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abstract

The purpose of this paper is to propose a general econometric approach to
no-arbitrage asset pricing modelling based on three main ingredients: (i) the
historical discrete-time dynamics of the factor representing the information,
(ii) the stochastic discount factor (SDF), and (iii) the discrete-time risk-neutral
(RN) factor dynamics. Retaining an exponential-affine specification of the SDF,
its modelling is equivalent to the specification of the risk-sensitivity vector and
of the short rate, if the latter is neither exogenous nor a known function of
the factor. In this general framework, we distinguish three modelling strate-
gies: the direct modelling, the RN constrained direct modelling, and the back
modelling. In all the approaches, we study the internal consistency conditions
(ICCs), implied by the absence of arbitrage opportunity assumption, and the
identification problem. The general modelling strategies are applied to two im-
portant domains: security market models and term structure of interest rates
models. In these contexts, we stress the usefulness (and we suggest the use)

We are grateful to Torben Andersen, Monica Billio, Bjorn Eraker, Marcelo Fernandes, Andras Fulop,
René Garcia, Christian Gourieroux, Martino Grasselli, Steve Heston, Nour Meddahi, Patrice Poncet, Ken
Singleton, David Veredas, and to seminar participants at CREST Financial Econometrics Seminar 2007,
North American Summer Meeting of the Econometric Society 2007 (Fuqua School of Business, Duke
University), University Ca’ Foscari of Venice 2007, Queen Mary University of London 2008, University
of St. Gallen 2008, Université Libre de Bruxelles 2008, ESSEC Business School (Paris) 2008, the Society for
Financial Econometrics (SoFiE) Inaugural Conference 2008 (Stern Business School, New York University),
Computational and Financial Econometrics Conference 2008 (Neuchatel), Far Eastern and South Asian
Meeting of the Econometric Society (FEMES) 2008 (Singapore Management University) for comments.
We are especially grateful to Eric Renault (the editor) and an anonymous referee, whose suggestions
have helped us to improve this article substantially. Any errors are our own. Address correspondence to
Alain Monfort, CREST, Laboratoire de Finance-Assurance, 15 Boulevard Gabriel Peri, 92245 Malakoff,
France, or e-mail: monfort@ensae.fr

doi: 10.1093/jjfinec/nbn011
Advance Access publication September 9, 2008
C© The Author 2008. Published by Oxford University Press. All rights reserved. For permissions,
please e-mail: journals.permissions@oxfordjournals.org.



408 Journal of Financial Econometrics

of the RN constrained direct modelling and of the back modelling approaches,
both allowing us to conciliate a flexible (non-Car) historical dynamics and a Car
(compound autoregressive) RN dynamics leading to explicit or quasi-explicit
pricing formulas for various derivative products. Moreover, we highlight the
possibility to specify asset pricing models able to accommodate non-Car his-
torical and non-Car RN factor dynamics with tractable pricing formulas. This
result is based on the notion of (RN) extended Car process that we introduce
in the paper, and which allows us to deal with sophisticated models such as
Gaussian and inverse Gaussian GARCH-type models with regime-switching,
or Wishart quadratic term structure models. (JEL C1, C5, G12)

keywords: back modelling, Car and extended Car processes, direct mod-
elling, identification problem, internal consistency conditions, Laplace
transform, risk-neutral constrained direct modelling

Financial econometrics and no-arbitrage asset pricing remain rather disconnected
fields mainly because the former is essentially based on discrete-time processes
(like, for instance, VAR, GARCH and stochastic volatility models or switching
regime models) and the latter is in general based on continuous-time diffusion
processes, jump-diffusion processes, and Lévy processes. Recently, a few papers
have tried to build a bridge between these two literatures [see Heston and Nandi
(2000), Garcia, Ghysels, and Renault (2003), and Christoffersen, Heston, and Jacobs
(2006) for the econometrics of option pricing; Gourieroux, Monfort, and Polimenis
(2003), Dai, Le, and Singleton (2006), Dai, Singleton, and Yang (2007), and Monfort
and Pegoraro (2007) for interest rates models; Gourieroux, Monfort and Sufana
(2005) for exchange rates models; Gourieroux, Monfort, and Polimenis (2006) for
credit risk models], and the aim of the present work is in the same spirit. More
precisely, the general objective of our paper is organized in the following four
steps.

First, we propose a general and flexible pricing framework based on three
main ingredients: (i) the discrete-time historical (P) dynamics of the factor (wt ,
say) representing the information (in the economy) used by the investor to price
assets; (ii) the (one-period) stochastic discount factor (SDF) Mt,t+1, defining the
change of probability measure between the historical and risk-neutral world; (iii)
the discrete-time risk-neutral (RN or Q) factor dynamics. The central mathematical
tool used in the description of the historical and RN dynamics of the factor is the
conditional log-Laplace transform (or cumulant generating function). The SDF is
assumed to be exponential-affine [see Gourieroux and Monfort (2007)], and its
specification is equivalent to the specification of a risk-sensitivity vector (αt , say)
and of the short rate rt , if the latter is neither exogenous nor a known function
of the factor. Moreover, the notion of risk sensitivity is linked to the usual notion
of market price of risk in a way that depends on the financial context (security
markets or interest rates).
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Second, we focus on the tractability of this general framework, in terms of
explicit or quasi-explicit derivative pricing formulas, by defining the notion of ex-
tended Car (ECar) process, based on the fundamental concept of Car (compound
autoregressive, or discrete-time affine) process introduced by Darolles, Gourier-
oux, and Jasiak (2006). More precisely, we first recall that the discrete-time Car
approach is much more flexible than the corresponding continuous-time affine
one, since, although every discretized continuous-time affine model is Car, the
converse is not true. In other words, the Car family of processes is much wider
than the discretized affine family, mainly because of the time consistency con-
straints (embedding condition) applying to the latter [see Darolles, Gourieroux,
and Jasiak (2006), Gourieroux, Monfort, and Polimenis (2003, 2006), Monfort and
Pegoraro (2006a, 2006b, 2007)]. Then, thanks to the concept of ECar process we
define, we show that, even if the starting factor in our pricing model (w1,t , say) is
not Car in the RN world (implying, in principle, pricing difficulties), there is the
possibility to find a second factor (w2,t , say), possibly function of the first one, such
that the extended process wt = (w′

1,t , w′
2,t)

′ turns out to be RN Car. The process
{w1,t} is called (risk-neutral) extended Car. If the RN dynamics is extended Car,
the whole machinery of multihorizon complex Laplace transform, truncated real
Laplace transform, and inverse Fourier transform of Car-based pricing procedures
[see Bakshi and Madan (2000), and Duffie, Pan and, Singleton (2000)] becomes
available.

Third, in this general asset pricing setting, we formalize three modelling strate-
gies: the direct modelling strategy, the RN constrained direct modelling strategy,
and the back modelling strategy. Since the three elements of the general frame-
work, namely the P-dynamics, the SDF Mt,t+1, and the Q-dynamics, are linked
together (through the SDF change of probability measure), each strategy proposes
a parametric modelling of two elements, the third one being a by-product. In the
direct modelling strategy, we specify the historical dynamics and the SDF, that is to
say, the risk-sensitivity vector and the short rate and, thus, the RN dynamics is ob-
tained as a by-product. In the second strategy, the RN constrained direct modelling
strategy, we specify the P-dynamics and constrain the RN dynamics to belong to
a given family, typically the family of Car or ECar processes. In this case, the risk-
sensitivity vector characterizing the SDF is obtained as a by-product. Finally, in the
back modelling strategy (the third strategy), we specify the Q-dynamics, the short
rate process rt , as well as the risk-sensitivity vector αt and, consequently, the histor-
ical dynamics is obtained as by-product. Thus, we get three kinds of econometric
asset pricing models (EAPMs). In these strategies we carefully take into account
the following important points: (i) the status of the short rate; (ii) the internal con-
sistency conditions (ICCs) ensuring the compatibility of the pricing model with the
absence of arbitrage opportunity principle [the ICCs are conveniently (explicitly)
imposed through the log-Laplace transform]; (iii) the identification problem; and
(iv) the possibility to have a Q-dynamics of Car or extended Car type. In this re-
spect, two of the proposed strategies, the back modelling and the RN constrained
direct modelling strategies, are particularly attractive since they control for the
RN dynamics and they allow for a rich class of nonlinear historical dynamics
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(non-Car, in general). Moreover, these two approaches may be very useful for the
computation of the (exact) likelihood function. For instance, in the back modelling
approach, the nonlinear historical conditional density function is easily deduced
from the, generally tractable (known in closed form), probability density function
(pdf) in the RN world and from the possibly complex, but explicitly specified,
risk-sensitivity vector.

Fourth, we apply these strategies to two important domains: security mar-
ket models and interest rate models.1 In the first domain, we show how the back
modelling strategy provides quasi-explicit derivative pricing formulas even in
sophisticated models such as the RN switching regimes GARCH models general-
izing those proposed by Heston and Nandi (2000) and Christoffersen, Heston, and
Jacobs (2006). In the second domain, we show how both the back modelling and
the RN constrained direct modelling strategies provide models able to generate,
at the same time, nonlinear historical dynamics and tractable pricing procedures.
In particular, we show how the introduction of lags and switching regimes lead to
a rich and tractable modelling of the term structure of interest rates [see Monfort
and Pegoraro (2007)].

The strategies formalized in this paper have been already used, more or less
explicitly, in the continuous-time literature. However, it is worth noting that, very
often, rather specific direct modelling or back modelling strategies are used: the
dynamics of the factor is assumed to be affine under the historical (the RN, re-
spectively) probability, the risk-sensitivity vector (and the short rate) is specified
as affine function of the factor, and the RN (historical, respectively) dynamics is
found to be also affine once the Girsanov change of probability measure is applied.2

These strategies could be called “basic” direct and back modelling strategies.
If we consider the option pricing literature, the stochastic volatility (SV) diffu-

sion models [based on Heston (1993)] with jumps [in the return and/or volatility
dynamics] of Bates (2000), Pan (2002), and Eraker (2004) are derived following
this basic direct modelling strategy. The pricing models proposed by Bakshi, Cao,
and Chen (1997, 2000) can be seen as an application of the basic back modelling
approach, given that they work directly under the RN (pricing) probability mea-
sure. Even if these (affine) parametric specifications are able to explain relevant
empirical features of asset price dynamics, the introduction of nonlinearities in the
P-dynamics of the factor seems to be very important, as suggested by Chernov
et al. (2003) and Garcia, Ghysels, and Renault (2003).

In the continuous-time term structure literature, for instance, Duffie and
Kan (1996) and Cheridito, Filipovic, and Kimmel (2007) follow the basic direct

1See also, in the (security market and) option pricing literature, among the others, Christoffersen, Elkamhi,
and Jacobs (2005), Christoffersen, Jacobs, and Wang (2006), Duan (1995), Duan, Ritchken, and Sun (2005),
and Leon, Mencia, and Sentana (2007). With regard to the term structure modelling, see Ang and Piazzesi
(2003), Ang, Piazzesi, and Wei (2006), Ang, Bekaert, and Wei (2008), Backus, Foresi, and Telmer (1998),
Gourieroux and Sufana (2003), and Monfort and Pegoraro (2006a). In the general equilibrium setting,
see, among the others, Garcia and Renault (1998), Garcia, Luger, and Renault (2003), and Eraker (2007).

2See Duffie, Filipovic, and Schachermeyer (2003) for a general mathematical characterization of
continuous-time affine processes with jumps.
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modelling strategy, while Dai and Singleton (2000, 2002) and Duffee (2002) use
the basic back modelling counterpart. In other words, the classes of completely
and essentially affine term structure models are derived following a basic direct
or back modelling strategy. A notable exception, however, is given by the semi-
affine model of Duarte (2004). Following a back modelling approach, he proposes
a square-root bond pricing model, which is affine under the RN probability, but
not under the historical, given the nonaffine specification of the market price of
risk. This nonlinearity improves the model’s ability to match the time variability
of the term premium, but it is not able to solve the tension between the matching
of the first and the second conditional moments of yields (Dai and Singleton 2002;
Duffee 2002), and it makes the estimation more difficult (less precise) given that
the likelihood function of yield data becomes intractable.

The last example highlights the kind of limits typically affecting the
continuous-time setting: the affine specification is necessary (under both P and
Q measures) to make the econometric analysis of the model tractable and, there-
fore, certain relevant nonlinearities are missed. As indicated above, we can over-
come these limits in our discrete-time asset pricing setting if the right strategy
is followed. For instance, Dai, Le, and Singleton (2006), following a well-chosen
back modelling strategy, propose a nonlinear discrete-time term structure model,
which nests (the discrete-time equivalent of) the specifications adopted in Duffee
(2002), Duarte (2004), and Cheridito, Filipovic, and Kimmel (2007). In their work,
the Q-dynamics of the factor is Car, the market price of risk is assumed to be a
nonlinear (polynomial) function of the factor, the P-dynamics is not Car, and the
likelihood function of the bond yield data is known in closed form. This nonlin-
earity is shown to significantly improve the statistical fit and the out-of-sample
forecasting performance of the nested models.

The paper is organized as follows. In Section 1, we define the historical and
RN dynamics of the factor, and the SDF. In Section 2, we briefly review Car pro-
cesses and their main properties, introduce the important notion of (internally and
externally) extended Car (ECar) process, provide several examples, and briefly
describe the pricing of derivative products when the underlying asset is Car (or
ECar) in the RN world. In Section 3, we discuss the status of the short rate, describe
the various modelling strategies for the specification of an EAPM, and present the
associated inference problem. Sections 4 and 5 consider, respectively, applications
to econometric security market models and to econometric term structure models,
while, in Section 6, we present an example of security market model with stochastic
dividends and short rate. Section 7 concludes, and the proofs are gathered in the
Appendices.

1 HISTORICAL AND RN DYNAMICS

1.1 Information and Historical Dynamics

We consider an economy between dates 0 and T . The new information in
the economy at date t is denoted by wt , the overall information at date t is
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wt = (wt , wt−1, . . . , w0), and the σ -algebra generated by wt is denoted σ (wt). The
random variable wt is called a factor or a state vector, and it may be observable,
partially observable or unobservable by the econometrician. The size of wt is K .

The historical dynamics of wt is defined by the joint distribution of wT , denoted
by P, or by the conditional pdf (with respect to some measure):

ft(wt+1|wt) ,

or by the conditional Laplace transform (LT)

ϕt(u|wt) = E[exp(u′wt+1)|wt] ,

which is assumed to be defined in an open convex set of RK (containing zero). We
also introduce the conditional log-Laplace transform

ψt(u|wt) = log[ϕt(u|wt)] .

The conditional expectation operator, given wt , is denoted by Et . ϕt(u|wt) and
ψt(u|wt) will be also denoted by ϕt(u) and ψt(u), respectively.

1.2 The Stochastic Discount Factor

Let us denote by L2t the (Hilbert) space of square integrable functions3 g(wt).
Following Hansen and Richard (1987), we consider the following assumptions:

A1 (Existence and uniqueness of a price): Any payoff g(ws) of L2s , delivered at
s, has a unique price at any t < s, for any wt , denoted by pt[g(ws)], function
of wt .

A2 (Linearity and continuity):
• pt[λ1g1(ws) + λ2g2(ws)] = λ1 pt[g1(ws)] + λ2 pt[g2(ws)] (law of one price)

• if gn(ws) L2s−→
n→∞ 0, pt[gn(ws)] −→

n→∞ 0.

