
Pricing and Inference with Mixtures

of Conditionally Normal Processes

H. Bertholon (1), A. Monfort (2) and F. Pegoraro (3)

This version : November, 2006

Abstract
Pricing and Inference with Mixtures
of Conditionally Normal Processes

We consider the problems of derivative pricing and inference when the stochastic discount factor has an exponential-
affine form and the geometric return of the underlying asset has a dynamics characterized by a mixture of conditionally
Normal processes. We consider both the static case in which the underlying process is a white noise distributed as a
mixture of Gaussian distributions (including extreme risks and jump diffusions) and the dynamic case in which the
underlying process is conditionally distributed as a mixture of Gaussian laws. Semi-parametric, non parametric and
Switching Regime situations are also considered. In all cases, the risk-neutral processes and explicit pricing formulas
are obtained.

Keywords : Derivative Pricing, Stochastic Discount Factor, Implied Volatility, Mixture of Normal Distributions,
Mixture of Conditionally Normal Processes, Nonparametric Kernel Estimation, Mixed-Normal GARCH Processes,
Switching Regime Models.

Résumé
Valorisation et Inférence à partir de Mélanges
de Processus Conditionnellement Gaussiens

On considère le problème de la valorisation et de l’inférence de produits dérivés quand le facteur d’escompte
stochastique (SDF) a une forme exponentielle-affine et le rendement géométrique du titre sous-jacent a une dynamique
caractérisée par un mélange de processus conditionnellement Gaussiens. On propose des modèles statiques dans
lesquels le processus sous-jacent est un bruit blanc avec une distribution mélange de lois Gaussiennes, et des modèles
dynamiques dans lesquels le processus sous-jacent a une distribution conditionnelle du type mélange de lois Gaussiens.
On étudie aussi des modèles semi-paramétriques, non paramétriques et a changement de régimes. Pour tous ces
modèles on détermine les processus risque-neutre et les formules de valorisations sous une forme explicite.

Mots Clés : Valorisation de Dérivés, Facteur d’Escompte Stochastique, Volatilité Implicite, Mélange de Lois
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1 Introduction

The basic option pricing model, proposed by Black and Scholes (1973), assumes that the logarithmic
return of the underlying asset follows a normal white noise. It is well-known that the pricing
formula derived from this approach is misspecified; in particular that the implied volatilities are
not constant, as a function of the strike and of the maturity and, moreover, depend on time. In
the literature, two main routes have been followed in order to solve these problems.

The first type of solutions considers various generalizations of the historical distribution of the
underlying stochastic process induced by the observation that stock returns are non-normal (left
skewed and leptokurtic), return volatilities vary stochastically over time, and returns and their
volatilities are correlated. Among these numerous generalizations are :

i) Stochastic volatilities [Hull and White (1987), Scott (1987), Amin and Ng (1993), Heston
(1993), Melino and Turnbull (1990), Renault and Touzi (1996), Jones (2003)];

ii) GARCH-type conditional volatilities [see Engle and Mustafa (1992), Bollerslev and Mikkelsen
(1996), Duan (1995, 1996, 1999), Heston and Nandi (2000), Duan, Gauthier, Simonato and
Sasseville (2004), Christoffersen, Heston and Jacobs (2004), Christoffersen and Jacobs (2004),
Christoffersen, Jacobs and Wang (2005), Christoffersen, Elkamhi and Jacobs (2005)];

iii) Jump components in the stock price and in the stochastic volatility dynamics [Merton (1976),
Bates (1996a, 1996b, 2000), Duffie, Pan and Singleton (2000), Pan (2002), Chernov, Gallant,
Ghysels and Tauchen (2003), Eraker, Johannes and Polson (2003), Broadie, Chernov and
Johannes (2004), Eraker (2004), Duan, Ritchken and Sun (2005a, 2005b)];

iv) The variance gamma (VG) process for the dynamics of the logarithm of the stock price
[Madan and Seneta (1990), Madan and Milne (1991), Carr, Madan and Chang (1998)];

v) Time-changed Levy processes [Carr and Wu (2004)];

vi) Switching regimes [Naik (1993), Bollen (1998), Garcia and Renault (1998), Billio and Pelizzon
(2000), Chourdakis and Tzavalis (2000), Duan, Popova and Ritchken (2002), Garcia, Luger
and Renault (2001, 2003)].

The second type of solutions deals directly with the option pricing formula, the implied volatility
surfaces or the risk-neutral probability [see, among the others, Madan and Milne (1994), Rubinstein
(1994), Bakshi, Cao and Chen (1997), Dumas, Fleming and Whaley (1998), Ghysels, Patilea,
Renault and Torrès (1997), Melick and Thomas (1997), Ait-Sahalia and Lo (1998), Bakshi and
Madan (2000), Jondeau and Rockinger (2000), Campbell and Li (2002), Cont and da Fonseca
(2002), Duan (2002), Ait-Sahalia and Duarte (2003), Carr and Wu (2003), Huang and Wu (2004)].
In this second approach, the link between the historical and the risk-neutral distributions is in
general ignored and, therefore, a precise analysis of how the market prices the different sources of
risk affecting option prices is missing.

The general conclusion of the above mentioned literature is that key elements for an option
pricing model to replicate the cross-sectional patterns and the dynamics of implied volatilities are
the introduction of jump-like features in both returns and volatility, correlation between the jumps
in returns and volatility, and pricing the risk for volatility and jumps [see Andersen, Benzoni and
Lund (2002), Chernov and Ghysels (2000), Pan (2002)].

The purpose of this paper is to propose the Mixtures of Discrete Time Conditionally Normal
processes, combined with the stochastic discount factor (SDF) modeling principle, as a global
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discrete time option pricing methodology providing several model specifications able to solve the
problems in the Black-Scholes model, namely the lack of normality and the dynamics. Indeed, we
explore various specifications of the historical stochastic processes, while providing at the same
time explicit risk-neutral distributions of the processes and option pricing formulas. Typically, the
risk-neutral distributions of the processes will be found to belong to the same class as the historical
distribution and the option pricing formulas will be combinations of Black-Scholes formulas.

The link between the historical and risk-neutral setting is provided by a parametric SDF under
an exponential-affine form which has proved useful in many circumstances [see Gerber and Shiu
(1994), Bakshi, Kapadia and Madan (2003), Garcia and Renault (1998), Garcia, Luger and Renault
(2001, 2003), Garcia, Ghysels and Renault (2004), Gourieroux and Monfort (2006), Gourieroux,
Monfort and Polimenis (2002, 2006)]. The parametric specification of the pricing kernel leads to
price the different sources of risk that affect option prices, providing, in this way, the possibility
for a more precise knowledge of the risk premia in options [see Pan (2002)].

As indicated above, the basic tools are the Mixtures of Discrete Time Conditionally Normal
processes, that is to say, processes {yt} such that yt is Gaussian conditionally to its past values and
the present and past values of a discrete valued unobservable process zt. Typically, the dynamics
of zt will be (a discrete state space) white noise or Markov chain. In this way, we are able to
introduce skewness and excess kurtosis in the historical dynamics of the stock return, to generate
implied volatility smiles, volatility skews and implied volatility surfaces coherent with observations.
Indeed, a discrete change of state in the latent variable zt, affecting simultaneously the conditional
(historical and risk-neutral) mean and variance of the return process, produce correlated sources
of non-normality suggested by the literature.

From a probabilistic point of view, we consider three main situations. In the static case, the
process (yt, zt) is a white noise, and therefore yt is a mixed-normal white noise. In the mixed-
normal (MN) GARCH case, zt is an exogenous white noise and, conditionally to its own past, yt

is distributed as a mixture of Gaussians laws. In the Switching Regime case, zt is an exogenous
discrete process (typically a Markov chain) and conditionally to the past of yt and zt, yt is distrib-
uted as a mixture of normal distributions. From a statistical point of view, we consider parametric,
semi-parametric and nonparametric cases. In the non parametric and semi-parametric cases the
normality is introduced in the kernel used at the estimation stage.

The plan of the paper is as follows. In Section 2, we review the use of exponential-affine sto-
chastic discount factor and of real Laplace transform (or moment generating function). In Section
3, we present the advantages of mixtures of normal distributions, and in particular their ability to
span the skewness-kurtosis domain of maximal size. In Section 4, we consider the case where the
historical process is a white noise distributed as a Gaussian mixture, we present the pricing for-
mula, we consider the special cases of extreme risks and jump diffusions, and we numerically study
its ability to replicate implied volatility smiles, volatility skews and volatility surfaces coherent
with observations. In Section 5, we study the nonparametric static case, that is the case where the
white noise distribution is unspecified. In Section 6, we consider a parametric dynamic case; more
precisely, several kinds of conditionally mixed-normal GARCH processes are proposed. In Section
7, we deal with the semi-parametric dynamic case, in which the distribution of the conditionally
standardized process is left unspecified, while, in Section 8, we study the Switching Regime mod-
elisation; here, we present an easy simulation procedure, using the explicit specification we have
about the risk-neutral density, to price path dependent derivatives and European options with time
to maturity larger than one. Moreover, we compare the implied volatility surface obtained by the
Switching Regimes model with the one obtained by the static Mixed-Normal specification. Section
9 concludes and appendices gather the proofs.
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2 Pricing With Exponential-Affine Stochastic Discount Factor

In order to briefly present the Stochastic Discount Factor (SDF) modeling principle [see Gourieroux
and Monfort (2006) for a detailed presentation], we consider a frictionless market with a riskfree
asset and one risky asset; we denote by rf

t+1 the riskfree rate between the dates t and t+1 (known
at time t, that is, predetermined) and by yt+1 = ln(St+1/St) the geometric return on the risky
asset with price St.

In this context, under the absence of arbitrage opportunities, the price at t of a derivative asset
paying g(yt+1, . . . , yt+H) at t+H, can be written (under the historical probability) in the following
way :

Ct(g, H) = E[Mt,t+1 . . .Mt+H−1,t+H g(yt+1, . . . , yt+H)| It],

= Et[Mt,t+Hg(yt+1, . . . , yt+H)],
(2.1)

where It = yt = (yt, yt−1, . . .) is the information on the current and lagged values of the state
variable available at date t for the investor, and where Mt,t+1 is the Stochastic Discount Factor
between t and t + 1, which is function of It+1.

In particular, we present the problem of asset pricing by means of a stochastic discount factor
(SDF) Mt,t+1 characterized by an exponential-affine form :

Mt,t+1 = exp[αtyt+1 + βt], (2.2)

where coefficients αt and βt can be path dependent, that is, function of It. Observe that this
specification of the pricing kernel characterizes power utility economies with a non-constant relative
risk-aversion coefficient φt = −αt [the same kind of SDF specification with constant coefficients
is considered, among the others, by Bakshi, Kapadia and Madan (2003) and Léon, Mencia and
Sentana (2005)].

By writing the pricing formula for the riskfree and risky asset at different dates, we obtain
two arbitrage free conditions that induce restrictions on the relationship between the SDF and the
historical distribution. More precisely, the constraints are :





Et

[
Mt,t+1 exp rf

t+1

]
= 1

Et [Mt,t+1 exp yt+1] = 1

⇐⇒




exp(rf
t+1 + βt) Et[expαtyt+1] = 1

exp(βt) Et[exp(αt + 1)yt+1] = 1

⇐⇒




exp(rf
t+1 + βt) ϕt(αt) = 1

exp(βt) ϕt(αt + 1) = 1,

where ϕt(α) is the real conditional Laplace transform (also called moment generating function) of
yt+1 (given It).

The Laplace transform, used to describe the conditional historical distribution of yt+1, is defined
on a convex set that depends on the tails of the conditional distribution. We assume below that
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this convex set is not reduced to one point located at the origin.
This system in general admits a unique solution (αt,βt) such that:





ϕt(αt + 1) = exp rf
t+1ϕt(αt)

expβt = [ϕt(αt + 1)]−1,

(2.3)

and, consequently, we deduce a unique specification of the SDF (2.2).
The associated unique risk-neutral conditional distribution Qt of yt+1, given It, has a p.d.f.

with respect to the corresponding historical distribution given by Mt,t+1/Et(Mt,t+1) and a Laplace
transform given by:

EQt [expuyt+1]

= Et

[
Mt,t+1

Et(Mt,t+1)
expuyt+1

]

= exp(rf
t+1 + βt)Et [exp((αt + u)yt+1)]

=
ϕt(αt + u)

ϕt(αt)
.

