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1 Introduction

The Consumption-based Capital Asset Pricing Model (CCAPM) has recently been revived

by models of long-run risks (LRR)1. Bansal and Yaron (2004) (BY) explain several as-

set market stylized facts by a model with a small long-run predictable component driving

consumption and dividend growth and fluctuating economic uncertainty measured by con-

sumption volatility, together with Epstein and Zin’s (1989) preferences, that separate risk

aversion from intertemporal substitution. These preferences play an important role in the

long-run risks model. The representative agent must have an elasticity of intertemporal

substitution greater than one for adverse movements in the long-run growth and volatility

risks to lower asset prices. This model stands in contrast with Campbell and Cochrane

(1999), which features another model that explains a number of stylized facts but relies on

a state-dependent risk aversion varying with the business cycle. Consumption growth is an

iid process and the pricing kernel is driven by a heteroskedastic consumption surplus that

is an accumulation of past consumption shocks.

To derive model implications for asset prices, both models rely on parameter calibration

for consumption and dividend processes, as well as preferences. Moreover, they solve for

asset valuation ratios using loglinear approximations and reproduce stylized facts either by

numerical or simulation techniques. This means that evidence in support of the models are

almost invariably based on a given set of parameters that reproduce the stylized facts. The

cost of producing results limits the potential for sensitivity analysis and model assessment

is based on the plausibility of the chosen parameters.

Of course, the choice of parameters is a source of lively debate. Take the value of

the elasticity of intertemporal substitution. Bansal and Yaron (2004) report empirical

evidence in favor of a value greater than 12 but mention that Hall (1988) and Campbell

(1999) estimate an IES below 1. They also argue that in the presence of time-varying

volatility, there is a severe downward bias in the point estimates of the IES. While the

argument is correct in principle, Beeler and Campbell (2009) simulate the BY model and

report no bias if the riskless interest rate is used as an instrument3.

A similar empirical debate applies to the consumption growth process. If a very persis-

tent predictable component exists in consumption growth, as proposed by BY, it is certainly

1The extensive literature about the equity premium puzzle and other puzzling features of asset markets
are reviewed in a collection of essays in Mehra (2008). See also Campbell (2000, 2003), Cochrane and
Hansen (1992), Kocherlakota (1996), and Mehra and Prescott (2003).

2They cite Hansen and Singleton (1982) and Attanasio and Weber (1989), among others.
3They confirm the presence of a bias (negative estimate of the IES) when the equity return is used and

attribute it to a weak instrument problem.

1



hard to detect it as consumption appears very much as a random walk in the data4.

A third debate relates to the predictability of returns by the dividend yield. Econometric

and economic arguments fuel the controversy about the empirical estimates of R2 in pre-

dictive regressions of returns or excess returns over several horizons on the current dividend

yield. Some claim that the apparent predictability is a feature of biases inherent to such

regressions with persistent regressors, others that it is not spurious since if returns were not

predictable, dividend growth should, by accounting necessity, be predictable, which is not

the case in the data5. Therefore, evidence that a consumption-based asset pricing model

is able to reproduce these predictability patterns based on data would certainly clarify the

debate.

Given these empirical debates that condition very important economic messages re-

garding the relationship between economic uncertainty and asset prices, an asset pricing

model that shows some robustness in both preference and fundamentals dimensions in re-

producing stylized facts appears desirable. In this regard, we would like to be able to solve

these asset pricing models easily so thorough sensitivity analysis and comparison between

models can be conducted. This paper analyzes the LRR model of BY with the class of

generalized disappointment aversion (GDA) preferences, which is a class of recursive utility

preferences that admit the Kreps-Porteus (1978) specification as a particular case. Given

these generalized preferences, we will be able to explore the sensitivity of the LRR model

to preference parameter values, in particular the IES. To conduct this analysis, we map the

LRR model into a Markov Switching model to derive analytical formulas for asset valuation

ratios, moments of returns and predictive regression R2 and coefficients. With GDA prefer-

ences, log-linear approximations are no longer possible, since the disappointment threshold

is endogenous making numerical solutions much more complex.

Disappointment aversion preferences were introduced by Gul (1991) to be consistent

with the Allais Paradox. They differ from expected utility by introducing an additional

weight to outcomes that are below the certainty equivalent. Routledge and Zin (2004) (RZ)

generalized these preferences by allowing the disappointment threshold to be placed at an

arbitrary proportion of the certainty equivalent. Disappointment averse preferences are

endogenously state-dependent through the certainty equivalent threshold and, therefore,

are apt to produce counter-cyclical risk aversion. Investors may become more averse in

4Bansal (2007) cites several studies that provide empirical support for the existence of a long-run
component in consumption. Bansal, Gallant and Tauchen (2007) and Bansal, Kiku and Yaron (2007) test
the LRR model using the efficient and generalized method of moments, respectively. Hansen, Heaton and
Li (2008) present evidence for a long-run component in consumption growth suing multivariate analysis.

5See in particular Valkanov (2003), Stambaugh (1999), Cochrane (2008) and the special issue of the
Review of Financial Studies about the topic of predictability of returns.
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recessions if the probability of disappointing outcomes is higher than in booms.

In order to do a thorough comparison of the GDA and KP models and a comprehensive

sensitivity analysis, we generate population statistics for a large set of parameter values. We

first obtain formulas for the price-consumption, the price-dividend and the risk-free bond

for GDA preferences, and a fortiori for KP preferences. Once the equilibrium prices are

determined, we can produce the first and second moments of the equity premium and of the

risk-free rate, the mean of and the volatility of the price-dividend ratio, the predictability

of returns and excess returns by the dividend-price ratio, the predictability of consumption

volatility by the dividend-price ratio, as well as the autocorrelation of returns and excess

returns at long horizons.

The first step of our investigation is to compare the performance of the Kreps-Porteus

preferences specified by BY and a very simple version of GDA, where disappointment aver-

sion is the only source of risk aversion. This simple GDA model is able not only to match

returns and price-dividend moments, but also to reproduce the predictability patterns and

magnitudes observed in the data. GDA when coupled with LRR generates excess returns

that are predictable by the dividend yield. This is not the case for KP. Moreover, consump-

tion and dividend growth are not predicted by the dividend yield with GDA preferences,

which is consistent with the data, but the LRR model with KP preferences generates too

much predictability for these growth rates in fundamentals6. The matching moment ability

of the GDA specification is robust to reasonable modifications of the endowment process

parameters, while the model with KP preferences is not. Figure 1 illustrates this in a dra-

matic fashion with the persistence parameter of consumption growth. The graphs of the

expected equity premium, risk-free rate and price-dividend ratio show that moving away

a small bit from the benchmark value of 0.975 chosen by BY has a big impact on the

moments. The equity premium falls quickly as we reduce the persistence, while the risk-

free becomes negative as we move towards 1. The most spectacular effect is the behavior

of the mean price-dividend ratio that jumps to values greater than 100. In contrast, the

LRR-GDA model is more robust, even though it shows some fluctuations between 0.8 and

1.

While persistence of expected consumption growth appears fundamental for the moment

matching ability of the LRR model with KP preferences, disappointment aversion relies

mostly on the persistence of consumption volatility. When preferences are disappointment

averse, the main driver of the asset pricing matching ability of the model is the persistent

consumption growth volatility. The GDA model performs well even when coupled with

6These counterfactual predictability properties of the LRR model with KP preferences have been con-
firmed recently by Beeler and Campbell (2009) in long simulations of 1.2 million months of the BY model.

3



a random walk model for consumption and dividend growth, provided that its volatility

is persistent. When volatility is not persistent, there is not so much variation in the

probability of disappointment. As a consequence the price-dividend ratio has too little

variation, leading to too small excess return variance and predictability.

Models with exogenous reference levels, such as Campbell and Cochrane (1999) and

Barberis, Huang ans Santos (2001), generate counter-cyclical risk aversion and link it to

return predictability. Investors will be willing to pay a lower price in bad states of the world,

implying higher future returns. In Lettau and Van Nieuwerburgh (2008), predictability

empirical patterns can be explained by changes in the steady-state mean of the financial

ratios. These changes can be rationalized by a LRR model with GDA preferences.

Bernartzi and Thaler (1995) are also using asymmetric preferences over good and bad

outcomes to match the equity premium, but instead of using an intertemporal asset pricing

framework with preferences defined over consumption streams, they start from preferences

defined over one-period returns based on Kahneman and Tversky (1979)’s prospect theory

of choice. By defining preferences in this way directly over returns, they avoid the challenge

of reconciling the behavior of asset returns with aggregate consumption.

Following the seminal paper by Hamilton (1989), Markov switching models have been

used in the consumption-based asset pricing literature to capture the dynamics of the en-

dowment process. While Cechetti, Lam and Mark (1990) and Bonomo and Garcia (1994)

estimate univariate models for either consumption or dividend growth, Cechetti, Lam and

Mark (1993) estimate a homoscedastic bivariate process for consumption and dividend

growth rates, and Bonomo and Garcia (1993, 1994) a heteroscedastic one. Recently, Let-

tau, Ludvigson and Wachter (2008), and Bhamra, Kuehn, and Strebulaev (2009) have also

estimated such processes. Calvet and Fisher (2007) estimate multifractal processes with

Markov switching in a large number of states setting in a consumption-based asset pricing

model. Apart from capturing changes in regimes, another distinct advantage of Markov

switching models is to provide a flexible statistical tool to match other stochastic processes

such as autoregressive processes as in Tauchen (1986). In this paper we match the het-

eroscedastic autoregressive models for consumption and dividend growth rates in Bansal

and Yaron (2004), based on the parameter configuration in Bansal, Kiku and Yaron (2007),

with a four-state Markov switching model. Recently, Chen (2008) has approximated the dy-

namics of consumption growth process of the BY LRR model using a discrete-time Markov

and the quadrature method of Tauchen and Hussey (1991) in a model to explain credit

spreads.

This paper extends considerably the closed-form pricing formulas provided in Bonomo

and Garcia (1994) and Cecchetti, Lam and Mark (1990) for the Lucas (1978) and Breeden
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(1979) CCAPM model. Bonomo and Garcia (1993) have studied disappointment aversion

in a bivariate Markov switching model for consumption and dividend growth rates and

solved numerically the Euler equations for the asset valuation ratios. For recursive prefer-

ences, solutions to the Euler equations have been mostly found either numerically or after

a log linear approximate transformation. However, Chen (2008) and Bhamra, Kuehn, and

Strebulaev (2009) use a Markov chain structure for consumption growth to solve analyt-

ically for equity and corporate debt prices in an equilibrium setting with Kreps-Porteus

preferences, while Calvet and Fisher (2007) focused on the equity premium7.

Recently, some papers have also proposed to develop analytical formulas for asset pricing

models. Abel (1992, 2008) calculate exact expressions for risk premia, term premia, and the

premium on levered equity in a framework that includes habit formation and consumption

externalities (keeping up or catching up with the Joneses). The formulas are derived

under lognormality and an i.i.d. assumption for the growth rates of consumption and

dividends. We also assume log-normality but after conditioning on a number of states

and our state variable captures the dynamics of the growth rates. Eraker (2008) produces

analytic pricing formulas for stocks and bonds in an equilibrium consumption CAPM with

Epstein-Zin preferences, under the assumption that consumption and dividend growth rates

follow affine processes. However, he uses the Campbell and Shiller (1988) approximation

to maintain a tractable analytical form of the pricing kernel. Quite recently, Gabaix (2008)

proposed a class of linearity-generating processes that ensures closed-form solutions for the

prices of stocks and bonds. This solution strategy is based on reverse-engineering of the

processes for the stochastic discount factors and the asset payoffs.