A3 (Absence of arbitrage opportunity): At any t ∈ {0, . . . , T} it is impossible to
constitute a portfolio (of future payoffs), possibly modified at subsequent
dates, such that: (i) its price at t is nonpositive; (ii) its payoffs at subsequent
dates are non-negative; and (iii) there exists at least one date s > t such that
the net payoff, at s, is strictly positive with a strictly positive conditional
probability at t.

Under A1, A2, and A3, a conditional version of the Riesz representation the-
orem implies, for each t ∈ {0, . . . , T − 1}, the existence and uniqueness of the SDF
Mt,t+1(wt+1), belonging to L2,t+1, such that the price at date t of the payoff g(ws)
delivered at s > t is given by (see Appendix A):

pt
[
g(ws)

] = Et
[
Mt,t+1 · · · Ms−1,s g(ws)

]
. (1)

3We do not distinguish between functions that are equal almost surely.
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Moreover, under A3, Mt,t+1 is positive for each t ∈ {0, . . . , T − 1}. The process
M0t =∏t−1

j=0 Mj, j+1 is called the state price deflator over the period {0, . . . , t}.
Since L2,t+1 contains 1, the price at t of a zero-coupon bond maturing at t + 1

is

B(t, 1) = exp(−rt+1) = Et(Mt,t+1),

where rt+1 is the predetermined (that is, known at t) geometric short rate between
t and t + 1.

1.3 Exponential-Affine SDF

We assume that Mt,t+1(wt+1) has an exponential-affine form

Mt,t+1 = exp
[
αt(wt)

′wt+1 + βt(wt)
]

,

where αt is the factor-loading or risk-sensitivity vector.4 Since exp(−rt+1) =
Et(Mt,t+1) = exp[ψt(αt | wt) + βt], the SDF can also be written as

Mt,t+1 = exp
[−rt+1(wt) + α′

t(wt)wt+1 − ψt(αt|wt)
]

. (2)

In the case where wt+1 is a vector of geometric returns of basic assets or a vector of
yields, the risk-sensitivity vector αt(wt) can be seen, respectively, as the opposite
of a market price of risk vector, or as a market price of risk vector (see Appendix
B for a complete proof). More precisely, if we consider the vector of arithmetic
returns ρA,t+1 of the basic assets in the first case, and of zero-coupon bonds in the
second case, the arithmetic risk premia πAt = Et(ρA,t+1) − rA,t+1e (where rA,t+1 is
the arithmetic risk-free rate, and where e denotes the unitary vector) is given by
πAt = − exp(rt+1)
tαt in the first case, and it is πAt = exp(rt+1)
tαt in the second
case (
t is the conditional variance–covariance matrix of wt+1 given wt).

1.4 RN Dynamics

The joint historical distribution of wT , denoted by P, is defined by the conditional
distribution of wt+1 given wt , characterized either by the pdf ft(wt+1|wt) or the
Laplace transform ϕt(u|wt), or the log-Laplace transform ψt(u|wt).

4The justification of this exponential-affine specification is now well documented in the asset pricing lit-
erature. First, this form naturally appears in equilibrium models like CCAPM [see e.g. Cochrane (2005)],
consumption-based asset pricing models either with habit formation or with Epstein–Zin preferences
[see, among the others, Bansal and Yaron (2004), Campbell and Cochrane (1999), Eraker (2007), Garcia,
Meddahi, and Tedongap (2006), Garcia, Renault, and Semenov (2006)]. Second, in general continuous-
time security market models, the discretized version of the SDF is exponential-affine (Gourieroux and
Monfort 2007). Third, the exponential-affine specification is particularly well adapted to Laplace trans-
form, which is a central tool in discrete-time asset pricing theory [see e.g. Bertholon, Monfort, and
Pegoraro (2006), Darolles, Gourieroux, and Jasiak (2006), Gourieroux, Jasiak, and Sufana (2004), Gourier-
oux, Monfort, and Polimenis (2003, 2006), Monfort and Pegoraro (2006a, 2006b, 2007), Pegoraro (2006),
Polimenis (2001)].
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The RN dynamics is another joint distribution of wT , denoted by Q, defined
by the conditional pdf, with respect to the corresponding conditional historical
probability, given by

dQ
t (wt+1|wt) = Mt,t+1(wt+1)

Et
[
Mt,t+1(wt+1)

]
= exp(rt+1)Mt,t+1(wt+1).

So, the RN conditional pdf (with respect to the same measure as the corresponding
conditional historical probability) is

f Q
t (wt+1|wt) = ft(wt+1|wt)d

Q
t (wt+1|wt),

and the conditional pdf of the conditional historical distribution with respect to
the RN one is given by

dP
t (wt+1|wt) = 1

dQ
t (wt+1|wt)

.

When the SDF is exponential-affine, we have the convenient additional result

dQ
t (wt+1|wt) = exp(α′

twt+1 + βt)
Et exp(α′

twt+1 + βt)
= exp[α′

twt+1 − ψt(αt)],

so dQ
t is also exponential-affine. It is readily seen that the conditional RN Laplace

transform of the factor wt+1, given wt , is [see Gourieroux and Monfort (2007)]

ϕ
Q
t (u|wt) = ϕt(u + αt)

ϕt(αt)

and, consequently, the associated conditional RN log-Laplace transform is

ψ
Q
t (u) = ψt(u + αt) − ψt(αt) . (3)

Conversely, we get

dP
t (wt+1|wt) = exp

[−α′
twt+1 + ψt(αt)

]
and, taking u = −αt in ψ

Q
t (u), we can write

ψ
Q
t (−αt) = −ψt(αt) (4)

and, replacing u by u − αt , we obtain

ψt(u) = ψ
Q
t (u − αt) − ψ

Q
t (−αt). (5)
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We also have

dP
t (wt+1|wt) = exp

[− α′
twt+1 − ψ

Q
t (−αt)

]
,

dQ
t (wt+1|wt) = exp

[
α′

twt+1 + ψ
Q
t (−αt)

]
.

2 Car AND EXTENDED Car (ECar) PROCESSES

For the sake of completeness, we present in this section a brief review of the Car
(or discrete-time affine) processes and of their main properties [for more details,
see Darolles, Gourieroux, and Jasiak (2006), Gourieroux and Jasiak (2006), and
Gourieroux, Monfort, and Polimenis (2006)]. We will also introduce the notion of
extended Car process, which will be very useful in the rest of the paper. All the
processes {yt} considered will be such that yt is a function of the information at
time t: wt .

2.1 Car(1) Processes

An n-dimensional process {yt} is called Car(1) if its conditional Laplace transform
ϕt(u | y

t
) = E[exp(u′yt+1) | y

t
] is of the form

ϕt(u | y
t
) = exp[at(u)′yt + bt(u)], u ∈ Rn, (6)

where at and bt may depend on t in a deterministic way. The log-Laplace trans-
form ψt(u | y

t
) = log ϕt(u | y

t
) is therefore affine in yt , which implies that all the

conditional cumulants and, in particular, the conditional mean and the conditional
variance-covariance matrix, are affine in yt . Let us consider some examples of
Car(1) processes.

2.1.1 Gaussian AR(1) processes. If yt+1 is a Gaussian AR(1) process defined
by:

yt+1 = μ + ρyt + εt+1

where εt+1 is a Gaussian white noise distributed as N (0, σ 2), then the process is
Car(1) with a (u) = uρ and b(u) = uμ + σ 2

2 u2.

2.1.2 Compound Poisson processes (or integer valued AR(1) processes). If
yt+1 is defined by

yt+1 =
yt∑

i=1

zit + εt+1,

where the zit’s follow independently the Bernoulli distribution B(ρ) of parameter
ρ ∈ ]0, 1[, and the εt+1’s follow independently (and independently from the zit’s)
a Poisson distribution P(λ) of parameter λ > 0. It is easily seen that {yt} is Car(1)
with a (u) = log[ρ exp(u) + 1 − ρ] and b(u) = −λ[1 − exp(u)].
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In particular, the correlation between yt+1 and yt is given by ρ, and we can
write yt+1 = λ + ρyt + ηt+1, where ηt+1 is a martingale difference and, therefore,
{yt} is an integer valued weak AR(1) process.

2.1.3 Autoregressive Gamma processes (ARG(1) or positive AR(1) pro-
cesses). The ARG(1) process yt+1 is the exact discrete-time equivalent of the
square-root (Cox-Ingersoll-Ross) diffusion process, and it can be defined in the
following way:

yt+1

μ

∣∣∣∣zt+1 ∼ γ (ν + zt+1), ν > 0 ,

zt+1|yt ∼ P(ρyt/μ), ρ > 0 , μ > 0 ,

where γ denotes a Gamma distribution, μ is the scale parameter, ν is the degree of
freedom, ρ is the correlation parameter, and zt is the mixing variable. The condi-
tional probability density function f (yt+1 | yt ; μ, ν, ρ) (say) of the ARG(1) process
is a mixture of Gamma densities with Poisson weights. It is easy to verify that {yt}
is Car(1) with a (u) = ρu

1−uμ
and b(u) = −νlog(1 − uμ). Moreover, we have

yt+1 = νμ + ρyt + ηt+1 ,

where ηt+1 is a martingale difference sequence, so {yt} is a positive weak AR(1)
process with E[yt+1 | yt] = νμ + ρyt and V[yt+1 | yt] = νμ2 + 2ρμyt .

It is also possible, thanks to the recursive methodology followed by Monfort
and Pegoraro (2006b), to build discrete-time multivariate autoregressive Gamma
processes. A notable advantage of the vector ARG(1) process, with respect to the
continuous-time analogue, is given by its conditional probability density (and like-
lihood) function known in closed-form even in the case of conditionally correlated
scalar components. Indeed, the multivariate CIR process has a known discrete
transition density only in the case of uncorrelated components and, therefore, in
continuous-time this particular case, only, opens the possibility for an exact maxi-
mum likelihood estimation approach.

2.1.4 Wishart autoregressive processes (or positive definite matrix valued
AR(1) processes). The Wishart autoregressive (WAR) process yt+1 is a process
valued in the space of (n × n) symmetric positive definite matrices, such that its
conditional historical log-Laplace transform is given by

ψt(�) = log{Et exp(Tr �yt+1)}
= Tr[M

′
�(In − 2
�)−1 Myt] − K

2
log det[(In − 2
�)] , (7)

where � is a (n × n) matrix of coefficients, which can be chosen symmetric (since,
with obvious notations, Tr(�yt+1) =∑i j �i j yi j,t+1 =∑i≤ j (�i j + � j i )yi j,t+1). This
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dynamics is Car(1) and, if K is integer, it can be defined as

yt =
K∑

k=1

xk,tx′
k,t (K ≥ n),

xk,t+1 = Mxk,t + εk,t+1, k ∈ {1, . . . , K }, (8)

εk,t+1
P∼ I I N(0, 
), k ∈ {1, . . . , K } , independent.

Moreover, we have

yt+1 = Myt M′ + k� + ηt+1 ,

where ηt+1 is a matrix martingale difference. So, {yt} is a positive definite matrix
valued AR(1) process. Note that, if n = 1, � = u, M = m, and � = σ 2, relation (7)
reduces to ψP

t (u) = [ m2

1−2σ 2u − k
2 log(1 − 2σ 2u)], and {yt} is found to be an ARG(1)

process with ρ = m2, ν = k/2, μ = 2σ 2. This means that the WAR process is a
multivariate (matrix) generalization of the ARG(1) process.

2.1.5 Markov chains. Let us consider a J -state homogeneous Markov chain
yt+1, which can take the values e j ∈ RJ , j ∈ {1, . . . , J }, where e j is the j th column
of the (J × J ) identity matrix IJ . The transition probability, from state ei to state e j

is π(ei , e j ) = Pr(yt+1 = e j | yt = ei ). The process {yt} is a Car(1) process with

a (u) =
⎡
⎣log

⎛
⎝ J∑

j=1

exp(u′e j )π (e1, e j )

⎞
⎠ , . . . , log

⎛
⎝ J∑

j=1

exp(u′e j )π(e J , e j )

⎞
⎠
⎤
⎦

′

,

b(u) = 0.

2.2 Extended Car(1) (or ECar(1)) Processes

An important generalization of the Car(1) family is given by the family of extended
Car(1) [ECar(1)] processes.

Definition. A process {y1,t} is said to be ECar(1) if there exists a process {y2,t}
such that yt = (y′

1,t , y′
2,t)

′ is Car(1). Moreover, if the σ -algebra σ (y
1t

) spanned by y
1t

is equal to σ (y
t
), {y1,t} will be called internally extended Car(1) process. Otherwise,

if σ (y
1t

) ⊂ σ (y
t
), {y1,t} will be called externally extended Car(1) process.

2.2.1 Internally extended Car(1) processes
Car(p) processes. The process y1,t+1 is Car(p) if its conditional log-Laplace trans-
form satisfies

ψt(u | y
t
) =

p∑
i=1

ai,t(u)′yt+1−i + bt(u), u ∈ Rn . (9)

It is easily seen that the process yt = (y′
1,t , y′

2,t)
′, with y2,t = (y′

1,t−1, . . . , y′
1,t−p+1)′, is

Car(1) (Darolles, Gourieroux, and Jasiak 2006), and that σ (y
1t

) = σ (y
t
). Moreover,
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starting from a Car(1) process, we can easily construct index-Car(p) processes such
as ARG(p) and Gaussian AR(p) processes (Monfort and Pegoraro 2007).
ARMA processes. If we consider an ARMA(1, 1) process {y1,t} defined by

y1,t+1 − ϕy1,t = εt+1 − θεt ,

where εt+1 ∼ I I N(0, σ 2), it is well known that yt+1 is not Markovian and, con-
sequently, it is not Car(1), or even Car(p). However, using the state-space
representation of ARMA processes, we have that the process yt = (y1,t , εt)′ sat-
isfies

yt+1 =
[
ϕ −θ

0 0

]
yt +

[
1
1

]
εt+1. (10)

This means that {yt} is Car(1) since it is a Gaussian bivariate AR(1) process, and that
{y1,t} is a ECar(1) process. Clearly, σ (y

1t
) = σ (y

t
), so {y1,t} is an internally ECar(1).

It is important to observe that, in the bivariate AR(1) representation (10), one
eigenvalue of the autoregressive matrix is equal to zero and, therefore, this process
has no continuous-time bivariate Ornstein–Uhlenbeck analogue, since in this kind
of process the autoregressive matrix � (say) is of the form � = exp(A). This result is
also a consequence of the fact that a discrete-time ARMA(p, q ), with q ≥ p, cannot
be embedded in a continuous-time ARMA (CARMA) process (Brockwell 1995;
Huzii 2007). This example of extended Car process can obviously be generalized to
ARMA(p, q ) and VARMA(p, q ) processes. The VARMA model belongs also to the
class of generalized affine models proposed in finance by Feunou and Meddahi
(2007) to provide tractable derivative prices.
GARCH-type processes. Let us consider the process {y1,t} defined by

{
y1,t+1 = μ + ϕy1,t + σt+1εt+1 ,

σ 2
t+1 = ω + αε2

t + βσ 2
t ,

where εt+1 ∼ I I N(0, 1). {y1,t} is not Car(1), but the (extended) process yt =
(y1,t , σ 2

t+1)′ is Car(1). Indeed, we have that

E
[

exp
(
uy1,t+1 + vσ 2

t+2

) ∣∣ y1,t , σ 2
t+1

]
= exp

[(
uμ + vω − 1

2
log(1 − 2vα)

)
+ uϕy1,t +

(
vβ + u2

2(1 − 2vα)

)
σ 2

t+1

]
.

