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No-arbitrage, Change of Measure and ConditionalEsscher TransformsHans B�uhlmannFreddy DelbaenPaul EmbrechtsDepartement of Mathematics, ETHZ, CH-8092 Z�urich, SwitzerlandAlbert N. ShiryaevSteklov Mathematical Institute, Vavilova, GSP-1 117966 Moscow, Russia1. IntroductionThis paper grew out of a seminar at the Department of Mathematics at theETH, Z�urich during the Summer Semester of 1995 on the subject of mathemat-ical �nance and insurance mathematics. It should be viewed as a contributiontowards bridging the existing methodological gap between both �elds, espe-cially in the area of pricing derivative instruments. Both insurance and �nanceare interested in the fair pricing of �nancial products. For instance, in thecase of car insurance, depending on the various characteristics of the driver,a so-called net premium is calculated which should cover the ecpected lossesover the period of the contract. To this net premium, various loading factors(for costs, 
uctuations,...) are added. The resulting gross premium is alsosubject to market forces which imply that a market-conform premium is �-nally charged. The more an insurance market is liquid (many potential o�ersof insurance, deregulated markets), the more a " correct, fair" price may beexpected to emerge. Very important in the process of determining the abovepremium is the attitude of both parties involved towards risk. Within the moreeconomic literature this attitude towards risk can be described through the no-tion of utility. Utility theory enters as a tool to provide insight into decisionmaking in the face of uncertainty. For a very readable introduction within thecontext of insurance, see Bowers et al. [2]. An alternative economic toolis equilibrium theory. Depending on the economic theory used, a multitudeof possible premiums may result, one of which is the time{honoured Esscherprinciple. Rather than being based on the expected loss itself, the Esscherprinciple starts from the expectation of the loss under an exponentially trans-formed distribution, properly normalised. In B�uhlmann [3], [4], the Esscher291



principle is discussed within the utility and equilibrium framework. Besides thepricing of individual risks (claims, say), more complicated insurance productsinvolve time and hence are based on speci�c stochastic processes. The classicalinsurance risk processes are of the compound Poisson type or their generalisa-tions like mixed and doubly stochastic compound Poisson processes. The mainfeature of such processes, making them distinct from the typical di�usion typemodels in �nance, is their jump structure. Indeed, when we turn to fair pricingin �nance, the standard reasoning uses the so-called no-arbitrage (or no freelunch) approach which says that there is no such thing as a riskless gain. Theprecise mathematical formulation of this economic principle brings in the bynow fundamental notion of risk neutral martingale measure. In the case wherethe underlying stochastic process is " nice " (geometric Brownian motion, say),exactly one such measure exists and the fair price of a contingent claim is theexpectation with respect to this measure, properly discounted. The latter, so-called complete case is rare in insurance. Due to the jump structure of standardrisk processes, we are in the so-called incomplete case. As a consequence, riskcannot fully be hedged away and in most cases, there will be in�nitely manysuch equivalent martingale measures so that pricing is directly linked to an atti-tude towards risk. Whereas in classical insurance, the question becomes "whichpremium principle to use", within the (incomplete) �nance context it becomes"which equivalent martingale measure to use". This is exactly the point wherethe Esscher transform enters as one of the possible pricing candidates. Go-ing back to a fundamental paper of Esscher [12], the Esscher transform isby now standard methodology in insurance, gradually however its appearancewithin mathematical �nance is becoming more and more prominent: see forinstance the beautiful paper by Gerber and Shiu [15] and the references anddiscussions therein. An interesting paper, coming more from the realm of math-ematical �nance is Grandits [16]. The present paper should be looked at inconjunction with B�uhlmann et. al. [5] where special attention is given todiscrete models. As explained above, typical insurance processes involve a jumpcomponent besides a possible di�usion term. It is therefore natural to presentthe necessary mathematical methodology needed for discussing pricing withinboth insurance and �nance within the wider theory of semi-martingales. Thisis exactly what is done in the present paper. The classical notion of Esschertransform for distribution functions is generalised to stochastic processes. Fora discussion of Esscher transform in a distributional context, see Jensen [20].In Embrechts et. al. [11] an application to the approximation of the totalclaim amount distribution in the compound Poisson and negative binomial caseis given.1.1. Some notationSuppose that a �nancial process (stock returns, spot rates, zero coupon bonds,value of a derivative instrument,� � � ) S = (St)t�0 is given on a �ltered probabil-ity space (
;F ; (F t)t�0; P ) where F = (F t)t�0 denotes the " 
ow of informa-292



tion". Mathematically the latter means that F consists of an increasing familyof sub �- algebras, i.e. for all s � t; Fs � Ft � F : Assume further that S is of" exponential form", St = S0 eHt ; H0 = 0; t � 0; (1)where H = (Ht)t�0 is a semimartingale with respect to F andP . The latterwill be denoted by H 2 Sem (F; P ) or H 2 Sem (P ). We remark that thenotion of semimartingale does not depend on the measure P . More precisely, ifQ � P are two equivalent probability measures, then Sem (P) = Sem (Q). Fora precise de�nition see for instance Jacod and Shiryaev [19] and Rogersand Williams [28]. Using Itô's formula for f 2 C2; one obtains:f(Ht) = f(H0) + Z t0 f 0(Hs�)dHs + 12 Z t0 f 00(Hs�)dhHcis+ X0<s� t �f(Hs)� f(Hs�)� f 0(Hs�)�Hs�; (2)where �Hs = Hs�Hs� and hHci is a quadratic characteristic of the continuousmartingale part Hc of H . Hence for the case (1) above:dSt = St�dĤt (3)with Ĥt = Ht + 12hHcit + X0<s�t(e�Hs � 1��Hs): (4)In the class of semimartingales the linear equation (3) has a unique solution:St = S0 E(Ĥ)t (5)where E(Ĥ) is called the Dol�eans stochastic exponentialE(Ĥ)t = exp�Ĥt � 12 hĤcit� Y0<s�t(1 +�Ĥs)e��Ĥs : (6)It should be remarked that for every semimartingaleH = (Ht), with probabilityone, X0<s� t j�Hsj2 < 1; 8t > 0: (7)From (7) it immediately follows that for each t > 0; there are only �nitelymany time points s � t such that j�Hsj > 12 . Consequently, the in�nite sumsand products in (4) and (6) are absolutely convergent and hence Ĥ and E(Ĥ)are well de�ned. 293



