statement remains true if I(P I I Q) is replaced by the symmetric 
divergence I(P I I Q) + I(Q I I P)-used already by Jeifreys [ 11 ]-or by any reason- 
able function of I(P I Q) and I(Q FI P), see Csiszar [3]. In spite of these discour- 
aging facts, it will be shown that certain analogies exist between properties of 
PD's and Euclidean geometry, where I-divergence plays the role of squared 
Euclidean distance. In particular, a "geometric" approach will be helpful in 
the study of I-projections, i.e., of the extremum problem (1.5). 

In Section 2, using an analogue of the parallelogram identity, we first prove 
that the I-projection always exists if the convex set W is closed in the topology 
of the variation distance 

(1.6) P-QI S IpR -qR dR 

(where R is any PD with P < R, Q < R). Next we prove a lemma having the 
geometric interpretation that the PD's with S log q. dP = p form the "tangent 
hyperplane" of the I-sphere S(R, p) at Q, where p = I(Q I R) < oo; for such P's 

(1.7) I(PIIR) = I(PIIQ) + I(QIIR), 

which is an analogue of Pythagoras' theorem. 
The resulting characterization of I-projection will be used in Section 3 to es- 

tablish a necessary and a sufficient condition on the form of I-projection on a set 
W defined by linear constraints of a general type. In case of a finite number of 
integral constraints or marginal constraints, we obtain a necessary and sufficient 
characterization of I-projection. These results complete the known sufficient 
conditions following from the minimum discrimination information theorem of 
Kullback [14] and Kullback and Khairat [18]. As corollaries of independent 
interest, we arrive at generalizations of known results on existence of bivariate 
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148 I. CSISZAR 

distributions or nonnegative matrices of a certain product form and with given 
marginals, see Hobby and Pyke [8] and, e.g., Sinkhorn [21]. 

Another "geometric" result of Section 2 (asserting the transitivity of I-projec- 
tion) is used in Section 3 to prove the convergence of an iterative algorithm for 
finding the I-projection, which generalizes the familiar iterative proportional 
fitting procedure (IPFP) for adjusting a contingency table to given marginal 
distributions. Though the proof works only for finite X, it is of more general 
validity than the known convergence proofs for the IPFP, even if attention is 
restricted to that case. 

Our last result is an existence proof for a case not covered in Section 2. 
After having submitted the first version of this paper, the author became aware 

of related work of Cencov [2]; he has developped a geometry of I-divergence, 
looking at it with the reversed order of P and Q. Apparently, there is no in- 
tersection between his results and ours, except for Theorem 3.3, see the discussion 
there. 

2. General "geometric" results on I-projections. 

THEOREM 2. 1. If the convex set W of PD's is variation-closed then each R with 
S(R, oo) n e # 0 has an I-projection on W. 

PROOF. The idea is similar to the proof of existence of projection in Hilbert 
space. Pick a sequence Pn E W with I(Pn II R) < oo (in particular, Pn < R) such 
that 

(2.1) I(Pn IR) -infpe, I(PI R) . 

Since 

(2.2) I(Pm IR) + I(PnI R) 
2I(Pm + P R + I (Pm| Pm + Pn ( 

+ IPA || ? 2 P) 
2 ~~~~2 2 / 

(this analogue of the parallelogram identity is readily checked by writing all 
terms as integrals with respect to R, using (1.2)), where (Pm + P")/2 e W by 
convexity, the last two terms of (2.2) must converge to 0 as m, n -oo. 

Using the inequality 

(2.3) IP- Q < (2I(P II Q))' 
proved independently in [4], [12] and [15], one concludes that 

l Pm Pn| < Pm 2 Pi Pn + P 2 P+Pn 
KnflI~~~n 2 2 

converges to 0 as m, n -+ oo and, consequently, P. converges in variation to 
some PD Q: 

(2t .4) Icv Q I = te PD - qR| dR Q l> i (n Q> ooR) 

(the convergence in variation of the PD's P,,, << R to Q clearly implies Q <e R). 
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I-DIVERGENCE GEOMETRY OF DISTRIBUTIONS 149 

In view of (1.1), from (2.4) follows by Fatou's lemma' 

(2.5) I(Q I IR) < lim inf I(P I R) . 

As K is variation-closed, we have Q e W. On account of (2.1) and (2.5), it 
follows that Q is the I-projection of R on W. 

