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1. GENERAL TECHNIQUE 

The object of  our study is 

s = (So, Sl ,  ..., SN) = (S,,)O<,,<N (1) 

where each Sn is a m-dimensional stochastic (real valued) vector, i.e. 

Sn = (sn(l), s~, 2), ..., S~ '')) (2) 

defined on a probabili ty space (f~, .~', P) and adapted to a filtration 
(.~'n)O<n<N with .~'0 being the o-algebra consisting of  all null sets and their 
compl-efflents. In this paper we interpret S!/¢) as the value of  some financial 
asset k at time n. 

Remark: If  the asset generates dividends or coupon payments,  think of  S~ k) 
as to include these payments  (cum dividend process). Think of  dividends as 
being reinvested immediately at the ex-dividend price. 

Definition 1 

(a) A sequence of random vectors 

= ( 0 0 ,  '/91, , , , ,  ON) ~--" (~gn)O<n<_N, ( 3 )  

where 

~9,, = (0(n '), O(n 2), ..., ~9~"')), 0,, is .U,,-measurable, 
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is called a trading strategy. Since our time horizon ends at time N we must 
always have 0 u ~ O. 

The interpretation is obvious." 0!~ ) stands for the number of  shares of  asset 
k you hold in the time interval [n,n + 1). You must choose On at time n. 

(b) The sequence of  random variables 

60 = (~)0<n<N (4) 

where ~° n := (0,~-i -- O,)S,, stands for the payment stream generated by 0 
(set 0_ l - 0 ). 

Remarks: 
i) Observe that 0n, Sn are stochastic vectors, ~n is a simple random variable 

and (0n-i - 0 , ) S ,  has to be read as a scalar product. The best way to 
think of the above is to consider 5',, as the unit portfolio of all assets (you 
hold one unit of  each cum dividend asset), 0, your trading strategy for 
the period [n, n + I) and O,,S~ the value (at time n) of the portfolio held. 

ii) Many papers in finance study the stream of discounted gains 

O,,_l(D,,-iSn - S,,-1), n = 1, 2, ..., N, (5) 

for some discount factors Do, D1, ..., DN-i (where D,_i (> 0) is adapted 
to U~-i) which may be sometimes more convenient. In particular each 
strategy then can be understood as an It6-integral. 

Our definition of payment stream needs no external definition of discount 
rates and is more natural from a cashflow point of view. Indeed, just think of 
an investor who at one time point takes a (long or short) position in the 
assets of  his choice among S (k) (k = I, 2, ..., m). He may change positions at 
every time point and has the obligation to liquidate all positions at time N 
(hence 'ON--= 0). Typically one of the assets is a bank account earning 
predictable interest. The latter means that the interest rate for the period 
[ k -  1, k) is .Tk_l-measurable, for all k > 1. 

Definition 2 

. Denote 
(a) by M := {60; z9 a trading strategy} the set o f  all payment streams 

generated by trading strategies, 
(b) by K := {X; X > 0} the set of  all non-negative stochastic payment 

stream, 
(c) by 0 the null payment stream and all equivalent payment streams. 

2. We say that the trading strategy 0 provides an arbitrage opportunity if  

6"° = (~o, 6~, ..., 6~) > O, and ~ 0 with positive probability. 
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. The absence of  arbitrage opportunities then means 

M N K  = {0}. 

We call (6) the No Arbitrage Condition (NAC). 

(6) 

Remarks: 
i) Observe that we have defined no arbitrage based on the definition 

OC~n : =  ( '0n_ 1 -- l.gn)gn, 

i.e. ~ is the n-th component of  the payment stream. 
ii) If for some predictable discounts D,,-i (n = 1, 2, ..., N) we use the 

alternative definition 

~,, := O._,(D._iS,, - S._,), 

i.e. ¢5~ is the stream of discounted gains, the condition (6) is called the 
Alternative No Arbitrage Condition (ANAC). 

iii) The equivalence of the two no arbitrage conditions is discussed in the 
Appendix, from which one also can see the equivalence to the 
traditional definition of  self-financing strategy with positive terminal 
value. 