Therefore, {y1,t} is ECar(1) and σ (y
1t

) = σ (y
t
). Section 4.6 shows that this result

still applies when switching regimes are introduced. Observe that this model [also
called Heston and Nandi (2000) model] is not a generalized affine one, and it
belongs to the class of generalized nonaffine models mentioned in Feunou and
Meddahi (2007).
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2.2.2 Externally extended Car(1) processes
Quadratic transformation of Gaussian AR(1) processes. Let us consider the
following Gaussian AR(1) process:

xt+1 = μ + ρxt + εt+1, εt+1 ∼ I I N(0, σ 2) .

If μ = 0 the process y1,t = x2
t is Car(1). If μ �= 0, the process y1,t = x2

t is not Car;
however, it can be shown that yt = (y1,t , xt)′ is Car(1) (Gourieroux and Sufana
2003) and, thus, y1,t is ECar(1) (see Section 5.4 for a proof in a multivariate context).
Obviously, we have σ (y

1t
) ⊂ σ (y

t
).

Switching regimes Gaussian AR(1) processes. In the classical Gaussian AR(1)
model defined in Section 2.1.1, the conditional distribution of yt+1, given y

t
, has

a skewness μ̃3 = 0 and a kurtosis μ̃4 = 3. If we want to introduce a more flexible
specification for μ̃3 and μ̃4, the first possibility is to assume that εt+1 is still a
zero mean, unit variance white noise, but with a distribution belonging to some
parametric family [like, for instance, the truncated Gram–Charlier expansion used
by Jondeau and Rockinger (2001) to price foreign exchange options, or the semi-
nonparametric (SNP) distribution employed by Léon, Mencia, and Sentana (2007)
for European-type option pricing]. However, this approach has some drawbacks:
the set of possible pair of conditional skewness–kurtosis of yt+1 (i.e., the set of
skewness and kurtosis generated by εt+1) is not the maximal set D = {(μ̃3, μ̃4) ∈
R × R∗

+ : μ̃4 ≥ μ̃2
3 + 1} and, moreover, μ̃3 and μ̃4 do not depend on y

t
. One way to

solve these problems is to consider a two-state switching regimes Gaussian AR(1)
process {y1,t} given by

y1,t+1 = μ′y2,t+1 + ρy1,t + (σ ′y2,t+1)εt+1 ,

where εt+1 ∼ I I N(0, 1), μ′ = (μ1, μ2), σ ′ = (σ1, σ2), and where {y2,t} is a two-state
homogeneous Markov chain [as defined in Section 2.1.5] with π(e1, e1) = p and
π(e2, e2) = q , independent of {εt}. The Laplace transform of y1,t+1, conditionally
to y

1,t
, is not exponential-affine, but it is easy to verify that the bivariate process

yt = (y1,t , y2,t)′ is Car(1) (Monfort and Pegoraro 2007). In other words, y1,t is an
externally ECar(1) process, given the additional information introduced by the
Markov chain.

Given that the probability density function of y1,t+1, conditionally to y
t
, is a

mixture of the Gaussian densities n(y1,t+1; μ j + ρy1,t , σ 2
j ), with j ∈ {1, 2}, this kind

of Car process is able to generate (conditionally to y
t
) stochastic skewness [μ̃3(y

t
),

say] and kurtosis [μ̃4(y
t
), say] and, moreover, it is able to reach, for each time

t, any possible pair of skewness–kurtosis in the domain of maximal size Dt =
{(μ̃3(y

t
), μ̃4(y

t
)) ∈ R × R∗

+ : μ̃4(y
t
) ≥ μ̃3(y

t
)2 + 1} [see Bertholon, Monfort, and

Pegoraro (2006) for a formal proof].
It is important to highlight that these features do not characterize just the dis-

tribution of y1,t+1 conditionally to both its own past (y
1,t

) and the past of the latent
variable (zt). Indeed, the distribution of y1,t+1, conditionally only to its own past
y

1,t
, is still a mixture of Gaussian distributions with probability density function
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given by

f
(
y1,t+1|y1,t

)= n
(
y1,t+1; μ1 + ρy1,t , σ 2

1

)[
pP
(
y2,t =e1 | y

1,t

)+ (1 − q )P
(
y2,t =e2 | y

1,t

)]
+ n
(
y1,t+1; μ2+ρy1,t , σ 2

2

)[
(1− p)P

(
y2,t =e1 | y

1,t

)+q P
(
y2,t =e2|y1,t

)]
.

In Section 4, we will see that, thanks to the exponential-affine specification (2) of
the SDF, these statistical properties (used to describe the dynamics of geometric
returns) are transferred from the historical to the RN distribution, with important
pricing implications.
Stochastic volatility in mean processes. We can specify also an SV in mean
AR(1) process defined by

y1,t+1 = μ1 + μ2 y2,t+1 + ρy1,t + y1/2
2,t+1εt+1 ,

where εt+1 ∼ I I N(0, 1), and where {y2,t} is an ARG(1) process, as defined in Section
2.1.3, independent of {εt}. The process {y1,t} is an externally ECar(1) since yt =
(y1,t , y2,t) is Car(1) and σ (y

1t
) ⊂ σ (y

t
). We can also consider a n-variate SV in mean

AR(1) process defined by

y1,t+1 = μ + Ry1,t +

⎡
⎢⎣

TrS1 y2,t+1
...

TrSn y2,t+1

⎤
⎥⎦+ y1/2

2,t+1εt+1 ,

where εt+1 ∼ I I N(0, I ), of size n, R is a (n × n) matrix, the Si ’s are (n × n) sym-
metric matrices, and {y2,t} is an n-dimensional WAR process independent of {εt}.
In this multivariate setting, {y1,t} is an n-dimensional ECar(1) process, because
yt = (y′

1,t , vech(y2,t)′)′ is Car(1) [see Gourieroux, Jasiak, and Sufana (2004) and, in
continuous time, Buraschi, Porchia, and Trojani (2007), Da Fonseca, Grasselli, and
Tebaldi (2007a, 2007b), Da Fonseca, Grasselli, and Ielpo (2008)].

2.3 Pricing with RN Car(1) or ECar(1) Processes

It is well known that if {yt} is Car(1) with conditional Laplace transform ϕt(u | y
t
) =

exp[a (u)′yt + b(u)], the multihorizon (conditional) Laplace transform takes the fol-
lowing exponential-affine form:

Et
[
exp(u′

t+1 yt+1 + · · · + u′
T yT )

] = exp [AT (t)′yt + BT (t)] ,

where the functions AT and BT are easily computed recursively, for j ∈ {T − t −
1, . . . , 0}, by

AT (t + j) = at+ j+1[ut+ j+1 + AT (t + j + 1)] ,

BT (t + j) = bt+ j+1[ut+ j+1 + AT (t + j + 1)] + BT (t + j + 1) ,

starting from the terminal conditions AT (T) = 0, BT (T) = 0.
If we want to determine the price at t of a payoff g(y

T
) at T , we have to compute

a conditional expectation under the RN probability, namely EQ
t [exp(rt+1 + · · · +
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rT ) g(y
T

)]. If {yt} is Car(1) or ECar(1) in the RN world, this computation leads
to explicit or quasi-explicit pricing formulas for several derivative products. For
instance, if the one-period risk-free rate rt+1 is exogenous or affine in y

t
and if

g(y
T

) = [exp(μ′
1 yt,T ) − exp(μ′

2 yt,T )]+, where yt,T = (y′
t , . . . , y′

T )′, the computation
reduces to two truncated multihorizon Laplace transforms which, in turn, are
obtained by simple integrals based on the untruncated complex Laplace transform
easily deduced from the recursive equations given above (Bakshi and Madan 2000;
Duffie, Pan, and Singleton 2000; Gourieroux, Monfort, and Polimenis 2003; Monfort
and Pegoraro 2007).

3 ECONOMETRIC ASSET PRICING MODELS (EAPMs)

The true value of the various mathematical tools introduced in Section 1, for
instance ψt , Mt,t+1, or ψ

Q
t , are not known by the econometrician and, therefore,

they have to be specified and parameterized. In other words, we have to specify
an econometric asset pricing model (EAPM). What we really need, in order to
derive explicit or quasi-explicit pricing formulas, is a factor wt+1, which is Car or
ECar under the RN probability, while its historical dynamics does not necessarily
belong to this family of processes [see also Duarte (2004) and Dai, Le, and Singleton
(2006)]. In other words, the tractability of the asset pricing model is associated with
a conditional log-Laplace transform ψ

Q
t , which is affine in wt , while the specification

and parameterization of ψt can be more general.
We are going to present three ways of specifying an EAPM: the direct mod-

elling, the RN constrained direct modelling, and the back modelling. In all ap-
proaches, we first need to make more precise the status of the short rate rt+1.

3.1 The Status of the Short Rate

The short rate rt+1 is a function of wt . This function may or may not be known by
the econometrician. It is known in two main cases:

(1) rt+1 is exogenous, i.e., rt+1(wt) does not depend on wt , and, therefore, rt+1(·) is
a known constant function of wt ;

(2) rt+1 is an endogenous factor, i.e., rt+1 is a component of wt .

If the function rt+1(wt) is unknown, it has to be specified parametrically. So we
assume that the unknown function belongs to a family,{

rt+1(wt , θ̃ ), θ̃ ∈ �̃
}

,

where rt+1(·, ·) is a known function.

3.2 Direct Modelling

In the direct modelling approach, we first specify the historical dynamics, i.e., we
choose a parametric family for the conditional log-Laplace transform ψt(u | wt):{

ψt(u | wt , θ1), θ1 ∈ �1
}

. (11)
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Then, we have to specify the SDF:

Mt,t+1 = exp
[
αt(wt)

′wt+1 + βt(wt)
]

= exp
[−rt+1(wt) + α′

t(wt)wt+1 − ψt(αt|wt)
]

.

Once rt+1 has been specified, according to its status described in Section 3.1, as
well as ψt , the remaining function to be specified is αt(wt). We assume that αt(wt)
belongs to a parametric family:{

αt(wt , θ2), θ2 ∈ �2
}

.

Finally, Mt,t+1 is specified as

Mt,t+1(wt+1, θ ) = exp
{−rt+1(wt , θ̃ ) + α′

t(wt , θ2)wt+1 − ψt
[
αt(wt , θ2)|wt , θ1

]}
, (12)

where θ = (θ̃ ′, θ ′
1, θ ′

2)′ ∈ �̃ × �1 × �2 = �; note that �̃ may be reduced to one point.
This kind of modelling may have to satisfy some ICCs. Indeed, for any payoff

g(ws) delivered at s > t, that has a price p(wt) at t, which is a known function of
wt , we must have

p(wt) = E
{

Mt,t+1(θ ) · · · Ms−1,s(θ ) g(ws) | wt , θ1
} ∀ wt , θ . (13)

These AAO pricing conditions may imply strong constraints on the parameter θ ,
for instance when components of wt are returns of some assets or interest rates
with various maturities (see Sections 4 and 5).

The specification of the historical dynamics (11) and of the SDF (12) obviously
implies the specification of the RN dynamics

ψ
Q
t (u|wt , θ1, θ2) = ψt

[
u + αt(wt , θ2)|wt , θ1

]− ψt
[
αt(wt , θ2)|wt , θ1

]
.

The particular case in which the historical dynamics is Car, αt(wt , θ2) is an
affine function of the factor, along with the short rate rt+1(wt , θ̃ ), is the (discrete-
time) counterpart of the basic direct modelling strategy frequently followed in
continuous time.

3.3 RN Constrained Direct Modelling

In the previous kind of modelling, the family of RN dynamics ψ
Q
t (u|wt) is obtained

as a by-product and therefore is, in general, not controlled.
In some cases it may be important to control the family of RN dynamics

and, possibly, the specification of the short rate, if we want to have explicit or
quasi-explicit formulas for the price of some derivatives. For instance, it is often
convenient to impose that the RN dynamics be described by a Car process. If we
want, at the same time, to control the historical dynamics, for instance to have
good fitting when wt is observable, the by-product of the modelling becomes
the factor-loading vector αt(wt). More precisely, we may wish to choose a family
{ψt(u|wt , θ1), θ1 ∈ �1} and a family {ψQ

t (u|wt , θ∗), θ∗ ∈ �∗} such that, for any pair
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(ψQ
t , ψt) belonging to these families, there exists a unique function αt(wt) denoted

by αt(wt , θ1, θ∗) satisfying

ψ
Q
t (u|wt) = ψt

[
u + αt(wt)|wt

]− ψt
[
αt(wt)|wt

]
.

In fact, this condition may be satisfied only for a subset of pairs (θ1, θ∗). In
other words (θ1, θ∗) belongs to �∗

1 strictly included in �1 × �∗, but such that any
θ1 ∈ �1 and any θ∗ ∈ �∗ can be reached (see Section 4). Once the parameterization
(θ̃ , θ1, θ∗) ∈ �̃ × �∗

1 is defined, internal consistency conditions similar to (13) may
be imposed.

3.4 Back Modelling

The final possibility is to parameterize first the RN dynamics ψ
Q
t (u|wt , θ∗

1 ), and
the short rate process rt+1(wt), taking into account, if relevant, internal consistency
conditions of the form

p(wt) = EQ
t
[
exp(−rt+1(wt , θ̃ ) − · · · − rs(ws , θ̃ ))g(ws)|wt , θ∗

1

]
, ∀wt , θ̃ , θ∗

1 . (14)

Once this is done, the specification of αt(wt) is chosen, without any constraint, pro-
viding the family {αt(wt , θ∗

2 ), θ∗
2 ∈ �∗

2}, and the historical dynamics is a by-product:

ψt(u|wt , θ∗
1 , θ∗

2 ) = ψ
Q
t
[
u − αt(wt , θ∗

2 )|wt , θ∗
1

]− ψ
Q
t
[−αt(wt , θ∗

2 )|wt , θ∗
1

]
.

The basic back modelling approach (frequently adopted in continuous time) is
given by the particular case in which ψ

Q
t (u|wt , θ∗

1 ), the short rate rt+1(wt , θ̃ ) and the
risk-sensitivity vector αt(wt , θ∗

2 ) are assumed to be affine functions of the factor.
Also note that, if the RN conditional pdf f Q

t (wt+1|wt , θ∗
1 ) is known in (quasi)

closed form, the same is true for the historical conditional pdf:

ft
(
wt+1|wt , θ∗

1 , θ∗
2

)
= f Q

t (wt+1|wt , θ∗
1 ) exp

{
−α′

t(wt , θ∗
2 )wt+1−ψ

Q
t
[−αt(wt , θ∗

2 )|wt , θ∗
1

]}
. (15)

In particular, if wt is observable, we can compute the likelihood function. However,
the identification of the parameters (θ∗

1 , θ∗
2 ), from the dynamics of the observable

components of wt must be carefully studied (see examples in Sections 4 and 5) and
observations of derivative prices may be necessary to reach identifiability.