1.2. Discrete timeConsider the set-up (1) but now in discrete time,Sn = S0 eHn ; H0 = 0; n = 0; 1; 2; � � � (8)where H = (Hn)n� 0 is a stochastic sequence de�ned on a �ltered probabilityspace (
;F ; (Fn)n� 0; P ). Clearly, (8) can formally be considered as a specialcase of (1) by de�ningFt = Fn ; Ht = Hn ; n � t < n+ 1:Put Ĥn = X0<k�n(e�Hk � 1) (9)(to be compared with (4)), then we obtainSn = S0 Y0<k�n(1 +�Ĥk) = S0E(Ĥ)n: (10)The latter should be compared with (5) and (6). In the sequel we denotehk = �Hk(= Hk �Hk�1)and ĥk = �Ĥk(= Ĥk � Ĥk�1):Recall that hk = ln SkSk�1and hence can be viewed as a compound return, whereasĥk = SkSk�1 � 1 = �SkSk�1 = ehk � 1stands for simple return. Using this terminology and the correspondancesstated above, (1) can be viewed as a continuous model for compound return,whereas (5) is the continuous analogon of simple return. It is useful to remarkthat the representation (1) lends itself naturally for statistical data analysis.However, with respect to probabilistic analysis, the representation (5) turns outto be more advantageous. An example of the latter is the following: E(Ĥ) is alocal martingale if Ĥ is a local martingale.294



1.3. No-arbitrage and equivalent martingale measures.The " equivalence " of the notions no-arbitrage, no free lunch and the existenceof equivalent martingale measures belongs to the folklore of mathematical �-nance. The key underlying idea is the local equivalence of martingale measures,i.e. ~P loc� P on (
;F) meaning that for each t > 0; ePt � Pt (equivalence ofprobability measures) where Pt = P jFt; ePt = eP jFt and such that S = (St)is a martingale or local martingale with respect to eP:In discrete time, n = 0; 1; � � � ; N , the precise formulation of the above is asfollows.Equivalent are(a) no-arbitrage, and(b) there exists a probability measure eP on (
;F) so that ePN � PN andS = (Sn)n�N is a ePN -martingale.In the continuous time case, the situation is much more delicate. A solution isto be found in Delbaen and Schachermayer [7] and [8] and the referencestherein. Independent of the precise equivalence statements, the constructionof all equivalent martingale measures in a particular situation is important.A slightly less ambitious goal would be the construction of certain subclasses.The main aim of our paper is exactly the solution of this technical problem.We shall also discover the so-called conditional Esscher transform as a specialcase of the change of measure paradigm in stochastic calculus.2. Some facts about semimartingales2.1. De�nitionBelow we summarise the basic de�nitions and results concerning semimartin-gale theory of relevance in insurance and �nance. The c�adl�ag (right-continuouswith left limits) stochastic process H = (Ht)t� 0 de�ned on a �ltered prob-ability space (
;F ; (Ft)t� 0; P ) is a semimartingale if H admits a canonicaldecomposition Ht = H0 +At +Mt; t � 0; (11)where A = (At) 2 V (a process of bounded variation), M = (Mt) 2 Mloc (alocal martingale). Furthermore, we have that for each t � 0; At and Mt areFt-measurable.We recall that M 2 Mloc if and only if there exists a sequence of (F t)t� 0-stopping times (�n)n� 1 such that �n " 1 (P � a:s:) for n ! 1 and foreach n � 1; the stopped processM�n = (M�nt ) with M�nt =Mt^ � n ; n � 1;is a martingale:EjM�nt j < 1; E(M�nt jFs) =M�ns (P � a:s:); s � t:295