The rest of the paper is organized as follows. Section 2 sets up the preferences and

endowment processes. Generalized disappointment averse preferences, the BY long risks

model for consumption and dividend growth and the approximating Markov Switching

process endowment process model are presented. In section 3 we solve for asset prices and

derive formulas for predictive regressions. Section 4 explores empirical implications of a

simple version of our GDA asset pricing model, comparing with BY model and illustrating

the mechanism at work. Section 5 looks at implications for fully specified GDA preferences,

conducts robustness analysis for preference and endowment parameters, and finally explores

the implications of an heteroscedastic random walk endowment process in population and

in finite samples. Section 6 concludes.

7These papers have been developed contemporaneously and independently from the first version of the
current paper titled “An Analytical Framework for Assessing Asset pricing Models and Predictability”,
presented in May 2006 at the CIREQ and CIRANO Conference in Financial Econometrics in Montreal
and discussed by Motohiro Yogo.
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2 An Asset Pricing Model with GDA Preferences and LRR Fundamentals

Our primary goal in this section is to formulate a model that includes both a long-run risk

specification for consumption and dividends and recursive preferences. In BY, the recursive

preferences have a Kreps-Porteus (KP) certainty equivalent that disentangles risk aversion

from intertemporal substitution. In this paper we want to extend the certainty equivalent to

a generalized disappointment aversion structure (GDA). These preferences weight outcomes

differently above and below a threshold determined as a fraction of the certainty equivalent.

Two more parameters are included with respect to the KP certainty equivalent, one that

sets up the kink at the threshold, and another to determine the percentage of the certainty

equivalent that determines the threshold. While GDA admits KP as a particular case,

it is also the case that we can set up the parameters so that disappointment aversion is

the only source of risk aversion. We will examine these specific preferences to build some

intuition about the stochastic discount factor that is obtained in equilibrium with a LRR

specification for fundamentals.

The LRR model with KP preferences cannot be solved analytically. BY use Campbell

and Shiller (1988) approximations to obtain analytical expressions that are useful for un-

derstanding the main mechanisms at work, but when it comes to generate numerical results

they appeal to numerical simulations of the original model. A second type of approximation,

proposed by Hansen, Heaton and Li (2008), is done around a unitary value for the elasticity

of intertemporal substitution ψ8. However, since the GDA utility is non-differentiable at

the kink where disappointment sets in, one cannot rely on the same approximation tech-

niques to obtain analytical solutions of the model. In this paper we propose a methodology

that provides an analytical solution to the LRR model with GDA preferences and a fortiori

with KP preferences. In other words, we solve for the asset valuation ratios in equilibrium.

The key to this analytical solution is to use a Markov Switching process for consumption

and dividends that matches the LRR specification. In addition, we report analytical for-

mulas for the population moments of equity premia as well as for the coefficients and R2 of

predictability regressions that have been used to assess the ability of asset pricing models

to reproduce stylized facts.

We first discuss GDA preferences, and then the LRR model and its matching Markov

switching process.

8A previous version of this paper (SSRN working paper 1109080) derived the approximate solutions
for the recursive utility model using the Campbell-Shiller and the Hansen-Heaton-Li approximations and
analyzed their respective accuracy for various sets of parameter values.
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2.1 Generalized Disappointment Aversion

RZ generalized Gul’s (1991) disappointment aversion preferences and embedded them in

the recursive utility framework of Epstein and Zin (1989). Formally, let Vt be the recursive

intertemporal utility functional:

Vt =

{

(1 − δ)C
1− 1

ψ

t + δ [Rt (Vt+1)]
1− 1

ψ

} 1

1− 1
ψ

ψ > 0, 0 < δ < 1, (2.1)

where Ct is the current consumption, δ is the time preference discount factor, ψ is the

elasticity of intertemporal substitution and Rt (Vt+1) is the certainty equivalent of the

random future utility conditional on time t information. In GDA preferences the certainty

equivalent function R (.) is implicity defined by:

R1−γ

1 − γ
=

∫

(−∞,∞)

V 1−γ

1 − γ
dF (V ) −

(

α−1 − 1
)

∫

(−∞,κR)

(

(κR)1−γ

1 − γ
− V 1−γ

1 − γ

)

dF (V ) κ ≤ 1.

(2.2)

Several particular cases are worth mentioning. When α is equal to one, R becomes the

certainty equivalent corresponding to expected utility while Vt represents the Kreps-Porteus

preferences. When α < 1, outcomes lower than κR receive an extra weight (α−1 − 1),

decreasing the certainty equivalent. Thus, α is interpreted as a measure of disappointment

aversion, while the parameter κ is the percentage of the certainty equivalent R such that

outcomes below it are considered disappointing9.

RZ emphasize that when GDA preferences are embedded in a dynamic asset-pricing

economy, effective risk aversion can be counter-cyclical - a feature that helps to explain the

equity-premium puzzle.

GDA preferences imply a stochastic discount factor given by:

Mt,t+1 = z1−γ
t+1

(

Rm
t+1

)−1 [1 + (α−1 − 1) I (zt+1 < κ)]

[1 + κ1−γ (α−1 − 1)EtI (zt+1 < κ)]
, (2.3)

where:

zt+1 = δ
1

1− 1
ψ

(

Ct+1

Ct

)
1

1−ψ
(

Rm
t+1

)

1

1− 1
ψ .

Rm
t+1 is the return on an asset that yields aggregate consumption as payoff, which we

call the market portfolio. It is clear that when there is no disappointment aversion (α = 1),

the expression above reduces to the familiar Kreps-Porteus pricing kernel, which was used

in BY:

9Notice that the certainty equivalent, besides being decreasing in γ, is also increasing in α and decreasing
in κ (for κ ≤ 1). Thus α and κ are also measures of risk aversion, but of a different type than γ.
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Mt,t+1 = z1−γ
t+1

(

Rm
t+1

)−1
, (2.4)

= δ
1−γ

1− 1
ψ

(

Ct+1

Ct

)
1−γ
1−ψ
(

Rm
t+1

)

1
ψ

−γ

1− 1
ψ . (2.5)

In order to clarify the role of disappointment aversion preferences, we will sometimes

generate results with an otherwise linear utility function: γ = 0 and ψ = ∞. In this case,

the stochastic discount factor becomes:

Mt,t+1 = δ

[

1 + (α−1 − 1) I
(

Rm
t+1 <

κ
δ

)]

[

1 + κ (α−1 − 1)EtI
(

Rm
t+1 <

κ
δ

)]

.

Notice that in this case, the only source of risk aversion is disappointment aversion. For

each state of the economy in t, the stochastic discount factor has only two values. The

SDF for disappointing outcomes is α−1 times the SDF for non-disappointing outcomes. The

probability of disappointment occurring is given by the likelihood that the return on the

market portfolio is less than the ratio between κ and the time discount factor δ. Suppose

for simplicity that κ is equal to δ. Then, disappointment occurs when the gross return is less

than one, which means when a negative net return occurs. In that case, the variability of

the SDF will depend on the distance between the two outcomes, determined by α, as on the

respective likelihoods of positive and negative returns10. These likelihoods are conditional

on the state at time t and therefore produce state-dependent risk aversion.

Suppose further for illustration purposes that these likelihoods are equal and identical

over every possible state. Then, for say a value of α equal to 0.2, the value of the SDF will

be five times higher in the negative-return states than in the positive-return ones. This

will create a sizable negative covariance between the pricing kernel and the return on a

risky asset, making the risk premium sizable. In contrast, if the likelihood of disappointing

outcomes is negligible, the covariance will be very small and the risk premia close to zero.

In the next sections we will provide evidence that this GDA pricing kernel has also

the potential to generate return predictability by the dividend-price ratio. If states are

persistent, as it is the case in the LRR case, then the stochastic discount factor distribution

will change gradually, implying persistent and predictable conditional expected returns.

As argued by Fama and French (1988), this type of process for expected returns generate

mean reversion in asset prices. Therefore, the price-dividend ratio today should be a good

predictor of returns over several future periods.

10Note that the return on the market portfolio also depends on the pricing kernel. Thus, the probability
of a disappointing return on it depends also on α.
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2.2 Long-run risks and Markov-switching endowment processes

To model the consumption and dividend growth dynamics, we adopt the long-run risk

process of BY:

∆ct+1 = xt + σtǫc,t+1 (2.6)

∆dt+1 = (1 − φd)µx + φdxt + νdσtǫd,t+1 (2.7)

xt+1 = (1 − φx)µx + φxxt + νxσtǫx,t+1 (2.8)

σ2
t+1 = (1 − φσ)µσ + φσσ

2
t + νσǫσ,t+1, (2.9)

where ct is the logarithm of real consumption and dt is the logarithm of real dividends. In

this characterization, xt, the conditional expectation of the consumption growth, is modeled

as a slowly reverting AR(1) process (φx smaller but close to one). Notice that φdxt also

governs the conditional expectation of the dividend growth, and φd is assumed to be greater

than one - the leverage ratio on consumption growth. The volatility of consumption growth

σt represents the time-varying economic uncertainty, which is also assumed to be a very

persistent process (φσ smaller but close to one) with unconditional mean µσ. We depart

from BY by allowing a correlation ρ between innovations in consumption growth and in

dividend growth, as in Bansal, Kiku and Yaron (2007). However, we maintain the BY

assumption of independence between the innovations in the expected growth processes and

in the volatility process.

When we combine this fundamentals’ dynamics with GDA preferences, it is not possible

to rely on the usual solution techniques based on log linearization used in BY. The kink

in the SDF introduces a nonlinearity that is not amenable to the linearization technique.

Therefore, we propose to match the fundamentals process (2.6 - 2.9) with a Markov switch-

ing process. The main intuition for the matching to work is that a two-state Markov process

is similar to an AR(1) process. Given this matching we will be able to solve analytically a

complex dynamic asset pricing model.

We postulate that the growth rates of consumption and dividends follow a process where

conditional means and variances change according to a Markov process. In the technical

appendix, we show that with a four-state Markov switching process - two states governing

the conditional mean of both processes and the two other states shifting the conditional

variance - it is possible to match several moments of the original BY process. Let st be

the Markov state at time t. By combining the two states - high and low - in mean and in

volatility we obtain four states, st ∈ {µLσL, µLσH , µHσL, µHσH}.

9



∆ct+1 = µc (st) + (ωc (st))
1/2 εc,t+1 (2.10)

∆dt+1 = µd (st) + (ωd (st))
1/2εd,t+1, (2.11)

where εc,t+1 and εd,t+1 follow a bivariate normal process with mean zero and correlation ρ.

The states evolve according to a 4 by 4 transition probability matrix P .

Bonomo and Garcia (1996) proposed and estimated the specification (2.10, 2.11) for

the joint consumption-dividends process with a three-state Markov switching process to

investigate if an equilibrium asset pricing model with different types of preferences can

reproduce various features of the real and excess return series.11 Here we calibrate the

parameters of a four-state process in order to match moments generated by the variant of

the BY process proposed by Bansal, Kiku and Yaron (2007)12. It should be noted that only

moments are necessary for computing asset pricing and predictability statistics as we will

see in the formulas derived in the next section. The calibrated parameters of the four-state

Markov-switching process are reported in Panel A of Table 1.

While we match some unconditional moments of the original process in Bansal, Kiku and

Yaron (2007), it will be important to know whether the fit of the Markov-switching model

is adequate in finite samples. To assess the fit, we simulate 10,000 samples of the size of the

original data for both the original consumption and dividend processes and the matching

MS process, and compute empirical quantiles of several moments of the consumption and

dividend processes13. The percentile values are very close between the two processes except

for the volatilities. As a matter of fact, the mean and median volatilities for consumption

and dividend growth produced by the MS model are closer to the volatility values computed

with the original data.