The basic idea of  the whole pricing philosophy in finance consists in the 
construction of  a linear functional Q which strictly "separates" the payment 
streams obtained from trading strategies. To be more precise we want to 
prove the following theorem, which for the moment is stated loosely. Indeed, 
the particular spaces where (Sn)0<n< N and ( '~n)0<n< N take values are not yet 
defined. 

Theorem 1 The NAC (6) is a necessary and stofficient condition for the 
existence of  a strictly positive linear functional Q which is zero for all elements 
of  M. 

Remarks: 
i) Because of its importance in finance the theorem above is usually 

referred to as the Fundamental Theorem of Asset Pricing. 
ii) The necessity of  (6) follows immediately. The difficult part to prove is: if 

(6) holds, then there exists a strictly positive linear functional Q such 
that Q(6 °) = 0 for all f0 E M. 

iii) Observe that under the NAC (6) one can prove by convexity arguments 
alone the existence of  a nontrivial, non-negative functional H such that 
H ( ~ )  = 0 for all 6° E M. Unfortunately this is of  no help. In order to 
prove the existence of  a strictly positive linear functional Q such that 
Q(6 °) = 0 for all 6° E M we must introduce a topology in our linear 
space. 
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iv) It should be noted that many texts in finance treat the Fundamental 
Theorem of Asset Pricing in a finite probability space. Most of  the 
proofs used in this context are - unfortunately - not valid for infinite 
probability spaces. 

2. TECHNIQUE IN A NORMED LINEAR SPACE 

Let LP(P, Rm, .F) be the space of real valued random vectors taking values 
in R'", measurable with respect to ~ and with integrable p-norm with 
respect to P. For the sequel we assume the following conditions 
(C1) 0, E LZ(P, ~."', 3r,,), 0 < n < N, 
(C2) S, E L~(P,  IR'", j r ) ,  0 < n < N. 

Remarks: 
(C l) can be accepted as a reasonable restriction of strategies, 
(C2) is discussed in Schachermayer [7] who shows that it can be assumed 

without loss of generality. 

Under (C1) and (C2) the payment streams 6 o are elements of 
L2(p, IR u+~, ~-,v), briefly denoted by L2+~. Observe that L~v+~ is the space 
of stochastic (N + |)-vectors with finite second moments for all components. 
We do not require that the n-th component be U,-measurable. l fwe  identify 
vectors which are almost surely equal, then LZN+~ is a Hilbert space with 
scalar product 

( X , Y ) = E  X~Yk . 

We now prove that under (Cl) and (C2) Theorem l holds. 

(7) 

Proof of necessity of NAC: 
Assume Q exists. If we have 6 0 >_ 0 and different from zero with positive 
probability, then Q(6O) > 0 contradicting that Q is zero on M. Hence (6) is 
necessary. 

Proof of sufficiency of NAC, part 1: 
We follow the reasoning developed by Schachermayer [7] who proved the 
following Lemma: 

Lemma 1 (Sehachermayer's Lemma) If M M K = { O } ,  then also 
M - K f q K  = {0} where the closure is taken by L 2 limits. 

Remark: Schachermayer proved the lemma for the Alternative No Arbitrage 
Condition (based on a stream of discounted gains). His proof can however be 
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adapted to the No Arbitrage Condition (based on a stream of cash payments) 
as used by us. The basic argument in the proof of the lemma is as follows: 

l f f o r 0 < n < N  

(~9(0 r)) (OK, ~ L2 v,,_ l s o -  r .___0 ,  

where (r)K,, >_ 0 for all n and r, then one can find a trading strategy 
(°°)vQ E L2N+i such that 

Y, _< ((°°)vq,,_j - (°°)v%)S,, for all n, 0 < n < N. 

But, if Y = (Y o, Y1, ..., Y,,, ..., YN ) ~: 0, (°°)vq would allow arbitrage. 
2 The convergence is in LN+ ~ to start with, but by passing to an 

appropriate subsequence one can argue by almost sure convergence. 