We would like to stress that local martingales are more than just martingalemodulo boundedness conditions. Indeed, there exist local martingales pos-sessing strong integrability properties which nonetheless are not martingales.See for instance Revuz and Yor [26], Chapter V , Exercise (2:13) where alocal martingale is given, bounded in L2, but which is not a martingale. Inthe case of discrete time, we have the following nice characterisation of localmartingales ; see for instance Jacod and Shiryaev [19], Chapter 1; 1:64 orLiptser and Shiryaev [23], Chapter VII,x1. Let X = (Xn)n� 0 be a stochas-tic sequence de�ned on a �ltered probability space (
;F ; (Fn)n� 0; P ). X isassumed adapted, i.e. Xn is Fn - measurable for all n � 0 and EjX0j < 1.Then the following conditions are equivalent:(1) X is a local martingale,(2) X is a martingale transformation, i.e. there exists a martingale Y = (Yn)and a predictable sequence V = (Vn) (meaning that for each n � 1; Vnis Fn�1 - measurable) such that for n � 1:Xn = X0 + X0<k�nVk�Yk; �Yk = Yk � Yk�1;(3) X is a generalised martingale, i.e.E(jXnj jFn�1) < 1; n � 1;and E(Xnj Fn�1) = Xn�1:(The key point in the latter conditions is that we do not assume integrabilityof Xn; n � 1)Remark: The condition (2) above can be interpreted as Xn is the value ofa trading strategy V on an underlying asset Y . This shows that the notionof local martingales lies at the heart of stochastic processes in �nance andinsurance. Unfortunately, the continuous time analogue of the above result isfalse.2.2. Semimartingale representationsDenote by � = �(!; ds; dx)(or d�) the measure describing the jump structureof H : �(!; (0; t; ]� A) = X0<s� t I(�Hs(!) 2 A); t > 0:where A 2 B(R�f0g);�Hs = Hs � Hs� and I(�) stands for the indicatorfunction. By � = �(!; ds; dx) (or dv) we denote a compensator of �, i.e. a296



predictable measure (see Jacod and Shiryaev [19], Chapter II, 1.8) with theproperty that � � � is a local martingale measure. This means that for eachA 2 B(R�f0g): ��(!; (0; t] � A)� �(!; (0; t] � A)�t> 0is a local martingale with value 0 for t = 0. The latter property is almostequivalent to the local martingale property of the signed measure � � �. Weshall not enter into the subtle di�erence here.A semimartingale H = (Ht)t� 0 is called special if there exists a decompo-sition (11) with a precticable process A = (At)t� 0. See Jacod and Shiryaev[19] where it is also shown that every semimartingale with bounded jumps(j�Ht(!)j � b <1; ! 2 
; t > 0) is special.Let ' be a truncation function, e.g. '(x) = xI(jxj � 1). Then �Hs �'(�Hs) 6= 0 if and only if j�Hsj > b for some b > 0. Hence_H(')t = X0<s� t (�Hs � '(�Hs))denotes the jump part of H corresponding to big jumps. The number of thelatter is still �nite on [0; t]; for all t > 0; because for all semimartingalesX0<s� t(�Hs)2 <1; P � a:s:The process H(') = H � _H(') is a semimartingale with bounded jumps andhence it is special: H(')t = H0 +B(')t +M(')t; (12)where B(') is a predictable process and M(') is a local martingale.Every local martingale M(') can be decomposed as:M(') =M c(') +Md('); (13)where M c(') is a continuous (martingale) part and Md(') is a purely discon-tinuous (martingale) part,Md(')t = Z t0 Z '(x)d(� � �): (14)More details, including a proof of (14), are to be found in Jacod and Shiryaev[19], Chapter II, 2:34. It is clear that_H(')t = Z t0 Z (x� '(x))d�: (15)297



Consequently H has the following canonical representation:Ht = H0 +B(')t +M c(')t +Z t0 Z '(x)d(� � �) + Z t0 Z (x� '(x))d�; (16)a formula going back to L�evy and Khintchin.The continuous martingale part M c(') does not depend on ' and will bedenoted by Hc (the continuous martingale part of H). Consequently,Ht = H0 +B(')t +Hct + Z t0 Z '(x)d(� � �)+ Z t0 Z (x� '(x))d�: (17)Denote by hHci a predictable quadratic characteristic of Hc, i.e. (Hc)2�hHciis a local martingale.We �nally arrive at the triplet of predictable characteristics of the semi-martingale H : T (') = (B('); hHci; �):In the case '(x) = xI(jxj � 1) we denote B = B('). Then (17) takes on theform: Ht = H0 +Bt +Hct + Z t0 Zjxj� 1 xd(�� �)+ Z t0 Zjxj> 1 xd�: (18)In Jacod and Shiryaev [19], Chapter II, 2 it is shown that if H is a semi-martingale, then �B(')t(!) = Z '(x)�(!; ftg � dx);where �(!; ftg � dx) = �(!; (0; t] � dx)� �(!; (0; t) � dx)and (x2 ^ 1) � � 2 Aloc;i.e. the process (R t0 R (x2 ^ 1)d�)t� 0 is locally integrable in so far that thereexist stopping times �n " 1 as n!1, such that for n � 1E� Z �n0 Z (x2 ^ 1)d�� <1:298



Using this notation, H turns out to be a special semimartingale if and only if(x2 ^ jxj) � � 2 Aloc:Further, H is a square integrable semimartingale if and only ifx2 � � 2 Aloc:If H is a special semimartingale, then the canonical representation (17) is validwith '(x) = x, i.e.Ht = H0 +Bt +Hct + Z t0 Z xd(� � �); t � 0; (19)with B = B(').There are various reasons why semimartingales play a fundamental role ininsurance and �nance (and indeed in many more applications):(i) They form a wide class of processes including stochastic sequences in dis-crete time, martingales, super - and sub - martingales, di�usion processes,di�usions with jumps, processes with independent increrements (if for ev-ery � 2 R; (Eei�Ht )t� 0 has bounded variation). This is especially impor-tant in the intersection of insurance and �nance where models involvingboth a di�usion component as well as a jump component are relevant.(ii) They form the most general class of stochastic processes for which a stochas-tic integration theory can be worked out, the latter is a consequence of thefamous Bichteler, Dellacherie, Kussmaul, M�etivier and Pellaumail theorem(see Rogers and Willliams [28], Section IV. 16). A full stochastic cal-culus, including Itô's lemma for semimartingales exists.(iii) The knowledge that a stochastic process is not a semimartingale may haveimportant implications in �nance in so far that then often explicit arbi-trage strategies can be worked out. A typical example concerning so-calledfractional Brownian motion is to be found in Rogers [27]. See also Del-baen and Schachermayer [7] where it is shown that a very weak formof the no-arbitrage property implies that the price process is already asemimartingale.2.3. ExamplesDiscrete time In this case we don't really need the heavy semimartingalemachinery, we only include this case for illustrative purposes. Consider thestochastic sequence H = (Hn)n� 0 with hn = �Hn = Hn �Hn�1.299