11Cecchetti, Lam, and Mark (1990) use a two-state homoscedastic specification for a univariate process
of the endowment process, and Bonomo and Garcia (1994) a heteroscedastic specification in order to
investigate if an equilibrium model could reproduce the mean reversion in asset prices. Cecchetti, Lam,
and Mark (1993) use a homoscedastic consumption-dividend process in order to try to match the first and
second moments of asset returns. The authors use two models, one with a leverage economy, another with
a pure exchange economy without bonds. In both instances, they are unable to replicate the first and
second moments taken together. All the articles above use expected utility function.

12The details of the matching procedure are given in a technical appendix to this paper available upon
request from the authors. The main idea of the matching procedure is that the expected means and
conditional variances of the consumption and dividend growth rates are written as linear functions of two
two-state Markov chains given that a two-state Markov chain is an AR(1) process.

13For space consideration, the results are reported in a technical appendix.
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3 Solving for Asset Prices and Return Predictability

Given the specification (2.2), the risk-adjustment Rt (Vt+1) to the date t + 1 continuation

value of a consumption plan is implicitly given by:

Rt (Vt+1) =



E





Iα,1

(

Vt+1

κRt(Vt+1)

)

E
[

Iα,κ

(

Vt+1

κRt(Vt+1)

)

| Jt

]V 1−γ
t+1 | Jt









1

1−γ

, (3.12)

where

Iα,y (x) = 1 +

(

1

α
− 1

)

y1−γ1(x<1).

The stochastic discount factor (2.3) can equivalently be written in terms of the contin-

uation value as in Hansen, Heaton, Roussanov, and Lee (2007), as:

Mt,t+1 = δ

(

Ct+1

Ct

)− 1

ψ
(

Vt+1

Rt (Vt+1)

)
1

ψ
−γ Iα,1

(

Vt+1

κRt(Vt+1)

)

E
[

Iα,κ

(

Vt+1

κRt(Vt+1)

)

| Jt

] . (3.13)

In general, the Markov state st in (2.10) and (2.11) will arbitrarily have N possible values,

say st ∈ {1, 2, .., N}, although 4 values as described in the previous section are sufficient to

provide a good approximation of the BY long run risk model. Let ζt ∈ R
N be the vector

Markov chain equivalent to st and such that:

ζt =















e1 = (1, 0, 0, .., 0)⊤ if st = 1
e2 = (0, 1, 0, .., 0)⊤ if st = 2
...
eN = (0, 0, .., 0, 1)⊤ if st = N,

where ei is the N×1 column vector with zeroes everywhere except in the ith position which

has the value one, and ⊤ denotes the transpose operator for vectors and matrices.

The Markov chain st evolves according to a transition probability matrix P defined as:

P⊤ = [pij ]1≤i,j≤N , pij = Pr(st+1 = j | st = i), (3.14)

and is stationary with ergodic distribution and second moments given by:

E[ζt] = Π ∈ R
N
+ , E[ζtζ

⊤
t ] = Diag(Π1, ..,ΠN) and V ar[ζt] = Diag(Π1, ..,ΠN) − ΠΠ⊤,

(3.15)

where Diag (u1, u2, .., uN) is the diagonal matrix whose diagonal elements are u1, u2,..,uN .

The dynamics (2.10) and (2.11) of endowments can therefore be written as follows:

∆ct+1 = µ⊤
c ζt + (ω⊤

c ζt)
1/2 εc,t+1 (3.16)

∆dt+1 = µ⊤
d ζt + (ω⊤

d ζt)
1/2 εd,t+1, (3.17)
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where
(

εc,t+1

εd,t+1

)

| 〈εc,τ , εd,τ , τ ≤ t; ζm, m ∈ Z〉 ∼ N
((

0
0

)

,

[

1 ρ⊤ζt
ρ⊤ζt 1

])

. (3.18)

3.1 Asset Valuation Ratios

The main objective of this section is to characterize the price-consumption ratio Pc,t/Ct

(where Pc,t is the price of the unobservable portfolio that pays off consumption), the price-

dividend ratio Pd,t/Dt (where Pd,t is the price of an asset that pays off the aggregate

dividend), and finally the price Pf,t/1 of a single-period risk-free bond that pays for sure

one unit of consumption.

The Markov property of the model is crucial for deriving our analytical formulas. We

will show that the variables Rt (Vt+1) /Ct, Vt/Ct, Pd,t/Dt, Pc,t/Ct and Pf,t/1 are (non-linear)

functions of the state variable ζt. On the other hand, the state ζt takes a finite number of

values. Consequently, any real non-linear function g(·) of ζt is a linear function of ζt. This

property will allow us to characterize analytically the price-payoff ratios while other data

generating processes need either linear approximations or numerical methods to solve the

model. The structure of the endowment process implies that there will be one such payoff-

price ratio per regime and this will help in computing closed-form analytical formulas. For

these valuation ratios, we adopt the following notations:

Rt (Vt+1)

Ct
= λ⊤1zζt,

Vt

Ct
= λ⊤1vζt,

Pd,t

Dt
= λ⊤1dζt,

Pc,t

Ct
= λ⊤1cζt, and

Pf,t

1
= λ⊤1fζt. (3.19)

Solving the GDA model amounts to characterize the vectors λ1d, λ1c and λ2f as functions

of the parameters of the consumption and dividend growth dynamics and of the recursive

utility function defined above. We start our analysis by characterizing the vectors λ1z

and λ1v defined in (3.19) that represent the ratio of the certainty equivalent of future

lifetime utility to current consumption and the ratio of lifetime utility to consumption. The

characterization of these vectors is the main difference between Epstein-Zin and CCAPM

models. We will show below that when one has the vectors λ1z and λ1v, one gets the

price-consumption ratio (i.e. the vector λ1c), the price-dividend ratio (i.e. the vector λ1d)

and the risk-free rate (i.e. the vector λ1f) as for the CCAPM. The following proposition

characterizes the vectors λ1z and λ1v.

Proposition 3.1 Characterization of the ratios of utility to consumption. Let

Rt (Vt+1)

Ct

= λ⊤1zζt and
Vt

Ct

= λ⊤1vζt

12



respectively denote the ratio of the certainty equivalent of future lifetime utility to current

consumption and the ratio of lifetime utility to consumption. The components of the vectors

λ1z and λ1v are given by:

λ1z,i = exp

(

µc,i +
1 − γ

2
ωc,i

)

(

N
∑

j=1

p∗ijλ
1−γ
1v,j

)
1

1−γ

(3.20)

λ1v,i =

{

(1 − δ) + δλ
1− 1

ψ

1z,i

}
1

1− 1
ψ

if ψ 6= 1 and λ1v,i = λδ
1z,i if ψ = 1, (3.21)

where the matrix P ∗⊤ =
[

p∗ij
]

1≤i,j≤N
is defined in the Appendix.

The equations (3.20) and (3.21) are solved jointly14.

Given the ratio of the certainty equivalent of future lifetime utility to current consump-

tion and the ratio of lifetime utility to consumption derived in Proposition 3.1, one gets

the following expressions for the price-consumption ratio, the equity price-dividend ratio

and the single-period risk-free rate.

Proposition 3.2 Characterization of asset prices. Let

Pd,t

Dt
= λ⊤1dζt,

Pc,t

Ct
= λ⊤1cζt and

1

Rf,t+1
= λ⊤1fζt

respectively denote the price-dividend ratio, the price-consumption ratio and the risk-free

rate. The components of the vectors λ1d, λ1c, and λ1f are given by:

λ1d,i = δ

(

1

λ1z,i

)
1

ψ
−γ

exp
(

µcd,i +
ωcd,i

2

)

(

λ
1

ψ
−γ

1v

)⊤

P ∗∗
(

Id− δA∗∗
(

µcd +
ωcd

2

))−1

ei

(3.22)

λ1c,i = δ

(

1

λ1z,i

)
1

ψ
−γ

exp
(

µcc,i +
ωcc,i

2

)

(

λ
1

ψ
−γ

1v

)⊤

P ∗
(

Id− δA∗
(

µcc +
ωcc

2

))−1

ei (3.23)

λ1f,i = δ exp

(

−γµc,i +
γ2

2
ωc,i

) N
∑

j=1

p̃∗ij

(

λ1v,j

λ1z,i

)
1

ψ
−γ

, (3.24)

where the vectors µcd = −γµc + µd, ωcd = ωc + ωd − 2γρ ⊙ ω
1/2
c ⊙ ω

1/2
d , µcc = (1 − γ)µc,

ωcc = (1 − γ)2 ωc, and the matrices P ∗∗⊤ =
[

p∗∗ij
]

1≤i,j≤N
and P̃ ∗⊤ =

[

p̃∗ij
]

1≤i,j≤N
as well as

the matrix functions A∗∗ (u) and A∗ (u) are defined in the Appendix.

14The system is highly nonlinear in terms of the λ1z,i, i = 1, .., N . However, it is easy to solve the system
of equations numerically by using numerical algorithms. We did by using the nonlinear equation solver in
GAUSS.
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3.2 Analytical Formulas for Statistics Reproducing Stylized Facts

Since the seminal paper of Mehra and Prescott (1985), reproducing the equity premium and

the risk-free rate has become an acid test for all consumption-based asset pricing models.

Follow-up papers added the volatilities of both excess returns and the risk-free rate, as well

as predictability regressions where the predictor is most often the price-dividend ratio and

the predicted variables are equity returns or excess returns or consumption and dividend

growth rates.

Bansal and Yaron (2004) use a number of these stylized to assess the adequacy of their

LRR model and Beeler and Campbell (2009) provide a thorough critical analysis of the

BY LRR model for a comprehensive set of stylized facts. The methodology used in Beeler

and Campbell (2009) to produce population moments from the model rests on solving a

loglinear approximate solution to the model and on a single simulation run over 1.2 million

months (100,000 years). This simulation has to be run for each configuration of preference

parameters considered. Typically, as in most empirical assessments of consumption-based

asset pricing models, they consider a limited set of values for preference parameters and

fix the parameters of the LRR model at the values chosen by Bansal and Yaron (2004) or

Bansal, Kiku and Yaron (2007).

In this section, we provide analytical formulas for the stylized facts used in the lit-

erature. We will report below formulas for expected (excess) returns and unconditional

moments of (excess) returns, formulas for predictability of (excess) returns and consump-

tion and dividend growth rates by the dividend-price ratio, and formulas for variance ratios

of (excess) returns. These analytical formulas will allow us to assess the sensitivity of the

results to wide ranges of the parameters of the LRR model and to several sets of preference

parameter values.

We will compare these model-produced statistics to the corresponding empirical quan-

tities computed with a data set of quarterly consumption, dividends and returns data for

the US economy (1930:1 to 2007:4). The empirical first and second moments of asset prices

and the empirical predictability results are reported first in the second column of Table 2

and then repeated for convenience of comparison in all relevant tables.