(2.4)

An asset providing the payoff g(yt+1) at time t + 1 is priced at time t by :

Ct(g, 1) = Et [Mt,t+1g(yt+1)] = exp(−rf
t+1)E

Qt [g(yt+1)] . (2.5)

With a larger time horizon H, the conditional joint risk-neutral distribution QH
t of (yt+1, . . . , yt+H)

given It has a p.d.f., with respect to the corresponding historical distribution PH
t , given by :

dQH
t

dPH
t

=
Mt,t+1 · . . . ·Mt+H−1,t+H

Et(Mt,t+1) · . . . · Et+H−1(Mt+H−1,t+H)
, (2.6)

and the associated pricing formula takes the form :

Ct(g, H) = Et [Mt,t+1 · . . . ·Mt+H−1,t+Hg(yt+1, . . . , yt+H)]

= EQt [Et(Mt,t+1) · . . . · Et+H−1(Mt+H−1,t+H)g(yt+1, . . . , yt+H)] .
(2.7)

If the short term riskfree rates are known at date t, we get :

Ct(g, H) = exp

(
−

H∑

h=1

rt+h

)
EQt [g(yt+1, . . . , yt+H)] .
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3 The advantages of Mixtures of Normal distributions

3.1 Flexibility of Mixed-Normal Statistical models

It is well known from empirical research that, contrary to the Gaussian case, the distributions
of stock returns are characterized by a non zero skewness and a large kurtosis [see Mandelbrot
(1962, 1963a,b, 1967), Fama (1965)], and in order to capture these features several distributions
have been proposed in the literature. Families of distributions that have shown a close data fit
are the Stable Paretian distributions [see, for example, Mandelbrot (1997), Mittnick and Rachev
(1993a,b), Mittnick, Paolella and Rachev (1997), Adler et al. (1998)], the Finite Mixture of Normal
distributions [see, among the others, Kon (1984), Akgiray and Booth (1987), Tucker and Pond
(1988)], the Student distributions [see Bollerslev (1987), Baillie and Bollerslev (1989), Palm and
Vlaar (1997), Lambert and Laurent (2000, 2001)] and the hyperbolic distributions [see Barndorff-
Nielsen (1994), Eberlein and Keller (1995), Kuechler et al. (1994)]. More recently, Jondeau and
Rockinger (2001, 2002, 2003) proposed, respectively, Gram-Charlier, Entropy and Generalized
Student-t densities, while, Leon, Mencia and Sentana (2005) proposed the semi-nonparametric
distribution (SNP) introduced by Gallant and Nychka (1987).

Our choice of a mixture of Normal distributions as a basic tool for the modelling of stock returns
derives from the following important properties :

i) it encompasses the Normal distribution and it can be used to model a continuous distortion
of the latter by means of two or several weights [see e.g. contamination models in Section
4.2, or jump diffusion models in Section 4.3].

ii) it can approximate any kind of distributions since the well-known Normal kernel density
estimator may be viewed as a particular mixture of Normal distributions [see also Section 5].

iii) it is stable by convolution [which is convenient for example when summing geometric returns
on several periods].

iv) it is very easy to simulate.

v) it matches well with theoretical tools such as Laplace Transforms, and therefore it is adapted
for option pricing purposes [see Section 4].

Moreover, other important features of the mixtures of Normal distributions are presented below.

3.2 Spanning the skewness-kurtosis domain of maximal size

It is well known that the skewness µ̃3 and kurtosis µ̃4 of a random variable with any probability
distribution span the domain D = {(µ̃3, µ̃4) ∈ R × R∗+ : µ̃4 ≥ µ̃2

3 + 1}. This means that, in the
(µ̃3, µ̃4)-plane, the boundary of the skewness-kurtosis domain of maximal size D is a parabola in
which µ̃4 is bounded from below by 1.

The purpose of this section is to show that any possible pair of skewness-kurtosis in the maximal
set D can be reached by a mixture of only two Normal distributions4. Moreover, we provide (quasi-
explicit) parameter values of the mixture able to replicate any given mean µ, variance σ2, skewness
µ̃3 and kurtosis µ̃4.

4Jondeau and Rockinger (2001, 2003), and Leon, Mencia and Sentana (2005) also studied the set of skewness-
kurtosis pairs spanned by their densities. In all these cases, only a (bounded or unbounded) subset of D was reached.
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Proposition 1 : The family of mixtures of two Normal distributions spans D. More precisely, we
have the following two cases.

Case 1 : The mixture of two normal distributions :

p N
(

µ + σ

√
1− p

ap
,
σ2(a− 1)

a

)
+ (1− p) N

(
µ− σ

√
p

a(1− p)
,
σ2(a− 1)

a

)
,

where :

- a is the (unique) root ≥ 1 of the polynomial p(x) = µ̃2
3x

3 + (3− µ̃4)x2 − 2

- p =
1
2
− µ̃o

3

2
√

(µ̃o
3)2 + 4

, with µ̃o
3 = a

3
2 µ̃3.

span the set (µ, σ2, µ̃3, µ̃4) with µ̃3 6= 0, or µ̃3 = 0 and µ̃4 < 3.

Case 2 : The mixture of two normal distributions :

p N
(

µ,
σ2

2p

)
+ (1− p) N

(
µ,

σ2

2(1− p)

)

with p =
1
2
± 1

2

√
1− 3

µ̃4
, spans the set (µ, σ2, µ̃3, µ̃4) with µ̃3 = 0 and µ̃4 ≥ 3.

[Proof : see Appendix 1.]

3.3 Matching financial stylized facts

In a financial context, two important elements are in favour of the mixed-normal statistical model.
The first element arises from an empirical observation [see, for instance, Campbell, Lo and

MacKinlay (1997)] that the Paretian family, for instance, is not able to reproduce. Empirical
analysis show that asymmetries and fat-tails are much weaker for low frequency observations (long
horizon returns) than for high frequency ones (short horizon returns), that is, the marginal distri-
bution of yt,t+k =

∑k
i=1 yt+i, k ∈ N and k ≥ 1, where yt is the geometric return of a given risky

asset between t − 1 and t, shows decreasing negative skewness and leptokurtosis as k increases.
Therefore, if we want to perform this kind of behaviour we need to use distributions characterized
by finite moments for which the Central Limit Theorem applies and drives longer-horizon returns
towards normality. In particular, empirical researches [see Tucker (1992)] have shown that the
general stable Paretian model is dominated by the jump-diffusion model [see Merton (1976) and
paragraph 4.3] and by the finite mixture of Normal distributions model; in the latter case, it seems
that the higher goodness of fit is obtained by a mixture of two Normal distributions.

The second element is linked to an interesting feature of the Mixed Normal distribution, not
shared by other distributions (like, for instance, the hyperbolic or the Student distribution), that
is, the economic interpretation we can give to it and that can be of interest not only for researchers,
but also for practitioners such as risk managers. For instance, a mixture of two or more Normal
distributions is used, in the asset pricing literature, to describe different regimes characterizing
the fundamentals of the economy (consumption or dividend growth rate), or to represent market
periods with different levels of volatility. Moreover, this modelling offers the possibility to better
explain a number of phenomena like the return predictability or the relation between risk and
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return [see, among the others, Abel (1994, 1999), Bonomo and Garcia (1994, 1996) Cecchetti, Lam
and Mark (1990), Veronesi (1999, 2000, 2004), Whitelaw (2000), Calvet and Fisher (2004), Garcia,
Meddahi, Tedongap (2006)].

The Mixed-Normal distribution will be the basic building block of this paper, both for static
models and dynamic models.

4 The Static Parametric Model

In this Section, we study the pricing problem through a static parametric model. More precisely,
in Section 4.1, we consider the case where the geometric returns yt of the risky assets are i.i.d.
and distributed as a finite mixture of Normal distributions. So the process yt can be viewed as
Gaussian conditional on the discrete valued white noise giving at each date t the index of the
relevant Gaussian component. The riskless rate is fixed and denoted by r. In Section 4.2, we use
the mixed normal distribution for modeling extreme risks whereas, in Section 4.3, we present the
jump-diffusion case (infinite countable mixture of Normal distributions).

4.1 Pricing with a finite mixture of Normal distributions

4.1.1 Historical and risk-neutral distributions

Since, in this section we are in a static case, we will often drop the index t for sake of notational
simplicity. Let us consider a geometric return y whose historical distribution is a mixture of J
Normal distributions denoted by MN (J, pj , µj , σ

2
j ), its p.d.f. is given by :

f(y) =
J∑

j=1

pj n(y; µj , σ
2
j ), (4.1)

where, for j = 1, ..., J

n(y; µj , σ
2
j ) =

1
σj

√
2π

e
− 1

2

(y−µj)2

σ2
j ,

0 ≤ pj ≤ 1,
J∑

j=0

pj = 1.

Its mean, variance, skewness and kurtosis are
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µ =
J∑

j=1

pjµj

σ2 =
J∑

j=1

pj(σ2
j + µ2

j )− µ2

µ̃3 =
1
σ3

J∑

j=1

pj(µj − µ)[3σ2
j + (µj − µ)2]

µ̃4 =
1
σ4

J∑

j=1

pj [3σ4
j + 6(µj − µ)2σ2

j + (µj − µ)4].

By applying in this static framework the general approach described in Section 2 we get the
following results. In particular, in Proposition 4 we obtain the pricing formula for a Call option with
maturity one and strike K: this derivative asset gives the payoff (St+1 −K)+ = St [exp yt+1 − κ]+

where κ = K/St. Normalizing St to one the payoff is (exp yt+1 − κ)+.

Proposition 2 : If the historical distribution is a mixture of J Normal distributionsMN (J, pj , µj , σ
2
j )

and if the stochastic discount factor is exponential-affine, we have a unique solution (α,β) that sat-
isfies system (2.3). The unique value of α is the solution of :

J∑

j=1

pj exp
(

αµj + σ2
j

α2

2

)[
exp

(
µj + σ2

j α +
σ2

j

2

)
− exp r

]
= 0. (4.2)

[Proof : see Appendix 2.]

Proposition 3 : The risk-neutral distribution Q is unique and is a mixture of Normal distributions
with the following p.d.f. :

fQ(y) =
J∑

j=1

νj n(y; µj + ασ2
j , σ

2
j ), (4.3)

where, for j = 1, ..., J

νj =
pj exp

(
αµj + σ2

j
α2

2

)

∑J
j=1 pj exp

(
αµj + σ2

j
α2

2

)

0 ≤ νj ≤ 1,

J∑

j=1

νj = 1,

and with α the solution of relation (4.2). [Proof : see Appendix 3.]

When J > 1, the risk-neutral distribution depends on the volatilities σj ’s and also on the
drifts µj ’s, with j ∈ {1, . . . , J}, denoting an evolution with respect to the Black-Scholes framework
(J = 1).
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Proposition 4 : The price of the European Call option with payoff (exp yt+1− κ)+ and maturity
one is:

Ct = exp(−r)EQ[exp yt+1 − κ]+

=
J∑

j=1

νj γj CBS

(
σ2

j ,
κ

γj

)
,

(4.4)

where CBS is the (one-period) Black-Scholes formula with a volatility equal to σ2
j and moneyness

strike equal to κ/γj , and

γj = exp

(
µj + ασ2

j − r +
σ2

j

2

)
.

Moreover, it can be shown that

0 ≤ νjγj ≤ 1,
J∑

j=1

νjγj = 1.

[Proof : see Appendix 4.]

The propositions presented above consider the case of a one-period geometric return yt+1, but
similar results can be obtained for a geometric stock return yt,t+H = yt+1 + . . . + yt+H at horizon
H larger than one. Indeed, yt,t+H has a distribution which is once more a mixture of normal
distributions with historical p.d.f. :

f(yt,t+H) =
H∑

hj=0
j={1,..., J−1}

H!
h1! · . . . · hJ !

ph1
1 · . . . · phJ

J n




J∑

j=1

hjµj ,
J∑

j=1

hjσ
2
j


 ,

with
∑J

j=1 hj = H.