Hence,Hn = H0 + X0<k�nhk= H0 + X0<k�n'(hk) + X0<k�n(hk � '(hk)) (20)= H0 + X0<k�nE['(hk)jFk�1]+ X0<k�n('(hk)�E['(hk)jFk�1]) + X0<k�n(hk � '(hk)):De�ne for all A 2 B(Rn f0g); k � 0 :�k(A) = I(hk 2 A) = I(�Hk 2 A);�k(A) = E[I(hk 2 A)jFk�1] = P (hk 2 AjFk�1);where conditional expectations are always taken as regular versions. Then�(!; (0; n] � A) = X0<k�n�k(A);�(!; (0; n] � A) = X0<k�n �k(A);yielding the canonical representation (see (17))Hn = H0 +B(')n + X0<k�n Z '(x)d(�k � �k)+ X0<k�n Z (x� '(x))d�k ; (21)where B(')n = X0<k�n Z '(x)d�k : (22)(We could have written �k(dx) for d�k etc. : : : ) Because there is no continuouspart, the characteristic triplet reduces toT (') = (B('); 0; �) (23)where B(') = (B(')n)n� 0;= A6 � = (�n)n� 1:300



Processes with independent increments (I.I.) A process H = (Ht)t� 0 with I.I.is a semimartingale if and only if for each � 2 R; (Eei �Ht)t� 0 is a functionof bounded variation. For a proof, see Jacod and Shiryaev [19]; ChapterII,4:14. A remarkable fact for such processes is that their triplet of predictablecharacteristics only has deterministic components. If H = (Ht) is continuousin probability, then B(')t; < Hc >t and �((0; t] � dx) are continuous in t andthe L�evy - Khintchin formula yieldsE expfi�(Ht �H0)g = exp fi�B(')t � �22 Ct+ Z t0 Z (ei�x � 1� i�'(x))�(ds � dx)g (24)where Ct =< Hc >t is the variance of the continuous Gaussian part of H , andB(') and � are the �rst and third component in the triplet T (') = (B('); <Hc >; �) of H written in semimartingale form. If the I.I. process is moreoverhomogeneous (stationary), also referred to as a L�evy process, thenB(')t = tb(')Ct = tC (25)�(dt � dx) = dt � F (dx)where F is a distribution function on R. For a textbook treatment of L�evyprocesses, see Bertoin [1]. Hence in this case the triplet T (') is reduced to(b('); C; F (dx)).Brownian motion with drift and Poisson jumps Suppose thatHt = bt+ �Wt + NtXk=1 �k (26)where �; �1; �2; : : : are iid random variables with F (x) = P (� � x); N =(Nt)t� 0 is a homogeneous Poisson process with intensity � > 0; and W =(Wt)t� 0 is standard Brownian motion. Suppose furthermore that the pro-cesses W;N and (�i) are jointly independent. In this formulation, H in (26)in the recent literature either occurs as a classical risk process perturbed byBrowian motion(see Gerber [14])) or as a model for catastrophic insurancefutures (see for instance Cummins and Geman [6])
301



ThenHt = bt+ �Wt + NtXk=1 �k (27)= bt+ �Wt + Z t0 Z xd�= (bt+ Z t0 Z '(x)d�) + (�Wt + Z t0 Z '(x)d(� � �))+(Z t0 Z (x� '(x))d�)= t(b+ � Z '(x)F (dx)) + (�Wt + Z t0 Z '(x)d(� � �))+(Z t0 Z (x� '(x))d�):Consequently, T (') = (B('); hHci; �);where B(')t = t(b+ � Z '(x)F (dx));< Hc >t = �2t; (28)d� = �dtF (dx):Di�usion processes with jumps These processes can be viewed as semimartin-gales with predictable characteristic triplet T (') = (B('); C; �) whereB(')t = Z t0 b(s;Hs)ds; (b = B');Ct = Z t0 C(s;Hs)ds (29)�(!; dt � dx) = dt � Kt(Hs(!); dx);where Kt(x; dy) is a Borel transition kernel from R+ � R in R; see Jacod andShiryaev [19], Chapter III,2.2.4. Conditional Esscher transformsConsider a semimartingale H = (Ht)t� 0 with triplet T = (B;C; �) wherewe dropped for notational convenience the dependence on '. Also for simplicity,we take '(x) = xI(jxj � 1). We �rst introduce the cummulant process A(u) =(A(u)t)t� 0 associated with H :A(u)t = iuBt � 12u2Ct + Z (ei u x � 1� iu'(x))��(0; t] � dx�: (30)302