3.2.1 Expected Returns

In order to study the predictability of the returns and excess returns, we need to connect

them to the state variable ζt and to the dividend growth. We define the return process,
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Rt+1, and aggregate returns over h periods, Rt+1:t+h, as:

Rt+1 =
Pd,t+1 +Dt+1

Pd,t
=
(

λ⊤2dζt
) (

λ⊤3dζt+1

)

exp (∆dt+1) and Rt+1:t+h =

h
∑

j=1

Rt+j , (3.25)

with λ2d = 1 /λ1d and λ3d = λ1d + ι where ι denotes the N × 1 vector with all components

equal to one. We also define the excess returns Re
t+1 and aggregate excess returns Re

t+1:t+h,

i.e., Re
t+1 = Rt+1 −Rf,t+1 and Re

t+1:t+h = Rt+1:t+h − Rf,t+1:t+h. We show that:

E [Rt+j | Jt] = ψ⊤
d P

j−1ζt and E
[

Re
t+j | Jt

]

= (ψd − λ2f)
⊤P j−1ζt, ∀j ≥ 2, (3.26)

E [Rt+1:t+h | Jt] = ψ⊤
h,dζt and E

[

Re
t+1:t+h | Jt

]

= (ψh,d − λh,2f)
⊤ζt, (3.27)

where λ2f = 1 /λ1f and the vectors ψd, ψh,d and λh,2f are given in the Appendix.

3.2.2 Variance of Returns

The variance of returns over h periods is given by:

V ar [Rt+1:t+h] = hθ⊤2 E
[

ζtζ
⊤
t

]

P⊤θ3.

+ h (θ1 ⊙ θ1)
⊤E

[

ζtζ
⊤
t

]

P⊤ (λ3d ⊙ λ3d) − h2
(

θ⊤1 E
[

ζtζ
⊤
t

]

P⊤λ3d

)2

+ 2

h
∑

j=2

(h− j + 1) θ⊤1 E
[

ζtζ
⊤
t

]

P⊤
(

λ3d ⊙
(

(

P j−2
)⊤ (

θ1 ⊙
(

P⊤λ3d

))

))

,

(3.28)

where θ1, θ2 and θ3 are given in the Appendix. Similar formulas obtain for excess returns.

3.2.3 Predictability Regressions

Stylized facts show a strong predictability of (excess) returns by the dividend-price ratio,

which increases with the horizon. Although a vast literature discusses whether this pre-

dictability is actually present or not because of several statistical issues, we will sidestep

the various corrections suggested since we are looking for a model that rationalizes the

observed stylized facts.

The predictability is inevitably measured with finite samples of data, but when consid-

ering the ability of a model to reproduce some empirical facts it is important to consider

population moments15. Therefore, we provide below the formulas for population coeffi-

cients of determination in regressions of returns aggregated over a number of periods on

the current dividend-price ratio, as it is common in the asset pricing literature to run

15Papers in the literature on consumption-based asset pricing usually compute by simulation small
sample and large sample statistics (see for example Cecchetti, Lam and Mark (1990) and Bonomo and
Garcia (1994) in the older literature, Beeler and Campbell (2009) in the most recent one.

15



such predictive regressions. Similar regressions can be run with cumulative excess returns,

consumption growth or dividend growth as the dependent variable.

Typically, when one runs the linear regression of a variable, say yt+1:t+h, onto another

one, say xt, and a constant, one gets

yt+1:t+h = a (h) + b (h) xt + ηy,1,t+h (h) , (3.29)

where

b (h) =
Cov (yt+1:t+h, xt)

V ar [xt]
, (3.30)

while the corresponding population coefficient of determination denoted R2 (h) is given by:

R2 (h) =
(Cov (yt+1:t+h, xt))

2

V ar [yt+1:t+h]V ar [xt]
. (3.31)

In order to use these formulas to characterize the predictive ability of the dividend-price

ratio for future expected returns, one needs the variance of payoff-price ratios, covariances

of payoff-price ratios with aggregate returns and variance of aggregate returns. We show

that:

V ar

[

Dt

Pd,t

]

= λ⊤2dV ar [ζt]λ2d and Cov

(

Rt+1:t+h,
Dt

Pd,t

)

= ψ⊤
h,dV ar [ζt]λ2d, (3.32)

and the variance of aggregate returns is given by (3.28). Similar formulas obtain for excess

returns, consumption growth and dividend growth.

4 Asset Pricing Implications of a Simple GDA

In order to illustrate the potential for Generalized Disappointment Aversion to produce

realistic asset pricing and predictability implications we start with the simplest GDA pref-

erence - one in which intertemporal substitution is perfectly elastic and disappointment

aversion is the only source of risk aversion16. That is we set γ = 0 and ψ = ∞, and call

this specification GDA0. The SDF is given by equation (2.4):

Mt,t+1 = δ

[

1 + (α−1 − 1) I
(

Rm
t+1 < (κ/δ)

)]

[

1 + κ (α−1 − 1)EtI
(

Rm
t+1 < (κ/δ)

)] .

Notice that if disappointment aversion were not present (α = 1) the stochastic discount

factor would be equal to the constant time discount factor δ. This simplistic specification

of the GDA preferences will allow us to gain intuition about the replication potential of

16RZ also examine this case with a simple two-state Markov chain endowment process.
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asset pricing and predictability stylized facts by the model, without using the curvature

engendered by the other parameters. In the next section we will show the asset pricing

implications of more realistic specifications of GDA preferences. We will examine two cases

that will differ mainly by a value of the intertemporal elasticity of substitution above and

below 1.

4.1 Asset Pricing Implications: KP vs GDA0

In terms of asset pricing implications we will look at a set of moments for returns and

price-dividend ratios, namely the expected value and the standard deviation of the equity

premium, the risk-free rate and the price-dividend ratio. We should stress that the moments

are population moments and are computed with the analytical formulas reported in the

previous section. We also consider several predictability regressions by the price-dividend

ratio, for excess returns, consumption growth and dividend growth. Again the R2 and the

regression coefficients are computed analytically with the formulas reported in the previous

section. There are, therefore, population statistics.

We start by reporting the asset pricing and predictability implications for the benchmark

endowment process of BY, as specified in Bansal, Kiku and Yaron (2007). They set the

autocorrelation of expected consumption growth φx to 0.975, the leverage of dividends on

consumption φd at 2.5, and the persistence of volatility φσ at the extreme value of 0.99917.

In the original calibration of Bansal and Yaron (2004), the volatility parameter was less

persistent, which gave a bigger role to the persistence in consumption growth in determining

asset prices. Beeler and Campbell (2009) do a detailed comparative analysis of the two

calibrated processes in terms of reproducing stylized facts.

Under the benchmark LRR heading in Table 2, we compare KP preferences used in

BY (δ = 0.9989, ψ = 1.5, γ = 10) to the simple GDA0 preferences described above (with

δ = 0.998 and the disappointment aversion parameter α set to 0.2, which means that the

disappointment threshold is placed at 98% of the certainty equivalent).

4.1.1 Matching the Moments

A first observation is that the values reported for the return and price-dividend ratio mo-

ments for KP are close to the values reported in BY. They reproduce the mean and the

standard deviation of equity returns and the mean of the risk-free rate. The standard

deviation of the latter is small compared to the observed volatility in post-war data. For

the price-dividend ratio, the expected value is lower than in the data and the standard

17The correlation ρ of consumption and dividend growth innovations is chosen to be 0.4. The other
parameters are µx = 0.0015, νx = 0.038,

√
µσ = 0, 0072, νσ = 0.28 × 10−5.
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deviation of the dividend yield is about a third of what is observed. The simple GDA0

specification does a very good job at matching these statistics, except the volatility of the

risk-free rate.

The interpretation of the results for KP preferences is known. Given the two economic

sources of risk at play - the persistent long-run component in the expected growth of

consumption and economic uncertainty represented by a time-varying and very persistent

volatility of consumption growth, BY make the point that the reaction of the agent to the

first source of risk, that is for constant volatility of consumption, accounts for a large part

(around two-thirds) of the risk premium. Indeed, when the φx parameter is set at 0.9 18

instead of 0.975, the risk premium produced by the model falls to 2.26 as reported under

the corresponding heading in Table 2, which represents roughly one-third of the premium

explained by the time-varying volatility in BY.

We also provide a very telling graphical illustration of the sensitivity of the six moments

to φx in Figure 1. We keep all the other parameters fixed and vary φx over the whole range

of values between 1 and 0. It should be noted that each graph is produced with a grid of a

thousand values for the parameter φx. The model is solved analytically for each new value

of the parameter. This will represent a huge task if we had to solve the model numerically

and compute the statistics by simulation.

In the upper left graph corresponding to the equity premium, one clearly sees the almost

vertical fall in the premium produced by the KP model as φx moves away from 1. The

value settles at about 1%, which will be produced by the time-varying volatility. Two other

moment statistics also deteriorate when the persistence is reduced to 0.9. The expected

value of the dividend-price ratio becomes very high and its volatility goes to zero. For φx

equal to 0.9, we can see in Table 2 that the mean of the price-dividend ratio is equal to

130.18 while the dividend yield volatility falls to 0.03.

For generalized disappointment aversion (GDA0), the interpretation of the results in

terms of sources of risk is opposite to KP. For an investor with GDA0 preferences, it is the

macroeconomic uncertainty that explains the high equity premium. In the high volatility

state, which happens about 20% of the time in the benchmark case, the required premium

is much higher than in the low volatility state. To confirm this, we can observe in Table 2

that the moment statistics produced by GDA0 are essentially the same when φx is set to

0.9. This is also very clear in Figure 1 where the lines associated with all moment statistics

show robustness to changes in the φx value.

The sensitivity to another key parameter φd, the leverage ratio on expected consumption

18We do compensating changes in the parameters for the variance of innovations in consumption and
dividends to keep their variance unchanged.
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growth, is also worth investigating. In the last column of Table 2, we set the parameter φd

to 1 instead of 2.5 in the benchmark case. Since a lower leverage φd reduces the volatility

of dividends, the equilibrium equity premium decreases for both KP and GDA0 but the

effect is much more pronounced for KP. Again the expected value of the price-dividend

ratio shoots up (146.91) and the dividend yield volatility goes down dramatically (0.03)

for KP. The movements are similar for GDA0 but their magnitude is much smaller. This

is well illustrated in Figure 2, where we vary φd between 0 and 10 while keeping all other

parameters constant. The moments react much more dramatically to φd with KP prefer-

ences than with GDA0. In particular, the equity premium goes to zero and the stock price

tends to infinity as φd decreases to one.

Overall, apart from the high sensitivity of the statistics produced by the KP model for

small changes of some key parameters, we should retain that this model produces lower

values for the level of the price-dividend ratio and the dividend yield volatility than in

the data. As we will see in the next section, this will have an important implication for

predictability regressions.

4.1.2 Predictability

In Panels B, C and D of Table 2, we report predictability statistics for the one, three and

five-year excess returns, consumption growth, and dividend growth when the dividend yield

is used to forecast them. More specifically, we compute analytically the population R2 and

the slope of the regressions of the forecasted series on dividend-price ratios. The return

regressions are key predictability regressions in empirical asset pricing, while the regressions

on the economic fundamentals are there to confirm the low level of predictability of the

dividend and consumption growth rates observed in the data.

The population R2 of excess return regressions for the KP model are very small when

compared to the data and do not exhibit an increasing pattern. While the model gives

R2s of 0.06%, 0.06%, and 0.02%, for 1, 3, and 5-year regressions, the actual values are 7%,

14.67%, and 27.26%. The low R2s can be explained by the low volatility of the dividend

yield produced by the model. Moreover, the results deteriorate a lot when we perturb the

parameters φx and φd, with negative and huge regression coefficients, since the mean level

and the volatility of the dividend yield collapse.

The model with GDA0 preferences can match both the magnitude and the pattern of

R2 of excess-return regression in the data: 7.26%, 18.68% and 27.20% for 1, 3, and 5 years,

respectively, as well as the magnitudes of the regression coefficients. This is related to the

fact that the GDA0 model reproduces well both the volatility (for the R2s) and the level

(for the regression coefficients) of the dividend yield. The kink associated with generalized
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disappointment aversion creates large differences in dividend-price ratios between the low

and high volatility states.