4.1.2 Generalizing the Black-Scholes market risk premium

The pricing formula that we obtain by the finite mixture of Normal distributions assumption
is a linear combination of J Black-Scholes formulas. It depends not only on the variances, but also
on the means of the Gaussian distributions in the mixture.

Moreover, it is easily seen that, in the Gaussian (Black-Scholes) case (i.e. when J = 1) we
have, under the absence of arbitrage restrictions, that αbs = −(σ2)−1[µ− r + (σ2/2)], therefore γj

can be written :

γj = exp
[
σ2

j (α− αbs,j)
]
,

where αbs,j = −(σ2
j )
−1[µj− r +(σ2

j /2)] is the value of αbs corresponding to the Gaussian case asso-
ciated with the jth component of the mixture, and where α is the risk correction factor associated
with the Mixed-Normal framework. Indeed, if we consider the Black-Scholes parameterization of
the Gaussian distribution, that is, if we define µj = mj − σ2

j /2, we find that αbs,j = −Πbs,j , with
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Πbs,j = (mj − r)/σ2
j the price of risk characterizing the jth Gaussian market; consequently, we can

rewrite γj in the following way :

γj = exp
[
σ2

j (Πbs,j −Πmn)
]
,

where Πmn = −α can be interpreted as the price of risk in the Mixed-Normal market.
In particular, the modified BS formula CBS(σ2

j , κ/γj) defines an option price larger (resp.
smaller) than the BS price CBS(σ2

j , κ) if the coefficient γj modifying the strike is larger (resp.
smaller) than one, that is, if Πbs,j is larger (resp. smaller) than Πmn. Thus, if the jth Gaussian
market has a level of risk (priced by Πbs,j) larger (resp. smaller) than the general level (priced by
Πmn), then the Mixed-Normal model gives a price larger (resp. smaller) than the price determined
by the Black-Scholes model [compare with Ritchey (1990) where a strong assumption of risk-
neutrality is made].

4.2 Modeling extreme risks

Here we are interested in a particular mixture of two normal distributions, one of which having a
small weight associated with a strong variance. This example enables us to take into account the
unlikely occurrence of an important shock on the volatility.

More precisely, we consider a geometric return y whose distribution is given by the following
p.d.f :

f(y) = λn

(
y; µ,

σ2
1

λ

)
+ (1− λ) n

(
y; µ,

σ2
2

1− λ

)
, (4.5)

and we consider the situation in which λ tends to zero.

Proposition 5 : The main characteristics of this distribution are:

E (y) = µ

σ2 = V (y) = σ2
1 + σ2

2

E (y − µ)3

σ3
= 0

E (y − µ)4

σ4
=

3
[

σ4
1

λ + σ4
2

1−λ

]

[
σ2

1 + σ2
2

]2 → +∞

y
D−→ N (

µ, σ2
2

)
, when λ → 0 .

[Proof : see Appendix 5.]

These results show that, when λ tends to 0, this distribution is in a sense close to the Gaussian
distribution, but with a strong kurtosis; it is a case where the convergence in distribution does not
imply the convergence of the moments.
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We now apply the general propositions of Section 4.1.1 to this special case [see Appendix 5 for
the proofs].

Proposition 6 : The value of α given by the solution of equation (4.2) converges to −1
2 when

λ → 0 .

Proposition 7 : The risk-neutral distribution Q has the following p.d.f. :

fQ(y) = ν1 n

(
y; µ + α

σ2
1

λ
,
σ2

1

λ

)
+ ν2 n

(
y; µ + α

σ2
2

1− λ
,

σ2
2

1− λ

)
(4.6)

where

ν1 =
λ exp

(
σ2
1

λ
α2

2

)

λ exp
(

σ2
1

λ
α2

2

)
+ (1− λ) exp

(
σ2
2

1−λ
α2

2

) and ν2 = 1− ν1 .

We note that : ν1−→1 when λ → 0.

Proposition 8 : The price of the European Call option can be written :

Ct = ν1 γ1 CBS

(
σ2

1

λ
,

κ

γ1

)
+ ν2 γ2 CBS

(
σ2

2

1− λ
,

κ

γ2

)
(4.7)

with

γ1 = exp
(

µ + α
σ2

1

λ
− r +

σ2
1

2λ

)
.

γ2 = exp
(

µ + α
σ2

2

1− λ
− r +

σ2
2

2(1− λ)

)

and :

ν1 γ1 −→ 1
Ct −→ 1, when λ → 0.

We notice that the first component of the historical mixture distribution has a small weight whereas
on the contrary it is associated with a strong weight for the risk-neutral distribution and conse-
quently for the price of the European Call option. The first term of the price tends to 1, that is to
say the (normalized) price of the underlying asset, and the second term tends to zero. This may
be seen as the effect of strong kurtosis.

4.3 The jump-diffusion model

A general jump diffusion model, as proposed by Merton (1976), is defined as a superposition
of two continuous time processes. The first one is a Brownian motion used classically to model
”normal” movements on returns and the second one is constructed on the basis of a Poisson process
(each Poisson event causes a normally distributed jump on returns). The latter enables to model
”abnormal” movements on returns.
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Here we want to work in a discrete time context and so we define a geometric return distribution
for one period. Let us first recall that the continuous time process is :

ln
(

St

S0

)
= µt + σB (t) +

Nt∑

j=1

Yj (4.8)

where St is the asset price at time t, B(t) is a standard Brownian motion, Nt is a Poisson
counting process with parameter λ and Yj (which measures the jth jump amplitude) is, for each
j ∈ {1, . . . , J}, independently and identically normally distributed N (µp, σ

2
p).

The geometric return distribution on one period, i.e the distribution of yt = log(St/St−1), is an
infinite countable mixture of Normal distributions with Poisson weights. Its p.d.f. is the following:

+∞∑

j=0

e−λ λj

j!
n(µ + jµp, σ

2 + jσ2
p) (4.9)

Therefore we are able to give analoguous formulas to (4.2), (4.3), (4.4) [see Appendix 6 for the
proofs].

Proposition 9.a : The unique value of α is the solution of :

µ− r +

�
α +

1

2

�
σ2 + λ exp

�
αµp + σ2

p
α2

2

��
exp

�
µp + σ2

p

�
α +

1

2

��
− 1

�
= 0

(4.10)

Proposition 9.b : The risk-neutral distribution is again an infinite countable mixture of Normal
distributions with modified Poisson weights :

fQ(y) =
+∞∑

j=0

νj n(y; µ + ασ2 + j
(
µp + ασ2

p

)
, σ2 + jσ2

p), (4.11)

where νj = exp(−λ
′
)λ
′ j

j ! with λ
′
= λ exp

(
αµp + σ2

p
α2

2

)
.

Thus, the risk-neutral process is again of jump diffusion type, with a modified drift µ′ = µ+α σ2,
the same volatility σ2, a modified mean µ′p = µp + α σ2

p and the same variance for the amplitude
of the shock and, finally, a modified Poisson parameter λ′.

Proposition 9.c : The price of the European Call option is an average of the Black-Scholes
formulas with Poisson weights :

Ct =
∞∑

j=0

βj CBS

(
σ2 + jσ2

p,
κ

γj

)
, (4.12)

where βj = exp(−λ̃) λ̃j

j! with λ̃ = λ exp
(
(α + 1)µp + σ2

p
(α+1)2

2

)
,

and γj = exp
(
µ + jµp + α(σ2 + jσ2

p)− r + σ2+jσ2
p

2

)
.
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4.4 Implied Black-Scholes volatility and historical parameters

We have seen in previous sections that the call option pricing formula depends on parameters
Λ = (pj , µj , σ

2
j ; j = 1, . . . , J) of the historical distribution instead of the volatility σ only in the BS

formula. In particular, the assumption of a mixed normal distribution, able to reproduce asset’s
returns stylized facts such as asymmetries and fat tails, allows to describe implied volatility curves
with smile and skew shapes. These features are presented on Figures 1, 2 and 3, with parameters
fixed to (annualized) empirically reasonable values.

In the first case we consider a mixture of two Gaussian distributions with the same means and
probabilities (µ1 = µ2 = 0.03, p = 0.50) and with a global variance fixed to the level σ2 = 0.04 :
this situation allows to isolate and observe the effect of an increasing kurtosis on the implied BS
volatility (for maturity one year), starting from the (flat) BS form (when σ2

1 = σ2
2 = σ2 = 0.04) and

applying an increasing variance in the second component of the mixture5 (σ2
1 contemporaneously

reduces to guarantee a fixed global variance). The implied volatility induced by our model takes the
smile shape when the kurtosis coefficient leaves the BS case and takes higher values. In particular,
we are able to reproduce the empirically observed fact that the BS formula tends to underprice
out-of-the-money and in-the-money options, while overpricing at-the-money options [see Figure 1];
moreover, the values of the implied volatilities replicated by this simple static model are close to
the observed ones for European Index options [see, for instance, Pan (2002)].

In the second case, we get a more asymmetric smile by taking a mixture of two Gaussian random
variables with higher means (µ1 = µ2 = 0.07) and variances than in the first case, but now the
first component has a much higher weight than the second one; as in the previous case, we consider
a fixed global variance (σ2 = 0.05) and we induce an increasing kurtosis by an increasing change
in σ2

2 (σ2
1 reduces to keep the global variance fixed). This structure describes a market with high

expected returns and with a (typical) low volatility scenario that sometimes switches to an high
volatility one : the combination of these two features by means of the mixed normal model leads
to produce, at realistic values, implied BS volatilities with more asymmetric smiles [see Figure 2].

In the third case [see Figure 3], we present the volatility skew, that is, an implied volatility
shape typical of equity options. Indeed, in this situation the historical distribution of the return of
the underlying asset is left-asymmetric with a left tail fatter than the right one because of the higher
probability of large negative returns. In order to reproduce this type of distribution, we consider a
mixture where the first component has a lower mean (µ1 = 0.01 and µ2 = 0.08, with p = 0.5), but
a variance higher than the second one. As in the previous cases, we consider a fixed global variance
and we observe the effect of an increasing negative skewness induced by an increasing value in
the variance of the first component6. Figure 3 shows that as the negative skewness increases with
the size of the left tail, the implied volatility takes a more pronounced skewed shape denoting the
induced higher value for out-of-the-money Put options and in-the-money Call options.

In Figure 4, we present the implied volatility surface obtained from the static Mixed-Normal
model (the time-to-maturity, measured in years, changes from 0.25 to 1.5). We can observe that,
as the maturity increases, the profile of implied volatility becomes flatter denoting, consequently,
an increasing presence of risk-neutral normality in the distribution of the underlying return. We
will see in Section 8.4 that the Switching Regime specification is able to replicate a surface closer

5It is easy to verify that, in the case of a mixture of two gaussian random variables with the same means and with
a global variance σ2 fixed to a certain level M, µ̃3 = 0 and µ̃4 = g(M, σ2

2) with (∂µ̃4/∂σ2
2) R 0 if and only if σ2

2 R M .
6In this situation, the movement on σ2

1 modifies at the same time the skewness and kurtosis parameters, but
the fact to consider a fixed global variance with µ1 lower than µ2 guarantees to have µ̃3 < 0 for every σ2

1 >
σ2

2 + 1
3
(µ1 − µ2)

2(2p − 1) and the skewness parameter takes higher negative values when the difference between σ2
1

and the RHS of the inequality increases.
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to those observed, for instance, for European-style Index options [see Cont and da Fonseca (2002)].
Now, if we consider the previous volatility skew case, without fixing the global variance, we can

observe the movement of the implied BS volatility in a context characterized at the same time by
increasing global variance and skewness and by changes in the kurtosis coefficient. Figure 5 shows
that the variations in variance, skewness and kurtosis, induced by an increasing value of σ2

1, gives
an implied volatility curve that, starting from the BS case, takes more pronounced skewed shapes
at higher value levels of volatility. In other words, in this more general case, we have at the same
time level and skew effects.