REMARK. The only role of the hypothesis that W is variation-closed has been 
to ensure that the PD Q with the properties (2.4) and (2.5) belongs to W. If 
this is ensured in some other way, the assertion still holds, see Theorem 3.3. 

For any three PD's with Q < R and either of I(PI Q) < 0o and I(P I I R) < oo 
(thus P << R, too), (1. 1) and (1.2)-using (1. 3) if necessary-give rise to the 
identity 

(2.6) I(P R) -I(P I IQ)= S (PR log PR PR log PLZ) dR 

= PR log qR dR = S log q RdP. 
Our further results will be based on 

LEMMA 2. 1. If I(P II Q) and I(Q II R) are finite, the "segment joining P and Q" 
does not intersect the I-sphere S(R, p) with radius p = I(Q II R), i.e., I(Pa jj R) > 
I(Q I I R) for each PD 

(2.7) Pa = aP + (1 - a)Q, 0 < a Ca1I 

iff 

(2.8) S 1og qdP > I(Q 1R). 

If 
(2.9) Q = aP + (1-a)P', 0 < a < 1, 

then I(Q I R) < oo implies I(P I I R) < oo, and the segment joining P and P' does not 
intersect S(R, p) (with p = I(Q jI R)) iff 

(2.10) S logqRdP = I(QjIR). 

PROOF. The hypotheses imply P << R, Q < R. Let pa = apR + (1-a)q, 
denote the R-density of Pa defined by (2.7) (in particular, PO = qR, = PR). 
Since pa is linear in a and t log t is convex, pa log pa is a convex function of a 
and its difference quotient 
(2.11) fa = - (Paogpa - qologqR) 

a 

converges non-increasingly (as a a 0) to 

(2.12) limofa ,= p logpI = (PR - q,)(log qR + 1). 

1 (2.5) is a particular case of a more general lower semicontinuity property of I-divergence, see 
Pinsker [19], Section 2.4, Assertion 5. 
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150 I. CSISZAR 

11 = PR logpR - q. log q. is R-integrable by assumption, thus (1.1), (2.11) and 
(2.12) give, by the monotone convergence theorem, 

(2.13) d LI(Pa I R) = lime, I o f. dR = S (pR - qR)(log qR + 1) dR 
da a=O 

S log q.dP - I(Q IIR). 

This proves that if (2.8) does not hold then 

I(PaIIR) < I(PoIIR) = I(QIIR) forsome a> 0. 

The converse is trivial: (2.8) implies I(P I R) > I(Q I R) by (2.6), and Pa also 
satisfies (2.8) if P does. 

(2.9) with I(Q IIR) < oo implies P < Q < R, PR < a-lqs, thus by (1.1) 
I(P I R) < oo, too, and similarly I(P' I Q) < oo. The last assertion of Lemma 
2.1 follows from the first one, because (2.8) for both P and P' with strict in- 
equality in either case would contradict to (2.9). 

Lemma 2.1 means, intuitively, that the "tangent hyperplane" of S(R, p) at Q 
consists of the PD's satisfying (2.10); according to (2.6), this is equivalent to 
(1.7), thus we have an analogue of Pythagoras' theorem. This geometric in- 
terpretation is limited, however, to P e S(R, oo) u S(Q, oo); if both I(P I I R) and 
I(Q I I R) are infinite, the integral 5 log qR dP may or may not be defined and if 
it is, its value may be arbitrary (the case of P c S(Q, oo)\S(R, oo), i.e., I(P I Q) < 
I(P IR) = oo is not contained in Lemma 2.1, either; but then (2.6) applies and 
shows that (2.8) is trivially valid). 

Lemma 2.1 and the identity (2.6) immediately give rise to 

THEOREM 2.2. A PD Q e K n S(R, oo) is the I-projection of R on the convex 
set K of PD's iff every P e W n S(R, oo) satisfies (2.8) or, equivalently, iff 

(2.14) I(P 11 R) > I(P |I Q) + I(Q 11 R) for every P W. 

If the I-projection Q is an algebraic inner point of K then K c S(R, oo) and (2.8) 
and (2.14) hold with the equality. 

A Q e W is called an algebraic inner point of W if for every P e W there exist 
a and P' e W satisfying (2.9). 