Suppose that �A(u) 6= �1, then the stochastic exponential G(u) = E(A(u))de�ned in (6) cannot take zero values. Now de�ne the processXt(u) = ei uHtE(A(u))t ; t � 0: (31)An important property of semimartingales is the following characterisation:H is a semimartingale with triplet (B;C; �)if and only if (32)X = (Xt(u))t�0 is a local martingale for every u 2 R;see Jacod and Shiryaev [19], Chapter II, 2.49. For discrete time processes,(30) reduces to�A(u)n = Z (ei u x � 1)�n(dx) = E(eiuhn � 1jFn�1): (33)However, in this case (6) implies thatE(A(u))n = Y0<k�n(1 +�A(u)k);= Y0<k�nE(eiuhn jFn�1):Hence in discrete time for a stochastic sequence H = (Hn) with �Hn = hnand so that E(eiuhn jFn�1) 6= 0; n � 1; the sequence ei uHnQ 0<k�n E(ei u h k jFk�1)!n� 1 (34)is a local martingale. Of course we don't need the deep characterisation result(32) in order to prove (34), a more direct argument can be given in this case.Similarly, suppose Eeakhk < 1; k � 1, for some constants a1; a2; : : : ; thenthe sequence Z = (Zn)n� 1 with Z0 = 1 andZn = Yk�n eakhkE(eakhk jFk�1) ; n � 1 ; (35)is a martingale. The latter follows immediately from the adaptiveness of Hand elementary properties of conditional expectation. Property (35) allows usto construct a family of measures f ePNg such that d ePN = ZNdPN andePN = ePN+1jFN : The conditional distributionePN (hN 2 AjFN�1) = E�IA(hN ) eaN hNE(eaN hN jFN�1) ��FN�1� (36)303



is called the conditional Esscher transform. In the traditional actuarial context,the hi's are independent and hence (36) reduces to an unconditional expecta-tion, the Esscher transform:ePN (hN 2 A) = E�IA(hN ) eaN hNEeaN hN �: (37)3. Predictable Conditions for S 2 Mloc (P ); S 2M (P )3.1. One assetIn order to investigate whether S 2 M(P ) (i.e. S is a P-martingale) it maybe more convenient to �rst look for conditions so that S 2 Mloc(P ) (i.e. Sis a local P-martingale) and then use the result in Jacod and Shiryaev [19],Chapter I, 1.47 that a local martingale S is a uniformly integrable martingaleif and only if S belongs to the class (D), that is the set of random variablesfST : T �nite stopping timeg is uniformly integrable. We hence start withthe representation (5), i.e. St = S0E(Ĥ)tand use the property (see Section 1:2) thatS 2Mloc (P ) if and only if Ĥ 2Mloc (P ): (38)From (4) and (17) we obtain:Ĥt = Ht + 12hHcit + Z t0 Z (ex � 1� x)d�= H0 +B(')t +Hct + 12 hHcit + Z t0 Z '(x)d(� � �) (39)+ Z t0 Z (x� '(x))d� + Z t0 Z (ex � 1� x)d�= H0 +B(')t +Hct + 12 hHcit + Z t0 Z '(x)d(� � �)+ Z t0 Z (ex � 1� '(x))d�:Suppose now that jex � 1� '(x)j � � 2 Aloc (i.e. the process (R t0 R jex � 1� '(x)jd�)t� 0 is locally integrable), thenZ t0 Z (ex � 1� '(x))d� =Z t0 Z (ex � 1� '(x))d�+ Z t0 Z (ex � 1� '(x))d(� � �); (40)where the last integral is a local martingale; see Jacod and Shiryaev [19],Chapter II, 1:28 and Liptser and Shiryaev [23], Chapter III,x 5. Hence from304



(39), Ĥt = H0 +B(')t +Hct + 12hHcit + Z t0 Z (ex � 1� '(x))d�+ Z t0 Z (ex � 1� '(x))d(� � �) + Z t0 Z '(x)d(� � �)= H0 +Kt +Hct + Z t0 Z (ex � 1)d(�� �);where (see (30))Kt = A(�i)t = B(')t + 12hHcit+ Z t0 Z (ex � 1� '(x))d�: (41)Therefore Ĥt = Kt + (local martingale)t. Since K = (Kt) is a predictableprocess, it follows thatĤ 2Mloc (P ) if and only if K � 0:See Jacod and Shiryaev [19], Chapter I, 3.16 and Liptser and Shiryaev[23]; Chapter I,6; Theorem 4 for more details.3.2. Two assetsSuppose that we now have a second asset S0 = (S0t )t� 0 withS0t = S00 eH0t � (42)Similar to the discussions above (see (4)) we introduceĤ0t = H0t + 12 hH0cit + X0<s� t(e�H0s � 1��H0s ) (43)and obtain S0t = S00 E(Ĥ0)t:Therefore StS0t = S0S00 E(Ĥ)tE(Ĥ0)t : (44)It is now easy to check by Itô's formula thatE(Ĥ0)�1t = E(�Ĥ�)t; (45)305



where Ĥ�t = Ĥ0t � hĤ0cit � X0<s� t (�Ĥ0s )21 +�Ĥ0s � (46)From (44) and (45) we obtain thatStS0t = S0S00 E(Ĥt) E (�Ĥ�)t: (47)If in general U; V 2 Sem(P ); then the so-called Yor addition formula (see forinstance Rogers and Williams [28], Section IV. 19) yieldsE(U)E(V ) = E(U + V + [U; V ]) (48)with the quadratic covariation process[U; V ]t = hU c; V cit + X0<s� t�Us�Vs: (49)So from (47); (48): StS0t = S0S00 E(Ĥ � Ĥ� + [Ĥ;�Ĥ�])t:It is not di�cult to check thatĤ � Ĥ� + [Ĥ;�Ĥ�] = Ĥ � Ĥ0 + hĤ0c � Ĥc; Ĥ0ci+X �Ĥ0(�Ĥ0 ��Ĥ)1 +�Ĥ0 �If S0 stands for a riskless asset, i.e. H0 is predictable, then Ĥ0c = H0c = 0and StS0t = S0S00 E�Ĥ � Ĥ0 +X �Ĥ0(�Ĥ0 ��Ĥ)1 +�Ĥ0 �: (50)Hence SS0 2 Mloc (P )if and only if (51)Ĥ � Ĥ0 +X �Ĥ0(�Ĥ0 ��Ĥ)1 +�Ĥ0 2 Mloc (P )306