It is also interesting to study the behaviour of the implied BS volatility of the extreme-risks
parameterization presented in Section 4.2. Here, as λ tends to zero, the geometric return (in the
historical framework) converges in distribution to the Gaussian law, but with a kurtosis increasing
to infinity (convergence in distribution without convergence of moments): Figure 6 (in which we set
σ2

1 = σ2
2) shows that starting from the flat implied volatility (λ = 0.5), if we consider a decreasing

value of λ, the induced higher kurtosis leads to a smile shape as presented in Figures 1 and 2, but
now, since the kurtosis tends rapidly to infinity when λ tends to zero, the implied BS volatility
increases quickly for every moneyness strike [see Figure 7] denoting the effect induced by extreme
risks. Observe that the implied volatilities associated to large kurtosis take values close to those
we frequently observe in an high volatility option market.

5 The Static Nonparametric Case

The models presented in the previous sections are based on a parametric historical distribution
for stock returns. Let us now consider the Nonparametric static viewpoint, combined with a
parametric pricing kernel (2.2), for option pricing. In this approach, the geometric returns are
i.i.d., their distribution is not specified and is estimated by means of the well-known Gaussian
kernel density estimator. It turns out that this estimator is a mixture of normal distributions with
constant variances [equal to b2, where b is the smoothing parameter (bandwidth)] and that the
weights are all equal.

We note (y1, y2, ..., yJ) the observations of the geometric return. The Gaussian kernel estimator
is :

f(y) =
J∑

j=1

1
J

n(y; yj , b
2), (5.1)

Therefore, by a direct application of formulas (4.2), (4.3), (4.4), we obtain the following results:
First, α is the unique solution of :

J∑

j=1

exp (αyj)
[
exp

(
yj + b2α +

b2

2

)
− exp r

]
= 0. (5.2)

Second, the risk-neutral p.d.f. is :

fQ(y) =
J∑

j=1

νj n(y; yj + αb2, b2), (5.3)

where, for j = 1, ..., J

νj =
exp (αyj)∑J

j=1 exp (αyj)
.
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Third, the price of the European Call option is :

Ct =
J∑

j=1

ν
′
j CBS

(
b2,

κ

γj

)
, (5.4)

with

ν
′
j =

exp [(α + 1) yj ]∑J
j=1 exp [(α + 1) yj ]

and

γj = exp
(

yj + αb2 − r +
b2

2

)
.

Thus, using the Gaussian kernel estimator, it is possible to include the general Nonparametric
case in the framework of normal mixtures, and to derive general procedures to obtain risk-neutral
distributions and option pricing formulas7.

6 The Mixed-Normal GARCH Model

The aim of this section and the following ones is to extend the model presented in Section 4.1 to
a dynamic framework. In this section, the dynamics is introduced by means of a GARCH-type
characterization of the geometric stock return with a conditional distribution defined by a Mixture
of Gaussian random variables. In Section 7 we present a Dynamic Semi-Parametric specification
for the historical dynamics of the log return, while Section 8 deals with the Switching Regime case.

The Mixed-Normal GARCH model presented here gives the possibility to describe in a simple
and realistic way not only the typical stylized facts of asset returns as volatility clustering, heavy
tails and asymmetries, but also new emerging behaviours like time-varying skewness and kurtosis
as indicated in the papers of Hansen (1994), Paolella (1999), Harvey and Siddique (1999), Brännäs
and Nordman (2001), Rockinger and Jondeau (2002)8.

Let us first consider a mixture of two Gaussian distributions with a mean equal to zero, which
will be used to derive classes of martingale difference sequences. Such a distribution can be para-
meterized as :

f(u) = λn
(
u; a(1− λ), σ2

1

)
+ (1− λ)n

(
u;−aλ, σ2

2

)
(6.1)

where 0 ≤ λ ≤ 1, and a ∈ R.
7Ait-Sahalia and Duarte (2003) also proposed a non parametric option pricing methodology where, working

directly in the risk-neutral setting, they estimate the state price density from a cross-section of option prices. Their
approach needs to impose shape restrictions on the pricing functions in order to satisfy the absence of arbitrage
conditions [the price of a Call option must be a decreasing and convex function of the strike]. Our Mixed-Normal
Nonparametric approach, based on the exponential-affine SDF change of measure, automatically guarantee the
absence of arbitrage restrictions and, actually, the pricing function (5.4) is given by a linear combination of Black-
Scholes formulas.

8Camara (2003) and Christoffersen, Heston and Jacobs (2004) present option pricing models, with GARCH
volatility dynamics, under alternative distributional assumptions.
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The mean, variance, skewness and kurtosis are

µ = 0

σ2 = [λσ2
1 + (1− λ)σ2

2] + a2λ(1− λ)

µ̃3 =
1
σ3
{aλ(1− λ)[3(σ2

1 − σ2
2)]}

µ̃4 =
1
σ4
{3[λσ4

1 + (1− λ)σ4
2] + 6a2λ(1− λ)[(1− λ)σ2

1 + λσ2
2]

+a4λ(1− λ)[3λ2 − 3λ + 1]}.

Normal mixtures in a GARCH context were suggested by Vlaar and Palm (1993, 1997), Bauwens
et al. (1999) and Lin and Yeh (2000). All these modelisations are special cases of the general
specification proposed by Hass, Mittnick and Paolella (2002)[HMP hereafter].

The GARCH characterizations of the dynamics we propose for our pricing framework are of
two types, and the first one is a particular case of the HMP model [see Appendix 7]. In both cases,
the binary process zt, giving the Gaussian component, is an exogenous white noise and, therefore,
conditionally to its own past, yt follows a mixture of normal distributions.

6.1 The MN-GARCH process of first type

In this case, the conditional distribution of process (εt) is a mixture of two Gaussian distributions :

f(εt+1| εt) = λn
(
εt+1; a(1− λ), σ2

1t+1

)
+ (1− λ)n

(
εt+1;−aλ, σ2

2t+1

)
, (6.2)

where εt := (εt, εt−1, . . .) is the information on the current and lagged values of εt and where the
variances of the mixture components evolve according to GARCH specifications. In order to keep
the notation simple, we consider GARCH(1,1) specifications (a generalization to GARCH(p, q)
structures is straightforward) :





σ2
1t+1 = ω1 + b1ε

2
t + c1σ

2
1t

σ2
2t+1 = ω2 + b2ε

2
t + c2σ

2
2t,

(6.3)

submitted to non-negativity conditions ci ≥ 0, ωi > 0 and bi ≥ 0, i ∈ {1, 2}.
Conditionally to the values of an i.i.d. latent process giving the chosen component at each

date t, the process is gaussian conditionally to its past. The process εt is a martingale difference
sequence, since E(εt+1| εt) = 0, and can be used as a building block for more complex models, such
as ARMA-GARCH or GARCH-M models.

It is possible to verify [see Appendix 6] that εt also has a GARCH specification, if we impose
the constraint c1 = c2 = c. Indeed, in this case, we can write :

E(ε2
t+1| εt) := σ2

t+1 = ξ + [λb1 + (1− λ)b2] ε2
t + cσ2

t ,

with ξ := (1− c)a2λ(1− λ) + λω1 + (1− λ)ω2.
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In this type of model, the conditional distribution of the standardized variable εt+1

σt+1
, given εt, is

a mixture of normal distributions depending on the past, and a conditional Maximum Likelihood
estimation procedure can be followed, while the second type of MN-GARCH model presented below
gives an i.i.d. specification to the standardized process and a useful two-step estimation procedure
is proposed.

6.2 The MN-GARCH process of second type

If we consider again the simple GARCH(1,1) specification, the model takes the following form :




εt+1 = σt+1ut+1

σ2
t+1 = ω + cε2

t + dσ2
t ,

(6.4)

where (ut) is a sequence of independent zero mean mixed-normal random variables characterized
by the following p.d.f. :

f(ut) = λn
(
ut; a(1− λ), σ2

1

)
+ (1− λ)n

(
ut;−aλ, σ2

2

)
, (6.5)

and where the conditional p.d.f. of εt takes the following form :

f(εt+1| εt) = λn
(
εt+1; σt+1a(1− λ), σ2

t+1σ
2
1

)
+ (1− λ)n

(
εt+1;−σt+1aλ, σ2

t+1σ
2
2

)
. (6.6)

Thus, conditionally to the i.i.d. latent process giving the chosen component at each date,
the process is also conditionally Gaussian. By definition, the variables εt

σt
are i.i.d.. Note that

the model is overparameterized, and in order to solve the identification problem, we propose two
possible identification restrictions.

i) Normalization of the variance of ut

This first restriction imposes that :

V (ut) = [λσ2
1 + (1− λ)σ2

2] + a2λ(1− λ) = 1, (6.7)

and, consequently, we obtain V (εt+1| εt) ≡ σ2
t+1 and V (εt+1) ≡ E(σ2

t+1).

ii) Normalization of E(σ2
t+1)

In this second case, we impose :

E(σ2
t+1) =

ω

1− c− d
= 1, (6.8)

or ω = 1− c− d. So V (εt+1| εt) = σ2σ2
t+1 where σ2 = V (ut+1) = V (εt+1).

The advantage of this modelisation is the possibility to implement a two-step estimation procedure
for the model parameters.

a) First step :

We estimate the variance σ2 of the marginal distribution of (εt) by the empirical variance σ̂2

and the parameter θ1 = (c, d) by a Pseudo-Maximum Likelihood procedure (based on a Gaussian
GARCH model) applied to

(
εt
σ̂

)
and using the restriction ω = 1− c− d.
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b) Second step :

From the estimated values σ̂t we get an estimated sequence of independent mixed-normal
random variables

(
εt
σ̂t

)
for which we proceed to the estimation of the mixture parameters θ2 =

(λ, a, σ2
1, σ

2
2). We can use, for instance, a Maximum Likelihood estimation or a Bayesian Ap-

proach estimation using posterior simulation via Monte Carlo Markov Chain (MCMC) methods
[see McLachlan and Peel (2000) and the references therein].

An advantage of the first type of normalization is that it allows for an IGARCH modelisation
of (εt+1| εt), whereas the second normalization condition makes (by construction) impossible this
specification.

6.3 Computation of the SDF and of the risk-neutral distribution

With the definition of the conditional distribution of the stock return yt+1 = εt+1
9, we have the

dynamic structure that gives us the possibility to specify for every date t (conditionally to It = εt)
the pricing model presented in Section 4.1.1. More precisely, we can derive the following results
about the SDF and the risk-neutral distribution.

Proposition 10 : If the historical distribution of the process yt is a MN-GARCH of first or second
type and if the stochastic discount factor is exponential-affine, we have for every date t a unique
solution αt = α(It) and βt = β(It) that satisfies system (2.3). The unique value of αt is solution
of :

λ exp
[
αta(1− λ) + σ2

1t

α2
t

2

] [
exp

(
a(1− λ) + σ2

1tαt +
σ2

1t

2

)
− exp rf

t+1

]

+(1− λ) exp
[
σ2

2t

α2
t

2
− αtaλ

] [
exp

(
σ2

2tαt +
σ2

2t

2
− aλ

)
− exp rf

t+1

]
= 0 ,

(6.9)

for the MN-GARCH of first type, while, if we consider the MN-GARCH of second type, the unique
value of αt is solution of :

λ exp
[
σtαt

(
a(1− λ) + σ2

1

σtαt

2

)] [
exp

(
σta(1− λ) + σ2

t σ
2
1αt +

σ2
t σ

2
1

2

)
− exp rf

t+1

]

+(1− λ) exp
[
σtαt

(
σ2

2

σtαt

2
− aλ

)] [
exp

(
σ2

t σ
2
2αt +

σ2
t σ

2
2

2
− σtaλ

)
− exp rf

t+1

]
= 0.

(6.10)

Given the unique solution (αt, βt), we can compute for every t the unique SDF Mt,t+1 and, conse-
quently, the unique mixed-normal conditional risk-neutral distribution.