Neither consumption growth nor dividend growth are predictable by the dividend yield

in the data. The KP model generates relatively large R2 in the consumption growth

regressions: 16.50%, 21.05% and 18.22% per cent, as compared to practically zero R2s in the

data. The GDA0 preferences produce results much more in line with the data with less than

one per cent R2s at all horizons. For dividend growth, KP produces smaller predictability

than for consumption growth, although much larger than in the data. The GDA0 model

behaves much better and produces predictability of the same order of magnitude than in the

data. Results are also robust to perturbations in the persistence in expected consumption

growth and in the leverage ratio.

In summary, GDA0 reproduces rather well both asset pricing moments and predictabil-

ity stylized facts with the benchmark long-run risks model of BY. For KP, we have shown

that the model reproduces well the return moment statistics in the benchmark case, but that

its performance, especially in terms of equity premium, deteriorates considerably when the

persistence parameter in expected consumption growth and the leverage ratio of consump-

tion for dividends are perturbed. Therefore, the KP-LRR model depends on a specification

for the endowment process that works for a very narrow set of parameter values, which

is an undesirable feature from a robustness point of view. Moreover we showed that in

population the KP-LRR model is not able to reproduce the predictability of excess returns

by the dividend yield and that it produces a counterfactual predictability of consumption

growth by the dividend yield.

In the next section, we will explain why the GDA0 model reproduces the stylized facts in

terms of pricing kernels and assess the level of risk aversion, compared to an expected utility

model, that is implied by the level of disappointment aversion in the GDA0 specification.

4.2 GDA0 Stochastic Discount Factor

To better understand why the generalized disappointment model explains well the stylized

facts, we have a closer look at the underlying stochastic discount factor. As we showed

before in the description of the endowment matching, the MS endowment process we are

using has four states: {µLσL, µLσH , µHσL, µHσH}. Table 1 reports the transition probabil-

ity matrix between the states. The process evolves dynamically through changes between

states µLσL and µHσL or changes between states µLσH and µHσH . In other words, vari-

ance states are very persistent, with changes in the variance happening less often than the

changes in mean.

Panel A of Table 3 reports the SDF of the GDA0 basic specification. For each state
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the SDF is a binary distribution where the disappointing outcome is associated with a

realization of the SDF which is 5 times greater than that of non-disappointing outcomes19.

The states with low variance - µLσL and µHσL - have a very high probability of a non-

disappointing outcome. Therefore, the SDF in those states is close to a constant, and the

risk premium is very low. The states with high variances are the ones with a more variable

SDF and with a higher risk premium. The switching between low and high variance states

produce state-dependent risk aversion, which is essential for predictability.

We saw in Table 2 that when the coefficient of autocorrelation in expected consumption

growth is changed from 0.975 to 0.9 the KP model fails to reproduce the equity premium,

while for GDA0 it is slightly increased. We see in Panel B of Table 3 that the distribution of

the GDA0 SDF does not change much and that the probability of disappointment becomes

a bit higher for the high variance states. This increase in the disappointment probabilities

is responsible for the higher risk premium under this specification.

How one compares the risk aversion of KP and GDA0 preferences? If the better results

obtained with GDA0 preferences were due to a much higher risk aversion, the results

obtained would become less interesting. Figure 3 shows that this is not the case. There we

plot indifference curves for a hypothetical gamble with two outcomes with equal probability

for our GDA0 preferences (α = 0.2 and κ = 0.98) and expected utility preferences with

coefficient of relative risk aversion 5 and 10. While GDA0 preferences exhibit higher risk

aversion than both expected utility preferences for small gambles, the same is not true for

larger gambles. When the size of the gamble is about 20%, the GDA0 indifference curve

crosses the expected utility indifference curve with risk aversion equal to 10, becoming less

risk averse for larger gambles. For higher gamble sizes it approaches the expected utility

with relative risk aversion equal to 5.

5 Full GDA preferences, endowment specification, and asset pricing implica-
tions

We showed that a very simple specification of the generalized disappointment aversion

preferences, one in which disappointment aversion is the only source of risk aversion, can

reproduce the stylized facts for return moments and predictive regressions of returns, con-

sumption and dividend growth on the dividend yield. On the contrary, predictability results

implied by Kreps-Porteus preferences were at odds with the data. We also saw that the

asset pricing implications were robust to reasonable modifications of the endowment pro-

cess for GDA0 but not for KP. While it is a good feature to be able generate realistic asset

19Recall that for α = 0.2, the disappointing outcomes have a SDF that is α−1 times that of the non-
disappointing outcomes.
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pricing implications with such a simple preference model, the fact that the elasticity of

intertemporal substitution is infinity in this specification may be a cause of concern. In

fact, the value of the elasticity of intertemporal substitution ψ and its implications for the

BY-LRR asset pricing model are a matter of debate. Bansal and Yaron (2004) argue for

a value larger than 1 for this parameter since it is critical for reproducing the asset pric-

ing stylized facts. Their main argument is that the presence of fluctuating consumption

volatility leads to a serious downward bias in the estimates of the IES using the instrumen-

tal variable (IV) regression approach pursued in Hall (1988). Beeler and Campbell (2009)

simulate the long-run risks model to see whether the downward bias is important in IV

estimates of ψ and conclude that there is no downward bias when the riskless interest rate

is used as instrument, but that there is a poor finite-sample performance of IV regressions

with stock returns as instrument, reflecting a weak instrument problem. They add that

the high volatility of the real interest rate is hard to reconcile with an IES greater than 1.

We have seen in Table 2 that it is indeed one dimension over which both KP and GDA0

were not performing well.

Given this debate over the value of ψ, we introduce two specifications of GDA pref-

erences, one that has the same elasticity of intertemporal substitution as the benchmark

BY-LRR model (ψ = 1.5) and another that has an elasticity of substitution smaller than

one (ψ = 0.75). Both have a low coefficient of risk aversion (with γ values of 1.25 and

2.5, respectively). For both specifications we maintain the benchmark endowment process

of BY. We explore the sensitivity of the results to a wide range of modifications in the

endowment process through a graphical analysis. We show that these two specifications of

GDA preferences can reproduce as well the asset pricing stylized facts and are robust to

changes in the endowment process.

5.1 GDA Preferences and the LRR Model

In Table 4, we report results for the two GDA specifications (GDA1, ψ = 0.75, and GDA2,

ψ = 1.5) and the LRR-BY model. We also report the previous infinite elasticity specifi-

cation (GDA0) for comparison purposes. All previous results that we reported for GDA0

hold for the two new specifications. Two important results are worth pointing out. First,

stylized facts are reproduced for elasticities above and below 1. With KP preferences in

BY, the value of 1 was pivotal for the results. If ψ is below 1 the model cannot reproduce

the stylized facts. This is quite important because it tells us that we do not need to keep

searching for reasons to support an IES greater than 1 to salvage the LRR model. GDA

preferences provide the flexibility required to accommodate situations where consumption

today and consumption tomorrow can be viewed as substitutes or complements.
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Second, we notice that GDA1 produces a higher and a more variable interest rate

and tends to accentuate the predictability of excess returns by the dividend price ratio.

These interest rate changes are a direct consequence of an IES lower than 1. With ψ

less than 1, consumption today and consumption tomorrow along a deterministic path are

complements, while they are substitutes for ψ above 1.

It is customary for studies on consumption-based asset pricing models to stop here

since we have found parameters that reproduce the stylized facts we selected to evaluate

the model. The main reason is that often the model is hard to solve and that very long

simulations are necessary to compute population statistics. The recent study of Beeler and

Campbell (2009), which looks comprehensively at the LRR model with KP preferences,

uses simulations of length of 1.2 million months to compute population return moments

and predictability statistics. They report a large set of statistics but for two given set

of parameters for fundamentals and preferences, one used in the original study of Bansal

and Yaron (2004) and Bansal, Kiku and Yaron (2007). In the next two sections, we will

assess thoroughly the sensitivity of the asset pricing and predictability statistics to large

variations in the key parameters of the consumption process, namely the persistence of

the mean and volatility of consumption growth, and in the preference parameters. Given

that we do not estimate any of the parameters, it is crucial to know how much results

depend on the particular values chosen. We have already seen that if we lowered a bit

the persistence in expected consumption, then the LRR model with KP preferences will

not reproduce the average equity premium. We want to scrutinize the ability of the GDA

model to price the assets in a way consistent with the data. We will rely on the analytical

formulas we developed in the preceding sections to check the robustness of the model in

many directions.

5.2 Robustness to Changes in the Endowment Process

We gauge the sensitivity of the statistics through graphs. In each figure about the asset pric-

ing moments, we exhibit 6 graphs, one for each moment. For the figures on predictability,

we show 9 graphs, that is three horizons for each quantity to be predicted: excess returns,

consumption growth and dividend growth. In each graph, we plot KP and the three spec-

ifications of GDA preferences. We start with the robustness of asset pricing moments to

changes in the persistence of expected consumption growth (φx) in Figure 4. All the curves

associated with GDA are almost parallel straight lines to the horizontal axis showing that

the computed moments are insensitive to the expected growth persistence parameter. For

GDA0, the patterns are a bit different for values of φx close to 1 but settle to straight

lines as we reduce φx. For KP, as already mentioned, the parameter φx is key. All results
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obtain for values close to 1, emphasizing the essential role of a very persistent component

in expected consumption growth. The pattern of the expected price dividend ratio for KP

is particularly striking, increasing steeply from a low value of 20 for the benchmark BY

value of 0.975 to values greater than 100 as we just move away from it.

The sensitivity of the asset pricing moments to persistence in consumption volatility is

reported in Figure 5. We investigate a very fine grid of values between 1 and 0.9. There

is now more variability in the GDA results. While the expected excess return and risk-free

rate do not vary much, we can see that their volatility increases when φσ gets closer to one,

starting at about 0.96. A somewhat similar pattern emerges for the expected price-dividend

ratio and the dividend yield volatility but the increase takes place for values closer to one.

The patterns with GDA0 are similar but a bit more accentuated, while the statistics values

are a bit different. For KP, the results are more stable, leading to the conclusion that from

the two sources of long-run risk, the risk in expected consumption growth matters more for

this type of preference, while consumption volatility is more relevant for GDA preferences.

In Figures 6 and 7 we now explore the implications for predictability of varying the

persistence parameters in expected consumption growth and volatility respectively. For

φx, the two GDAs exhibit predictability of excess returns consistent with the predictability

observed in the data, while it is not the case for KP. Predictability increases for KP when

we reduce the value of the persistence parameter but we know that the moments are no

longer matched for these values. For consumption and dividend growth, the benchmark

φx produces too much predictability when it gets close to 1. Otherwise it is flat at zero.

Here again, we cannot reproduce the low predictability of the consumption growth and the

dividend growth and the moments at the same time. For φσ, the persistence parameter

in consumption volatility, the predictability results for GDA are consistent with the data

only for values close to 1. At φσ = 0.9, there is no predictability of excess returns and

predictability in growth rates, contrary to what is observed. This is due to the low volatility

of the dividend-price ratio in this case. If the high volatility state is not very persistent,

the probability of disappointing outcomes will differ less across states and the prices of the

risky asset will be closer together.