The result (51) can be very useful in �nding su�cient conditions for S=S0 to bea local P� martingale. For instance, if �Ĥ0 = 0; then Ĥ0t = H0t (we supposethat H0 is predictable) and we obtainKt �H0t � 0 implies SS0 2 Mloc (P ): (52)Also, if �Ĥ = �Ĥ0, thenKt �H0t � X0<s� t(e�H0t � 1��H0s ) � 0implies (53)SS0 2Mloc (P ):3.3. ExamplesDiscrete time In the case of discrete timeĤ � Ĥ0 +X �Ĥ0(�Ĥ0 ��Ĥ)1 +�Ĥ0 =X �Ĥ ��Ĥ01 +�Ĥ0 ;so that because of (51), SS0 2 Mloc (P )mboxif and only if Xk�n ĥk � ĥ0k1 + ĥ0k 2 Mloc (P ) � (54)However ĥk = ehk � 1; ĥ0k = eh0k � 1; so that by Fk�1- measurability of h0k weobtain the following su�cient conditionE(ehk jFk�1) = eh0k ; k � 1 implies SS0 2Mloc (P ):Processes with independent increments Suppose that H = (Ht)t� 0 is a processwith independent increments, the triplet T (') given by (25) and let Ĥ0t = rt.Then Kt = t�b(') + C2 + Z (ex � 1� '(x))F (dx)�;so thatb(') + C2 + Z (ex � 1� '(x))F (dx) = r implies SS0 2Mloc (P ):307



Brownian motion with drift and Poisson jumps For the notation, see Section2:3:3: In this case Kt = t�b+ �22 + � Z (ex � 1)F (dx)�;whence b+ �22 + �E(e� � 1) = � implies SS0 2 Mloc (P ):4. Predictable conditions for the existence of a locallyequivalent probability measure eP such that S 2 Mloc ( eP ); S 2M ( eP )4.1. General resultsIf we have a measure eP loc� P , then the likelihood (Radon-Nikodym derivative)process Z = (Zt)t�0 with Zt = d ePtdPt (55)is strictly positive (Zt > 0; P and eP � a:s:; t � 0; see for instance Rogersand Williams 1987, Theorem IV,17:1: We therefore can de�ne the processM = (Mt)t�0 as follows: Mt = Z t0 dZsZs� ; (56)which satis�es M 2Mloc (P ). Since dZt = Zt� dMt, we have thatZt = Z0 E(M)t (57)where E(M)t = expfMt � 12hMcitg Y0<s� t(1 +�Ms)e��Ms : (58)The local martingale property of M implies that the following decompositionholds: Mt =M0 + Z t0 �sdHcs + Z t0 Z W (�; s; x)d(� � �) + fMt;where � andW satisfy some integrability conditions (see Jacod and Shiryaev[19], Chapter III, 4.24) and fM is a residual martingale part which is orthogonalto R :0 �sdHcs and R :0 R W (�; s; x)d(���). Unfortunately, we do not have su�cienttools in order to control the properties of fM . However, for many interestingcases, fM � 0. The latter for instance holds if the triplet T (') = (B;C; �) forH de�nes the distribution of H uniquely. The following are cases where thisproperty holds: 308



(i) Processes with independent increments.(ii) Strong solutions of stochastic di�erential equations with respect to Brow-nian motion.(iii) In the case of Poisson random measure in discrete time where �(!; fng� A) = P (�Hn 2 AjFn�1); n � 1, which gives us the possibility to calcu-late the (unconditional) distribution of (Hn)n�0.A possible approach consists of considering the structure of Z under the as-sumption that eP loc� P exists. Hence assume that Z = (Zt)t�0 satis�es therepresentation (57)� (58), whereMt =M0 + Z t0 �sdHcs + Z t0 Z W (:; s; x) d(�� �): (59)Can we from this representation deduce the existence of eP? This approachmay work if at least the characteristic triplet of H de�nes the measure P (i:e:the law of H) uniquely. We assume the �nite horizon case 0 � t � T <1 andnormalise E ZT = 1. In this case we can simply de�ned ePT = ZT dPT :The di�cult part in this plan de campagne is to �nd conditions on (�;W ) and(B;C; �) which imply that Z = (Zt)0�t�T is a martingale with E ZT = 1.A whole series of papers exists on this topic, see for instance Jacod andMemin [18], Liptser and Shiryaev [22], Novikov [24]; [25], Lepingle andMemin [21] and Grigelionis [17]. (See Schachermayer [29] and Delbaenand Schachermayer [9] for a case where fM cannot be taken to be zero!) Sosuppose that M = (Mt)0�t�T de�ned as in (59) is a positive martingale withE ZT = 1. We now want to understand which conditions on (�;W ) imply thatS 2 Mloc ( ePT ). First observe thatSZ 2 Mloc (PT ) implies S 2 Mloc ( ePT ); (60)(see Jacod and Shiryaev, Chapter III, 3.8) so that it su�ces to �nd condi-tions implying E(Ĥ)E(M) 2Mloc (PT ) � (61)Also note that ĤZ 2Mloc (PT )) Ĥ 2Mloc ( ePT ), E(Ĥ) 2Mloc ( ePT ), S 2Mloc ( ePT );309