Proposition 11 : The conditional risk-neutral distribution of the MN-GARCH process is unique
and is a mixture of Normal distributions. For the MN-GARCH process of first type the risk-neutral
p.d.f. is given by :

fQ
1 (yt+1) = ν 1tn

(
yt+1; a(1− λ) + αtσ

2
1t, σ

2
1t

)
+ (1− ν 1t)n

(
yt+1; αtσ

2
2t − aλ, σ2

2t

)
, (6.11)

9The modelisation of the stock return dynamics can be obviously generalized by the definition of a dynamic
statistical model (for instance, ARMA model) for yt+1 in which the mixed-normal process εt+1 is introduced as the
noise component.

18



where 0 ≤ ν 1t ≤ 1 and

ν 1t =
λ exp

(
αta(1− λ) + σ2

1t
α2

t
2

)

λ exp
(
αta(1− λ) + σ2

1t
α2

t
2

)
+ (1− λ) exp

(
σ2

2t
α2

t
2 − αtaλ

) ,

while, for the MN-GARCH process of second type the risk-neutral p.d.f. is the following :

fQ
2 (yt+1) = ν 2tn

(
yt+1; σt(a(1− λ) + αtσtσ

2
1), σ

2
t σ

2
1

)
+ (1− ν 2t)n

(
yt+1; σt(αtσtσ

2
2 − aλ), σ2

t σ
2
2

)
,

(6.12)

where 0 ≤ ν 2t ≤ 1 and

ν 2t =
λ exp

[
σtαt

(
a(1− λ) + σtσ

2
1

αt
2

)]

λ exp
[
σtαt

(
a(1− λ) + σtσ2

1
αt
2

)]
+ (1− λ) exp

[
σtαt

(
σtσ2

2
αt
2 − aλ

)] .

6.4 Derivative Pricing

With the specification of the (unique) risk-neutral probability distribution for the one-period stock
return yt+1 (conditionally to It), we can specify the following option pricing formulas10.

Proposition 12 : The price at the date t of the European Call option with maturity one and
payoff (exp yt+1 − κt)+ is, for the MN-GARCH process of the first type :

C1t = ν 1t γ 1t,1 CBS

(
σ2

1t,
κt

γ 1t,1

)
+ (1− ν 1t) γ 1t,2 CBS

(
σ2

2t,
κt

γ 1t,2

)
, (6.13)

where the (one-period) Black-Scholes formula is defined for a volatility σ2
jt and a moneyness strike

κt/γ 1t,j , j ∈ {1, 2}, and

γ 1t,1 = exp
[
αtσ

2
1t +

σ2
1t

2
+ a(1− λ)− rf

t+1

]

γ 1t,2 = exp
[
αtσ

2
2t +

σ2
2t

2
− aλ− rf

t+1

]
.

Moreover, by the procedure given in Appendix 4, it can be shown that :

0 ≤ ν 1tγ 1t,1 ≤ 1, 0 ≤ (1− ν 1t)γ 1t,2 ≤ 1,

ν 1tγ 1t,1 + (1− ν 1t)γ 1t,2 = 1, ∀t > 0.

If we consider the MN-GARCH process of the second type, the pricing formula is given by :

C2t = ν 2t γ 2t,1 CBS

(
σ2

t σ
2
1,

κt

γ 2t,1

)
+ (1− ν 2t) γ 2t,2 CBS

(
σ2

t σ
2
2,

κt

γ 2t,2

)
, (6.14)

10In the literature, the well known GARCH option pricing models of Duan (1995) and Heston and Nandi (2002)
are particular cases of our approach given that they consider Gaussian yt+1, conditionally to its own past. Moreover,
they consider a constant market price of risk αt = α. Also Christoffersen, Elkahmi and Jacobs (2005) consider
a conditional Gaussian distribution for the log return, but with the (time-varying) conditional mean and variance
restricted to be predetermined processes.
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where the (one-period) Black-Scholes formula is now defined for a volatility σ2
t σ

2
j and a moneyness

strike κt/γ 2t,j , j ∈ {1, 2}, and

γ 2t,1 = exp
[
αtσ

2
t σ

2
1 +

σ2
t σ

2
1

2
+ σta(1− λ)− rf

t+1

]

γ 2t,2 = exp
[
αtσ

2
t σ

2
2 +

σ2
t σ

2
2

2
− σtaλ− rf

t+1

]
.

In addition, we still have that :

0 ≤ ν 2tγ 2t,1 ≤ 1, 0 ≤ (1− ν 2t)γ 2t,2 ≤ 1,

ν 2tγ 2t,1 + (1− ν 2t)γ 2t,2 = 1, ∀t > 0.

The generalization of the propositions above to the case of a mixture of J components is
straightforward.

7 The Dynamic Semi-Parametric Case

In this section, we develop a semi-parametric analysis of the Mixed Normal dynamic pricing model
proposed in the previous sections. In particular, we consider that the geometric return satisfies :

yt+1 = mt+1 + σt+1εt+1, σt+1 > 0, (7.1)

where mt and σt are the location and scale parameters, respectively, that may depend on lagged
values of the return, and (εt) is a sequence of i.i.d. variables.

This approach is very similar to the one proposed by Gourieroux and Monfort (2006), which
is based on the estimated empirical distribution of the errors (εt). Minimal assumptions are made
about the log-return dynamic process, and for this reason the methodology presented here appears
as a promising tool for option pricing11. In particular, we consider a parametric specification of
mt and σt :

mt = m(yt−1; θ), σt = σ(yt−1; θ), (7.2)

and we leave unspecified the distribution of the error term. The available observations on the
returns are denoted by y1, . . . , yT .

The parameter θ can be consistently estimated from historical data by applying a Pseudo-
Maximum Likelihood method. The estimator is given by :

θ̂T = arg max
θ

T∑

t=1

{
− log σ2(yt−1; θ)− [yt −m(yt−1; θ)]2

σ2(yt−1; θ)

}
;

then we compute the residuals :

ε̂τ =
yτ −m(yτ−1; θ̂T )

σ(yτ−1; θ̂T )
, τ = 2, . . . , T,

11Ait-Sahalia and Lo (1998) follow a semi-parametric approach in which the non parametric deterministic volatility
function is an input in the Black-Scholes formula. Duan (2002), following the relative entropy approach of Stutzer
(1996), proposes a nonparametric option pricing model, where the log-return has a conditional (historical and risk-
neutral) Gaussian distribution.
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and the distribution of εt can be approximated by a Gaussian Kernel estimator based on the ε̂τ ’s.
Therefore, the p.d.f. of εt+1 is approximated by the Gaussian mixture :

1
T − 1

T∑

τ=2

n(ε; ε̂τ , b
2),

where b is the bandwidth.
The conditional historical p.d.f. of yt+1 given yt is approximated by the Gaussian mixture :

1
T − 1

T∑

τ=2

n(yt+1; m̂t+1 + σ̂t+1ε̂τ , σ̂
2
t+1b

2),

where m̂t+1 = m(yt, θ̂T ), σ̂t+1 = σ(yt, θ̂T ).
This result allows to derive the Dynamic Semi-Parametric Mixed Normal pricing model. In

particular, we obtain the following results.

Proposition 13 : If the conditional historical distribution of yt+1 is approximated by a mixture of
(T −1) Normal distributions MN (T −1, 1

T−1 , m̂t+1 + σ̂t+1ε̂τ , σ̂
2
t+1b

2) and if the stochastic discount
factor is exponential-affine, we have for every t a unique solution αt = α(It) and βt = β(It) that
satisfies the system (2.3). The unique value of αt is solution of :

T∑

τ=2

exp
[
αt(m̂t+1 + σ̂t+1ε̂τ ) + σ̂2

t+1b
2 α2

t

2

]

[
exp

(
(m̂t+1 + σ̂t+1ε̂τ ) + σ̂2

t+1b
2αt +

σ̂2
t+1b

2

2

)
− exp rf

t+1

]
= 0.

Proposition 14 : The conditional risk-neutral distribution is unique and is approximated by a
mixture of Normal distributions with the following p.d.f. :

fQ(yt+1) =
T∑

τ=2

ντn
(
yt+1; m̂t+1 + σ̂t+1(ε̂τ + αtσ̂t+1b

2), σ̂2
t+1b

2
)
, (7.3)

where, for τ = 2, . . . , T

ντ =
exp

[
αt(m̂t+1 + σ̂t+1ε̂τ ) + σ̂2

t+1b
2 α2

t
2

]

T∑

τ=2

exp
[
αt(m̂t+1 + σ̂t+1ε̂τ ) + σ̂2

t+1b
2 α2

t

2

] ,

0 ≤ ντ ≤ 1,
T∑

τ=2

ντ = 1.

The risk-neutral distribution depends, for every t on the estimated location and scale parame-
ters, on the computed residuals and on the smoothing parameter b.
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Proposition 15 : The price of the European Call option written on exp yt+1 with maturity one
and payoff (exp yt+1 − κ)+ is :

Ct = exp(−rf
t+1)E

Q[exp yt+1 − κt]+

=
T∑

τ=2

ντ γτ CBS

(
σ̂2

t+1b
2,

κt

γτ

)
, (7.4)

where CBS is the (one-period) Black-Scholes formula with a volatility equal to σ̂2
t+1b

2 and money-
ness strike equal to κt/γτ , and

γτ = exp
[
m̂t+1 + σ̂t+1ε̂τ − rf

t+1 + αtσ̂
2
t+1b

2 +
σ̂2

t+1b
2

2

]
.

By the same procedure as in Appendix 4, it can be shown that :

0 ≤ ντ γτ ≤ 1,
T∑

τ=2

ντ γτ = 1.

The three above propositions show the flexibility of the Mixed-Normal framework, combined
with exponential-affine SDF, for a general option pricing procedure. In particular, the Mixed-
Normal nature of the Gaussian kernel estimation allows, by the application of the results presented
above, to specify a general Dynamic Semi-Parametric pricing model, starting from minimal as-
sumptions about the stock return historical dynamics.

8 The Switching Regimes Option Pricing Model

8.1 The General Switching Regimes pricing formula

In this Section, we extend the definition of i.i.d. mixtures of conditionally normal processes to the
case of regime switching models. For this purpose, we allow the unobservable process zt, which
governs at every date t the choice of the component of the Gaussian mixture, to depend on its past
(and possibly on yt−1).

In the sequel, we will assume that the process zt can take J values which will be identified to
ej = [0 . . . 1 . . . 0]′, j = 1, . . . , J , the vector whose components are zeros except the jth one that is
equal to one if j is the current regime.

In addition, we consider that the information available at date t for the investor is given by
It = (yt, zt) = (yt, zt, yt−1, zt−1, . . .), that is, we assume that the investor observes the returns and
the regimes. Then, we choose an exponential-affine SDF :

Mt,t+1 = exp[αtyt+1 + δ′tzt+1 + βt], (8.1)

where the coefficients αt, βt and δt = [δ1t, . . . , δJt]′ are functions of It. This parametric specification
of the SDF gives the possibility to price separately the risk associated with the stock return
dynamics and those coming from the switching of regimes. In this way, the state dependent pricing
kernel gives the possibility to study how the different risk factors affect option prices, leading to a
more precise knowledge of the risk attitude of investors towards different sources of risk [see, among
the others, Gordon and St-Amour (2000), Melino and Yang (2003), Calvet and Fisher (2004) for
details about state dependent stochastic discount factors]. Note that, for identification reasons, we
can always assume βt = 0.
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Let us now point out an important difference with the previous sections. The pricing formula for
the riskfree asset and the risky asset still gives two arbitrage free conditions that induce restrictions
on the risk correction coefficients αt and δt, but it does not suffice to uniquely determine the
SDF. Indeed, denoting by ϕt(u, v) the conditional Laplace transform of (yt+1, zt+1), given It, the
constraints are :





exp(rf
t+1) ϕt(αt, δt) = 1

ϕt(αt + 1, δt) = 1,
(8.2)

and we get two equations for J + 1 unknowns.
The αt = α(yt, zt), δt = δ(yt, zt) might be specified parametrically and estimated from a

calibration of the derivative prices obtained below.
The conditional p.d.f. of the process (yt+1, zt+1), given It, can be written as :

f(yt+1, zt+1 | yt, zt) = f(yt+1 | yt, zt+1)× f(zt+1 | yt, zt) , (8.3)

and we assume that the distribution of yt+1 given (yt, zt+1) is Gaussian with mean and variance
respectively denoted µ(yt, zt+1) and σ2(yt, zt+1).