Proof of sufficiency of NAC, part 2: 
Take any strictly positive linear functional L and define for every E > 0 

( 2 . L ( X ) > ~  and [ [XI I< !}  Ke = K M X E L N +  1, _ _ 

which is weakly compact and does not contain 0. We can hence separate 
strictly M - K and Kc; i.e. we have for some well chosen continuous linear 
functional Q~ : L~v+t - ~ . ,  

Q~(Y)<QE(X~) for all Y E M - K  and a l l X E K ~ .  

As M -  K is a cone, we must have 

Q~(Y)<_O and hence Qc(6 °)-Q~(X)<_O for all X E K ,  6 'TEM. 

As this implies QE(6 °) = 0, it follows that 

Q~(X)>O for all X E K ,  

QdX) > 0 for all X E K~. 

Take now ak > 0 and ~k J. 0 such that )--~=l aklIQE,[I < oo and define 

oo 

Q(X) := ZakQ~,(X) .  (8) 
k=l  

We then have 

Q(6 ° ) = 0  for all 6 ° E M ,  

Q(X)>O for all X ( # 0 )  EK.  

The last line holds since every such X lies in some K~,. for k sufficiently 
large. [] 
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3. RIESZ REPRESENTATION IN L~+ t 

Because L~v+l is a Hilbert space, any continuous linear functional Q defined 
on the whole L2N+i can be represented as a scalar product. We formulate this 
fact as: 

Theorem 2 Let Q be a strictly positive linear functional on L2u+l . 

(a) There is a unique element ~ E L2+l such that Jbr all X E L2+l we have 

Q ( X ) =  E[~=o~kXk ] . (9) 

(b) For all k --= 0, 1, 2, ..., N we have ~ok > O. 

(c) i) I f  Q is restricted to the subspace o f  componentwise adapted vectors 
X cL2N+i, then there is an adapted version o£ 99 (i.e. ~,  is 
.Tn-measurable for every 0 < n < N) - call it ~(s) _ such that 

Q(X) = E 
Lk=O J 

for  all X, adapted vectors in L2N+i . 
ii) This ~p(s) is unique, once Q is given. 

Terminology: Following Duffle [3] we call ~p a Deflator and ~(~) a Standard 
Deflator. 

Remark: The interested reader should also note the links between price 
deflator and the supermartingale potential representation as given by Rogers [6]. 

Proof: 
(a) Follows immediately from the Riesz Representation Theorem since 

L2N+j is a Hilbert space. 

(b) Since Q is a strictly positive linear functional. 

(c) i) Define ~2~)= E[cpk[.Y'k]. Then for Xk, which is Yk-measurable, we have 

eI kXk] = eEeI kx+l  ll = xk] 
L - J 
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ii) Suppose that we, have,_two Standard Deflators ~pCs) and ~b (~). For any k 
define Ak = ~b~ ~) -- ~ )  which is f~-measurable.  For 0 < n < N we 
must have 

hence E[A 2] = 0, whence ~s) = ~p~s) with probability 1. [] 

Convention: As we shall in the following apply Q to vectors X with adapted 
components only, we work from now on with the Standard Version ~(s) of  
the Deflator (and drop the superscript s for convenience). 

4. THE MARTINGALE PROPERTY 

Let S, Q, ~ be as in the previous section and consider the value process of  
asset l, 

The following theorem establishes the equivalence of Theorem 1 (together 
with its Riesz representation as expressed by Theorem 2) with the so called 
"Martingale property". 

Theorem 3 Given a strictly linear fimctional Q satisfying Theorem 1 and its 
representing qo = (~1, qo2, ..., qON), then we have that 

(a) (~kS(k t)) is a martingale (with respect to the original probability 
\ / O < k < N  
measure as assumed in Section 2) for all l = 1, 2, .., m. 

(b) Conversely any strictly positive ~ for which (a) holds defines a Q 
satisfying Theorem 1. 

Proof: 
(a) Assume existence of Q with deflator ~. Choose for fixed k 

'0~/) I = IF~._~ for some Fk-i E .~-1 ,  l, k fixed, 

"0~ g) = 0 for all other values of j, g. 