3.5 Inference in an Econometric Asset Pricing Model

In order to estimate an EAPM, we assume that the econometrician observes, at dates
t ∈ {0, . . . , T}, a set of prices xti corresponding to payoffs gi (ws), i ∈ {1, . . . , J t},
s > t, given by (using the parameter notations of direct modelling):

qti (wt , θ ) = E
[
gi (ws)Mt,s(ws , θ )|wt , θ1

]
, i ∈ {1, . . . , J t}.
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Therefore, we have two kinds of equations representing respectively the historical
dynamics of the factors and the observations:

wt = q̃t(wt−1, ε1t , θ1) (say) , (16)

xt = qt(wt , θ ) , (17)

where the first equation is a rewriting of the conditional historical distribution of
wt given wt−1, ε1t is a white noise (which can be chosen Gaussian without loss of
generality), xt = (xt1, . . . , xt Jt )

′ and qt(wt , θ ) = [qt1(wt , θ ), . . . , qt Jt (wt , θ )]′.
Note that, if rt+1 is not a known function of wt , we must have rt+1 = rt+1(wt , θ̃ )

among Equations (17), and that if some components of wt are observed, they should
appear also in (17) without parameters.

System (16)–(17) is a nonlinear state space model and appropriate economet-
ric methods may be used for inference in this system (in particular, maximum
likelihood methods possibly based on Kalman filter, Kitagawa–Hamilton filter,
simulations-based methods or indirect inference).

For given xt’s, Equations (17) may have no solutions in wt’s and, in this case,
an additional white noise is often introduced leading to

xt = qt(wt , θ ) + ε2t . (18)

Moreover, when wt is (partially) observable, θ1 may be identifiable from (16) and
in this case a two step estimation method is available: (i) ML estimation of θ1

from (16); (ii) estimation of θ2, and possibly of θ̃ , by nonlinear least square using
(18) in which θ1 is replaced by its ML estimator (and, possibly, the unobserved
components of wt are replaced by their smoothed values).

4 APPLICATIONS TO ECONOMETRIC SECURITY MARKET
MODELLING

4.1 General Setting

In an econometric security market model, we assume that the short rate rt+1 is
exogenous and that the first K1 components of wt , denoted by yt , are observable
geometric returns of K1 basic assets. The remaining K2 = K − K1 components of
wt , denoted by zt , are factors not observed by the econometrician. Since the payoffs
exp(yj,t+1) delivered at t + 1, for each j ∈ {1, . . . , K1}, have a price at t, which
are known function of wt , namely 1, we have to guarantee internal consistency
conditions. In the direct modelling approach, and in the RN constrained direct
modelling one, these conditions are [using the notation of the (unconstrained)
direct approach]:

1= Et
{
exp(yj,t+1 − rt+1 + αt(wt , θ2)′wt+1 − ψt

[
αt(wt , θ2)|wt , θ1

]}
, j ∈ {1, . . . , K1}
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or

rt+1 =ψt
[
αt(wt , θ2)+e j |wt , θ1

]−ψt
[
αt(wt , θ2)|wt , θ1

]
, ∀ wt , θ1, θ2; j ∈ {1, . . . , K1} .

(19)

In the Back Modelling approach, these conditions are:

rt+1 = ψ
Q
t (e j |wt , θ∗

1 ) , ∀wt , θ∗
1 ; j ∈ {1, . . . , K1}. (20)

If we consider the case where the factor wt+1 is a RN Car(1) process (the gen-
eralization to the case of a Car(p) process is straightforward), with conditional
RN log-Laplace transform ψ

Q
t (u | wt) = aQ(u)′wt + bQ

t (u), the internal consistency
conditions (19) or (20) are given by (using the back modelling notation):

{
aQ(e j , θ∗

1 ) = 0 ,
bQ

t (e j , θ∗
1 ) = rt+1 , ∀θ∗

1 ; j ∈ {1, . . . , K1} .
(21)

4.2 Back Modelling for Nonlinear Conditionally Gaussian Models

Let us consider a conditionally Gaussian setting, and let us assume that all the
components of wt are geometric returns (K1 = K ), that is, we consider wt = yt . If
we follow the back modelling approach, we specify, first, the RN Car(1) dynamics:

yt+1| y
t

Q∼ N
[
mQ

t (y
t
, θ∗

1 ), 
Q(θ∗
1 )
]
,

or

ψ
Q
t (u|y

t
, θ∗

1 ) = u′mQ
t (y

t
, θ∗

1 ) + 1
2 u′
Q(θ∗

1 )u.

Then, we impose the internal consistency conditions, which are (with obvious
notations) given by

rt+1 = mQ
j t(y

t
, θ∗

1 ) + 1
2


Q
j j , j ∈ {1, . . . , K } , (22)

and, consequently, the conditional RN distribution compatible with arbitrage re-
strictions is

N
[
rt+1e − 1

2 vdiag 
Q(θ∗
1 ), 
Q(θ∗

1 )
]

,

i.e.,

ψ
Q
t (u|y

t
, θ∗

1 ) = u′rt+1e − 1
2 u′ vdiag 
Q + 1

2 u′
Qu .

Finally, choosing any αt(y
t
, θ∗

2 ), we deduce the historical dynamics

ψt(u|y
t
, θ∗

1 , θ∗
2 ) = u′[rt+1e − 1

2 vdiag 
Q(θ∗
1 ) − 
Q(θ∗

1 )αt(y
t
, θ∗

2 )
]+ 1

2 u′
Q(θ∗
1 )u,
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which is not Car, in general, and therefore the process {yt} is not Gaussian. In other
words, we have:

yt+1 | y
t

P∼ N
[
rt+1e − 1

2 vdiag 
Q(θ∗
1 ) − 
Q(θ∗

1 )αt(y
t
, θ∗

2 ), 
Q(θ∗
1 )
]
.

Thus, for a given RN dynamics, we can reach any conditional historical mean
of the factor, whereas the historical conditional variance–covariance matrix is the
same as the RN one. Moreover, θ∗

1 and θ∗
2 can be identified from the dynamics

of yt only [see Gourieroux and Monfort (2007) for a derivation of conditionally
Gaussian models using the direct modelling approach].

This modelling generalizes the basic Black–Scholes framework to the mul-
tivariate case, with arbitrary (nonlinear) historical conditional mean. Therefore,
options with any maturity have standard Black–Scholes prices, but their future
values are predicted using the joint non-Gaussian historical dynamics of the
factor yt .

4.3 Back Modelling of Switching Regime Models

The class of conditionally mixed-normal models contains many static, dynamic,
parametric, semi-parametric or nonparametric models (Bertholon, Monfort, and
Pegoraro 2006; Garcia, Ghysels, and Renault 2003). Let us consider, for instance,
the switching regime models. The factor wt is equal to (yt , z′

t)
′, where yt is an

observable geometric return and zt is a J -state homogeneous Markov chain, valued
in (e1, . . . , e J ), and unobservable by the econometrician.

The direct modelling approach, described in Bertholon, Monfort, and Pegoraro
(2006), has two main drawbacks. First, the ICC associated with the risky asset must
be solved numerically for any t. Second, the RN dynamics is not Car in general,
and the pricing of derivatives needs simulations which, in turn, imply to solve the
ICC for any t and any path.

Let us consider now the back modelling approach, starting from a Car RN
dynamics defined by

yt+1 = νt + ρyt + ν ′
1zt + ν ′

2zt+1 + (ν ′
3zt+1)ξt+1 ,

where νt is a deterministic function of t and where

ξt+1 | ξ
t
, zt+1

Q∼ N(0, 1),

Q(zt+1 = e j | y
t
, zt−1, zt = ei ) = Q(zt+1 = e j | zt = ei ) = π∗

i j .

In other words, zt is an exogenous Markov chain in the risk-neutral world. The
conditional RN Laplace transform is given by

ϕ
Q
t (u, ν) = EQ

t exp(uyt+1 + v′zt+1)

= exp
[
u(νt + ρyt + ν ′

1zt)
]

EQ
t exp

[(
uν2 + 1

2 u2ν2
3 + v

)′
zt+1

]
,

(23)
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[ν2
3 is the vector containing the square of the components in ν3] and we get

ψ
Q
t (u, v) = log ϕ

Q
t (u, v)

= u(νt + ρyt + ν ′
1zt) + �′(u, v, ν2, ν3, π∗)zt ,

where the ith component of �(u, v, ν2, ν3, π∗) is

�i (u, v, ν2, ν3, π∗) = log
J∑

j=1

π∗
i j exp

(
uν2 j + 1

2
u2ν2

3 j + v j
)
.

So, as announced, the joint RN dynamics of the process (yt , z′
t)

′ is Car since

ψ
Q
t (u, v) = aQ(u, v)′wt + bQ

t (u, v)

with

aQ(u, v)′ = [
uρ , uν ′

1 + �′(u, v, ν2, ν3, π∗)],
bQ

t (u, v) = uνt .

The internal consistency condition is

ψ
Q
t (1, 0) = rt+1

that is,

−rt+1 + νt + ρyt + ν ′
1zt + λ′(ν2, ν3, π∗)zt = 0 ∀ yt , zt ,

(24)

and where the ith component of λ(ν2, ν3, π∗) is

λi (ν2, ν3, π∗) = log
J∑

j=1

π∗
i j exp

(
ν2 j + 1

2
ν2

3 j

)
.

Condition (24) implies, since rt+1 and νt are deterministic functions of time,⎧⎨
⎩

ρ = 0 ,
ν1 = −λ(ν2, ν3, π∗) ,
νt = rt+1 .

(25)

Finally, the RN dynamics compatible with the AAO conditions is

yt+1 = rt+1 − λ′(ν2, ν3, π∗)zt + ν ′
2zt+1 + (ν ′

3zt+1)ξt+1, (26)

where

ξt+1 | ξ
t
, zt+1

Q∼ N(0, 1)

Q(zt+1 = e j | y
t
, zt−1, zt = ei ) = Q(zt+1 = e j | zt = ei ) = π∗

i j .
(27)
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Note that, if ν2 is replaced by ν2 + c e , ν ′
2zt+1 is replaced by ν ′

2zt+1 + c, and −λ′zt

by −λ′zt − c, so the RHS of (26) is unchanged and therefore we can impose, for
instance, ν2J = 0.
The SDF is specified as

Mt,t+1 = exp
[−rt+1 + γt(wt , θ∗

2 ) yt+1 + δt(wt , θ∗
2 )′zt+1 − ψt(γt , δt)

]
,

and the historical dynamics can then be deduced by specifying γt(wt , θ∗
2 ) and

δt(wt , θ∗
2 ) without any constraints (and assuming, for instance, δJ t = 0). We get the

log-Laplace transform

ψt(u, v) = ψ
Q
t (u − γt , v − δt) − ψ

Q
t (−γt , −δt),

where

ψ
Q
t (u, v) = u(rt+1 − λ′zt) + �′(u, v)zt ,

and thus

ψt(u, v) = u(rt+1 − λ′zt) + [�(u − γt , v − δt) − �(−γt , −δt)]′ zt , (28)

with

�i (u − γt , v − δt) − �i (−γt , −δt)

= log

∑J
j=1 π∗

i j exp
(− γtν2 j + 1

2γ 2
t ν2

3 j − δ j t
)

exp
[
u
(
ν2 j − γtν

2
3 j

)+ 1
2 u2ν2

3 j + v j
]

∑J
j=1 π∗

i j exp
(− γtν2 j + 1

2γ 2
j ν

2
3 j − δ j t

)
= log

J∑
j=1

πi j,t exp
[

u
(
ν2 j − γtν

2
3 j

)+ 1
2

u2ν2
3 j + v j

]

and

πi j,t = π∗
i j exp

(− γtν2 j + 1
2γ 2

t ν2
3 j − δ j t

)
∑J

j=1 π∗
i j exp

(− γtν2 j + 1
2γ 2

t ν2
3 j − δ j t

) .

Therefore, the historical dynamics is

yt+1 = rt+1 − λ′(ν2, ν3, π∗)zt + (ν2 − γtν
2
3

)′
zt+1 + (ν ′

3zt+1)εt+1, (29)

where

εt+1 | εt , zt+1
P∼ N(0, 1)

P(zt+1 = e j | y
t
, zt−1, zt = ei ) = πi j,t

λi (ν2, ν3, π∗) = log
J∑

j=1

π∗
i j exp

(
ν2 j + 1

2
ν2

3 j

)
,
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and

εt+1 = ξt+1 + γt (ν ′
3zt+1). (30)

Conditionally to wt , the historical distribution of yt+1 is a mixture of J Gaussian
distributions with means (rt+1 − λ′zt + ν2 j − γtν

2
3 j ) and variances ν2

3 j , and with
weights given by πi j,t , j ∈ {1, . . . , J }, when zt = ei .

Since γt and δt are arbitrary functions of wt (assuming, for instance, δJ t =
0), we obtain a large class of historical (non-Car) switching regime dynamics,
which can be matched with a Car switching regime RN dynamics. These features
give the possibility to specify a tractable option pricing model able, at the same
time, to provide historical and RN stochastic skewness and kurtosis, which are
determinant to fit stock return and implied volatility surface dynamics [see the
survey on econometrics of option pricing proposed by Garcia, Ghysels, and Renault
(2003), where mixture models are studied, and the works of Bakshi, Carr, and Wu
(2008) and Carr and Wu (2007), where the important role of stochastic skewness in
currency options is analyzed].

As mentioned in Section 3.4, the identification problem must be discussed.
Let us consider the case where γ and δ are constant. In this case, the parameters
πi j are constant and the identifiable parameters are πi j , ν3, the vector of the J
coefficients of zt+1 in (29), and (J − 1) coefficients of zt [assuming, for instance,
λJ = 0], i.e., J (J − 1) + 3J − 1 = J (J + 2) − 1 parameters, whereas the parameters
to be estimated are the π∗

i j , ν2 (with ν2J = 0), ν3, γ , δ (with δJ = 0), i.e., J (J + 2) − 1
parameters also. So all the parameters might be estimated from the observations
of the y′

ts.