REMARK. (2.14) shows, in particular, that if the I-projection Q of R on W exists 
then P < Q for every Pe ' n S(R, co). Thus, if some P e K with I(P I I Q)< oo 
is measure-theoretically equivalent to R, then so is Q, as well. 

Intuition suggests that if W is a linear set of PD's-i.e., if with P and P' also 
aP + (1 - a)P' belongs to W for every- real a for which it is a PD-then K 
always lies in the tangent hyperplane of S(R, p) at Q, the I-projection of R on 
W (with p = I(Q II R)), i.e., that the identity (1.7) is valid for every Pe W. It 
will be shown in the next section that this conjecture is not generally true but 
in the most important cases-in particular, for finite X-it is. This additivity 
relation and its consequence, the following transitivity property of I-projection, 
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I-DIVERGENCE GEOMETRY OF DISTRIBUTIONS 151 

proved for various particular cases by Kullback [14], [17], Ku and Kullback 
[13], etc., is very essential for informational statistical analysis. 

THEOREM 2.3. Let W and W, c e be convex sets of PD's, let R have I-projection 
Q on W and I-projection Q1 on W1, and suppose that the identity (1.7) holdsfor every 
P e W. Then Q1 is the I-projection of Q on W,. 

PROOF. Applying (2.14) with Q1 in the role of Q and (1.7) with Q1 in the role 
of P, we have for P e W 

(2.15) I(PIIR) ? I(PIIQ1) + I(Q1HR) = I(PIIQ1) + I(Q1HQ) + I(QIIR). 

Comparing (2.15) with (1.7), I(Q II R) cancels out, yielding 

(2.16) I(P I I Q) >_I(P I Q1) + I(Q1 I I Q) for every Pe &1. 

Theorem 2.3 completes the geometric results on I-divergence needed for our 
purposes. Of course, intuition should be used with caution. For example, if R 
has I-projection Q on a convex set W of PD's, it does not follow that the ele- 
ments of the "joining segment" of Q and R have the same I-projection on W. 

3. Minimizing I-divergence under linear constraints. A general formulation 
of a useful result known as minimum discrimination information theorem 
(Kullback [14], Kullback and Khairat [18]) is the following: For any (not nec- 
essarily convex) set W of PD's, if there exists a Q e W with R-density c exp g(x) 
where S g dP1 = S g dP2 < oo for any P1, P2e W, then I(Q I IR) = minpe , I(P R); 
more exactly, in this case 

(3.1) I(PH1R)=I(PH1Q)+I(QIIR) forall PeW. 

Observe that this immediately follows from the identity (2.6). 
Two particular cases deserve main attention: 
(A) W is defined by constraints of form S fi dP = ai, i = 1, *.., k. Then, if 

a Q e W with 

(3.2) qR(X) = C exp 1 tifi(x) 

exists, it is the I-projection of R on W and (3.1) holds. 
(B) (X, A) = (X1, x) X (X2, 2) and W consists of the PD's P with given 

marginals Pi on (Xi, 2i), i = 1, 2. Then, if a Q e W with 

(3.3) qR(X1, X2) = a(xl)b(X2), log a e L1(Pl), log b e L1(P2) 

exists, it is the I-projection of R on W and, again, (3.1) holds. 
Our next aim is to complete the mentioned results for cases (A) and (B). We 

shall not explicitly consider the equally important case of PD's on a multiple 
product space with given marginals of certain (arbitrary) types, since the ex- 
tension of our results from case (B) to that case is trivial. For example, if 
(X, a2') = Xi=, (Xi, Ri) and 2a consists of the PD's with given marginals (of 
types shown by the indices) P123, P124 and P34, say, then the extension of Corollary 

This content downloaded from 128.122.184.180 on Mon, 16 Dec 2013 17:11:59 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


152 I. CSISZAR 

3.1 below is that a Q e W is the I-projection of R on W iff 

qR(Xl, X2, X3, X4) = a(xl, x2, x3)b(xl, x2, X4)C(X3, X4) 

with log a e L1(P123), log b e L1(P124), log c e L1(P34) except, possibly, for a set N 
where qR vanishes and P(N) = 0 whenever P e A, I(P I R) < oo; then (3. 1) holds, 
too. 

The following theorem concerns sets of PD's defined by linear constraints of a 
general type. Since no existence assertions will be made, we need not formally 
exclude even W = 0, i.e., contradicting constraints. 