Proposition 16 : The Laplace transform ϕt(u, v) of (yt+1, zt+1), given It, is given by :

ϕt(u, v) = E
[
exp(uyt+1 + v′zt+1) | yt, zt

]

=
∑

zt+1
pt(zt+1) exp

(
v′zt+1 + u µ(yt, zt+1) + 1

2 u2 σ2(yt, zt+1)
)

,
(8.4)

where pt(zt+1) is another notation for the conditional probability f(zt+1 | yt, zt). [Proof : see
Appendix 8].

In particular, the distribution of (yt+1), given (yt, zt), is a mixture of the Gaussian distributions
N (µ(yt, zt+1), σ2(yt, zt+1)).

Proposition 17 : The conditional risk-neutral distribution Qt of (yt+1, zt+1), given It, has a
Laplace transform given by :

ϕQt(u, v) = EQt
[
exp(uyt+1 + v′zt+1) | yt, zt

]

=
∑

zt+1
νt(zt+1) exp

[
v′zt+1 + u

[
µ(yt, zt+1) + αtσ

2(yt, zt+1)
]

+ 1
2 u2 σ2(yt, zt+1)

]

(8.5)
where

νt(zt+1) =
pt(zt+1) exp

(
δ′tzt+1 + αt µ(yt, zt+1) + 1

2 α2
t σ2(yt, zt+1)

)

∑
zt+1

pt(zt+1) exp
(
δ′tzt+1 + αt µ(yt, zt+1) + 1

2 α2
t σ2(yt, zt+1)

) .

[Proof : see Appendix 8].
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Therefore, in the risk-neutral world, the process (yt+1, zt+1) has exactly the same structure as in the
historical world, with modified weights νt(zt+1) and means for the components of the distribution
of (yt+1) equal to µ(yt, zt+1) + αt σ2(yt, zt+1).

Proposition 18 : The price at date t of the European Call option with maturity one and payoff
(exp yt+1 − κt)+, is given by the following formula12:

Ct = exp(−rf
t+1)E

Qt [exp yt+1 − κt]+

=
∑
zt+1

νt(zt+1) γt(zt+1) CBS

(
σ2(yt, zt+1),

κt

γt(zt+1)

)
,

(8.6)

where CBS is the (one-period) Black-Scholes formula with a volatility equal to σ2(yt, zt+1), mon-
eyness strike equal to κt/γt(zt+1) and

γt(zt+1) = exp

[
µ(yt, zt+1)− rf

t+1 + αtσ
2(yt, zt+1) +

σ2(yt, zt+1)
2

]
.

This general result can be specified for the well-known case where the latent process zt is an
homogeneous J-states Markov chain [Markovian Switching Regimes; see Hamilton (1989)]. In this
context, equation (8.3) becomes :

f(yt+1, zt+1 | yt, zt) = f(yt+1 | yt, zt+1)× P [zt+1| zt] , (8.7)

and the transition probability P [ej | ei] from state ei to state ej is denoted by πi j .
The conditional Laplace transform of (yt+1, zt+1 | yt, zt = ei) has the form :

ϕt(u, v) = E
[
exp

(
v′zt+1 + uµ(yt, zt+1) + 1

2u2σ2(yt, zt+1)
) | yt, zt = ei

]

=
∑J

j=1 πi j exp
[
v′ej + uµ(yt, ej) + 1

2 u2 σ2(yt, ej)
]

,
(8.8)

and, consequently, the conditional risk-neutral Laplace transform becomes :

ϕQt(u, v) =
∑J

j=1 νij, t exp
[
v′ej + u

[
µ(yt, ej) + αtσ

2(yt, ej)
]
+ 1

2 u2 σ2(yt, ej)
]

,
(8.9)

where

νij, t =
πi j exp

(
δ′tej + αt µ(yt, ej) + 1

2 α2
t σ2(yt, ej)

)
∑J

j=1 πi j exp
(
δ′tej + αt µ(yt, ej) + 1

2 α2
t σ2(yt, ej)

) .

12In the literature we observe different ways to use Switching Regime methodology for option pricing : a) Campbell
and Li (2002) specify directly the risk-neutral density of the underlying asset missing a precise analysis of options
risk premia; b) Billio and Pelizzon (2000), Bollen (1998), Chourdakis and Tzavalis (2000) consider the empirically
rejected assumption of idiosyncratic nature for the risk introduced by the switching of regimes [δt = 0 in our case];
c) Duan, Popova and Ritchken (2002) propose a particular switching regime model where both sources of risk (the
log return and the changes of regimes) are priced but with constant risk correction coefficients [αt = α and δt = δ
in our modelisation]; d) Garcia and Renault (1998) and Garcia, Luger and Renault (2001, 2003) follow a recursive
utility-based approach [Epstein-Zin (1989)], where the latent variable affects the fundamentals of the economy.

24



So, in the risk-neutral world, the process (yt+1, zt+1) remains a Markov-Switching process with
time-varying transition probabilities and different conditional means for the normal distributions.

The specification of the pricing formula (8.6) takes the following form :

Ct =
J∑

j=1

νij, t γt(ej)CBS

(
σ2(ej),

κt

γt(ej)

)
, (8.10)

where

γt(ej) = exp

[
µ(yt, ej)− rf

t+1 + αtσ
2(yt, ej) +

σ2(yt, ej)
2

]
.

8.2 Log-linear pricing with mixture component

A general approach to the discrete-time option pricing problem, using the unifying framework pro-
vided by the Stochastic Discount Factor method [see, among others, Hansen and Richard (1987)
and Cochrane (2001)], is presented by Garcia, Ghysels and Renault (2002). In this paper they
show, using the SDF formulation and the Cameron-Martin-Girsanov theorem, that when the bi-
variate process [ln(Mt,t+1), ln(St+1/St)] is conditionally normal given It (Conditional Lognormality
Assumption), the pricing formula derived from this class of models (named Log-linear pricing mod-
els) for a payoff h(St+1) is given by :

pt(h, 1) = Et[Mt,t+1h(St+1)]

= Et[Mt,t+1]Et{h[St+1 exp[Covt(log(Mt,t+1), log(St+1/St))]]}.
(8.11)

This result is generalized, in the same paper, by the introduction of a mixture component
in the conditioning set which leads to the formulation of a Conditional Lognormality with mix-
ture Assumption : if there exists a latent (mixing) variable zt+1 such that the bivariate process
[ln(Mt,t+1), ln(St+1/St)] is conditionally normal given It and zt+1, the one-period pricing formula
for the Log-linear model takes the following form :

pt(h, 1) = Et[Mt,t+1h(St+1)]

= Et{Et[Mt,t+1h(St+1)|zt+1]}

= Et{Et[Mt,t+1|zt+1]

× Et[h(St+1 exp(Covt[(ln(Mt,t+1), ln(St+1/St)|zt+1]))|zt+1]}.

(8.12)

Now, if we consider our mixed-normal framework, characterized by a mixing latent variable
zt+1 and described by a General Switching Regime model, with Mt,t+1 = exp(αtyt+1 + δ′tzt+1 +βt),
St = 1, yt+1 = ln(St+1), h(St+1) = g(yt+1) = (exp yt+1 − κ)+ we observe that the Conditional
Lognormality with mixture Assumption is satisfied and, consequently, our mixed-normal pricing
formula (8.6) can also be derived from (8.12). Moreover, given that the i.i.d. mixture case char-
acterizing Section 4 is a particular case of the General Switching Regimes model presented here
[P (zt+1 = j) = pj , j ∈ {1, . . . , J}, and Mt,t+1 = exp(αtyt+1 + βt)], we have that also the pricing
formula (4.4) can be specified from relation (8.12).
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8.3 Pricing path dependent derivatives

The pricing procedures presented in the previous sections can be generalized to the case of a
derivative providing a general payoff of the form g(yt+1, . . . , yt+H) at date t + H. Neither the
joint historical distribution of (yt+1, . . . , yt+H) nor the risk-neutral joint distribution (conditional
to the information at time t) is in general a mixture of normal distributions. However, it is easy to
simulate a path ys

t+1, . . . , y
s
t+H , function of present and past values of the associated latent variable,

in the risk-neutral distribution.
More precisely, the procedure, from the investor point of view, is the following :

• given the observations (y1, . . . , yt) := yt and (z1, . . . , zt) := zt, and given the values of αt and
δt, zs

t+1 is simulated from ν(zt+1 | yt, zt);

• then, ys
t+1 is simulated from the one-period conditional risk-neutral distribution

fQ(yt+1 | yt, z
s
t+1, zt) = n

(
µ(yt, z

s
t+1, zt) + αtσ

2(yt, z
s
t+1, zt), σ2(yt, z

s
t+1, zt)

)
,

which is, conditionally to zs
t+1, a normal distribution depending on (yt, zt);

• zs
t+2 is simulated from ν(zt+2 | ys

t+1, yt, z
s
t+1zt), given the values of αt+1, δt+1, and ys

t+2 is
consequently simulated from the following risk-neutral gaussian distribution

fQ(yt+2 | ys
t+1, yt, z

s
t+2, z

s
t+1, zt) = n

(
µ(ys

t+1, yt, z
s
t+2, z

s
t+1, zt) + αt+1σ

2(ys
t+1, yt, z

s
t+2, z

s
t+1, zt),

σ2(ys
t+1, yt, z

s
t+2, z

s
t+1, zt)

)
,

and so on for the H values characterizing the payoff.

Finally, using S simulated paths, the price at time t of the derivative, in the case of short-term
risk-free rates known at t, is approximated by :

exp

(
−

H∑

h=1

rf
t+h

)
1
S

S∑

s=1

g(ys
t+1, . . . , y

s
t+H).

This formula is valid for any path dependent derivative. In the simple case of a European Call
option (with St = 1) it becomes :

exp

(
−

H∑

h=1

rf
t+h

)
1
S

S∑

s=1

[
exp(ys

t+1 + . . . + ys
t+H)− κt

]+
.

8.4 Switching regimes and implied volatility surface

In previous sections we have presented the General Switching Regime model for option pricing, a
generalization of i.i.d. mixtures case [see section 4] where a white noise dynamics was assumed for
the latent variable zt+1. For this i.i.d. case we have verified the ability of the Mixed-Normal static
model to replicate smiles and volatility skews coherent with empirical results.

Nevertheless, this model show some limit about the possibility to build implied volatility sur-
faces close to the observed ones. More precisely, as indicated by empirical evidence [see, among
the others, Cont and da Fonseca (2002)], these surfaces are sometimes characterized by shapes
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with smiles (or volatility skews) also for large maturities, while the surface obtained by the Mixed-
Normal static model gives for large maturities flat implied Black-Scholes volatilities [see Figure
4].

Consequently, it could be interesting to verify, by the introduction of serial dependence in the
dynamics of the latent variable, if we are able to replicate these observed implied volatility surfaces.

We consider a Hidden Markov Chain (HMC) specification for the General Switching Regime
model13, where the dynamics of zt+1 is described by a two-states homogeneous Markov chain. We
assume αt = α and δt = δ, and we specify a symmetric switching in δ [δ1 = −δ2 = d, with d ∈ R+].
In this way, we obtain a nonlinear system of two equations with two unknowns for the absence of
arbitrage restrictions.

We consider a mixture of two gaussian distributions with the same means (µ1 = µ2 = 0.03),
with the variance of the first component fixed to σ2

1 = 0.03 (low volatility regime) and that of
the second component fixed to σ2

2 = 0.04 (high volatility regime), and we consider the regime
persistence probabilities at levels coherent with empirical evidence on stock markets : π11 = 0.99
and π22 = 0.95. The implied volatility surface obtained by Monte Carlo simulations is presented
in Figure 8 (the time to maturity, measured in years, changes from 0.25 to 1.5). We observe that
the volatility skew (typical of stock markets) characterizes not only the small maturities but also
the large ones, giving, in general, a surface coherent with the observations.

Therefore, an HMC specification provides a model able to replicate interesting phenomena like
the shapes of the implied volatility surfaces and, in particular, the introduction of serial dependence
in the dynamics of zt+1 seems to be the element giving to the HMC option pricing model the
possibility to produce better performances (in simulation) with respect to the Mixed-Normal static
specification.