We can conclude from this sensitivity analysis that the source of long-run risk, whether

in the mean or the volatility of consumption growth, needs to be persistent for the agent’s

preferences to operate in a way consistent with the observed data. For KP preferences

in the Bansal and Yaron (2004) model, we see a strong tension as φx, the persistence of

expected consumption growth, moves away from 1. The ability to reproduce asset pricing

moments deteriorates quickly while the predictability statistics improve. For the GDA

preferences that we advocate in this paper, the persistence in the volatility of consumption
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growth φσ is key for reproducing the predictability stylized facts but we do not find the

tension present in KP preferences. The means of the equity and risk-free returns are pretty

insensitive to φσ, while their volatilities decrease but not drastically as φσ moves away from

one.

5.3 Robustness to Changes in Preference Parameters

We now keep the value of the risk aversion parameter γ to 2.5 and vary the disappointment

aversion parameter α, the elasticity of intertemporal substitution ψ and the kink parameter

κ. In Figure 8, we study the implications of the changes in α in three horizontal panels for

expected excess returns, the risk-free rate and the price-dividend ratio respectively, where

κ varies between 0.975 and 0.985. We look at three values for ψ, 0.9, 1 and 1.5, which

results in three sets of three panels.

The equity premium increases with κ and decreases with α. Increasing αmakes the agent

less disappointed and therefore prices will be higher and risky returns lower. The parameter

κ acts in the opposite direction. When it gets closer to 1, there are more outcomes that

makes the investor disappointed. As the elasticity of intertemporal substitution increases,

it produces only a small increase in the level of the equity premium.

The risk-free rate goes down as disappointment increases, that is when α is decreasing

and κ is increasing. The effect of κ is much more pronounced since the curves fan out.

The effect of ψ on the risk-free rate is important since it affects directly intertemporal

trade-offs in terms of consumption. Below the value of 1 the investor sees consumption at

two different times as complementary and this results in a higher level of the risk-free rate,

while above 1 they are perceived as substitutes and the equilibrium risk-free rate is lower.

Finally, the expected price-dividend ratio decreases with disappointment aversion, with

the main factor being κ, since the curves bunch up as κ gets closer to 1. Decreasing ψ

lowers the level of the expected price-dividend ratio and makes it less sensitive to changes

in α.

In Figure 9, we apply the same sensitivity analysis, with identical changes in the pa-

rameters, to the predictability of excess returns at one, three and five-year horizons. The

main conclusion is that predictability necessitates a large amount of disappointment aver-

sion. It appears to be consistent with the data for lower values of α and higher values of

κ. Changing ψ does not affect much predictability since both the levels and the slopes are

identical across graphs.
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5.4 GDA Preferences and A Random Walk Model For the Endowment

If a very persistent predictable component exists in consumption growth, as proposed by

BY, it is certainly hard to detect it as consumption appears very much as a random walk

in the data20. In the previous section we have argued that, for agents with disappointment

aversion preferences, it is mainly the long-run volatility risk that matters. In this section, we

want to investigate if a heteroscedastic random walk model, coupled with disappointment

aversion, is able to reproduce the stylized facts that we have put forward for aggregate

asset prices.

We restrict the LRR model by assuming a constant expected consumption growth,

resulting in the following specification:

∆ct+1 = µx + σtεc,t+1 (5.33)

∆dt+1 = µx + νdσtεd,t+1

σ2
t+1 = (1 − φσ)µσ + φσσ

2
t + νσεσ,t+1.

We have argued that generalized disappointment aversion was important to reproduce

asset pricing and predictability results. In this section we pursue two goals. First we want

to see if a simple random walk model can generate these results. Second we want to restrict

the parameter κ to be 1 so the agent has disappointment aversion with a kink exactly at

the certainty equivalent. This will help us identify the role played by the flexibility in the

position of the disappointment threshold brought about by GDA.

The parameters of the random walk process are reported in Panel B of Table 1. The

unconditional probability of being in the low volatility state is close to 80% and the param-

eters of consumption and dividend volatility in the two regimes are close to what we had

before in the LRR model. The asset pricing and predictability results for the RW process

are reported in Table 5. In Panels A1 and A2, we kept the benchmark preference parame-

ters that we used with the LRR model (see Tables 2 and 4) to assess the marginal effect of

changing the endowment process. As we saw before when lowering the persistence parame-

ter in expected consumption growth, the effect on the equity premium is more pronounced

with KP preferences. It falls to 1.51% confirming that persistence in expected consumption

is the key economic feature in the BY model. Additionally, the expected price-dividend ra-

tio explodes and the regression coefficients in the predictability regressions of excess returns

become negative. On the contrary, predictability results remain practically unchanged for

20Campbell and Cochrane (1999) use a random walk model for consumption and a heteroscedastic slowly
mean-reverting surplus that is dynamically driven by consumption growth innovations that feeds into habit
persistent preferences. This random walk model is close in spirit to the model in Calvet and Fisher (2007).
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the three GDA specifications. In terms of asset pricing implications, the main statistics

that are affected are the level of the equity premium, that is reduced by 1 to 2 percent-

age points, and the level of the price-dividend ratio, that increases. The volatility of the

dividend yield decrease slightly.

We can now keep the RW process but try to modify the preference parameters to

best match the stylized facts. This is done in Panels B1 and B2 where the subscript a

is added to the preference acronyms. For KP preferences we manage to get much closer

to the observed asset pricing statistics by changing the risk aversion and the elasticity of

intertemporal substitution, but not as close as in the LRR model. However what is striking

is that we now have some predictability of returns, while there was none in the BY model,

even though the regression coefficients are much too big compared with the data. For the

disappointment preferences, one case is particularly interesting. It is the so-called GDA0a,

which is in fact not generalized disappointment aversion but just disappointment aversion

since κ is set to one. In this case the risk-free rate is fixed so σ [Rf ] is equal to 0. The

other asset pricing moments are quite close to the data and we also obtain reasonable

predictability patterns.

In Figures 10 and 11, we plot the sensitivity of the asset pricing statistics and pre-

dictability statistics, respectively, to variations in the persistence parameter of consumption

volatility φσ. In Figure 10 we observe that all asset pricing statistics for KP preferences,

while out of line with the data, remain roughly insensitive to variations of φσ from 0.9 to

1. For GDA, the patterns are similar across the three specifications. The biggest changes

occur in the volatility of the dividend yield that goes towards zero as we approach 0.9.

Otherwise, the other statistics remain pretty much the same as we vary φσ from 0.9 to 1.

In Figure 11, the patterns in R2 for all preference specifications are similar. Their values

decrease steeply as φσ approaches 0.9. As we mentioned before, KP preferences show some

predictability but the values of the slopes become unrealistic (they do not show in the

graphs for 3 and 5 years). One can see that the magnitude of predictability for the GDA

specifications depends very much on the value of φσ, but that some predictability remains

for a sizable range of values.

Our endowment process can be somewhat related to Campbell and Cochrane (1999)

model, which was also successful in matching asset pricing moments and generating the

right predictability patterns. While our preferences are also state-dependent, the action

here is engendered by consumption volatility, while in their paper the main driving process

is the surplus, which is more related to the business cycle. Insofar as the volatility of

consumption is related to the business cycle, these two models are close to each other in

spirit.
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Optimizing the preference parameter values for GDA1a and GDA2a does not change the

results much compared to the benchmark preferences in Table 5, with GDA2a producing

somewhat stronger predictability of excess returns than observed in the data. From these

results we can conclude that a random walk model with persistent consumption growth

volatility and GDA preferences with an IES less than 1 appears as a rather good model for

pricing assets.

5.5 Robustness to sample size: small sample results

The results in the above sections were based on population statistics. In order to assess

whether our main conclusions still hold in finite samples, we simulate the random walk

model with the set of alternative preferences used in the previous subsection. For each

specification we simulate the model for 936 months, repeating it one thousand times21.

The results are reported in Table 6.

Table 6 displays the mean and median small sample statistics for the moment and

predictability regressions of the four preference sets KPa, GDA0a, GDA1a and GDA2a.

The main patterns obtained for population statistics are maintained.

The equity premium for Kreps-Porteus preferences is still too low, with a median of

2.87%. The median values of the excess returns distributions generated under the alterna-

tive generalized disappointment aversion specifications are much closer to the data value:

5.44 for GDA0a, 5.97 for GDA1a, and 5.82 for GDA2a. It continues to be a challenge to

reproduce the standard deviation of the risk-free rate. For GDA1a, with an IES less than 1,

the finite sample mean and median standard deviations of the risk-free rate (2.33 and 2.74

respectively) are less than the population mean value of 3.36. As well, the standard devi-

ation of the dividend yield is lower than for the population statistics for GDA preferences.

It is close to zero, as in population, for KP.

The median of the small sample distribution of regression coefficients for the excess

return regression on the dividend-price ratio is much lower than the observed R2 for KP

preferences, but the mean is higher than in population. The median is closer to the popu-

lation values. The median of the R2 distribution is closer to the observed statistics for the

GDA1 specification, which has an elasticity of substitution parameter below 1.

When consumption growth is regressed on the dividend price ratio, we find some pre-

dictability in average for all preference configurations. It is less pronounced at the median

of the distribution but one cannot differentiate between the preferences in finite samples

21In order to attenuate the effect of the discreteness of the Markov switching model we weighted the
statistics for each state by its ex-post (filtered) probability. We also reduced very slightly the persistence
of the volatility process φσ to 0.994.
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based on these regressions. Of course, consumption growth being a random walk, no pre-

dictability should be observed but one will need longer samples to arrive at this conclusion.

This emphasizes the value of analytical formulas for population statistics to assess the

ability of models to reproduce stylized facts.

6 Conclusion

We examined how long-run risks of the type advocated by Bansal and Yaron (2004) interact

with Kreps-Porteus and generalized disappointment aversion preferences in shaping asset

prices. While persistence of expected consumption growth is fundamental for the moment

matching ability of the Kreps-Porteus model, disappointment averse preferences rely mostly

on the persistence of consumption volatility. The slow mean reverting process for expected

consumption growth when coupled with Kreps-Porteus preferences has the undesirable side-

effect of generating the wrong predictability pattern: dividend yields forecast consumption

growth but not excess returns.