(For any Borel set A, IA denotes the indicator function" of A). This 
defines a trading strategy 0 which buys exactly one unit of  asset l at time 
k - l provided Fk-i occurs and, provided the unit has been bought, sells 
the unit at time k. Hence 
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are the only components of 6 0 which differ from zero. Q(6O) = 0 can be 
written as 

- f~_, CPk_lS~'_),dP + fF ~-' qakX~OdP = O. • (11) 

Because equality (11) holds for all Fk-i E .F'k-i and - e(t) 7¢k_lOk_ 1 is ..F'k-1- 
measurable, we must have 

which is the martingale property. 

(b) For the converse look at 

Q(X) = E ~ok . 

We have to check that Q(6O) = 0 for all 6 o E M. Rewrite 

Q(6°) = E[~=o~k(Ok_l-vQk)Sk] = E [j__~l Oj_,(cpjSj-q@-lSj-l)]. 
The second equality follows from summation by parts. Since 
~ojSj - ~pj_~ Sj-i represent the increments of  a m-dimensional martingale 
the assertion Q(6O) = 0 follows immediately. [] 

Remarks: 
i). Note that the deflator cp is universal, it turns all our asset price processes 

into martingales. 
ii) Observe that also the (standard) deflator cpk is .F,-measurable (but not 

• ~'k-J-measurable) which in many applications in finance is considered to 
be a handicap (as it cannot be observed at time k - 1) and hence gives 
rise to a change of  measure. We are not pursuing this line of thought 
here. It will turn out to be of  advantage to work with the original 
probability measure. 

iii) Observe also that the probability distribution of the deflator ~ together 
with the filtration (..F,,)n<s can be understood as a summary 
characterizing the financial-model. The task of  modelling financial 
markets can hence be understood as the choice of  a filtration and of the 
proper deflator and its probability distribution. 
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5. THE BASIC PROBLEM 

Suppose that you know the original probabi l i ty  law P of  the s tream of  

r andom vectors S = (So, Si ,  ..., S N )  (1) (2) (m) w h e r e S k = ( S '  k , S~ , ..., S k ). H o w  

do you find a deflator ~p= (~P0, ~o,, ..., ~PU)such that  - -  " ' "  __ -(~okS~k/))0<k<U is a 

mart ingale for every asset 1? 
(a) This problem represents the s tandard situation, whenever one wants to 

model asset prices in a given market .  
(b) The problem is most ly formulated in a different language using a 

changed measure (which absorbs  the deflator). As already ment ioned we 
do not  follow this route here. 

6. THE ESSCHER TRANSFORM 

The Esscher Trans fo rm always allows us to find a deflator  which achieves 
the mart ingale proper ty  for all assets 1 = 1, 2 . . . .  , m, We work here more  
conveniently with the so called span-deflator  

Y = (Y1, Y2, . . . ,  YN) where Yk := Cpk , k = 1, 2, ..., N. 
qOk-i 

We also use the span-discounts 

O k - I  := E[YklUk-I] • 

Observe that Dk-i > 0 and Dk-i is .Tk_l-measurable,  hence represents the 
discount  in [k - 1, k) known at time k - 1. 
We assume that Dk-1, k = i, 2 . . . . .  N, are externally given. This is for  
instance the case if at each time k - 1 there is a possibility to invest in an 
asset (or  in a portfol io)  that pays exactly 1 at each time k. The  random 
variable Dk-l is then the price of  this asset (portfolio)  at time k - 1. 

,O~(1) (2) (m) \ Theorem 4 I f  for  all k and all (.Tk_ l -measurable) ak-l  = ~ k-I,  ak-I , "", ak-  l ) 
we have that cek- t (Dk- lSk- -Sk- l )  either vanishes with probability 1 or has 
both signs with positive probability, then there exists a value o f  ak-  l such that 

eak-i Sk 
"v(c~k-l) = D k _  1 (12) 
"k E[e~_,Sk]yrk_l] 

achieves the martingale probability, namely 

E[ Y(~k-')~(') ] k Ok I.Yk-, = S~l~t for  all l =  1, 2, ..., m. (13) 
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You can think of (12) as changing the original measure P into p(ok-,) as 
follows: 

ea~-~x 
dP(Ok-')[Sk < Xl"Tk-I] = k ,& . de[Sk < X[,~'k_l ] (14) 

- E [ e  ~ -  I ~ - k - t J  - 

which leads for appropriate ak_ 1 to the martingale condition 

Dk_,E(a"-')Is~'IIUk_i ] = Ski  ), for a l l / =  1, 2, ..., m. (15) 

The equivalence of  (15) and (13) follows immediately from (12). 