9 Concluding remarks

This paper has developed a global discrete time option pricing methodology when the paramet-
ric SDF is exponential-affine and the geometric return of the underlying asset has a dynamics
characterized by a Mixture of Conditionally Normal processes.

This methodology offers a flexible and promising framework to build prices of European and
path dependent options as indicated by the possibility to derive explicit risk-neutral probability
measures under various model specifications. More precisely, the Mixed-Normal framework, com-
bined with the (exponential-affine) SDF modeling principle, is developed in static and dynamic
models with parametric, semi-parametric and nonparametric specifications, and illustrated by ex-
plicit derivative pricing formulas and implied Black-Scholes volatilities. The numerical analysis has
confirmed the ability of our general option pricing approach to replicate smiles, volatility skews
and implied volatility surfaces coherent with empirical results. The purpose of future research will
be to test the models presented in the paper from observations of spot and option prices.

13Given the observable variable yt+1 and the regime indicator (hidden) variable zt+1 taking values ej =
[0, ..., 1, ..., 0]′, j ∈ {1, . . . , J}, the stochastic process (yt+1, zt+1) defines a Hidden Markov Chain (HMC) model
if its conditional distribution satisfies the following property :

f(yt+1, zt+1 | yt, zt ) = f(yt+1 | yt, zt+1 )f(zt+1 | yt, zt )

= f(yt+1 | zt+1)× f(zt+1| zt) ,

that is, if we assume that zt+1 is an homogeneous J-states Markov chain, and if we assume that, for yt+1, the relevant
information contained in (yt, zt+1) is summarized in zt+1.
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Appendix 1
Existence of a mixture of two Normal distributions

reaching any pair of skewness-kurtosis in D

Let us first recall the general relation between skewness and kurtosis of a random variable with
any distribution : µ̃4 ≥ µ̃2

3 + 1.
Moreover, observe that skewness and kurtosis are stable with respect to an affine transformation

of the random variable. This means that, we can study the problem of spanning pairs of skewness-
kurtosis in D for standardized mixed-normal random variables. We will consider also an affine
transformation of these variables in order to show the ability of a mixture of Normal distributions
to span any set of (µ, σ2, µ̃3, µ̃4).

a) Spanning the boundary of D

The boundary of the maximal set D can be attained by the following special type of mixture (with
p ∈ ]0, 1[ ) :

p N
(√

1− p

p
, 0

)
+ (1− p) N

(
−

√
p

1− p
, 0

)
;

indeed, this discrete (two-values) random variable has the following first four moments :

µo = 0 ,

σ2
o = 1 ,

µ̃o
3 =

1− 2p√
p(1− p)

, describing R ,

µ̃o
4 =

1
p(1− p)

− 3 = (µ̃o
3)

2 + 1.

b) Spanning the interior of D

Case 1 : Let us introduce in the mixture presented above a variance term, denoted σ̄2, common to
the two Normal components. Applying the general formulas of section 4.1.2, we get the following
first four moments :

µ = 0
σ2 = σ2

o + σ̄2 = 1 + σ̄2

µ̃3 =
µ̃o

3

(1 + σ̄2)
3
2

µ̃4 =
µ̃o

4 + 3σ̄4 + 6σ̄2

(1 + σ̄2)2

=
(µ̃o

3)
2 + 1 + 3σ̄4 + 6σ̄2

(1 + σ̄2)2

= (1 + σ̄2) µ̃2
3 + 3− 2

(1 + σ̄2)2
.

Now, we can consider two cases.
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If µ̃3 6= 0, or µ̃3 = 0 with µ̃4 < 3 , it is possible to reach the pair (µ̃3, µ̃4) in the interior of D
[denoted Int(D)] thanks to the choice of σ̄2. More precisely, denoting x = 1 + σ̄2, we look for the
(unique) root a > 1, of the following equation in x:

µ̃4 = x (µ̃3)2 + 3− 2
x2

⇐⇒ (µ̃3)2 x3 + (3− µ̃4) x2 − 2 = 0 .

Given that the fixed pair (µ̃3, µ̃4) ∈ Int(D), the polynomial p(x) = (µ̃3)2 x3 + (3− µ̃4) x2 − 2 takes
the negative value (µ̃3)2 + 1 − µ̃4 for x = 1 and converges to +∞ when x → +∞, which proves
the existence of the desired root a (it is easy to verify the uniqueness of a). Now it just remains to
look for the value of p satisfying the relation :

1− 2p√
p (1− p)

= µ̃o
3 = a

3
2 µ̃3 ;

this leads to :

p =
1
2
− µ̃o

3

2
√

(µ̃o
3)2 + 4

.

So, here is the corresponding mixture having skewness µ̃3 and kurtosis µ̃4 :

p N
(√

1− p

p
, a− 1

)
+ (1− p) N

(√
− p

(1− p)
, a− 1

)

To complete the analysis of this case, let us mention that we can apply an affine transformation to
obtain also a desired pair of mean-variance. And this gives the following mixture :

p N
(

µ + σ

√
1− p

ap
,
σ2(a− 1)

a

)
+ (1− p) N

(
µ− σ

√
p

a(1− p)
,
σ2(a− 1)

a

)
.

Case 2 : In the case where µ̃3 = 0 with µ̃4 ≥ 3, the polynomial above has no more real roots.
However, it is straightforward to verify that the following mixture has its first four moments equal
to µ, σ2, µ̃3 = 0, µ̃4 ≥ 3:

p N
(

µ,
σ2

2p

)
+ (1− p) N

(
µ,

σ2

2(1− p)

)

with p =
1
2
± 1

2

√
1− 3

µ̃4
.
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Appendix 2
Existence and uniqueness of alpha

If we consider the absence of arbitrage condition ϕ(α + 1) = exp(r)ϕ(α) for the particular case
of r = 0, we find in the mixed-normal framework the following relation :

H(α) ≡
J∑

j=1

pj exp
(

αµj + σ2
j

α2

2

)[
exp

(
µj + σ2

j α +
σ2

j

2

)
− 1

]
= 0, (A.1)

and we immediately see the existence of a solution since :

lim
α→+∞H(α) = +∞, lim

α→−∞H(α) = −∞.

Now, we have to verify that the solution is unique. In order to obtain this result we write the
first derivative of function H(α) :

H ′(α) =

JX
j=1

pj exp

�
αµj + σ2

j
α2

2

�
�

(µj + σ2
j α)

�
exp

�
µj + σ2

j α +
σ2

j

2

�
− 1

�
+ σ2

j exp

�
µj + σ2

j α +
σ2

j

2

��
.

(A.2)

If we consider the function :

h(x) = x
[
exp

(
x +

a

2

)
− 1

]
+ a exp

(
x +

a

2

)
, (A.3)

with a > 0, it is easy to verify that h is strictly positive for every value of x; consequently, taking
x := µj + σ2

j α and a := σ2
j , we see that H ′(α) is strictly positive for every value of α and H(α) is

strictly increasing: therefore, the value of α such that ϕ(α + 1) = ϕ(α) is unique.
Now, let us consider the general case of r > 0. The relation H(α) takes the following form :

H(α) =
∑J

j=1 pj exp
(
αµj + σ2

j
α2

2

)[
exp

(
µj + σ2

j α +
σ2

j

2

)
− exp r

]
= 0; (A.4)

we can rewrite relation (A.4) in this way :

exp(r)
J∑

j=0

pj exp
(

αµj + σ2
j

α2

2

)[
exp

(
µj − r + σ2

j α +
σ2

j

2

)
− 1

]
= 0

which is equivalent to

exp(r + αr)
∑J

j=1 pj exp
(
αµ′j + σ2

j
α2

2

)[
exp

(
µ′j + σ2

j α +
σ2

j

2

)
− 1

]
= 0, (A.5)

with µ′j = µj − r, and we obtain the same relation as in the case of r = 0 multiplied by the positive
quantity exp(r + αr). This result leads us to the general conclusion that the value α is unique for
every value of r ≥ 0 and (µj , σ

2
j , pj), j = 1, . . . , J .
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Appendix 3
The risk-neutral distribution

From asset pricing theory we know that the specification of the risk-neutral distribution through
the SDF change of measure is given by :

fQ(y) =
M

E(M)
f(y). (A.6)

In our framework this relation takes the following form :

fQ(y) =
f(y) exp(αy)

J∑

j=1

pj exp

(
αµj + α2

σ2
j

2

)

=
f(y) exp(αy)

ϕ(α)
,

(A.7)

where f(y) is given by equation (4.1) and ϕ(α) is the Laplace transform of a mixture of normal
distributions. Now, we can write equation (A.7) in the following way :

fQ(y) =

J∑

j=1

pj
1

σj

√
2π

exp

(
−(y − µj)2

2σ2
j

+ αy

)

ϕ(α)

=

J∑

j=1

pj
1

σj

√
2π

exp

[
−(y − µj − ασ2

j )
2

2σ2
j

+ αµj +
α2

2
σ2

j

]

ϕ(α)

=
J∑

j=1




pj exp
(
αµj + α2

2 σ2
j

)

J∑

j=1

pj exp

(
αµj + α2

σ2
j

2

)




exp
[
− (y−µj−ασ2

j )2

2σ2
j

]

σj

√
2π

=
J∑

j=1

νjfj(y;µj + ασ2
j , σ

2
j ).

The risk-neutral distribution is still a mixture of normal distributions with new means µj +ασ2
j

and the same variances σ2
j , but characterized by a new mixing distribution (risk-adjusted mixing

distribution) νj , j = 1, . . . , J .
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Appendix 4
The option pricing formula

We have seen in Proposition 3 (and in Appendix 3) that the unique risk-neutral distribution
Q associated to the historical distribution (4.1) is once more a mixture of gaussian distributions.
This result allows to write the pricing formula as :

Ct = exp(−r)EQ[exp yt+1 − κ]+

= exp(−r)
J∑

j=1

νjE[exp(yj)− κ]+,

with yj ∼ N [µj + ασ2
j , σ2

j ] for every t. Now, this gaussian random variable can be decomposed in
the following sum :

yj = zj + µj + ασ2
j − r +

σ2
j

2
,

with zj ∼ N
[
r − σ2

j

2 , σ2
j

]
. This decomposition gives us the possibility to write the formula as an

average of Black-Scholes pricing formulas :

Ct = exp(−r)
J∑

j=1

νj E[γj exp(zj)− κ]+,

with γj = exp
(

µj + ασ2
j − r +

σ2
j

2

)
, and consequently

Ct = exp(−r)
J∑

j=1

νjγjE

[
exp(zj)− κ

γj

]+

=
J∑

j=1

νj γj CBS

(
σ2

j ,
κ

γj

)
,

with CBS(σ2, κ) the one-period Black-Scholes formula

CBS(σ2, κ) =
[
Φ

(
− ln(κe−r)

σ
+

σ

2

)
− κe−rΦ

(
− ln(κe−r)

σ
− σ

2

)]
,

and

νjγj =
pj exp

(
αµ′j + σ2

j
α2

2

)
exp

(
µ′j + ασ2

j +
σ2

j

2

)

J∑

j=1

pj exp
(

αµ′j + σ2
j

α2

2

) ,

µ′j := µj − r.
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Moreover we have
∑J

j=1 νjγj = 1. Indeed, because of formula (A.5), we can write :

J∑

j=1

νjγj =

J∑

j=1

pj exp
(

αµ′j + σ2
j

α2

2

)
exp

(
µ′j + ασ2

j +
σ2

j

2

)

J∑

j=1

pj exp
(

αµ′j + σ2
j

α2

2

)

=

J∑

j=1

pj exp
(

αµ′j + σ2
j

α2

2

)

J∑

j=1

pj exp
(

αµ′j + σ2
j

α2

2

) = 1.