THEOREM 3.1. Let { fr}rr emabe an arbitrary set of real-valued measurablefunc- 
tions on X and {arlr e r be real constants. Let W be the set of all those PD's P on 
(X, 2) for which the integrals S fr dP exist and equal a. (r e F). Then, if a PD R 
has I-projection Q on a, its R-density is of form 

(3.4) qR(x) = c expg(x) if x N 

=0 if xeN 

where N has P(N) = 0 for every P e W n S(R, oo) and g belongs to the closed sub- 
space of L1(Q) spanned by the fr's. On the other hand, if a Q e W has R-density of 
form (3.4) where g belongs to the linear space spanned by the fr's (without closure) 
then Q is the I-projection of R on W. and (3.1) holds. 

COROLLARY 3.1. In case (A) or (B) above, a Q e W is the I-projection of R on 
W iff qR is of form (3.2) or (3.3), respectively, except possibly for a set N where qR 
vanishes and P(N) = 0 foi every P e W n S(R, oo); in both cases, the identity (3.1) 
holds. If, in particular, some Pe W with I(P II R) < oo is measure-theoretically 
equivalent to R then (3.2) or (3.3) is necessary and sufficient for Q to be the I- 
projection of R on W. 

Before giving the proof, let us show by an example that for the I-projection 
on a set W defined by linear constraints the identity (3.1) is not generally true 
(contrary to geometric intuition) and neither the necessary nor the sufficient 
condition of Theorem 3.1 is both necessary and sufficient, in general. 

EXAMPLE. Let X be the unit interval, z%9 the Borel v-algebra and Q the 
Lebesgue measure. Let W be the set of PD's satisfying 5 fn dP - 4, n = 1, 2,..., 
where 

fM(x) = 1 + n- if 0 < x < - 
4 4n 

(3.5) = 1 if -? < < 
4n 

=0 if '<x<1. 
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Let the PD R be determined by the condition qR(x) = c exp g(x) where 

(3.6) g(x)= -lime ft(x)= -1 if 0 < x < 4 
=0 if < x < 

Then Q e A, and on account of Fatou's lemma 

(3.7) S log qR dP = log c - 5 lim,.CfO dP 
> logc - 1 = I(QIIR) 

for all P E W. This means, by Theorem 2.2, that Q is the I-projection of R on 
W. It is easy to find P e W for which in (3.7) the strict inequality holds, e.g. 
the PD with Q-density 

_= if 0 < X < P( =5xi 

(3.8) = 0 if 4 < X < 5- 
= 2 if - < X <1. 

Thus (3.1) is false in this case; in particular, Q cannot meet the sufficient condi- 
tion of Theorem 3.1. If g(x) is given the opposite sign and R is defined ac- 
cordingly, we obtain S log qR dP < I(Q II R) for the P defined by (3.8); this means 
that Q cannot be the I-projection of R on W, showing that the necessary condi- 
tion of Theorem 3.1 is not sufficient. 

PROOF OF THEOREM 3.1. If Q is the I-projection of R on W then for N = 
fx: qR(x) = 0} necessarily P(N) = 0 for each P e W n S(R, co); see the remark 
to Theorem 2.2. 

Let W' c W be the set of PD's P e W with pQ(X) < 2. If P e "', there is a 
F' e W' with pQ'(X) = 2 - pQ(X), and with it Q = (P + P')/2; thus Q is an alge- 
braic inner point of s'. Applying Theorem 2.2 to W' instead of W we obtain 
S log q~dp = I(Q OR), i.e., 

(3.9) SlogqR(pQ-l)dQ =0 forall PeW'. 

But for any Un-measurable function h with Ih(x)I ? 1 such that 

(3.10) S hdQ = 0 and SfrhdQ = 0 for each reI, 

there exists a P e A' with pQ = 1 + h. Thus (3.9) gives 

(3.11) S log qR4hdQ = 0 

for all such h and therefore also for all h e Lo(Q) satisfying (3.10). 
Hence follows that log qRbelongs to the (closed) subspace of L1(Q) spanned 

by 1 and the f's. In fact, were this not the case, in view of the Hahn-Banach 
theorem ([22] page 106) there would exist a bounded linear functional on L1(Q) 
vanishing on the mentioned subspace but not at log qR; since the dual of L1(Q) 
is Lo(Q) ([22] page 115), this is a contradiction. This proves the first assertion 
of Theorem 3.1. 
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The second part is much easier. Suppose that q, is of the stated form. Since 
g is a finite linear combination Of fr's, S g dP is constant for P e K and 

(3.12) 5 logqdP = logc + 5 gdP = const = I(Q 1P) 
for P eA2, P < Q. But for P e K both I(P I I R) < oo (by hypothesis) and 
I(P II Q) < oo (by definition) imply P < Q; thus (3. 1) follows from (2.6) and 
(3.12). 