Definition 3 
(a) p(~,k-,) as given by (14) is called the Esscher Transform of  P with 

coefficient Cek_ I. 
(b) h7 view o f  the equivalence of  (13) and (15) we also say that the span- 

deflator V'(~k-') given by (12) achieves the Esscher Transform with • "k 
coefficient ak-I .  

Remarks: 
i) Observe that you can apply the Esscher Transform either to Sk or the 

increment Sk -- Sk-i .  The resulting span-deflator V(ak-') turns out to be J k  
the same. 

ii) The condition in Theorem 4 is exactly the Alternative No Arbitrage 
Condition (ANAC) based on the payment streams 6 a with 
6ff = o~, - l (D, , - iS , , -  Sn-I), n = 1, 2 . . . .  , N, as explained in Section 1. 

Proof of Theorem 4: Look at the target function 

Tk_,(o 0 = lnE[ea(O~-~Sk-&-')[.Tk_,l , ca E IR m. (16) 

Assuming existence and finiteness of  Tk-i (a)  in the neighbourhood of 
some a, we can see that the if-condition of  the theorem guarantees that 
the minimum of  Tk-i is assumed at an interior point a*. As Tk-l(a*) = min, 
we must have 

0 E[ea'(Dk-'Sk-Sk-l)(Dk-lS}-I)--s~l-)l)["~"k-II 

Oa(t ) Tk-j (a*) = E[e,.(Ok_,&_Sk_,l[.T.k_t] = 0 (17) 

o r  

E[[Y(~'D~-')e(l)"r'k o k la-k-,J] = S~l_ ), for  / = 1, 2, ..., m, (18) 
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which is exactly the martingale condition (13). Observe that the argument is 
valid for all discounts which satisfy the condition in Theorem 4. At this point 
it should also be clear that the log in defining Tk-i (ee) is introduced to ensure 
that the derivative produces the Esscher Transform. [] 

The mathematics still to be done is proving that c~* can be chosen to 
be .Yk_l-measurable. This can be done e.g. by the reasoning as found in 
Rogers [5]. Hence the Esscher Transform with coefficient cek-i = ce*Dk_~ 
solves our basic problem defined in Section 5. 

Remark: The Esscher Transform can also be used for explicit calculation of 
prices. The reader who is interested in an explicit derivation of the Black- 
Scholes formula using the Esscher Transform, should consult Gerber and 
Shiu [4]. 

7. WHY ESSCHER TRANSFORM? 

From Section 6 it is evident that Esscher Transforms are convenient. Are 
there further reasons for choosing this transform? The following economical 
reasoning may be an additional argument. 

In this section there is a change of notation; we interpret (So, &,  ..., SN) 
as a sequence of random variables Sk. Until now the vector 
Sk = (S~ I), S(~ 2), ..., S~ '')) was interpreted as values of the m assets in the 
market. Now you should think of Sk as the total aggregate market value of 
all assets, i.e. their unit values multiplied by their volumes 

Sk = <19/ 
I =  I 

where V~ I denotes the volume of asset l in [ k -  1,k). The discounted 
increase in [ k -  1, k) 

t?! 

Wk = D k - , &  - Sa--i = ~ V~t(Dk-,S~/)  - Sit_),) (20) 
I=1 

is the o..bject of  our study in this section. For simplicity we assume that for 
all/, V~t) I_ are chosen at time k - 1 and remain constant in [k - 1, k), hence in 
particular all V~O I are .F'k_l-measurable. 