4.4 Back Modelling of Stochastic Volatility Models

We focus on the back modelling, starting from a Car representation of the RN
dynamics of the factor wt = (yt , σ 2

t ), where yt is an observable geometric return,
whereas σ 2

t is an unobservable stochastic variance. More precisely, the RN dynam-
ics is assumed to satisfy

yt+1 = λt + λ1 yt + λ2σ
2
t + (λ3σt)ξt+1, (31)

where λt is a deterministic function of t and

ξt+1 | ξ
t
, σ 2

t+1
Q∼ N(0, 1)

σ 2
t+1 | ξ

t
, σ 2

t
Q∼ ARG(1, ν, ρ)

(32)

and where the conditional ARG(1, ν, ρ) distribution [characterizing an autoregres-
sive Gamma process of order one (ARG(1)) with unit scale parameter5] is defined

5See Darolles, Gourieroux, and Jasiak (2006), Gourieroux and Jasiak (2006), and Monfort and Pegoraro
(2006b) for a presentation of single regime and regime-switching (scalar and vector) autoregressive
Gamma processes.
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by the affine conditional RN log-Laplace transform

ψ
Q
t (v) = aQ(v)σ 2

t + bQ(v) ,

where aQ(v) = ρv

1−v
, bQ(v) = −νlog(1 − v), v < 1, ρ > 0, ν > 0. The conditional RN

log-Laplace transform of (yt+1, σ 2
t+1) is

ψ
Q
t (u, v) = (λt + λ1 yt + λ2σ

2
t

)
u + 1

2λ2
3σ

2
t u2 + aQ(v)σ 2

t + bQ(v) . (33)

The internal consistency condition is

ψ
Q
t (1, 0) = rt+1

or

rt+1 = λt + λ1 yt + λ2σ
2
t + 1

2λ2
3σ

2
t ,

which implies

λt = rt+1, λ1 = 0, λ2 = − 1
2λ2

3 . (34)

So, the RN dynamics compatible with the AAO restriction is given by (32) and

yt+1 = rt+1 − 1
2λ2

3σ
2
t + λ3σtξt+1 ,

that is,

ψ
Q
t (u, v) = (rt+1 − 1

2λ2
3σ

2
t

)
u + 1

2λ2
3σ

2
t u2 + aQ(v)σ 2

t + bQ(v) . (35)

The historical dynamics is defined by specifying γt(wtθ
∗
2 ) and δt(wt , θ∗

2 ), and
we get

ψt(u, v) = ψ
Q
t (u − γt , v − δt) − ψ

Q
t (−γt , −δt)

= (
rt+1 − 1

2λ2
3σ

2
t

)
u − λ2

3σ
2
t γtu + 1

2λ2
3σ

2
t u2

+ [aQ(v − δt) − aQ(−δt)
]
σ 2

t + bQ(v − δt) − bQ(−δt)

= (
rt+1 − 1

2λ2
3σ

2
t − λ2

3σ
2
t γt
)
u + 1

2λ2
3σ

2
t u2 + at(v)σ 2

t + bt(v) ,

with

at(v) = ρtv

1 − vμt
, bt(v) = −νlog(1 − vμt) ,

ρt = ρ

(1 + δt)2 , μt = 1
1 + δt

.

So, the only conditions, when we define the historical dynamics, are μt > 0, i.e.,
δt > −1, and v < 1/μt . The historical dynamics can be written:

yt+1 = rt+1 − 1
2
λ2

3σ
2
t − λ2

3σ
2
t γt + λ3σtεt+1, (36)
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where

εt+1 | εt , σ 2
t+1

P∼ N(0, 1),

σ 2
t+1 | εt , σ 2

t
P∼ ARG(μt , ν, ρt) . (37)

Note that, the conditional historical distribution of σ 2
t+1, given (y

t
, σ 2

t ), is given by
the log-Laplace transform

ψt(v) = ρtv

1 − vμt
σ 2

t − νlog(1 − vμt),

which is not affine in σ 2
t , except in the case where δt is constant (or a deterministic

function of t). Moreover, we have

εt+1 = ξt+1 + (λ3σt)γt . (38)

If γt and δt are constant, the identifiable parameters are the coefficients of σ 2
t

and σtεt+1 in (36) as well as the two parameters of the ARG dynamics (with unit
scale). So, we have four identifiable parameters. The parameters to be estimated
are λ3, ν, ρ, γ , δ, i.e., five parameters. So these parameters are not identifiable from
the dynamics of the y′

ts. Observations of derivative prices must be added.
In this example we have assumed σ 2

t+1 ∼ ARG(1) and absence of instantaneous
causality between yt+1 and σ 2

t+1 just for ease of exposition. It is possible to specify
an SV model in which σ 2

t+1 ∼ ARG(p), with an instantaneous correlation between
the stock return and the SV. For instance, we can consider{

yt+1 = λt + λ1 yt + λ2σ
2
t+1 + λ3σ

2
t + (λ4σt+1)ξt+1,

σ 2
t+1 = ν + ϕ1σ

2
t + · · · + ϕpσ

2
t−p+1 + ηt+1,

where ηt+1 is an heteroscedastic martingale difference sequence. This specification
generalizes the exact discrete-time equivalent of the SV diffusion model typically
used in continuous time (and based on the CIR process). It has the potential features
to explain not only the volatility smile in option data, but also to improve the fitting
of the observed time varying persistence in stock return volatility [see Garcia,
Ghysels, and Renault (2003), and the references therein]. Indeed, the conditional
mean and variance of σ 2

t+1 show the following specifications: E[σ 2
t+1 | σt

2] = ν +
ϕ1σ

2
t + · · · + ϕpσ

2
t−p+1 and V[σ 2

t+1 | σt
2] = ν + 2(ϕ1σ

2
t + · · · + ϕpσ

2
t−p+1).

4.5 Back Modelling of Switching GARCH Models with Leverage Effect:
A First Application of Extended Car Processes

In this section, following a back modelling approach, we consider specifications
generalizing those proposed by Heston and Nandi (2000) to the case where switch-
ing regimes are introduced in the conditional mean and conditional (GARCH-type)
variance of the geometric return [see also Elliot, Siu, and Chan (2006)].

Like in Section 4.4, we assume wt = (yt , z′
t)

′, where yt is an observable geomet-
ric return and zt an unobservable J -state homogeneous Markov chain valued in
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{e1, . . . , e J }. The new feature is the introduction of a GARCH effect (with leverage).
More precisely, the RN dynamics is assumed to be of the following type:

yt+1 = νt + ν1 yt + ν ′
2zt + ν ′

3zt+1 + ν4σ
2
t+1 + σt+1ξt+1, (39)

where νt is a deterministic function of t and

ξt+1 | ξ
t
, zt+1

Q∼ N(0, 1),

σ 2
t+1 = ω′zt + α1(ξt − α2σt)2 + α3σ

2
t ,

and

Q(zt+1 = e j |yt
, zt−1, zt = ei ) = Q(zt+1 = e j |zt = ei ) = π∗

i j .

Note that σ 2
t+1 is a deterministic function of (ξ

t
, zt), and therefore of wt = (y

t
, zt).

Also note that, following Heston and Nandi (2000), in this switching GARCH(1,1)
model, ξt replaces the usual term σt ξt in the RHS of the equation giving σ 2

t+1 and
the term α2σt captures an asymmetric or leverage effect.

It is easily seen that the RN conditional log-Laplace transform of (yt+1, zt+1) is

ψ
Q
t (u, v) = log EQ

t exp(uyt+1 + v′zt+1)

= (
νt + ν1 yt + ν ′

2zt + ν4σ
2
t+1

)
u + 1

2σ 2
t+1u2 + �′(u, v, ν3, π∗)zt ,

(40)

where the ith component of �(u, v, ν3, π∗) is

�i (u, v, ν3, π∗) = log
J∑

j=1

π∗
i j exp(uν3 j + v j ). (41)

The internal consistency condition, or AAO constraint, is

ψ
Q
t (1, 0) = rt+1 ∀wt ,

implying

rt+1 = νt + ν1 yt + ν ′
2zt + ν4σ

2
t+1 + 1

2σ 2
t+1 + λ′(ν3, π∗)zt ,

where the ith component of λ(ν3, π∗) is given by

λi (ν3, π∗) = log
J∑

j=1

π∗
i j exp(ν3 j ) (42)

and, therefore, the arbitrage restriction implies:⎧⎪⎪⎨
⎪⎪⎩

ν1 = 0 ,
ν2 = −λ(ν3, π∗) ,
ν4 = − 1

2 ,
νt = rt+1 .
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Thus, Equation (39) becomes

yt+1 = rt+1 − λ(ν3, π∗)′zt − 1
2σ 2

t+1 + ν ′
3zt+1 + σt+1ξt+1 (43)

with

σ 2
t+1 = ω′zt + α1(ξt − α2σt)2 + α3σ

2
t ,

ξt+1 | ξ
t
, zt+1

Q∼ N(0, 1),

Q(zt+1 = e j |yt
, zt−1, zt = ei ) = Q(zt+1 = e j |zt = ei ) = π∗

i j ,

(again, we can take ν3J = 0) which gives the RN dynamics compatible with the
AAO restriction. The corresponding log-Laplace transform is

ψ
Q
t (u, v) = (rt+1 − λ′zt − 1

2σ 2
t+1

)
u + 1

2σ 2
t+1u2 + �′(u, v, ν3, π∗)zt . (44)

The historical dynamics is obtained by specifying γt(wt , θ∗
2 ) and δt(wt , θ∗

2 ), with,
for instance δJ t = 0, and in particular we have

ψt(u, v) = ψ
Q
t (u − γt , v − δt) − ψ

Q
t (−γt , −δt) .

We obtain
ψt(u, v) = (

rt+1 − λ′zt − 1
2σ 2

t+1 − γtσ
2
t+1

)
u + 1

2σ 2
t+1u2

+ [�(u − γt , v − δt , ν3, π∗) − �(−γt , −δt , ν3, π∗)]′ zt ,

where

�i (u − γt , v − δt , ν3, π∗) − �i (−γt , −δt , ν3, π∗) = log
J∑

j=1

πi j,t exp(uν3 j + v j )

with

πi j,t = π∗
i j exp(−γtν3 j − δ j t)∑J

j=1 π∗
i j exp(−γtν3 j − δ j t)

. (45)

So the nonaffine historical dynamics is given by

yt+1 = rt+1 − λ(ν3, π∗)′zt − 1
2σ 2

t+1 − γt(wt , θ∗
2 )σ 2

t+1 + ν ′
3zt+1 + σt+1εt+1

εt+1 | εt , zt+1
P∼ N(0, 1), (46)

with

σ 2
t+1 = ω′zt + α1(ξt − α2σt)2 + α3σ

2
t ,

P(zt+1 = e j |yt
, zt−1, zt = ei ) = πi j,t .

Comparing (43) and (46), we get

ξt+1 = εt+1 − γtσt+1,
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and, therefore, the equation giving σ 2
t+1 can be rewritten as

σ 2
t+1 = ω′zt + α1 [εt − (α2 + γt)σt]2 + α3σ

2
t .

One may observe, from (44), that wt+1 = (yt+1, z′
t+1) does not have a Car RN dy-

namics. So, the pricing seems a priori difficult. Fortunately, it can be shown (see
Appendix C) that the (extended) factor we

t+1 := (yt+1, z′
t+1, σ 2

t+2)′ is RN Car, that is,
wt+1 is an internally extended Car(1), and therefore the pricing methods based on
Car dynamics apply. In particular, the RN conditional log-Laplace transform of
we

t+1, given we
t , is

ψ
Q
t (u, v, ṽ) = aQ

1 (u, v, ṽ)′zt + aQ

2 (u, ṽ)σ 2
t+1 + bQ

t (u, ṽ), (47)

where

aQ

1 (u, v, ṽ) = �̃(u, v, ṽ, ν3, ω, π∗) − λ(ν3, π∗) u

with

�̃i (u, v, ṽ, ν3, ω, π∗) = log
J∑

j=1

π∗
i j exp(uν3 j + v j + ṽω j ) , i ∈ {1, . . . , J } ,

aQ

2 (u, ṽ) = − 1
2 u + ṽ

(
α1α

2
2 + α3

)+ (u − 2α1α2ṽ)2

2(1 − 2α1ṽ)
,

bQ
t (u, ṽ) = urt+1 − 1

2 log(1 − 2α1ṽ),

which is affine in (z′
t , σ 2

t+1)′, with an intercept deterministic function of time.
Finally, let us consider the identification problem from the historical dynamics

when functions γ and δ are constant. In this case, we can identify from (46) J
coefficients of zt+1, (J − 1) coefficients of zt , the coefficient of σ 2

t+1, ω, α1, (α2 + γ ),
α3, and πi j , i.e., 3J + 3 + J (J − 1) = J (J + 2) + 3 parameters. The parameters to
be estimated are ν3 (with ν3J = 0), ω, α1, α2, α3, π∗

i j , γ , δ (with δJ = 0), that is, 2(J −
1) + J + 4 + J (J − 1) = J (J + 2) + 2 parameters. Therefore, the historical model
is over identified.

4.6 Back Modelling of Switching IG GARCH Models : A Second
Application of Extended Car Processes

The purpose of this section is to introduce, following the back modelling approach,
several generalizations of the inverse Gaussian6 (IG) GARCH model proposed by
Christoffersen, Heston, and Jacobs (2006). First, we consider switching regimes in
the (historical and RN) dynamics of the geometric return yt and in the GARCH
variance σ 2

t+1. Second, we price not only the factor risk but also the regime-shift

6The strictly positive random variable y has an inverse Gaussian distribution with parameter δ > 0
[denoted IG(δ)] if and only if its distribution function is given by F (y; δ) = ∫ y

0
δ√

2πz3 e−(
√

z−δ/
√

z)2/2dz.

The generalized Laplace transform is E[exp(ϕy + θ/y)] = δ√
δ2−2θ

exp(δ −
√

(δ2 − 2θ)(1 − 2ϕ)) and E(y) =
V(y) = δ [see Christoffersen, Heston, and Jacobs (2006) for further details].
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risk and, third, risk correction coefficients are in general time varying. The factor is
given by wt = (yt , z′

t)
′, where zt is the unobservable J -state homogeneous Markov

chain valued in {e1, . . . , e J }. The RN dynamics is given by

yt+1 = νt + ν1 yt + ν ′
2zt + ν ′

3zt+1 + ν4σ
2
t+1 + ηξt+1, (48)

where νt is a deterministic function of t and

ξt+1 | ξ
t
, zt+1

Q∼ I G

(
σ 2

t+1

η2

)
,

σ 2
t+1 = ω′zt + α1σ

2
t + α2ξt + α3

σ 4
t

ξt
,

with

Q(zt+1 = e j |yt
, zt−1, zt = ei ) = Q(zt+1 = e j |zt = ei ) = π∗

i j .

The RN conditional log-Laplace transform of (yt+1, zt+1) is

ψ
Q
t (u, v) = log EQ

t exp(uyt+1 + v′zt+1)

= (
νt + ν1 yt + ν ′

2zt + ν4σ
2
t+1

)
u + �′(u, v, ν3, π∗)zt + σ 2

t+1
η2

[
1 − (1 − 2uη)1/2

]
,

where the ith component of �(u, v, ν3, π∗) is given by (41). The absence of arbitrage
constraint is ψ

Q
t (1, 0) = rt+1 , ∀wt , implying

rt+1 = νt + ν1 yt + ν ′
2zt + λ′(ν3, π∗)zt + σ 2

t+1

(
ν4 + 1

η2

[
1 − (1 − 2η)1/2]) ,

with the ith component of λ(ν3, π∗) given by (42). Therefore, the arbitrage restriction
implies:

⎧⎪⎪⎨
⎪⎪⎩

ν1 = 0 ,
ν2 = −λ(ν3, π∗) ,
ν4 = − 1

η2

[
1 − (1 − 2η)1/2

]
,

νt = rt+1 .