To prove the corollary, observe that case (B) does fit into the considered 
model, taking for f's the Pi-integrable functionsf(xi), i = 1, 2 (looking at them 
as functions of (xl, x2)). Theorem 3.1 clearly gives a necessary and sufficient 
condition on qR and guarantees the validity of (3.1) for the I-projection Q if the 
linear space spanned by the f7's is closed in L1(P) for each P e W. But the latter 
hypothesis is fulfilled in both cases (A) and (B), completing the proof. 

Theorem 3.1 and its corollary leaves the question of existence of I-projection 
open. If K is variation-closed, as in the case of boundedf.'s or in case (B), Theo- 
rem 2.1 guarantees the existence provided that K # 0 and I(P II R) < oo for 
some P e W. For case (A) with not bounded fi's, see Theorem 3.3 below. 

As a consequence of Corollary 3.1 and Theorem 2.1 we obtain 

COROLLARY 3.2. To given PD's Pi on (Xi, . i = 1, 2 and R on (X1 x X2, 

)( X ) there exists a PD Q on the product space with marginals P1 and P2 and 
with R-density of form a(xl)b(x2), log a e L,(P,), log b e L1(P2) if there exists any P 
measure-theoretically equivalent to R which has the prescribed marginals and satisfies 

I(PIIR) < oo. 

Considering R << P1 x P2 with densityf(xl, x2) and using P = P1 x P2 in Corol- 
lary 3.2, we obtain for the existence of a PD with marginals P1 and P2 and having 
P1 x P2-density of form a(x1)b(x2)f(xl, x2) the sufficient condition logf E L1(P1 x P2). 
It is interesting to compare this with a result of Hobby and Pyke [8]; their the- 
orem, when specialized to our problem, gives the sufficient condition 0 < a < 
f(x1, x2) ? K. 

Specializing Corollary 3.2 to finite X1 and X2, we obtain 

COROLLARY 3.3. Let A be an m x n matrix with nonnegative elements. For the 
existence of positive diagonal matrices D1 and D2 such that the row and column sums 
of D1 AD2 be given positive numbers, it is necessary and sufficient that some B with 
nonnegative elements and with the given row and column sums have the same zero 
entries as A (if any). 

PROOF. Without any loss of generality, the elements of A and both the given 
row and column sums may be assumed to add up to one. Then A defines a PD 
R on X1 x X2 and D1AD2 defines a PD having R-density of form (3.3). Since 
for PD's on finite sets P < R implies I(P | R) < oo, the assertion follows from 
Corollary 3.2. 

Corollary 3.3 solves a matrix-theoretic problem, partial solutions of which 
have been given by many authors. Sinkhorn [21] has shown that the positivity 

This content downloaded from 128.122.184.180 on Mon, 16 Dec 2013 17:11:59 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


I-DIVERGENCE GEOMETRY OF DISTRIBUTIONS 155 

of A is a sufficient condition by proving the convergence of the iterative propor- 
tional fitting procedure (IPFP) dating back to Deming and Stephan [5]. This 
IPFP and its extensions are widely used in the analysis of contingency tables. 
Of the extensive literature of the subject we mention here only Ireland and 
Kullback [9], Ku and Kullback [13] and Fienberg [6]; further references may 
be found there.2 

The IPFP for adjusting a PD R given on a finite product space to k marginal 
constraints, i.e., to given marginal distributions of arbitrary types, consists in 
the successive calculation of PD's Qn on the product space starting from Q0 = R: 
to obtain Qn, the probabilities of Qn l are multiplied by the ratios of the cor- 
responding marginal probabilities of the nth constraint and of Qn o. Here the 
constraints are looked at cyclically repeated. As shown by Ireland and Kullback 
[9], Qn is just the I-projection of Q,1 on cns where Wi is the set of PD's satisfy- 
ing the ith constraint, and Q = lim z Qn (if it exists) is the I-projection of R 
onw= fl,= Wi, the set of PD's satisfying all k marginal constraints. Kullback 
[16] generalized the method for the non-discrete case, too. 

