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1 Curse of dimensionality

In all the Dynamic Programming algorithms we discussed in previous lectures, we need to:

1. compute and store functions of the states

2. compute the greedy policy, i.e.

u(x) = argminaga(x) + α
∑

y

Pa(x, y)J(y) or

u(x) = argminaQ(x, a)

All of them are tedious if the state space is large enough. In some specific cases, we can develop compact

ways of storing J∗, like in the following example:

Example 1: In an LQ system, we have

xk+1 = Axk + Bak (1)

ga(x) = xT νx + aT Na (2)

We can prove that the optimal value function J∗(x) has the form of

J∗(x) = xT Qx (3)

And from Bellman’s equation, we can prove that Q satisfies a certain algebraic Ricatti equation. So instead

of storing J∗(x) for any possible x ∈ Rn, we only need to store Q, which requires only O(n2) space.

But in general, J∗(x) will not have an exact compact representation. Thus we can only store it as a

table, and the total storage space requirement grows linearly in |S|. More specifically, if there are N state

variables and each state variable can take on m different values, then |S| = mN which grows exponentially

with N .

So when the state space is large enough, due to computational limitation exact DP algorithms may fail to

produce the answer in tolerable time. Thus, approximate DP algorithms are developed to facilitate decision

making in large scale systems.

2 Approximate Dynamic Programming

There are two places in exact DP algorithm, where we can introduce approximation. One is in the policy

domain, the other is in the cost-to-go function domain. We are going to approximate the optimal cost-to-go

or policy function using parametized functions.
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2.1 Policy Approximation

We view a policy u(x) : S → A as a mapping from state space to action space. One approach to circumventing

the curse of dimensionality is based on approximating this function using a parameterized function uθ(x), θ ∈

Rp. A simple example of parametrization is ”threshold policy”, where we approximate u(x) by u(x) = u1

if x is within some threshold and u(x) = u2 otherwise. Take the average cost problem for example, by

parametrization, we translate the original problem from

min
u

λu (4)

to

minθλuθ
(5)

This is a nonlinear programming problem, and our main task reduces to how to compute the gradient ∂λ
∂θ

.

We will study this kind of method in detail later on in the class.

2.2 Cost-to-go function Approximation

Similar as policy iteration, we consider approximating the optimal cost-to-go function J ∗(x) by searching

over a class of parametric functions, i.e. J∗(x) ≈ J̃(x, r), r ∈ Rp. Note that in exact DP, we need to take

care of J∗(x) which has a dimension of |S, but after approximation, we only need to consider a p-dimensional

problem. A typical approximation scheme is the linear architecture:

J∗(x) ≈ J̃(x, r) =

k
∑

i=1

riφi(x) (6)

where φi(x), i = 1, 2, . . . , k are pre-defined basis functions.

Interesting questions arising from the linear architecture are how to pick up a good series of basis functions

and how to find a good r given the basis functions.

Value function approximation, at first sight, is quite similar as the statistical regression method. In the

latter, we have N samples (xi, yi), where yi is the noisy version of J∗(xi): yi = J ∗ (xi) + ωi. We can

approximate J∗(x) using a linear architecture:

J∗(x) ≈

p
∑

i=1

riφi(x), (7)

where φi are called basis functions, by minimizing the following mean square error:

min
r

N
∑

j=1

(

yj −

p
∑

i=1

riφi(xj)

)2

(8)

but in DP problem, there is no way for us to get the ”sample points” (xi, J
∗(xi)), thus making approximate

DP problem more difficult than statistical regression.

3 Approximate Architecture

Two nontrivial tasks arise in approximating optimal cost-to-go function:
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1. How to choose an approximate approximation architecture J̃(·, r)?

2. How to choose an approximate parameter r?

We will deal with the first issue in this section and discuss the latter later on in the class.

3.1 linear Architecture

In the linear architecture, we approximate J ∗ (x) using a linear combination of a series of basis functions,

i.e.

J∗(x) ≈ J̃(x, r) =

p
∑

i−1

riφi(x) (9)

A simple choice is to have φi being polynomial functions of the state, e.g.:

J̃(x, r) = r0 + rT
1 x + xT r2x + . . . (10)

where the basis functions are 1, x, x2, x3, . . ..

Another simple but useful example is state aggregation. i.e. we partition the state space into p separated

clusters: S1, S2, . . . , Sp, Si ∩ Sj = ∅. This corresponds to setting φi(x) to be the indicator function on set

Si, i.e.

φi(x) = 1x∈Si
=

{

1 x ∈ Si

0 x /∈ Si

(11)

and J̃(x, r) will be

J̃(x, r) =

p
∑

i=1

riφi(x) =

{

ri x ∈ Si

0 x /∈ Si

(12)

Another example is using heuristics. Suppose we have a “good” policy ũ at hand. We can set φ1(x) =

Jũ(x) + ω, where ω is some kind of noise.

3.2 Nonlinear Architecture

Nonlinear architecture represents the general case of j̃(x, r), which has far richer context than linear archi-

tecture. We can view linear architecture as a degenerate case of nonlinear architecture.

Two interesting examples of nonlinear architectures are:

1. Radial basis function(RBF) networks:

We express the basis function as

φi(x, xi, σi) = exp

(

−
‖x − xi‖

σi

)

(13)

where xis are the position of the ”weeds” and σis are the scaling factor. Figure 1 represents a typical

radial basis function approximation.

2. Neuro-network:

We first transform state vector x ∈ Rn into an input vector y ∈ Rm by doing

yj =

n
∑

i=1

rijxi (14)
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Figure 1: Radial basis function approximation

then we input y into the sigmoidal layer, which transforms y into another vector z by

zi = f(yi) (15)

We restrict f(·), the sigmoidal function to be monotonically increasing, differentiable and bounded.

The final output of the neural network is the weighed sum of z:

g(z) =
∑

i

rizi (16)

It is not hard to see that a neural network represents a function J̃(x, r), since x is the input, r is the

set of weights used in the neural network and g(z(x)) is the value of J̃(x, r). It is shown that neural

network has universal approximation ability, but it is really difficult to find out the adequate set of

weights r.

Figure 2: Neural Network
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