Thus, Equation (48) becomes

yt+1 = rt+1 − λ(ν3, π∗)′zt − 1
η2

[
1 − (1 − 2η)1/2] σ 2

t+1 + ν ′
3zt+1 + ηξt+1 (49)

with

σ 2
t+1 = ω′zt + α1σ

2
t + α2ξt + α3

σ 4
t

ξt
,

ξt+1 | ξ
t
, zt+1

Q∼ I G
(

σ 2
t+1
η2

)
,

Q(zt+1 = e j |yt
, zt−1, zt = ei ) = Q(zt+1 = e j |zt = ei ) = π∗

i j ,



436 Journal of Financial Econometrics

(again, we can take ν3J = 0) which gives the RN dynamics compatible with the
AAO restriction. The corresponding log-Laplace transform is

ψ
Q
t (u, v) =

(
rt+1 − λ′zt − 1

η2

[
1 − (1 − 2η)1/2] σ 2

t+1

)
u

+�′(u, v, ν3, π∗)zt + σ 2
t+1

η2

[
1 − (1 − 2uη)1/2] . (50)

Given the specification of γt(wt , θ∗
2 ) and δt(wt , θ∗

2 ) (with, for instance, δJ t = 0),
the conditional historical log-Laplace transform of the factor is given by

ψt(u, v) =
(

rt+1 − λ′zt − 1
η2

[
1 − (1 − 2η)1/2] σ 2

t+1

)
u

+ [�(u − γt , v − δt , ν3, π∗) − �(−γt , −δt , ν3, π∗)]′ zt

+σ 2
t+1

η2

[
(1 + 2γtη)1/2 − [1 − 2(u − γt)η]1/2]

=
(

rt+1 − λ′zt − η̃
−3/2
t η−1/2 [1 − (1 − 2η)1/2] σ̃ 2

t+1

)
u

+ [�(u − γt , v − δt , ν3, π∗) − �(−γt , −δt , ν3, π∗)]′ zt

+ σ̃ 2
t+1

η̃2
t

[
1 − (1 − 2uη̃t)1/2],

with �i (u − γt , v − δt) − �i (−γt , −δt) specified by (45), and where η̃t = η

1+2γtη
and

σ̃ 2
t+1 = σ 2

t+1( η̃t
η

)3/2. So, the nonaffine historical dynamics is given by

yt+1 = rt+1 − λ(ν3, π∗)′zt + ν ′
3zt+1 − η̃

−3/2
t η−1/2 [1 − (1 − 2η)1/2] σ̃ 2

t+1 + η̃tεt+1

εt+1 | εt , zt+1 ∼ I G

(
σ̃ 2

t+1

η̃2
t

)
, (51)

with, using (49) and (51), ηξt+1 = η̃tεt+1 and

σ̃ 2
t+1 = ω̃′

tzt + α̃1,tσ̃
2
t + α̃2,tεt + α̃3,t

σ̃ 4
t

εt
,

P(zt+1 = e j |yt
, zt−1, zt = ei ) = πi j,t ,

where ω̃t = ω(η̃t/η)3/2, α̃1,t = α1(η̃t/η̃t−1)3/2, α̃2,t = α2(η̃3/2
t η̃t−1/η

5/2), and α̃3,t =
α3η̃

3/2
t /(η̃4

t−1η
−5/2).

As in the previous section, the factor wt+1 = (yt+1, z′
t+1)′ is not a RN Car pro-

cess, but it can be verified that the factor we
t+1 = (yt+1, z′

t+1, σ 2
t+2)′ is RN Car (see

Appendix D), and that wt+1 is an internally extended Car(1) process. Indeed, the
RN conditional log-Laplace transform of we

t+1, given we
t , is

ψ
Q
t (u, v, ṽ) = aQ

1 (u, v, ṽ)′zt + aQ

2 (u, ṽ)σ 2
t+1 + bQ

t (u, ṽ), (52)
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where

aQ

1 (u, v, ṽ) = �̃(u, v, ṽ, ν3, ω, π∗) − λ(ν3, π∗) u

with �̃i (u, v, ṽ, ν3, ω, π∗)= log
J∑

j=1

π∗
i j exp(uν3 j + v j + ṽω j ), i ∈ {1, . . . , J },

aQ

2 (u, ṽ) = ṽα1 − 1
η2

(
u
[
1 − (1 − 2η)1/2]+ 1 −

√(
1 − 2ṽα3η4

)
(1 − 2(uη + ṽα2))

)
,

bQ
t (u, ṽ) = urt+1 − 1

2 log(1 − 2ṽα3η
4),

which is affine in (z′
t , σ 2

t+1)′, with an intercept deterministic function of time.
As far as the identification problem is concerned, with functions γ and δ

constant, we can identify, from the historical dynamics (51), 3J + J (J − 1) + 4
coefficients, while the parameters to be estimated are ν3 (with ν3J = 0), ω, α1, α2, α3,
π∗

i j , γ , δ (with δJ = 0), and η, that is, 2(J − 1) + J + 5 + J (J − 1) = 3J + J (J −
1) + 3 parameters. Thus, as in the previous section, the historical model is over
identified.

5 APPLICATIONS TO ECONOMETRIC TERM STRUCTURE
MODELLING

It is well known that, if the RN dynamics of wt is Car and if rt+1 is an affine
function of wt , the term structure of interest rates [r (t, h), h ∈ {1, . . . , H}] is easily
determined recursively and is affine in wt [see Gourieroux, Monfort, and Polimenis
(2003), or Monfort and Pegoraro (2007)]. Indeed, if

ψ
Q
t (u|wt ; θ∗

1 ) = aQ(u, θ∗
1 )′wt + bQ(u, θ∗

1 )

and rt+1 = θ̃1 + θ̃ ′
2wt , then

r (t, h) = − c ′
h

h
wt − dh

h
, (53)

where ⎧⎪⎨
⎪⎩

ch = −θ̃2 + aQ(ch−1),

dh = dh−1 − θ̃1 + bQ(ch−1),

c0 = 0, d0 = 0.

(54)

Moreover, applying the transform analysis, various interest rates derivatives have
quasi-explicit pricing formulas. Note that if the ith component of wt is a rate r (t, hi ),
i ∈ {1, . . . , K1}, we must satisfy the internal consistency conditions

chi = −hi ei , dhi = 0, i ∈ {1, . . . , K1}.
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Therefore, it is highly desirable to have a Car RN dynamics and this specification
is obtained by one of the three modelling strategies described in Section 3. Let us
consider some examples.

5.1 Direct Modelling of VAR( p) Factor-Based Term Structure Models

For the sake of notational simplicity, we consider the one factor case, but the results
can be extended to the multivariate case (Monfort and Pegoraro 2006a). We assume,
for instance, that the factor wt is unobservable, and has a historical dynamics given
by a Gaussian AR(p) model,

wt+1 = ν + ϕ1wt + · · · + ϕpwt+1−p + σεt+1

= ν + ϕ′Wt + σεt+1, (55)

where εt+1
P∼ I I N(0, 1), ϕ = (ϕ1, . . . , ϕp)′ and Wt = (wt , . . . , wt+1−p)′. This dynam-

ics can also be written as

Wt+1 = ν̃ + �Wt + σ ε̃t+1,

where ν̃ = νe1, ε̃t+1 = εt+1e1 [e1 denotes the first column of the identity matrix Ip]
and

� =

⎡
⎢⎢⎢⎢⎢⎣

ϕ1 . . . . . . ϕp−1 ϕp

1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

...
0 . . . . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦ is a (p × p) matrix.

The SDF takes the following exponential-affine form:

Mt,t+1 = exp [−rt+1 + αtwt+1 − ψt (αt)] , (56)

with

ψt(u) = (ν + ϕ′Wt)u + 1
2σ 2u2,

αt = α0 + α′Wt

= α0 + α1wt + · · · + αpwt+1−p ,

and the short rate is given by

rt+1 = θ̃1 + θ̃ ′
2Wt .

If rt+1 = wt , we have θ̃2 = e1 and θ̃1 = 0.
The conditional RN log-Laplace transform is given by

ψ
Q
t (u) = ψt (u + αt) − ψt (αt)

= (ν + ϕ′Wt)u + σ 2αtu + 1
2σ 2u2

= [ν + σ 2α0 + (ϕ + σ 2α)′Wt]u + 1
2σ 2u2.
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Therefore, the RN dynamics of the factor is given by

wt+1 = (ν + σ 2α0) + (ϕ + σ 2α)′Wt + σξt+1, (57)

where ξt+1
Q∼ I I N(0, 1). Moreover, we have εt+1 = ξt+1 + σ (α0 + α′Wt).

The yield-to-maturity formula at date t is given by [see Monfort and Pegoraro
(2006a) for the proof]

r (t, h) = − c ′
h

h
Wt − ∗dh

h
, h ≥ 1, (58)

with ⎧⎪⎨
⎪⎩

ch = −θ̃2 + �′ch−1 + c1,hσ
2α,

dh = −θ̃1 + c1,h−1(ν + σ 2α0) + 1
2 c2

1,h−1σ
2 + dh−1,

c0 = 0 d0 = 0.

The pricing model presented in this section is derived following the discrete-
time equivalent of the basic direct modelling strategy typically used in continuous
time (Duffie and Kan 1996; Cheridito, Filipovic, and Kimmel 2007). If we specify αt

as a nonlinear function of Wt , ψ
Q
t (u) turns out to be nonaffine (in Wt) and, therefore,

we lose the explicit representation of the yield formula. We will see in Section 5.3
that we can go beyond this limit following the back modelling approach.

5.2 RN Constrained Direct Modelling of Switching VAR( p)
Factor-Based Term Structure Models

Again for the sake of simplicity, we consider the univariate case [see Monfort and
Pegoraro (2007) for extensions] where the factor is given by wt = (xt , z′

t)
′, with zt a

J -state nonhomogeneous Markov chain valued in {e1, . . . , e J }. The first component
xt is observable or unobservable, zt is unobservable, and the historical dynamics is
given by

xt+1 = ν(Zt) + ϕ1(Zt)xt + · · · + ϕp(Zt)xt+1−p + σ (Zt)εt+1, (59)

where

εt+1 | εt , zt+1
P∼ N(0, 1),

P(zt+1 = e j |xt zt−1, zt = ei ) = π(ei , e j ; Xt),

Zt = (z′
t , . . . , z′

t−p),

Xt = (xt , . . . , xt+1−p)′.

Observe that the joint historical dynamics of (xt , z′
t)

′ is not Car. Functions ν,
ϕ1, . . . , ϕp, σ, and π are parameterized using a parameter θ1.

We specify the SDF in the following way:

Mt,t+1 = exp
[−rt+1 + �(Zt , Xt)εt+1 − 1

2�(Zt , Xt)2 − δ(Zt , Xt)′zt+1
]

, (60)
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with �(Zt , Xt) = γ (Zt) + γ̃ (Zt)′ Xt and, in order to ensure that Et Mt,t+1 =
exp(−rt+1), we add the condition

J∑
j=1

π(ei , e j , Xi ) exp[−δ(Zt , Xt)′e j ] = 1, ∀Zt , Xt .

The short rate is given by

rt+1 = θ̃ ′
1 Xt + θ̃ ′

2 Zt ,

and, in the observable factor case (xt = rt+1), we have θ̃1 = e1 and θ̃2 = 0.
It is easily seen that the RN dynamics is given by

xt+1 = ν(Zt) + γ (Zt)σ (Zt) + [ϕ(Zt) + γ̃ (Zt)σ (Zt)]′ Xt + σ (Zt)ξt+1,

ξt+1 | ξ
t
, zt+1

Q∼ N(0, 1),

Q(zt+1 = e j |xt , zt−1, zt = ei ) = π (ei , e j , Xt) exp[−δ(Zt , Xt)′e j ].

(61)

So, if we want the RN dynamics of wt to be Car, we have to impose:

(i) σ (Zt) = σ ∗′ Zt (linearity in zt , . . . , zt−p),

(ii) γ (Zt) = ν∗′ Zt − ν(Zt)
σ ∗′ Zt

,

(iii) γ̃ (Zt) = ϕ∗ − ϕ(Zt)
σ ∗′ Zt

,

(iv) δ j (Zt , Xt) = log
[

π (zt , e j , Xt)
π∗(zt , e j )

]
,

(62)

where σ ∗, ν∗, ϕ∗ are free parameters, π∗(ei , e j ) are the entries of an homogeneous
transition matrix. All of these parameters constitute the parameter θ∗ ∈ �∗ intro-
duced in Section 3.3. Also note that, because of constraints (62(i)) above, θ and θ∗

do not vary independently.
So the RN dynamics is

Xt+1 = �∗ Xt + [ν∗′ Zt + (σ ∗′ Zt)ξt+1]e1,

�∗ =

⎡
⎢⎢⎢⎢⎢⎣

ϕ∗
1 . . . . . . ϕ∗

p−1 ϕ∗
p

1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

...
0 . . . . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦ is a (p × p) matrix, (63)

ξt+1 | ξ
t
, zt+1

Q∼ N(0, 1),

Q(zt+1 = e j |xt , zt−1, zt = ei ) = Q(zt+1 = e j |zt = ei ) = π∗
i j

and the affine (in Xt and Zt) term structure of interest rates is easily derived [see
Monfort and Pegoraro (2007) for the proof, and Dai, Singleton, and Yang (2006)
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for the case p = 1]. The empirical study proposed in Monfort and Pegoraro (2007),
shows that the introduction of multiple lags and switching regimes, in the historical
and RN dynamics of the observable factor (short rate and spread between the long
and the short rate), leads to term structure models, which are able to fit the yield
curve and to explain the violation of the Expectation Hypothesis Theory, over both
the short and long horizon, as well as or better than competing models like 2-Factor
CIR, 3-Factor CIR, 3-Factor A1(3) [using the Dai and Singleton (2000) notation]
and the 2-Factor regime-switching CIR term structure model proposed by Bansal
and Zhou (2002). Dai, Singleton, and Yang (2007) show the determinant role of
priced, state-dependent regime-shift risks in capturing the dynamics of expected
excess bond returns. Moreover, they show that the well-known hump-shaped term
structure of volatility of bond yield changes is a low-volatility phenomenon.

5.3 Back Modelling of VAR( p) Factor-Based Term Structure Models

Let us consider the (bivariate) case where wt is given by [r (t, 1), r (t, 2)]′. We want
to impose the following Gaussian VAR(1) RN dynamics:

wt+1 = ν + �wt + ξt+1, (64)

where ξt+1
Q∼ I I N(0, 
). In this case, the internal consistency conditions are satis-

fied if we impose, in (53) and (54), θ̃1 = 0, θ̃ ′
2 = (1, 0), c2 = −2e2, and d2 = 0, or

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2e2 = aQ

(−1
0

)
−
(

1
0

)
,

0 = bQ

(−1
0

)
,

(65)

where aQ(u) = �′u and bQ(u) = u′ν + 1
2 u′
u. So, relation (65) becomes, with obvi-

ous notations: [
ϕ11

ϕ12

]
+
[

1
0

]
=
[

0
2

]
,

ν1 = 1
2σ 2

1 ,

and (64) must be written as:{
r (t + 1, 1) = 1

2σ 2
1 − r (t, 1) + 2r (t, 2) + ξ1,t+1,

r (t + 1, 2) = ν2 + ϕ21r (t, 1) + ϕ22r (t, 2) + ξ2,t+1,
(66)

with ξt
Q∼ I I N(0, 
). Consequently, the RN conditional log-Laplace transform of

wt+1, compatible with the AAO restrictions is

ψ
Q
t (u) = u′

[( 1
2σ 2

1
ν2

)
+
(−1 2

ϕ21 ϕ22

)
wt

]
+ 1

2
u′
u,
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the yield-to-maturity formula will be affine in wt , as indicated by (53), and, more-
over, independent of the specification of the factor-loading αt . Now, if we move
back to the historical conditional log-Laplace transform, we get

ψt(u) = ψ
Q
t (u − αt) − ψ

Q
t (−αt)

= u′
[( 1

2σ 2
1

ν2

)
+
(−1 2

ϕ21 ϕ22

)
wt

]
− u′
αt + 1

2 u′
u.