so that instead of checking (61); one may look for conditions implyingĤE(M) 2Mloc (PT ): (62)One easily shows that (61) and (62) are equivalent.From (61) and Yor's formula ((48)) one obtains:E(Ĥ)E(M) = E(Ĥ +M + [Ĥ;M ])= E(Ĥ +M + hĤc;M ci+X�Ĥ�M) � (63)Moreover, (41) yieldsĤt = Kt +Hct + Z t0 Z (ex � 1)d(�� �) � (64)From (59) and (64), assuming that the process [Ĥ;M ] is locally integrable, wecan �nd its compensator ^[Ĥ;M ]. The latter is a predictable process with theproperty that [Ĥ;M ]� ^[Ĥ;M ] 2 Mloc (P ): The following form results see alsoJacod and Shiryaev [19], Chapter II, 2.17:^[Ĥ;M ]t = Z t0 �sdhHcis + Z t0 Z W (ex � 1)d��Xs� t Z W (s; x)�(fsg � dx) Z (ex � 1)�(fsg � dx): (65)It turns out to be convenient to denote W = Y � 1. The main reason forthis is the following. If H is a P� semimartingale with triplet (B;C; �) andd ePT = ZT dPT , then H is also a ePT� semimartingale with triplet ( eB; eC; e�)where de� = Y d�; Y (!; t; x) is positive and predictable and the process W inthe de�nition of M (see (59)) has the following representation (Jacod andShiryaev [19], Chapter III, 5.19)W = Y � 1 + Ŷ � a1� a I(a < 1); (66)a = (at(!)) where at(!) = �(!; ftg � R)Ŷt = Z Y (!; t; x)�(!; ftg � dx) �Both in the so-called quasi-left continuous case (i:e: at � 0) as well as in thediscrete-time case where at(!) = P (�Ht 2 RjFt�1) = 1 we have that W =Y � 1. Therefore, as a corollary we obtain^[Ĥ;N ]t = Z t0 �sdhHcis + Z t0 Z (Y � 1)(ex � 1)d� � (67)310



Together with (59); (63) and (64) we are led to the following result.Suppose that Z = (Zt)t�T is a positive martingale with dZt = Zt� dMt, whereM = (Mt)t�T is given by (59) and E j ZT j= 1. Then in the cases where�(!; ftg � R) 2 f0; 1g;the conditionKt + Z t0 �sdhHcis + Z t0 Z (Y � 1)(ex � 1)d� = 0; t � T;implies that there exists a measure ePT constructed by (56); (59); (66) such thatePT � PT and S 2Mloc ( ePT ):Suppose now that we are interested in the construction of probability mea-sures ePT with ePT � PT and SS0 2Mloc ( ePT ):In this case, StS0t Zt = S0S00 Z0 E(Ĥ)t E�1(Ĥ0)t E(M)t � (68)Because of (51); E(Ĥ)E�1(Ĥ0) = E( �H), where�H = Ĥ � Ĥ0 +X �Ĥ0(�Ĥ0 ��Ĥ)1 +�Ĥ0 �Moreover, by (63);E(Ĥ)E�1(Ĥ0)E(M) = E( �H)E(M)= E( �H +M + [ �H;M ])= E( �H +M + h �Hc;M ci+X� �H�M)= E(Ĥ � Ĥ0 +M + hĤc � Ĥ0c;M ci+X �Ĥ ��Ĥ01 +�Ĥ0 �M+X �Ĥ0(�Ĥ0 ��Ĥ)1 +�Ĥ0 )� E(I); say: (69)Again we assume that H0 is predictable so that H0c = 0 and consequentlyI = Ĥ � Ĥ0 +M + hĤc;M ci+X (�M ��Ĥ0)(�Ĥ ��Ĥ0)1 +�Ĥ0 � (70)311



Compare this expression with (51) when M � 0 and (63) when Ĥ0 � 0. Inorder to �nd now a predictable condition ensuring that S=S0 2 Mloc ( eP ); asbefore, we search for a decompositionI = Predictable process + local martingale �Another way of putting this is: if eI is the compensator (i.e. predictable part)of I , then eI = 0 implies SS0 2 Mloc ( eP ) � (71)Returning to (70), observe the following facts.(a) Ĥt � Ĥ0t +Mt = (Kt � Ĥ0t ) + Ĥct + Z t0 Z (ex � 1)d(�� �)+ Z t0 �sdHcs + Z t0 Z Wd(�� �)= (Kt � Ĥ0t ) + (local martingale)t;(b) hĤc; M̂cit = R t0 �sdhĤcis�The calculation of the compensator of the last (i.e. P�) term in (70) is ingeneral involved. However, for many interesting special cases (including thosealready discussed in previous sections) the compensator eI can be obtained inexplicit form. Rather than pursuing the general case as outlined above, in thenext section we shall look at some examples.4.2. Some examplesDiscrete time In this case,�I = �M + (1 +�M)(�Ĥ ��Ĥ0)1 +�Ĥ0= �M(1 +�Ĥ) + (�Ĥ ��Ĥ0)1 +�Ĥ0 � (72)Again denote hk = �Hk, whence �Ĥk = e�Hk � 1 = ehk � 1; we use the samenotation for H0. Hence, with�Mn = Z (Yn(x;!)� 1)(�n(dx) � �n(dx))= Yn(hn;!)�E(Yn(hn;!)jFn�1);we obtain from (72) that�In = �Mnehn�h0n + ehn�h0n � 1= ehn�h0n(�Mn + 1)� 1 � (73)312