Motivated by the approach of Ireland and Kullback [9], we are going to for- 
mulate the procedure in a general setup and prove convergence to the required 
I-projection, provided that X is a finite set. Unlike previous convergence proofs 
for the IPFP (see Fienberg [6] and the references there), we shall not need any 
assumption on the positivity of the probabilities of R. It should be noted that 
the convergence proof in [9] is incomplete since formula (4.38) does not imply 
(4.39); in [16] there is a similar flaw. 

THEOREM 3.2. Let W, * *, Sk be arbitrary linear sets of PD's on a finite set 
X with w = fnlyk Wi # 0, let R be any PD to which there exists P e K with P < R, 
and define Qu, Q2, .. recursively by letting Q, be the I-projection of Qn l on Ins 
n = 1, 2, where QO = R and 

(3.13) W. = Wi if n = mk + i, 1 < i < k. 

Then Qn converges (pointwise or, equivalently, in variation) to the I-projection Q of 
R on W. 

PROOF. Any linear set K of PD's on a finite set X of size r, say, can be looked 
at as the intersection of a linear subset of Er with the simplex representing the 
PD's on X. Hence W is closed and can be defined by a finite number of linear 
constraints. In view of Theorem 2.1 and Corollary 3.1, the I-projection of R 
on such an W always exists if I(P I I R) < 'oo-now equivalent to P < R-for some 
P e W, and then (3.1) holds, as well. 

Under the hypotheses of Theorem 3.2, it follows that the I-projections Q1, 
... and Q exist and I(P IIQn1) = I(P||Qn) ? I(Qn||Qn1) for any Pe 

2 The iterative algorithms suggested in [17] apparently do not belong to the class of generali- 
zations of the IPFP considered below. But also for the problems considered there, it is straight- 
forward to give convergent iterations within the framework of Theorem 3.2. 
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n = 1, 2, * .. Setting P = Q, in particular, we obtain by induction 

(3.14) I(Q II R) = I(Q II Q,) + =1 fQ, II Q%_l) , n = 1, 2, ... 
Since X is finite, each subsequence of Qq contains a convergent subsequence; it 
suffices to show that Qt-* Q' implies Q' = Q. First verify Q' e W. We have 
from (3.14) 

i= '(QI|Qi-1) < I(Q 11 R) < oo 

thus I(Q 1 Q,,-) -* 0, implying IQ,, - Q,-,I -+ 0 by (2.3). Thus Qffl+J, . * 

Ql +k also converge to Q' as I -* oo. Since these PD's belong to (a cyclic per- 
mutation of) the closed sets W, **, Wk respectively, see (3.13), we conclude 
Q'efni1 w i = 

Repeated application of Theorem 2.3 shows that Q is the I-projection on W 
of Q1, * *, Qn, *.*, as well, thus 

(3.15) I(P IQJ) = I(PIIQ) + I(QIIQ,) for all PeW, 

n = 1, 2, * . .. Applying this to P = Q, we obtain I(Q' II Q) = 0, i.e., Q' = Q 

because for finite XQ.1 -> Q' implies I(Q' I Qn) - 0. The proof is complete. 
Finally, let us return to the problem of existence of I-projection in case (A), 

if thefi's are not necessarily bounded. One possible approach is to prove in a 
direct way that there exists a Q e W with R-density (3.2). This is not easy but 
has been done under fairly general conditions by Cencov [2], Theorem 23.1. 
Here we show how the method of Theorem 2.1 applies to this case. Our hy- 
pothesis will be that 

(3.16) TR = {(t1, Q.., t:) exp 1 tifi(x) is R-integrable} 
is an open set in Ek; this clearly implies that fi(x) exp 1 tifi(x) is R-integrable 
for every (tl, . .. , tk) e TR i = 1, *.., k. (In the first version of this paper, 
TR - Ek was assumed. The strengthening has been inspired by Cencov's result, 
loc. cit., which implies the existence of I-projection even under a slightly weaker 
hypothesis.) 

THEOREM 3.3. Let W(al, ..., ak) be the set of PD's satisfying S fi dP = ai, i = 
1, * * *, k and let AR be the set of points (a,, . . ., a.) e Ek for which (al, . * *, a,) 
contains some P with I(P I I R) < oo. Then, supposing that TR is open, the I-projection 
of R on W(al . . * ak) exists for each inner point (al, ...* ak) of AR, and its R- 
density is of form (3.2). 