If we assume αt = γ + �wt , we get

ψt(u) = u′
{( 1

2σ 2
1

ν2

)
− 
γ +

[( −1 2
ϕ21 ϕ22

)
− 
�

]
wt

}
+ 1

2
u′
u,

or, equivalently, we have the following Car P-dynamics:

wt+1 =
( 1

2σ 2
1

ν2

)
− 
γ +

[(−1 2
ϕ21 ϕ22

)
− 
�

]
wt + εt+1, (67)

where εt+1
P∼ I I N(0, 
) and εt = ξt + 
(γ + �wt). If � = 0, the historical dynam-

ics of wt is constrained, the parameters 
, ϕ12, and ϕ22 are identifiable from the
observations on wt , whereas γ and ν2 are not. If � �= 0, the historical dynamics of
wt is not constrained and only 
 is identifiable from the observations on wt .

Observe that, even if we assume αt to be nonlinear in wt , the interest rate
formula is still affine (contrary to the direct modelling case of Section 5.1), and
the historical conditional pdf of non-Car factor wt remains known in closed form
[see relation (15)]. This means that, at the same time, we have a tractable pricing
model, we can introduce (non-Car) nonlinearities in the interest rate historical
dynamics [as suggested, for instance, by Ait-Sahalia (1996)], and we maintain the
possibility to estimate the parameters by exact maximum likelihood. Following
the back modelling strategy, Dai, Le, and Singleton (2006) develop a family of
discrete-time nonlinear term structure models [exact discrete-time counterpart of
the models in Dai and Singleton (2000)] characterized by these three important
features.

5.4 Direct Modelling of Wishart Term Structure Models and
Quadratic Term Structure Models: A Third Application of
Extended Car Processes

The Wishart Quadratic Term Structure model, proposed by Gourieroux and Sufana
(2003), is characterized by an unobservable factor Wt , which follows (under the
historical probability) the WAR process introduced in Section 2.1.4. The SDF is
defined by

Mt,t+1 = exp [Tr(CWt+1) + d] , (68)
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where C is a (n × n) symmetric matrix and d is a scalar. The associated RN dynamics
is defined by

ψ
Q
t (�) = Tr

[
M′ {(C + �)[In − 2(C + �)]−1 − C(In − 2C)−1

}
MWt

]
− K

2
log det[(In − 2(In − 2C)−1�)],

which is also Car(1). The term structure of interest rates at date t is affine in Wt and
given by

r (t, h) = − 1
h

Tr[A(h)Wt] − 1
h

b(h), h ≥ 1,

A(h) = M′[C + A(h − 1)] {In − 2[C + A(h − 1)]}−1 M,

b(h) = d + b(h − 1) − K
2

log det[In − 2(C + A(h − 1))],

A(0) = 0 , b(0) = 0.

In particular, if K is integer, we get

r (t, h) = − 1
h

Tr

[
K∑

k=1

A(h)xk,tx′
k,t

]
− 1

h
b(h),

= − 1
h

K∑
k=1

x′
k,t A(h)xk,t − 1

h
b(h), h ≥ 1 ,

(69)

which is a sum of quadratic forms in xk,t . If K = 1, we get the standard Quadratic
Term Structure Model, which is, therefore, a special affine model [see Beaglehole
and Tenney (1991), Ahn, Dittmar, and Gallant (2002), Leippold and Wu (2002),
Cheng and Scaillet (2007), and Buraschi, Cieslak, and Trojani (2008) for a general-
ization in the continuous-time general equilibrium setting].

We can also define a quadratic term structure model with a linear term, if the
historical dynamics of xt+1 is given by the following Gaussian VAR(1) process:

xt+1 = m + Mxt + εt+1,

εt+1
P∼ I I N(0, 
).

(70)

Indeed (as suggested by example c) in Section 2.3), the factor wt = [x′
t , vech(xtx′

t)
′]′

is Car(1), that is, wt is an extended Car process in the historical world (see Appendix
E for the proof). Moreover, choosing

Mt,t+1 = exp[C ′xt+1 + Tr(Cxt+1x′
t+1) + d]

= exp(C ′xt+1 + x′
t+1Cxt+1 + d), (C is a symmetric (n × n) matrix), (71)
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the process wt is also extended Car in the risk-neutral world. The term structure at
date t is affine in wt , that is, of the form

r (t, h) = x′
t�(h)xt + μ(h)′xt + ν(h), h ≥ 1, (72)

where �(h), μ(h), and ν(h) follow recursive equations [see also Gourieroux and
Sufana (2003), Cheng and Scaillet (2007), and Jiang and Yan (2006)].

6 An Example of Back Modelling for a Security Market Model with
Stochastic Dividends and Short Rate

The purpose of this section is to consider an econometric security market model
where the risky assets are dividend-paying assets and the short rate is endogenous.
More precisely, the factor is given by wt = (yt , δt , rt+1)′, where

� yt = (y1,t , . . . , yK1,t)′ denotes, for each date t, the K1-dimensional vector of
geometric returns associated with cum dividend prices Sj,t , j ∈ {1, . . . , K1};

� δt = (δ1,t , . . . , δK1,t) is the associated K1-dimensional vector of (geometric) div-
idend yields and, denoting S̃j,t as the ex dividend price of the j th risky asset,
we have Sj,t = S̃j,t exp(δ j,t);

� rt+1 denotes the (predetermined) stochastic short rate for the period [t, t + 1].

Observe that, compared to the setting of Section 4.1 (where rt+1 was exogenous),
this model proposes a more general K -dimensional factor wt (with K = (2K1 + 1)),
where we jointly specify yt , δt (which is considered as an observable factor), and
the short rate rt+1. It would be straightforward to add an unobservable factor zt .

Following the back modelling approach, we propose an RN Gaussian VAR(1)
dynamics for the factor and the conditional distribution of wt+1, given wt , is as-
sumed to be Gaussian with mean vector (A0 + A1 wt) and variance–covariance
matrix 
. The process wt+1 is, therefore, a Car(1) process with a conditional RN
Laplace transform given by

ϕ
Q
t (u | wt) = EQ

t [exp(u′ wt+1)] = exp
[
aQ(u)′ wt + bQ(u)

]
,

where the functions aQ and bQ are the following:

{
aQ(u) = A1

′ u,

bQ(u) = A0
′ u + 1

2 u′
u .

The RN dynamics can also be written as

wt+1 = A0 + A1 wt + ξt+1,

ξt+1
Q∼ I I N(0, 
) .

(73)
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The AAO restrictions, applied to the K1-dimensional vector yt+1, are given by

EQ
t

[
exp[Log

(
Sj,t+1

S̃j,t

)]
= exp(rt+1), j ∈ {1, . . . , K1},

⇐⇒ EQ
t
[
exp(yj,t+1)

] = exp(rt+1 − δ j,t), j ∈ {1, . . . , K1},

⇐⇒
{

aQ(e j ) = A1
′ e j = eK − e j+K1 , j ∈ {1, . . . , K1},

bQ(e j ) = A0
′ e j + 1

2 e ′
j
e j = 0, j ∈ {1, . . . , K1}.

This means that the first K1 rows of A1 and the first K1 components of A0 are, for
j ∈ {1, . . . , K1}, respectively given by (eK − e j+K1 )′ and − 1

2σ 2
j [where eK and e j+K1

denote, respectively, the K th and the ( j + K1)th column of the identity matrix IK ,
while σ 2

j is the ( j, j)-term of 
]. In other words, the K1 first equations of (73) are

yj,t+1 = − 1
2σ 2

j + rt+1 − δ j,t + ξ j,t+1, j ∈ {1, . . . , K1}.

Then, coming back to the historical dynamics of wt , we get:

ψt(u) = ψ
Q
t (u − αt) − ψ

Q
t (−αt)

= (
aQ(u − αt) − aQ(−αt)

)′
wt + bQ(u − αt) − bQ(−αt)

= u′ A1wt + u′ A0 + 1
2 (u − αt)′
(u − αt) − 1

2α′
t
αt

= u′ (A0 + A1wt − 
αt) + 1
2 u′
u. (74)

So, if we impose αt = (α0 + α wt), the historical dynamics of the factor is also
Gaussian VAR(1) with a modified conditional mean vector equal to [A0 − 
α0 +
(A1 − 
α)wt] and the same variance–covariance matrix 
, that is,

wt+1 = A0 − 
α0 + (A1 − 
α)wt + εt+1,

εt+1
P∼ I I N(0, 
), and εt+1 = ξt+1 + 
(α0 + α wt).

We notice that, under the historical probability, any VAR(1) distribution can
be reached, but only 
 is identifiable. If we add the constraint α = 0, then the
historical dynamics of wt is constrained, and A0 and α0 are not identifiable.

7 Conclusions

In this paper, we have proposed a general econometric approach to no-arbitrage
asset pricing modelling based on three main elements: (i) the historical discrete-
time dynamics of the factor representing the information, (ii) SDF, and (iii) the RN
discrete-time factor dynamics. We have presented three modelling strategies: the
direct modelling, the RN constrained direct modelling, and the back modelling.
In all the approaches, we have considered the internal consistency conditions,
induced by the AAO restrictions, and the identification problem. These three ap-
proaches have been explained explicitly for several discrete-time security market
models and affine term structure models. In all cases, we have indicated the impor-
tant role played by the RN constrained direct modelling and the back modelling
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strategies in determining, at the same time, flexible historical dynamics and Car
RN dynamics leading to explicit or quasi-explicit pricing formulas for various con-
tingent claims. Moreover, we have shown the possibility to derive asset pricing
models able to accommodate non-Car historical and RN factor dynamics with
tractable pricing formulas. This result is achieved when the starting RN non-Car
factor turns out to be a RN extended Car process. These strategies, already implic-
itly adopted in several papers, clearly could be the basis for the specification of
new asset pricing models leading to promising empirical analysis.

APPENDIX A: PROOF OF THE EXISTENCE AND UNIQUENESS OF Mt, t+1
AND OF THE PRICING FORMULA (1)

Using A1 and A2, the Riesz representation theorem implies

∀s > t, ∀wt , ∃ Mt,s(ws), unique, such that ∀g(ws) ∈ L2s ,

pt[g(ws)] = E[Mt,s(ws) g(ws) | wt].

In particular, the price at t of a zero-coupon bond with maturity s is E[Mt,s(ws) | wt].
A3 implies that P[Mt,s > 0 | wt] = 1, ∀t, s ∈ {0, . . . , T}, since otherwise the pay-
off 1(Mt,s≤0) at s, would be such that P[1(Mt,s≤0) > 0 | wt] > 0 and pt[1(Mt,s≤0)] =
Et[Mt,s1(Mt,s≤0)] ≤ 0, contradicting A3.

Relation (1) will be shown if we prove that, ∀ t < r < s, wt , g(ws) ∈ L2s we
have

pt[g(ws)] = pt{pr [g(ws)]}.
Let us show, for instance, that if (with obvious notations) pt(gs) > pt[pr (gs)], we
can construct over the time interval [t, s ] a sequence of portfolios with strictly
positive payoff at s, with zero payoffs at any date r ∈ ]t, s [, and with price zero
at t, contradicting A3. The sequence of portfolios is defined by the following trading
strategy:

at t: buy pr (gs), (short) sell gs , buy pt (gs )−pt [pr (gs )]
E[Mt,s | wt]

zero-coupon bonds with matu-
rity s, generating a zero payoff;

at r : buy gs and sell pr (gs), generating a zero payoff;
at s: the net payoff is gs − gs + pt (gs )−pt [pr (gs )]

E[Mt,s | wt]
> 0.

A similar argument shows that pt(gs) < pt[pr (gs)] contradicts A3 and, therefore,
relation (1) is proved.

APPENDIX B: RISK PREMIA AND MARKET PRICE OF RISK

A.1 Notation

In this appendix [ ft(ei )] will denote, for given scalar or row K -vectors ft(ei ), i ∈
{1, . . . , K }, the K -vector or the K × K matrix ( ft(e1)′, . . . , ft(eK )′)′ with rows ft(ei ),
i ∈ {1, . . . , K }; e will denote the K -dimensional unitary vector.
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A.2 Geometric and Arithmetic Risk Premia

Let pt be the price at t of any given asset. The geometric return between t and t + 1
is

ρG,t+1 = log
(

pt+1

pt

)
,

whereas the arithmetic return is

ρA,t+1 = pt+1

pt
− 1 = exp(ρG,t+1) − 1.

In particular, for the risk-free asset we have

ρ
f

G,t+1 = rt+1,

ρ
f
A,t+1 = exp(rt+1) − 1 = rA,t+1.

So, we can define two risk premia of the given asset as:

πGt = Et(ρG,t+1) − rt+1,

πAt = Et(ρA,t+1) − rA,t+1 = Et[exp(ρG,t+1)] − exp(rt+1).
(A1)

Note that the arithmetic risk premia have the advantage to satisfy πAt(λ) =

 J

j=1λ jπAt, j , if πAt(λ) is the risk premium of the portfolio defined by the shares
in value λ j for the asset j . Let us now consider two important particular cases in
order to have more explicit forms of these risk premia and to obtain intuitive in-
terpretations of the factor-loading vector αt [see also Dai, Le, and Singleton (2006)
for a similar analysis].

A.3 The Factor is a Vector of Geometric Returns

If wt+1 is a K -vector of geometric returns, the vectors of risk premia πGt and πAt

whose entries are

πGt,i = e ′
iψ

(1)
t (0) − rt+1, i ∈ {1, . . . , K },

(where ψ
(1)
t is the gradient of ψt and ei is the ith column of the identity matrix IK ),

πAt,i = ϕt(ei ) − exp(rt+1), i ∈ {1, . . . , K }.

Moreover, we have the pricing identities:

1 = Et{exp[e ′
iwt+1 + α′

twt+1 − rt+1 − ψt(αt)]}, i ∈ {1, . . . , K }, (A2)

that is

exp(rt+1) = ϕt(αt + ei )
ϕt(αt)

= ϕ
Q
t (ei )
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or

rt+1 = ψt(αt + ei ) − ψt(αt) = ψ
Q
t (ei ).

So, for each i ∈ {1, . . . , K }, the risk premia can be written as

πGt,i = e ′
iψ

(1)
t (0) − ψt(αt + ei ) + ψt(αt),

πAt,i = ϕt(ei ) − ϕt(αt + ei )
ϕt(αt)

.

Note that, for αt = 0, i.e., when the historical and the RN dynamics are identical,
we have

πGt,i = mit − ψt(ei ) �= 0, i ∈ {1, . . . , K },

(mit denotes the conditional mean of wi,t+1 given wt) and

πAt,i = 0, i ∈ {1, . . . , K }.

So the arithmetic risk premia seem to have more natural properties. Moreover,
considering first-order expansions around αt = 0 and neglecting conditional cu-
mulants of order strictly larger than 2 (which are zero in the conditionally gaussian
case), we get:

πGt � − 1
2vdiag(
t) − 
tαt , (A3)

πAt � − exp(rt+1)
t αt , (A4)

where vdiag(
t) is the vector whose entries are the diagonal terms of 
t , and 
t is
the conditional variance–covariance matrix of wt+1 given wt . So, αt can be viewed
as the opposite of a market price of risk vector. We will see in the proof below that
the expression of πGt is exact in the conditionally Gaussian case.