Together with the assumed predictability of (h0n), we obtain from (73) the fol-lowing key result:E�ehn�Yn(hn;!)�E�Yn(hn;!)jFn�1�+ 1�jFn�1� = eh0n ; n � 1implies (74)SS0 2Mloc ( eP )�Therefore, the existence problem of a (local) matingale measure eP is reduced to�nding (Yn) which satisfy (74). This task may still seem to be formidable in thestated generality. It is exactly at this point that the conditional Esscher transformde�ned in (36) enters naturally. Indeed, we assume thatYn(hn;!) = eanhnE(eanhn jFn�1) ; (75)where the unknown functions an are Fn�1 - measurable. Our aim is to deter-mine the an's in the special case of (75). With (74) we arrive at the followingequation: E�e(an+1)hn jFn�1� = eh0nE�eanhn jFn�1� � (76)If the increment sequence (hn) is iid and h0n � h01 say, then for a � an weobtain the equation: Ee(a+1)h1 = eh01Eeah1 � (77)Hence in this case, the Esscher transform allows for a special construction of(Yn) by reducing the problem to �nding constants (an) or predictable functions(an(!)) satisfying (76). In Gerber and Shiu [15], the construction (77) isapplied in a �nance context. See also the references in the latter paper for fur-ther reading on the subject. Embrechts [10] discusses the Esscher transformin the light of �nancial versus actuarial pricing systems.Processes with stationary, independent increments (S.I.I.) Let H = (Ht) be aprocess with S.I.I., continuous in probability, and tripletB(')t = tb(')Ct = tC�(dt � dx) = dtF (dx) �Moreover, H0t = rt, say. Then Kt is de�ned in Section 3:3:2: In this case,I = Ĥ � Ĥ0 +M + [Ĥ;M ];313



and from (59); (64); (67) we obtain:Kt + Z t0 �sdhHcis + Z t0 Z (Y � 1)(ex � 1)d� = rt (78)impliesSS0 2Mloc ( eP )�The su�cient condition (78) can be rewritten as:t�b(') + C2 + Z (ex � 1� '(x))F (dx)� + C Z t0 �sds+ Z t0 Z (Y � 1)(ex � 1)dsF (dx) = rt � (79)Because of the homogeneity (i.e. incremental stationarity) of the process, itseems reasonable to take �s(!) � �; Y (s:x:!) � Y (x). Then for unknown �and Y (x), (79) reduces to:C(12 + �) + b(') + Z (ex � 1� '(x))F (dx)+ Z (Y (x)� 1)(ex � 1)F (dx) = r � (80)Take as particular case the standard Black - Scholes set-up in �nance, i.e.St = e�t+�W t ; S0t = ert�In this case, b(') = � ; C = �2 ; � � 0 so that the condition (80) reduces tothe well-known equation �+ �2(12 + �) = r (81)and Mt = �Hct = ��Wt. It should be stressed that (81) can be obtained muchmore easily directly, i.e. without using the general theory introduced above.Indeed Zt = exp���Wt � (��)22 t�and StS0t Zt = exp�(�� r)t + �Wt�exp���Wt � (��)22 t�= exp��(1 + �)Wt � �2(1 + �)22 t� exp�(�2(12 + �) + �� r)t� �Since �exp��(1 + �)Wt � �2(1 + �)22 t��t�0is a P -martingale, condition (81) immediately implies that S=S0 2 M (P ) andso S=S0 2 M ( eP ) where d ePt = ZtdPt.314



Brownian motion with drift and Poisson jumps Consider the model (26) withtriplet representation (28). Hence from (80) we obtain the following conditionfor (�; Y (x)): �2(12 + �) + b+ � Z Y (x)(ex � 1)F (dx) = r (82)or equivalently, �2(12 + �) + b+ �E(e� � 1)Y (�) = r �Compare this condition with the condition in Section 3:3:3:, where � = 0 ; Y �1 and ePt = Pt. If we consider a solutionY (x) = e�xEe��for suitable �, then we get for (�; �):�2(12 + �) + b+ �E(e� � 1)e��Ee�� = r;or with  (�) = Ee�� ,��2 + � (� + 1) (�) = r � b� �22 � ��5. ConclusionIn order to price and hedge derivative instruments in insurance and �nance, ano-arbitrage approach leads to the construction of equivalent (local) martingalemeasures of speci�c semimartingales. For a general class of such processes, in-cluding discrete models, processes with stationary and independent incrementsand certain di�usion models with jumps, a general construction toward obtain-ing such measures is outlined. Though these methods are well known in theliterature on general stochastic processes, we found it useful to summarise themain results and applications of this theory to the context of insurance and�nance. In doing so, we hope to contribute to closing the methodological gapcurrently existing between both �elds. The main common tool concerns theso-called Esscher transform, a time-honoured tool in insurance risk theory. Itsconstruction is generalised to the so-called conditional Esscher transform whichmay serve a similar purpose within more general pricing models.AcknowledgmentThe authors would like to thank a referee for the careful reading of the �rstversion of this paper. 315
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