When preferences are disappointment averse, this source of long-run risk ceases to have

this counterfactual effect. The persistent volatility of consumption growth strongly interacts

with disappointment aversion to generate realistic moments and predictability patterns,

notwithstanding the presence of the Bansal and Yaron’s (2004) main source of risk. In

fact, disappointment aversion alone could reproduce the patterns present in both asset

pricing moments and predictive regressions in a random walk model for consumption.
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Appendix: Collection of Expressions Referred to in the Text

The components of the matrix P ∗⊤ =
[

p∗ij
]

1≤i,j≤N
in (3.20) and (3.23), and the matrix

function A∗ (u) also in (3.23) are defined by:

p∗ij = pij

1 + (α−1 − 1)Φ

(

ln

(

κ
λ1z,i
λ1v,j

)

−µc,i

ω
1/2
c,i

− (1 − γ)ω
1/2
c,i

)

1 + (α−1 − 1) κ1−γ
N
∑

j=1

pijΦ

(

ln

(

κ
λ1z,i
λ1v,j

)

−µc,i

ω
1/2
c,i

)
, (A.1)

A∗ (u) = Diag

(

(

λ1v,1

λ1z,1

)
1

ψ
−γ

exp (u1) , ...,

(

λ1v,N

λ1z,N

)
1

ψ
−γ

exp (uN)

)

P ∗. (A.2)

The components of the matrix P ∗∗⊤ =
[

p∗∗ij
]

1≤i,j≤N
in (3.22), and the matrix function

A∗∗ (u) also in (3.22) are defined by:

p∗∗ij = pij

1 + (α−1 − 1) Φ

(

ln

(

κ
λ1z,i
λ1v,j

)

−µc,i

ω
1/2
c,i

−
(

ρiω
1/2
d,i − γω

1/2
c,i

)

)

1 + (α−1 − 1) κ1−γ
N
∑

j=1

pijΦ

(

ln

(

κ
λ1z,i
λ1v,j

)

−µc,i

ω
1/2
c,i

)
, (A.3)

A∗∗ (u) = Diag

(

(

λ1v,1

λ1z,1

) 1

ψ
−γ

exp (u1) , ...,

(

λ1v,N

λ1z,N

) 1

ψ
−γ

exp (uN)

)

P ∗∗. (A.4)

The components of the matrix P̃ ∗⊤ =
[

p̃∗ij
]

1≤i,j≤N
in (3.24) are defined by:

p̃∗ij = pij

1 + (α−1 − 1)Φ

(

ln

(

κ
λ1z,i
λ1v,j

)

−µc,i

ω
1/2
c,i

+ γω
1/2
c,i

)

1 + (α−1 − 1)κ1−γ
N
∑

j=1

pijΦ

(

ln

(

κ
λ1z,i
λ1v,j

)

−µc,i

ω
1/2
c,i

)
. (A.5)

The vectors θ1, θ2 and θ3 appearing in equation (3.28) are given by:

θ1 = λ2d ⊙ (exp(µd,1 + ωd,1/2), ..., exp(µd,N + ωd,N/2))⊤, (A.6)

θ2 = (θ1 ⊙ θ1 ⊙ (exp(ωd,1), ..., exp(ωd,N))⊤) − (θ1 ⊙ θ1), (A.7)

θ3 = λ3d ⊙ λ3d. (A.8)

The vectors ψd, ψh,d and λh,2f appearing in (3.26) and (3.27) are given by:

ψd,i = λ2d,i exp(µd,i + ωd,i/2)λ⊤3dPei, i = 1, ..., N, (A.9)

ψh,d =

(

h
∑

j=1

P j−1

)⊤

ψd and λh,2f =

(

h
∑

j=1

P j−1

)⊤

λ2f . (A.10)
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Table 1: (LRR) Parameters of the Long-Run Risk and Random Walk Markov-
Switching Models.
In Panel A, we report the parameters of the four-state monthly Markov-switching model of the
form (2.10,2.11) that matches the long-run risk model of Bansal and Yaron (2004). The long-
run risk model is calibrated as in Bansal, Kiku and Yaron (2007), with µx = 0.0015, φd = 2.5,
νd = 6.5, φx = 0.975, νx = 0.038,

√
µh = 0.0072, φh = 0.999, νh = 0.28 × 10−5 and ρ1 = 0.39985.

In Panel B, we report the parameters of the two-state monthly Markov-switching model of the form
(2.10,2.11) such that µc,1 = µc,2 and µd,1 = µd,2. From the long run risk model, we set φx = 0 and
νx = 0 to obtain a random walk model, and we adjust the other parameters when necessary such
that consumption and dividend growth means, variances and covariance remain unchanged from
the original model. The random walk model is then calibrated with µx = 0.0015, νd = 6.42322,√
µh = 0.0073, φh = 0.999, νh = 0.28 × 10−5 and ρ1 = 0.40434. In both panels, µc and µd are

conditional means of consumption and dividend growths, ωc and ωd are conditional variances of
consumption and dividend growths and ρ is the conditional correlation between consumption and
dividend growths. P⊤ is the transition matrix across different regimes and Π is the vector of
unconditional probabilities of regimes. Means and standard deviations are in percent.

Panel A µLσL µLσH µHσL µHσH

µ⊤c -0.20197 -0.20197 0.19307 0.19307
µ⊤d -0.72991 -0.72991 0.25769 0.25769

(

ω⊤
c

)1/2
0.44071 1.31462 0.44071 1.31462

(

ω⊤
d

)1/2
2.86569 8.54824 2.86569 8.54824

ρ⊤ 0.39985 0.39985 0.39985 0.39985

P⊤

µLσL 0.97752 0.00021 0.02227 0.00000
µLσH 0.00077 0.97695 0.00002 0.02226
µHσL 0.00273 0.00000 0.99706 0.00021
µHσH 0.00000 0.00272 0.00079 0.99649

Π⊤ 0.08600 0.02304 0.70268 0.18828

Panel B σL σH

µ⊤c 0.15 0.15
µ⊤d 0.15 0.15

(

ω⊤
c

)1/2
0.46 1.32

(

ω⊤
d

)1/2
2.94 8.48

ρ⊤ 0.40434 0.40434

P⊤

σL 0.99979 0.00021
σH 0.00079 0.99921

Π⊤ 0.78868 0.21132
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Table 2: (LRR) Asset Prices and Predictability: KP and GDA0
The entries of Panel A are model population values of asset prices. The expressions E [R−Rf ], E [Rf ]− 1
and E [Pd/D] are respectively the annualized equity premium, mean risk-free rate and mean price-dividend
ratio. The expressions σ [R], σ [Rf ] and σ [D/Pd] are respectively the annualized standard deviations of
market return, risk-free rate and dividend-price ratio. Panels B, C and D show the R2 and the slope of the

regression yt+1:t+12h = a (h)+b (h)
(

D
Pd

)

t−11:t
+ηt+12h (h), where y stands for excess returns, consumption

growth and dividend growth respectively.

Data Benchmark LRR φx = 0.90 φd = 1

KP GDA0 KP GDA0 KP GDA0

δ 0.9989 0.998 0.9989 0.998 0.9989 0.998
γ 10 0 10 0 10 0
ψ 1.5 ∞ 1.5 ∞ 1.5 ∞
α 1 0.2 1 0.2 1 0.2
κ 1 0.98 1 0.98 1 0.98

Panel A. Asset Pricing Implications

E [R−Rf ] 7.25 6.87 6.01 2.26 6.63 2.74 4.82
σ [R] 19.52 18.11 18.99 16.86 18.36 16.45 19.43

E [Rf ] − 1 1.21 1.09 1.34 1.72 0.72 1.09 1.34
σ [Rf ] 4.1 1.01 1.58 1.00 1.53 1.01 1.58

E [Pd/D] 30.57 22.28 29.64 130.18 28.92 146.91 45.79
σ [D/Pd] 1.52 0.49 1.72 0.03 1.82 0.03 1.59

Panel B. Predictability of Excess Returns

R2 (1) 7 0.06 7.26 0.48 8.40 0.97 7.88
b (1) 3.12 0.92 3.07 -45.38 3.04 -63.13 3.53

R2 (3) 14.67 0.06 18.68 1.70 21.52 2.80 20.52
b (3) 7.05 1.57 9.10 -150.18 9.01 -188.59 10.45

R2 (5) 27.26 0.02 27.20 2.88 31.25 4.47 30.14
b (5) 12.34 1.29 14.97 -255.67 14.84 -312.25 17.20

Panel C. Predictability of Consumption Growth

R2 (1) 0.06 16.50 0.78 2.69 0.01 5.49 0.11
b (1) -0.02 -2.40 -0.15 -17.75 -0.02 -25.94 -0.06

R2 (3) 0.09 21.05 0.99 1.46 0.01 7.00 0.14
b (3) -0.05 -5.47 -0.33 -24.18 -0.02 -59.22 -0.13

R2 (5) 0.24 18.22 0.86 0.88 0.00 6.06 0.12
b (5) -0.11 -7.15 -0.44 -24.69 -0.02 -77.34 -0.17

Panel D. Predictability of Dividend Growth

R2 (1) 0 3.07 0.14 0.48 0.00 0.17 0.00
b (1) 0.04 -5.99 -0.37 -44.37 -0.04 -25.94 -0.06

R2 (3) 0.2 5.00 0.23 0.29 0.00 0.29 0.01
b (3) -0.48 -13.68 -0.83 -60.45 -0.06 -59.22 -0.13

R2 (5) 0.08 4.90 0.23 0.18 0.00 0.30 0.01
b (5) -0.37 -17.87 -1.09 -61.73 -0.06 -77.34 -0.17
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Table 3: (LRR) Conditional Probability Distribution Function of the Stochastic
Discount Factor: GDA0.
The entries of the table are the probability density function of the stochastic discount factor
conditional in each state of the economy, namely g (M | Jt), when the representative investor has
time separable preferences with γ = 1/ψ = 0. The distribution is concentrated on two points, ai·

and ai·/α where i is the state of the economy, and the table shows each point with the associated
weight. Panel A shows the distribution for the benchmark case where the long-run risk model is
calibrated as in Bansal, Kiku and Yaron (2007), with µx = 0.0015, φd = 2.5, νd = 6.5, φx = 0.975,
νx = 0.038,

√
µh = 0.0072, φh = 0.999, νh = 0.28×10−5 and ρ1 = 0.4. In Panel B, the persistence

of long-run risks is changed to φx = 0.90, and νx is adjusted to maintain the same variance for
expected consumption growth as in the benchmark case.

i ai· Prob (ai·) ai·/α Prob (ai·/α)

Panel A. Benchmark LRR

µLσL 0.997 0.99976 4.985 0.00024
µLσH 0.766 0.92256 3.828 0.07744
µHσL 0.987 0.99706 4.933 0.00294
µHσH 0.839 0.95181 4.197 0.04819

Panel B. φx = 0.90

µLσL 0.997 0.99975 4.985 0.00025
µLσH 0.766 0.92259 3.828 0.07741
µHσL 0.957 0.98899 4.784 0.01101
µHσH 0.816 0.94310 4.080 0.05690
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Table 4: (LRR) Asset Prices and Predictability: GDA
The entries of Panel A are model population values of asset prices. The expressions E [R−Rf ], E [Rf ]− 1
and E [Pd/D] are respectively the annualized equity premium, mean risk-free rate and mean price-dividend
ratio. The expressions σ [R], σ [Rf ] and σ [D/Pd] are respectively the annualized standard deviations of
market return, risk-free rate and dividend-price ratio. Panels B, C and D show the R2 and the slope of the

regression yt+1:t+12h = a (h)+b (h)
(

D
Pd

)

t−11:t
+ηt+12h (h), where y stands for excess returns, consumption

growth and dividend growth respectively.

Data Benchmark LRR

GDA0 GDA1 GDA2

δ 0.998 0.9989 0.9989
γ 0 1.25 2.5
ψ ∞ 0.75 1.5
α 0.2 0.25 0.33
κ 0.98 0.987 0.986

Panel A. Asset Pricing Implications

E [R−Rf ] 7.25 6.01 5.48 6.27
σ [R] 19.52 18.99 18.40 18.61

E [Rf ] − 1 1.21 1.34 2.04 1.22
σ [Rf ] 4.1 1.58 3.77 2.11

E [Pd/D] 30.57 29.64 27.91 27.90
σ [D/Pd] 1.52 1.72 1.96 1.69

Panel B. Predictability of Excess Returns

R2 (1) 7 7.26 14.01 8.40
b (1) 3.12 3.07 3.75 3.30

R2 (3) 14.67 18.68 32.96 21.39
b (3) 7.05 9.10 11.10 9.74

R2 (5) 27.26 27.20 44.91 30.85
b (5) 12.34 14.97 18.25 15.99

Panel C. Predictability of Consumption Growth

R2 (1) 0.06 0.78 0.20 0.70
b (1) -0.02 -0.15 -0.07 -0.14

R2 (3) 0.09 0.99 0.26 0.90
b (3) -0.05 -0.33 -0.15 -0.32

R2 (5) 0.24 0.86 0.22 0.78
b (5) -0.11 -0.44 -0.20 -0.42

Panel D. Predictability of Dividend Growth

R2 (1) 0 0.14 0.04 0.13
b (1) 0.04 -0.37 -0.16 -0.36

R2 (3) 0.2 0.23 0.06 0.21
b (3) -0.48 -0.83 -0.37 -0.81

R2 (5) 0.08 0.23 0.06 0.21
b (5) -0.37 -1.09 -0.49 -1.06
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Table 5: (RW) Asset Prices and Predictability: KP and GDA
The entries of Panel A are model population values of asset prices. The expressions E [R−Rf ], E [Rf ]− 1
and E [Pd/D] are respectively the annualized equity premium, mean risk-free rate and mean price-dividend
ratio. The expressions σ [R], σ [Rf ] and σ [D/Pd] are respectively the annualized standard deviations of
market return, risk-free rate and dividend-price ratio. Panels B, C and D show the R2 and the slope of the

regression yt+1:t+12h = a (h)+b (h)
(

D
Pd

)

t−11:t
+ηt+12h (h), where y stands for excess returns, consumption

growth and dividend growth respectively.