REMARKS. It can be shown that the interior of AR coincides with that of the 
convex hull of the support of R', the image of R in Ek at the mapping x > 

(f1(x), * * *, fk(x)). Thus, assuming that the fi's are linearly independent mod R, 
the interior of AR is nonvoid. If (a, . . * , ak) e AR is on the boundary of AR, 

typically there still exists the I-projection of R on W(al, * * *, a.) but its R-density 
vanishes on a set N of R(N) > 0. These problems will not be entered here. 

We shall need the following lemma of some independent interest. 
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LEMMA 3.1. For any (measurable) function f(x) for which etlf(" is Q-integrable 
if ItI is sufficiently small, I(P, Q) -O0 implies S f dP, -> f dQ. 

PROOF. Let p, denote the Q-density of P,; it surely exists if I(Pn II Q) < oo. 
In view of (2.3), I(P I Q) - 0 implies IPn - = 5 Ip -p1- dQ -* 0, hence on 
Ak = {x: If(x)l ? K} we have SAk f dPn > S Akf dQ. Thus it suffices to show that 
to any s > 0 there exists K such that 
(3.17) lim sup - SX\Ak If I dP, = uM supn-- SX\Ak If Lpn dQ < s 
But I(P, 11 Q) = 5 pn log p, dQ -> 0 implies limo S A Pn log p, dQ = 0 for every 
A e (apply Fatou's lemma to .both A and X\A). Choosing t > 0 and K to 
satisfy SX\Ak etll' dQ < Et, (3.17) follows from the inequality ab < a log a + e' 
(see [1] Section 15), substituting a = pj(x), b = tlf(x)l. 

PROOF OF THEOREM 3.3. On account of the convexity of I(P R) in P, AR is 
a convex set and 

(3.18) F(al, * ,ak) = inf, w (al,-, ak) I(P | Q) 
is a finite valued convex function on AR. Hence, if (al, ..*, ak) is an inner point 
of AR, there exists (tj, * * , tk) such that 

(3.19) F(b, . * bk) > F(al, a k) ? A ti(bi - a%) 

for all (b*, bk) e ARe 

First we show that (tj, * *, tk) e TR, see (3.16). 
Let P. e W(a, . * *, ak), I(P, I I R) -+ F(a1, *. *, ak); then P, converges in variation 

to some Q by the proof of Theorem 2.1. Letfi(I'f(x) = fi(x) if tifi(x) < Kn and 
fin(x) = 0 else, where Kn T oo, and let Qn be the PD with R-density 

(3.20) qnR(X) = c_ exp zi_1 t f7 (x). 

From (3.20) and (1.1) follows 

(3.21) I(Q, I IR) = S log qnRdPn + E 1 ti(S fin dQn- S fin dPn). 
Since (01, * *, 0) e TR and TR is open, the fi's are R-integrable and thus Q"- 
integrable, too; it follows that for large n 5 fin dQ. is arbitrarily close to 
5 fi dQn = bI say (note, that the sequence c. is non-increasing). Choosing the 
K.'s properly, also 5 fin dP. will be close to 5 fi dPn = ai if n is large, and then 
the identities (3.21) and (2.6) compared with the inequality (3.19) (with bin in 
the role of bi) give rise to I(P. II Q) -> 0. 

On account of (2.3), it follows that the Qff's with R-density (3.20) also con- 
verge in variation to Q, hence the latter has R-density (3.2); in particular, 
(to 

. . . 
If tk) e TRY 

Setting bi = 5 fi dQ, similarly to (3.21) we have 

(3.22) I(Q I R) = 5 log qR dPn + 1 ti(bi -a) a 

whence-again by (2.6) and (3.19)-we obtain that I(P IIQ) -> 0. Using the 
assumption that TR is an open set, Lemma 3.1 gives 5 fi dQ = lim. BOO 5 fi dPl = as, 
i = 1, . * *, k. The proof is complete. 
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REMARK. It follows that F(a1, * ., a,)-see (3.18)-is differentiable at every 
inner point of AR and grad F(a1, . . ., ak) = (t, . . ., tk) is just the parameter vector 
in (3.2) for the I-projection Q of R on W(al, *. . , ak). 
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