A.4 Proof of Relations (A3) and (A4)

We have seen above that the geometric risk premium can be written as:

πGt = ψ
(1)
t (0) − [ψt(αt + ei )] + ψt(αt)e .

Using a first-order expansion of πGt = πGt(αt) around αt = 0, we obtain

πGt � ψ
(1)
t (0) − [ψt(ei )] − [ψ (1)

t (ei )′
]
αt + (ψ (1)

t (0)′αt
)
e ,

and neglecting conditional cumulants of order ≥ 3, we can write:

πGt � mt − mt − 1
2vdiag
t − (m′

tαt)e − 
tαt + (m′
tαt)e

� − 1
2v diag 
t − 
tαt .
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If we consider now the arithmetic risk premium, and apply the same procedure,
we get:

πAt = [ϕt(ei )] −
[

ϕt(αt + ei )
ϕt(αt)

]

�
[
ϕt(ei ) − ϕt(ei )

(
1 + ϕ

(1)
t (ei )′αt

ϕt(ei )
− ϕ

(1)
t (0)′αt

)]

� [− ϕt(ei )
(
ψ

(1)
t (ei )′αt − ϕ(1)(0)′αt

)]
� −diag[ϕt(ei )]((m′

tαt)e + 
tαt − (m′
tαt)e)

� −diag[ϕt(ei )]
tαt

� − exp(rt+1)
tαt ,

since ϕt(ei ) = Et exp(wi,t+1) � EQ
t exp(wi,t+1) = exp(rt+1).

In the conditionally Gaussian case, where

ϕt(u) = exp
(

m′
tu + 1

2
u′
tu

)
, ψt(u) = m′

tu + 1
2

u′
tu,

the geometric risk premium becomes

πGt = ψ
(1)
t (0) − [ψt(αt + ei )] + ψt(αt)e

= mt −
[

m′
t(αt + ei ) + 1

2
(αt + ei )′
t(αt + ei ) − m′

tαt − 1
2
α

′
t
αt

]

= −1
2
vdiag 
t − 
tαt ,

while the arithmetic risk premium is

πAt = [ϕt(ei )] −
[

ϕt(α + ei )
ϕt(αt)

]

=
[

exp
(

mit + 1
2

i i,t

)
− exp

(
mit + 1

2

i i,t + e ′

i
tαt

)]

=
[

exp
(

mit + 1
2

i i,t

)
(1 − exp(e ′

i
tαt))
]

� −diag
[

exp
(

mit + 1
2

i i,t

)]

tαt = − exp(rt+1) 
tαt ,

since ϕt(ei ) = exp(mit + 1
2
i i,t).
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A.5 The Factor is a Vector of Yields

Let us denote by r (t, h) the yield at t with residual maturity h; if B(t, h) denotes the
price at t of the zero coupon bond with time to maturity h, we have

r (t, h) = − 1
h

log [B(t, h)] .

We assume that the components of wt+1 are

wt+1,i = hi r (t + 1, hi ), i ∈ {1, . . . , K },

where hi are various integer residual maturities; this definition of wt+1,i leads to
simpler notations than the equivalent definition wt+1,i = r (t + 1, hi ). The payoffs
B(t + 1, hi ) = exp(−wt+1,i ) have price at t equal to

B(t, hi + 1) = exp [−(hi + 1)r (t, hi + 1)] .

So, we have

1= Et{exp[−wt+1,i +(hi + 1)r (t, hi + 1) + α′
twt+1−rt+1 − ψt(αt)]}, i ∈ {1, . . . , K },

(A5)

that is

rt+1 = ψt(αt − ei ) − ψt(αt) + (hi + 1)r (t, hi + 1),

or

exp(rt+1) = ϕt(αt − ei )
ϕt(αt)

exp [(hi + 1)r (t, hi + 1)] .

The risk premia associated with the geometric returns,

log
[

B(t + 1, hi )
B(t, hi + 1)

]
= −wt+1,i + (hi + 1)r (t, hi + 1),

are the vectors with components

πGt,i = −Et(wt+1,i ) + (hi + 1)r (t, hi + 1) − rt+1

= −e ′
iψ

(1)
t (0) − ψt(αt − ei ) + ψt(αt), (A6)

and

πAt,i = exp [(hi + 1)r (t, hi + 1)] ϕt(−ei ) − exp(rt+1)

= exp [(hi + 1)r (t, hi + 1)]
[
ϕt(−ei ) − ϕt(αt − ei )

ϕt(αt)

]
. (A7)



BERTHOLON ET AL. | Econometric Asset Pricing Modelling 451

Expanding relations (A6) and (A7) around αt = 0, and neglecting conditional cu-
mulants of order strictly larger than 2, we get

πGt � − 1
2 vdiag(
t) + 
tαt , (A8)

πAt � exp(rt+1)
tαt , (A9)

where 
t is the conditional variance–covariance matrix of wt+1 given wt . So, αt can
be viewed as a market price of risk vector. Moreover, the formula for πGt is exact
in the conditionally Gaussian case.

A.6 Proof of Relations (A8) and (A9)

Following the same procedure presented above, the geometric risk premium asso-
ciated with wt+1 = (h1r (t + 1, h1), . . . , hK r (t + 1, hK ))′ can be written as

πGt = −ψ
(1)
t (0) − [ψt(αt − ei )] + ψt(αt)e

� −ψ
(1)
t (0) − [ψt(−ei ) + ψ

(1)
t (−ei )′αt

]+ (ψ (1)
t (0)′αt

)
e

� −mt − (− mt + 1
2 vdiag 
t + (m′

tαt)e − 
tαt
)+ (m′

tαt)e

� − 1
2 vdiag 
t + 
tαt ,

while, the arithmetic risk premium is

πAt =
[

exp((hi + 1)r (t, hi + 1))
(

ϕt(−ei ) − ϕt(αt − ei )
ϕt(αt)

)]

� [
exp((hi + 1)r (t, hi + 1))

(
ϕt(−ei ) − ϕt(−ei )

(
1 + ψ

(1)
t (−ei )′αt − ϕ

(1)
t (0)′αt

))]
� −diag[ϕt(−ei ) exp((hi + 1)r (t, hi + 1))]

[
ψ

(1)
t (−ei )′αt − ϕ

(1)
t (0)′αt

]
� diag[ϕt(−ei ) exp((hi + 1)r (t, hi + 1))]
tαt

� exp(rt+1) 
tαt ,

since ϕt(−ei )= Et exp[−hir (t + 1, hi )]= Et B(t + 1, hi )� EQ
t B(t + 1, hi )=exp(rt+1)

× B(t, hi + 1).
In the conditionally Gaussian case, we have

πGt = − 1
2vdiag 
t + 
tαt and

πAt � diag
[
exp

(−mit + 1
2
i i,t

)
exp((hi + 1)r (t, hi + 1))

]

tαt = exp(rt+1) 
tαt ,

given that ϕt(−ei ) = exp(−mit + 1
2
i i,t).
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APPENDIX C: SWITCHING GARCH MODELS AND EXTENDED Car PRO-
CESSES

The purpose of this appendix is to show, in the context of Section 4.6, that under the
RN probability, even if wt+1 = (yt+1, z′

t+1)′ is not a Car process, the extended factor
we

t+1 = (yt+1, z′
t+1, σ 2

t+2)′ is Car. The proof of this result is based on the following
two lemmas.

Lemma 1. For any vector μ ∈ Rn and any symmetric positive definite (n × n) matrix
Q, the following relation holds:

∫
Rn

exp(−u′ Qu + μ′u)du = πn/2

(det Q)1/2 exp
(

1
4
μ′ Q−1μ

)
.

Proof. The LHS of the previous relation can be written as

∫
Rn

exp
[
−
(

u − 1
2

Q−1μ

)′
Q
(

u − 1
2

Q−1μ

)]
exp

(
1
4
μ′ Q−1μ

)
du

= πn/2

(det Q)1/2 exp
(

1
4
μ′ Q−1μ

)
,

given that the n-dimensional Gaussian distribution N( 1
2 Q−1μ, (2Q)−1) admits unit

mass.

Lemma 2. If εt+1 ∼ N(0, In), we have:

Et{exp[λ′εt+1 + ε′
t+1Vεt+1]}

= 1
[det(I − 2V)]1/2 exp

[
1
2
λ′(I − 2V)−1λ

]
.

Proof. From Lemma 1, we have:

Et {exp(λ′εt+1 + ε′
t+1Vεt+1)}

= 1
(2π )n/2

∫
Rn

exp
[
−u′

(
1
2

I − V
)

u + λ′u
]

du

= 1

2n/2
[
det
( 1

2 I − V
)]1/2 exp

[
1
4
λ′
(

1
2

I − V
)−1

λ

]

= 1
[det(I − 2V)]1/2 exp

[
1
2
λ′(I − 2V)−1λ

]
.

�

Proposition. In the context of Section 4.6, the process we
t+1 = (yt+1, z′

t+1, σ 2
t+2)′ is Car(1)

under the RN probability.
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Proof. We have:

yt+1 = rt+1 − λ′zt − 1
2σ 2

t+1 + ν ′
3zt+1 + σt+1ξt+1,

ξt+1 | ξ
t
, zt+1

Q∼ N(0, 1),

σ 2
t+1 = ω′zt + α1(ξt − α2σt)2 + α3σ

2
t ,

Q
(
zt+1 = e j |yt

, zt−1, zt = ei
) = π∗

i j .
�

So, the conditional RN Laplace transform of (yt+1, z′
t+1, σ 2

t+2)′ is

ϕ
Q
t (u, v, ṽ) = EQ

t exp
(
uyt+1 + v′zt+1 + ṽσ 2

t+2

)
= EQ

t exp
{

u
(

rt+1 − λ′zt − 1
2
σ 2

t+1 + ν ′
3zt+1 + σt+1ξt+1

)

+v′zt+1 + ṽ
[
ω′zt+1 + α1(ξt+1 − α2σt+1)2 + α3σ

2
t+1

]}

= exp
{

u
(

rt+1 − λ′zt − 1
2
σ 2

t+1

)
+ ṽα1α

2
2σ

2
t+1 + ṽα3σ

2
t+1

}

EQ
t exp[ξt+1σt+1(u − 2α1α2ṽ) + ṽα1ξ

2
t+1 + (uν3 + v + ṽω)′zt+1].

Using Lemma 2:

ϕ
Q
t (u, v, ṽ) = exp

[
u
(

rt+1 − λ′zt − 1
2
σ 2

t+1

)
+ ṽα1α

2
2σ

2
t+1 + ṽα3σ

2
t+1

]

×exp
[
−1

2
log(1 − 2α1ṽ)+ (u − 2α1α2ṽ)2

2(1 − 2α1ṽ)
σ 2

t+1+�̃′(u, v, ṽ, ω, ν3, π∗)zt

]
,

where the ith component of �̃(u, v, ṽ, ω, ν3, π∗) is given by

�̃i (u, v, ṽ, ω, ν3, π∗) = log
J∑

j=1

π∗
i j exp(uν3 j + v j + ṽω j ),

and relation (47) is proved.

APPENDIX D: SWITCHING IG GARCH MODELS AND EXTENDED Car
PROCESSES

In this appendix we show, in the context of Section 4.7, that under the RN
probability, even if wt+1 = (yt+1, z′

t+1)′ is not a Car process, the extended factor
we

t+1 = (yt+1, z′
t+1, σ 2

t+2)′ is Car.
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Proposition. In the context of Section 4.7, the process we
t+1 = (yt+1, z′

t+1, σ 2
t+2)′ is Car(1)

under the RN probability.

Proof. Let us recall Equation (49):

yt+1 = rt+1 − λ′zt − 1
η2

[
1 − (1 − 2η)1/2] σ 2

t+1 + ν ′
3zt+1 + ηξt+1

�
with

σ 2
t+1 = ω′zt + α1σ

2
t + α2ξt + α3

σ 4
t

ξt

ξt+1| ξ t
, zt+1

Q∼ I G

(
σ 2

t+1

η2

)
,

Q(zt+1 = e j |yt
, zt−1, zt = ei ) = Q(zt+1 = e j |zt = ei ) = π∗

i j ,

So, the conditional RN Laplace transform of (yt+1, z′
t+1, σ 2

t+2)′ is

ϕ
Q
t (u, v, ṽ) = EQ

t exp
(
uyt+1 + v′zt+1 + ṽσ 2

t+2

)
= EQ

t exp
{

u
(

rt+1 − λ′zt − 1
η2

[
1 − (1 − 2η)1/2] σ 2

t+1 + ν ′
3zt+1 + ηξt+1

)

+v′zt+1 + ṽ

[
ω′zt+1 + α1σ

2
t+1 + α2ξt+1 + α3

σ 4
t+1

ξt+1

]}

= exp
{

u
(

rt+1 − λ′zt − 1
η2

[
1 − (1 − 2η)1/2] σ 2

t+1

)
+ ṽα1σ

2
t+1

}

EQ
t exp

[
(uη + ṽα2) ξt+1 + ṽα3σ

4
t+1

ξt+1
+ (uν3 + v + ṽω)′zt+1

]
.

Using the formula of the generalized Laplace transform of an inverse Gaussian
distribution given in footnote 4 (Section 4.7):

ϕ
Q
t (u, v, ṽ) = exp

{
u
(

rt+1 − λ′zt − 1
η2

[
1 − (1 − 2η)1/2] σ 2

t+1

)
+ ṽα1σ

2
t+1

}

×exp
[
−1

2
log(1−2ṽα3η

4)+ 1
η2

(
1−
√(

1−2ṽα3η4
)

(1−2(uη+ṽα2))
)

σ 2
t+1

+�̃′(u, v, ṽ, ν3, ω, π∗)zt
]

,

where the ith component of �̃(u, v, ṽ, ν3, ω, π∗) is given by

�̃i (u, v, ṽ, ν3, ω, π∗) = log
J∑

j=1

π∗
i j exp(uν3 j + v j + ṽω j ),

and relation (52) is proved.
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APPENDIX E: QUADRATIC TERM STRUCTURE MODELS AND
EXTENDED Car PROCESSES

Given the Gaussian VAR(1) process defined by relation (70), we have that, for
any real symmetric matrix V, the conditional historical Laplace transform of
(xt+1, xt+1 x′

t+1) is given by

Et exp[u′xt+1 + Tr(Vxt+1x′
t+1)]

= exp{u′m + u′Mxt + Tr V[mm′ + Mxtx′
t M′ + mx′

t M′ + Mxtm′]}
Et exp{u′εt+1 + Tr V[εt+1ε

′
t+1 + mε′

t+1 + εt+1m′ + Mxtε
′
t+1 + εt+1x′

t M′]}
= exp{u′m + u′Mxt + m′Vm + 2m′VMxt + Tr(M′VMxtx′

t)}
Et exp{[u′ + 2(m + Mxt)′V]εt+1 + ε′

t+1Vεt+1}

and, using Lemma 2 in Appendix C, we can write:

Et exp[u′xt+1 + Tr(Vxt+1x′
t+1)]

= exp{u′m + m′Vm + (M′u + 2M′Vm)′xt + x′
t M′VMxt

+ 1
2 [u′ + 2(m + Mxt)′V](I − 2V)[u + 2V(m + Mxt)] − 1

2 log det(I − 2V)} ,

which is exponential-affine in [x′
t , vech(xtx′

t)
′]′.

Received June 11, 2007; revised May 26, 2008; accepted July 18, 2008.
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