Data Benchmark RW

KP GDA0 GDA1 GDA2

Panel A1. Asset Pricing Implications

E [R −Rf ] 7.25 1.51 3.88 4.76 4.96
σ [R] 19.52 16.35 22.09 19.45 19.15

E [Rf ] − 1 1.21 1.76 1.46 1.89 1.21
σ [Rf ] 4.1 0.49 1.79 3.36 1.94

E [Pd/D] 30.57 692.21 81.62 38.98 44.82
σ [D/Pd] 1.52 0.00 1.33 1.95 1.61

Panel A2. Predictability of Excess Returns

R2 (1) 7 1.48 6.92 14.03 8.97
[b (1)] 3.12 -809.76 4.47 3.97 3.70
R2 (3) 14.67 4.20 18.54 33.40 23.05
[b (3)] 7.05 -2400.40 13.25 11.75 10.96
R2 (5) 27.26 6.64 27.82 45.90 33.49
[b (5)] 12.34 -3953.31 21.82 19.36 18.05

KPa GDA0a GDA1a GDA2a

Panel B1. Asset Pricing Implications

E [R −Rf ] 7.25 3.53 5.62 6.23 6.23
σ [R] 19.52 16.39 17.08 17.79 18.03

E [Rf ] − 1 1.21 1.49 1.32 1.25 1.09
σ [Rf ] 4.1 0.77 0.00 3.33 2.23

E [Pd/D] 30.57 53.14 28.88 27.09 28.72
σ [D/Pd] 1.52 0.08 1.15 1.81 1.86

Panel B2. Predictability of Excess Returns

R2 (1) 7 2.17 3.21 14.50 10.96
[b (1)] 3.12 30.02 2.68 4.00 3.36
R2 (3) 14.67 6.09 8.96 33.91 27.12
[b (3)] 7.05 88.99 7.95 11.85 9.95
R2 (5) 27.26 9.54 13.92 46.05 38.29
[b (5)] 12.34 146.57 13.10 19.51 16.39
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Table 6: (RW) Asset Prices and Predictability: KPa and GDAa, Small Sample
Results
The entries of Panel A are model finite sample values of asset prices. The expressions E [R −Rf ], E [Rf ]−1
and E [Pd/D] are respectively the annualized equity premium, mean risk-free rate and mean price-dividend
ratio. The expressions σ [R], σ [Rf ] and σ [D/Pd] are respectively the annualized standard deviations of
market return, risk-free rate and dividend-price ratio. Panels B and C show finite sample R2 and slope

of the regression yt+1:t+4h = a (h) + b (h)
(

D
Pd

)

t−3:t
+ ηt+4h (h), where y stands for excess returns and

consumption growth respectively. Finite sample distributions are based on a series of 1000 simulated
samples with equivalent length to the data (936 months). The persistence of the volatility process is set
to φh = 0.994.

Data Benchmark RW

KPa GDA0a GDA1a GDA2a

Mean 50% Mean 50% Mean 50% Mean 50%

Panel A. Asset Pricing Implications

E [R−Rf ] 7.25 3.19 2.87 5.72 5.44 6.81 5.97 6.52 5.82
σ [R] 19.52 15.78 14.70 16.50 15.72 17.04 16.38 17.41 16.87
E [Rf ] − 1 1.21 1.74 1.88 1.32 1.32 1.24 1.76 1.25 1.61
σ [Rf ] 4.10 0.63 0.75 0.00 0.00 2.33 2.74 1.64 1.94
E [Pd/D] 30.57 54.52 54.77 26.52 27.01 21.54 22.05 23.46 24.09
σ [D/Pd] 1.52 0.04 0.05 0.39 0.46 0.65 0.77 0.71 0.85

Panel B. Predictability of Excess Returns

R2 (1) 7.00 3.51 1.43 4.45 1.86 10.71 8.14 9.60 6.59
[b (1)] 3.12 24.15 39.79 8.32 6.19 9.98 8.10 9.59 6.99
R2 (3) 14.67 7.54 2.71 9.60 3.90 21.43 18.15 19.74 15.08
[b (3)] 7.05 90.49 95.26 18.59 15.79 21.50 20.76 19.85 18.15
R2 (5) 27.26 9.79 3.49 12.51 4.94 25.75 23.25 24.30 19.86
[b (5)] 12.34 157.44 139.92 27.31 23.27 31.71 30.13 28.65 26.34

Panel C. Predictability of Consumption Growth

R2 (1) 0.06 2.32 0.87 2.32 0.86 2.33 0.86 2.33 0.86
[b (1)] -0.02 -7.34 -0.37 -0.96 -0.04 -0.63 -0.02 -0.61 -0.02
R2 (3) 0.09 5.02 1.64 5.02 1.62 5.02 1.63 5.02 1.64
[b (3)] -0.05 9.44 0.34 1.25 0.04 0.82 0.02 0.80 0.02
R2 (5) 0.24 6.82 2.03 6.82 2.03 6.82 2.02 6.82 2.02
[b (5)] -0.11 3.28 0.39 0.39 0.04 0.25 0.03 0.24 0.03
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Figure 1: (LRR) Sensitivity of Asset Prices to the Persistence of Expected Con-
sumption Growth: GDA0 and KP.
The figure displays population values of asset prices as functions of the persistence of expected
consumption growth. The expressions E [R−Rf ] and E [Pd/D] are respectively the annual-
ized equity premium and mean price-dividend ratio. The expressions σ [R−Rf ] and σ [D/Pd]
are respectively the annualized standard deviations of the equity excess return and the equity
dividend-price ratio.
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Figure 2: (LRR) Sensitivity of Asset Prices to the Leverage of Dividends on
Consumption: GDA0 and KP.
The figure displays population values of asset prices as functions of the leverage of dividends on
consumption. The expressions E [R−Rf ] and E [Pd/D] are respectively the annualized equity
premium and mean price-dividend ratio. The expressions σ [R−Rf ] and σ [D/Pd] are respectively
the annualized standard deviations of the equity excess return and the equity dividend-price ratio.
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Figure 3: Indifference Curves for GDA Preferences
Indifference curves over two outcomes x and y with the fixed probability p = Prob (x) = 1/2.
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Figure 4: (LRR) Sensitivity of Asset prices to the Persistence of Expected Con-
sumption Growth: KP and GDA.
The figure shows the population R2 of the monthly regression yt+1:t+h = a (h)+b (h) Dt

Pd,t
+ηt+h (h)

for horizons corresponding to one year (h = 12), three years (h = 36) and five years (h = 60).
The variable y stands for excess returns R − Rf , consumption growth ∆c and dividend growth
∆d. The R2 is plotted as a function of the persistence of expected consumption growth.
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Figure 5: (LRR) Sensitivity of Asset Prices to the Persistence of Consumption
Volatility: KP and GDA.
The figure displays population values of asset prices as functions of the persistence of consumption
volatility. The expressions E [R−Rf ] and E [Pd/D] are respectively the annualized equity pre-
mium and mean price-dividend ratio. The expressions σ [R−Rf ] and σ [D/Pd] are respectively
the annualized standard deviations of the equity excess return and the equity dividend-price ratio.
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Figure 6: (LRR) Sensitivity of Excess Return and Growth Rates Predictability
to the Persistence of Expected Consumption Growth: KP and GDA.
The figure shows the population R2 of the monthly regression yt+1:t+h = a (h)+b (h) Dt

Pd,t
+ηt+h (h)

for horizons corresponding to one year (h = 12), three years (h = 36) and five years (h = 60).
The variable y stands for excess returns R−Rf and consumption growth ∆c. The R2 is plotted
as a function of the persistence of expected consumption growth.

0.2 0.4 0.6 0.8
0

5

10

15

R
2

R−R
f
, 1Y

0.2 0.4 0.6 0.8
0

20

40

R−R
f
, 3Y

0.2 0.4 0.6 0.8
0

20

40

R−R
f
, 5Y

0.2 0.4 0.6 0.8
0

2

4

S
lo

p
e

0.2 0.4 0.6 0.8
0

5

10

15

0.2 0.4 0.6 0.8
0

10

20

0.2 0.4 0.6 0.8
0

20

40

R
2

∆c, 1Y

0.2 0.4 0.6 0.8
0

50
∆c, 3Y

0.2 0.4 0.6 0.8
0

50

100
∆c, 5Y

0.2 0.4 0.6 0.8
−20

−10

0

φ
x

S
lo

p
e

0.2 0.4 0.6 0.8
−40

−20

0

φ
x

0.2 0.4 0.6 0.8
−40

−20

0

φ
x

KP
GDA0
GDA1
GDA2

46



Figure 7: (LRR) Sensitivity of Excess Return and Growth Rates Predictability
to the Persistence of Consumption Volatility: KP and GDA.
The figure shows the population R2 of the monthly regression yt+1:t+h = a (h)+b (h) Dt

Pd,t
+ηt+h (h)

for horizons corresponding to one year (h = 12), three years (h = 36) and five years (h = 60).
The variable y stands for excess returns R−Rf and consumption growth ∆c. The R2 is plotted
as a function of the persistence of consumption volatility.
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Figure 8: (LRR) Equity Premium, Risk-Free Rate and Valuation Ratio, γ = 2.5
The figure displays population values of asset prices. The expressions E [Re], E [Rf ] − 1 and
E [Pd/D] are respectively the annualized equity premium, mean risk-free rate and mean price-
dividend ratio.
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Figure 9: (LRR) Predictability of Excess Returns (R2), γ = 2.5
The figure shows the population R2 of the monthly regression Re

t+1:t+h = a (h)+b (h) Dt
Pd,t

+ηt+h (h)

for horizons corresponding to one year (h = 12), three years (h = 36) and five years (h = 60).
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Figure 10: (RW) Sensitivity of Asset Prices to the Persistence of Consumption
Volatility: KP and GDA.
The figure displays population values of asset prices as functions of the persistence of consumption
volatility. The expressions E [R−Rf ] and E [Pd/D] are respectively the annualized equity pre-
mium and mean price-dividend ratio. The expressions σ [R−Rf ] and σ [D/Pd] are respectively
the annualized standard deviations of the equity excess return and the equity dividend-price ratio.
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Figure 11: (RW) Sensitivity of Excess Return Predictability to the Persistence
of Consumption Volatility.
The figure shows the population R2 of the monthly regression yt+1:t+h = a (h)+b (h) Dt

Pd,t
+ηt+h (h)

for horizons corresponding to one year (h = 12), three years (h = 36) and five years (h = 60).
The variable y stands for excess returns R−Rf . The R2 is plotted as a function of the persistence
of consumption volatility.
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