We want to study the Pareto optimal allocation of Wk. This justifies our 
simplifying assumption that Sk, &- I  are only one dimensional random 
variables. It is well known that Pareto optimal allocations are always 
functions of  the aggregate value (see e.g. Borch [1]). 
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In order to distribute Wk in a Pareto optimal way among M investors, 
we characterize each investor j by his utility function 

uj(x)=--I ( l - e - V : ) ,  j =  1,2, . . . ,  M. (21) 
"yj 

We hence suppose that you may describe the preferences of each investorj  
by an exponential utility function, where 7j is the risk aversion of investor j, 
or equivalently, ± is the risk tolerance of investor j. The feasibility of this 

• . • " ~ j  . . 

assumption is dtscussed at the end of this section. 
A Pareto optimal allocation 

v r  k , v v  k , " ' ' 7  , " ' ' ,  

can be obtained as a Price Equilibrium. Denote by Price[We.I, the ~'k-l- 
measurable functional assigning a price to the random variable Wk held 
during the time interval [k - 1, k]. A Price Equilibrium is achieved if at time 
k - 1 the following conditions are satisfied• 

(a) For each j  

E[uj(WOk ") - Price [ W•)]) IUk_,] (22) 

achieves a maximum among all possible random variables Wk q) E L 2. 

(b) The allocation has to satisfy 

M 

j=] 

If we explicitly define the price functional by the span-deflator Yk, 
we have 

then Borch's condition (see Borch [I]) must be satisfied, i.e. 

u}(W~)--E[YkW~J)IYk-,])  =CjYk foral l  j =  1 , 2 , . . . , M ,  (23) 

where Cj must be .~k-L-measurable for all j = l, 2 . . . .  , M. Using the 
exponential form of the utility functions, uj(x) = e -~:-', (23) turns into 

e -'Y'w~)=- Ajgk, j = 1, 2, ..., M, 
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with Aj positive and Uk_l-measurable.  Hence by taking logarithms 

- Wkff) = --l ln Aj -t- 1--1n Yk . 

Now sum over j and use the abbreviat ion -~ := ~ / ~ j  ~, the sum of all 
• - . ~ - -  T j  1 risk tolerance units. Then you find --~"k = Bk += ln  Yk or 

--'yWk = "~Bk + In Yk, where Bk is Uk_l-measurable. The" condi t ion 
E[YklUk-1] = Dk- l  allows you to get the value of  Bk and 

e--r w~ 
Yk = Dk-I  

E[e-  7 w~ [.y-k_,] " 

D i s c u s s i o n :  
i) We have found an economic reason to use the Esscher Transform. 

Indeed with our interpretation of  Sk in this section we get an 
economic interpretation for the Esscher parameter.  We have 

"' t ,'(I) (Dk_lS~t ) -S~t_) l )  hence W k  = C l = l  " k - I  

t}t 

/= l  

ii) The economic argument  has led us to the Esscher Transform with span- 
deflator 

y(-~Ok-~ V~_~) 
k 

with Vk-I = ( V~21 , V~2_) l , ..., V ~  l , -.., V~_~I). Hence we have found the 

Esscher parameter  

OZk-I = --')'Dk-I Vk-1 • 

On the other  hand we have found in Section 6 

Olk - I  = Dk-IO~* 

where a* minimizes T k - i ( a )  as defined by (16). Compar ing  the two 
results we must have 

a* = - -TVk- i  • (25) 

Hence we can interpret the value c~* which minimizes Tk-i (c~) as follows: 
(a) c~* is proport ional  to the volume vector, and 

i (b) the (negative) proport ional i ty  factor for all components  is 3' where 
equals the sum of  the risk tolerance units of  all investors. 
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iii) Obviously this conclusion is only correct for an economy where all 
investors have an exponential utility. Nevertheless you should note that 
the risk aversion ")'i of each investor is allowed to change over time. So, if 
changes of values from one period to the next are not extremely large, 
one can think of the exponential utility functions as approximations to 
general (risk averse) utility functions. For an argument to understand 
this approximation we refer to Biihlmann [2]. It would be interesting to 
learn how the relation (25) compares with practical observations. 

APPENDIX: EQUIVALENCE OF No ARBITRAGE CONDITION AND ALTERNATIVE No 
ARBITRAGE CONDITION 

We have two possibilities to define arbitrage opportunities. 

First case: With the strategy 0 = (00, 01, ..., ON) we define the payment stream 

6o = (~,~)0<,<N with b~ := (0,,-i - 0,,)S,,. 

An arbitrage opportunity is given by a strategy 0 such that 60 does not 
vanish a n d 6 ~ > 0 f o r n  = 1 ,2 , . . . ,N .  

Alternat ive  case:  The same definition is applied to the stream of discounted 
gains 

~ :  (~)0<n<N with ~,~ :=0,-i(D,,_,S,~ -S , ,_ j )  

for some given discounts Do, Di .... , D N - i .  
For both cases we refer to an arbitrage opportunity in [0, N]. 

Definit ion 4 We say that there is an arbitrage opportuni ty  #7 [n - 1, n] if  there 
is a O o f t h e j o r m  (0, 0, ..., 0, O,,-i, 0, ..., 0) which allows arbitrage & [0, N]. 
More  explici t ly  i f  there is a O,_ I such that, 
in the first ease:  

- O , - i S , , - i  > O, 

O._ I S,, > O, 

where at least one o f  the two left sides does not vanish; 
in the alternative case: 

0,,-1 (D,,-iS, ,  - S , , - i )  >_ 0, 

where the left side does not vanish. 

L e m m a  2 h7 both cases there is an arbitrage opportuni ty  in [0, N] i f  and only i f  
there is an arbitrage opportunity in one o f  the intervals In - 1, n], n = 1, 2 . . . .  , N. 
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Proof :  We only have to show that the existence of an arbitrage opportunity 
in [0, N] implies existence of an arbitrage opportunity in one of the intervals 
I n -  l,n]; n = 1, 2 . . . .  , N. In the alternative case the statement holds by 
definition, which leaves us with the first case. Assume arbitrage in [0, N] in 
this case, hence there exists a 0 such that 

-00S0 > 0, 

(00 - 01)Si >_ 0, 

( 0 N _  2 --  ON_I)SN_ I ~ O, 

ON_IS N ~ O, 

where not all the left sides may vanish. 
We proceed by induction of the interval length [0, N] 5. 
(a) If O N _ I S N -  1 < 0 on A with P[A] ¢ 0  take 0u-1 =ON-IIA which 

achieves arbitrage in I N -  1, N]. 
(b) If 0N-iSu-1 ---- 0 we have either arbitrage in IN - 1, N] if OU-i SN ~ 0 or 

arbitrage in [0, N -  1] i f l . g N _ l S  N = O. 
(C) If 0N-ISu-I  >_0 (not vanishing), then also ON_2SN_ I ~ 0 (not vanish- 

ing), hence we have arbitrage in [0, N - 1]. 
From (a), (b), (c) it follows that we have either arbitrage in I N -  1, N] or 
arbitrage in [0, N - 1] which proves recursion from N to N - 1. [] 

T h e o r e m  5 No Alternative Arbitrage intplies No Arbitrage. 

Proof: We show that any arbitrage opportunity allows to find an alternative 
opportunity. Because of Lemma 2 we can restrict ourselves to arbitrage 
opportunities in a unit interval In - 1, n], e.g. [0, 1]. An arbitrage opportunity 
means a strategy 0 such that -OoSo >_ O, OoSi _> O, with not both left sides 
vanishing. This implies for arbitrary discount Do > 0 

Oo(DoSi - So) > O, 

not vanishing, hence an alternative arbitrage opportunity. [] 

T h e o r e m  6 No Arbitrage implies No Alternative Arbitrage with conveniently 
chosen discounts under the conditions used for proving Theorem 1. 

Proof." The main point of  the proof is that we need the Fundamental 
Theorem of Asset Pricing. We argue again only in the interval [0, 1]. The 
Fundamental Theorem of Asset Pricing guarantees the existence of the span- 
deflator Yl such that 

= :or a , , =  . .  2 . .  
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Hence doE[Yi Sl I.To] = OoSo for all do which are .~o-measurable 

E[rldoS, - doSolFo] = O, 

which implies by the mean value theorem that either do(DoSl - So) ~ 0 or 
do(DoS, - So) has both signs with probability I for the Do = E[Y, l~o]. This 
is exactly the Alternative No Arbitrage Condition. [] 
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