Appendix 5
Modeling extreme risks

Proof of Proposition 5 : For a given λ ∈ ]0, 1[, the Fourier transform of the p.d.f. (4.5), denoted
ϕ̃λ(u), is given by :

ϕ̃λ(u) = E [exp(iuy)]

= λ exp
(

iuµ− u2

2
σ2

1

λ

)
+ (1− λ) exp

(
iuµ− u2

2
σ2

2

1− λ

)
;

now, in the extreme risk case, the above relation becomes :

lim
λ→0

ϕ̃λ(u) = exp
(

iuµ− u2

2
σ2

2

)
, ∀u ∈ R ,

which is the Fourier transform of the Gaussian random variable N (µ, σ2
2). Consequently, the log-

return y with p.d.f. (4.5) converges in distribution to N (µ, σ2
2) when λ → 0 [the proof of the other

results in Proposition 4 is straightforward].

Proof of Proposition 6 : Let us recall the following relation (A.4) of Appendix 1 applied in this
particular case :

Hλ(α) ≡ λ exp
(

σ2
1

λ

α2

2

)[
exp

(
µ +

σ2
1

λ
α +

σ2
1

2λ

)
− exp(r)

]
+

(1− λ) exp
(

σ2
2

1− λ

α2

2

)[
exp

(
µ +

σ2
2

1− λ
α +

σ2
2

2(1− λ)

)
− exp(r)

]
= 0 .
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In particular,

Hλ

(
−1

2
+ ε

)
≡ λ exp

(
σ2

1

λ

(−1
2 + ε

)2

2

)[
exp

(
µ + ε

σ2
1

λ

)
− exp(r)

]
+

(1− λ) exp

(
σ2

2

1− λ

(−1
2 + ε)2

2

)[
exp

(
µ + ε

σ2
2

1− λ

)
− exp(r)

]
.

If ε > 0 : Hλ(−1
2 + ε) → +∞ when λ → 0.

If ε < 0 : Hλ(−1
2 + ε) → −∞ when λ → 0.

As Hλ is an increasing function, we can deduce that :
∀ε > 0, for λ sufficiently small, the solution α of the equation lies in the interval −1

2 ± ε.
So α → −1

2 when λ → 0.

Proof of Proposition 8 : We have written the price of a European Call option as a direct
application of formula (4.4) :

Ct = ν1 γ1 CBS

(
σ2

1

λ
,

κ

γ1

)
+ ν2 γ2 CBS

(
σ2

2

1− λ
,

κ

γ2

)

with

ν1γ1 =
λ exp

(
σ2
1

2λ(α + 1)2
)

λ exp
(

σ2
1

2λ(α + 1)2
)

+ (1− λ) exp
(

σ2
2

2(1−λ)(α + 1)2
)

→ 1 when λ → 0 .

The second term ν2 γ2 CBS

(
σ2
2

1−λ , κ
γ2

)
tends to 0 because ν2 γ2 tends to 0 and CBS

(
σ2
2

1−λ , κ
γ2

)
is

bounded. Now for the first term : γ1 → 1 because ν1 → 1 (see Proposition 7) and ν1γ1 → 1. So,
CBS

(
σ2
1

λ , κ
γ1

)
→ 1. Therefore Ct → 1.

Appendix 6
The jump-diffusion model

Proof of Proposition 9.a : Using the absence of arbitrage condition ϕ(α + 1) = exp(r) ϕ(α) we
successively find :

+∞∑

j=0

e−λ λj

j!
exp

(
(α + 1)(µ + jµp) +

(
σ2 + jσ2

p

) (α + 1)2

2

)

= exp(r)
+∞∑

j=0

e−λ λj

j!
exp

(
α(µ + jµp) +

(
σ2 + jσ2

p

) α2

2

)
,

exp
(

µ +
(

α +
1
2

)
σ2

) +∞∑

j=0

[
λ exp

(
(α + 1)µp + σ2

p
(α+1)2

2

)]j

j!

= exp(r)
+∞∑

j=0

[
λ exp

(
αµp + σ2

p
α2

2

)]j

j!
,
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then
exp

(
µ +

(
α + 1

2

)
σ2

)
exp

[
λ exp

(
(α + 1)µp + σ2

p
(α+1)2

2

)]

= exp(r) exp
[
λ exp

(
αµp + σ2

p
α2

2

)] (A.8)

and we finally get

µ− r +
(

α +
1
2

)
σ2 + λ exp

(
αµp + σ2

p

α2

2

)[
exp

(
µp + σ2

p

(
α +

1
2

))
− 1

]
= 0 .

Proof of Proposition 9.b : Applying formula (4.3) we get the risk-neutral distribution with
weights given by :

νj =
exp(−λ)λj

j! exp
(
α (µ + jµp) +

(
σ2 + jσ2

p

)
α2

2

)

∑+∞
j=0 exp(−λ)λj

j! exp
(
α (µ + jµp) +

(
σ2 + jσ2

p

)
α2

2

)

=

�
λ exp

�
αµp +σ2

p
α2

2

��j

j!

∑+∞
j=0

�
λ exp

�
αµp +σ2

p
α2

2

��j

j!

= exp(−λ
′
)
λ
′j

j!
,

with λ
′
= λ exp

(
αµp + σ2

p
α2

2

)
.

Proof of Proposition 9.c : We now apply formula (4.4) to get the price of the European Call
option which is an average of the Black-Scholes formulas with weights :

βj = νj γj

where γj = exp
(
µ + jµp + α(σ2 + jσ2

p)− r + σ2+jσ2
p

2

)

Using relation (A.8) above we get

γj = exp
[
−λ exp

(
(α + 1)µp + σ2

p

(α + 1)2

2

)
+ λ exp

(
αµp + σ2

p

α2

2

)]

×
[
exp

(
µp + ασ2

p +
σ2

p

2

)]j

.

So,

βj = exp

(
−λ exp

(
(α + 1)µp + σ2

p

(α + 1)2

2

)) [
λ exp

(
(α + 1)µp + σ2

p
(α+1)2

2

)]j

j!
.
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Appendix 7
The MN-GARCH process of first type

If we consider the case of a mixture of J components, the model presented by HMP [Hass,
Mittnick and Paolella (2002)] takes the following form :

εt+1| εt ∼ MN (
J, pj , µj , σ

2
jt+1

)
(A.9)

where µJ = −∑J−1
i=1 (pi/pJ)µi and where the J × 1 vector of variances, denoted by σ2

t+1, evolves
according to :

σ2
t+1 = ω +

q−1∑

i=0

Bi+1ε
2
t−i +

p−1∑

j=0

Cj+1σ
2
t−j , (A.10)

with σ2
t+1 =

[
σ2

1t+1, . . . , σ
2
Jt+1

]′, ω = [ω1, . . . , ωJ ]′, Bi = [bi1, . . . , biJ ]′, i = 1, ..., q, and Cj , j =
1, ..., p, are J×J matrices with typical element cj,mn. Non-negativity conditions on the parameters
are assumed.

The special case of J = 2 and p = q = 1 can be represented in the following way :




σ2
1t+1

σ2
2t+1


 =




ω1

ω2


 +




b1

b2


 ε2

t +




c11

c21

c12

c22







σ2
1t

σ2
2t


 ,

which is our specification if we impose on the parameters the constrains c12 = c21 = 0.
In their paper, HMP note that the Diagonal MN-GARCH model, with Cj , j = 1, ..., p, a diagonal

matrix, fits well the data employing various model-selection criteria [see HMP (2002) for details].
If we impose the constraint c11 = c22, εt+1 has a GARCH structure; indeed, if we have :

E(εt+1| εt) = λa(1− λ)− λa(1− λ) = 0,

and

σ2
t+1 = E(ε2

t+1| εt) = λ[a2(1− λ)2 + σ2
1t+1] + (1− λ)[a2λ2 + σ2

2t+1]

= a2λ(1− λ) + λσ2
1t+1 + (1− λ)σ2

2t+1

= λω1 + (1− λ)ω2 + a2λ(1− λ) + [λb1 + (1− λ)b2] ε2
t

+c1λσ2
1t + c2(1− λ)σ2

2t;
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now, if we impose c1 = c2 = c we can write :

σ2
t+1 = E(ε2

t+1| εt) = (1− c)a2λ(1− λ) + λω1 + (1− λ)ω2

+[λb1 + (1− λ)b2] ε2
t + cσ2

t ,

with ξ := (1− c)a2λ(1− λ) + λω1 + (1− λ)ω2 the (positive) constant term of the relation.

Appendix 8
The Switching Regimes Option Pricing Model

Proof of Proposition 16 : The Laplace transform ϕt(u, v) of (yt+1, zt+1), given It, is given by :

ϕt(u, v) = E
[
exp(uyt+1 + v′zt+1) | yt, zt

]

= E
[
E

[
exp(uyt+1 + v′zt+1) | zt+1, yt, zt

] | yt, zt

]

= E
[
exp(v′zt+1)E

[
exp(uyt+1) | yt, zt+1

]
| yt, zt

]

= E
[
exp

(
v′zt+1 + uµ(yt, zt+1) + 1

2u2σ2(yt, zt+1)
)
| yt, zt

]

=
∑

zt+1
pt(zt+1) exp

(
v′zt+1 + uµ(yt, zt+1) + 1

2 u2 σ2(yt, zt+1)
)

,

(A.11)

with pt(zt+1) = f(zt+1 | yt, zt). ¤

Proof of Proposition 17 : The conditional risk-neutral distribution Qt of (yt+1, zt+1), given It,
has a Laplace transform given by :

ϕQt(u, v)

= ϕt(αt+u,δt+v)
ϕt(αt,δt)

=

∑
zt+1

pt(zt+1) exp
(
(δt + v)′zt+1 + (αt + u) µ(yt, zt+1) + 1

2 (αt + u)2 σ2(yt, zt+1)
)

∑
zt+1

pt(zt+1) exp
(
δ′tzt+1 + αt µ(yt, zt+1) + 1

2 α2
t σ2(yt, zt+1)

)

=
∑

zt+1
νt(zt+1) exp

[
v′zt+1 + u

[
µ(yt, zt+1) + αtσ

2(yt, zt+1)
]

+ 1
2 u2 σ2(yt, zt+1)

]
,

(A.12)

where

νt(zt+1) =
pt(zt+1) exp

(
δ′tzt+1 + αt µ(yt, zt+1) + 1

2 α2
t σ2(yt, zt+1)

)

∑
zt+1

pt(zt+1) exp
(
δ′tzt+1 + αt µ(yt, zt+1) + 1

2 α2
t σ2(yt, zt+1)

) . ¤
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Léon, A., Mencia, J., and E. Sentana (2005) : ”Parametric Properties of Semi-nonparametric
Distributions, with Application to Option Valuation”, Working Paper CEMFI.

Lin, B. H., and S. K. Yeh (2000) : ”On the Distribution and Conditional Heteroskedasticity in
Taiwan Stock Prices”, Journal of Multinational Financial Management, 10, 367-395.

Madan, D., and F. Milne (1994) : ”Contingent Claims Valued and Hedged by Pricing and
Investing in a Basis”, Mathematical Finance, 4, 223-245.

Madan, D., and E. Seneta (1990) : ”The Variance Gamma (V. G.) Model for Share Market
Returns”, Journal of Business, 63, 511-524.

Mandelbrot, B. (1962) : ”Paretian Distributions and Income Maximization”, Quarterly Journal
of Economics, 76, 57-85.

Mandelbrot, B. (1963a) : ”New Methods in Statistical Economics”, Journal of Political Econ-
omy, 71, 421-440.

Mandelbrot, B. (1963b) : ”The Variation of Certain Speculative Prices”, Journal of Business,
36, 394-419.

Mandelbrot, B. (1967) : ”The Variation of some Other Speculative Prices”, Journal of Business,
40, 393-413.

43



Mandelbrot, B. (1997) : ”Fractal and Scaling in Finance. Discontinuity, Concentration, Risk”,
Springer, New York, Berlin, Heidelberg.

McLachlan, G., and D. Peel (2000) : ”Finite Mixture Models”, John Wiley & Sons, New York.

Melick, W. R., and C. P. Thomas (1997) : ”Recovering an Asset’s Implied PDF from Op-
tion Prices: An Application to Crude Oil during the Gulf Crisis”, The Journal of Financial and
Quantitative Analysis, 32, 91-115.

Melino, A., and S. Turnbull (1990) : ”Pricing Foreign Currency Options with Stochastic Volatil-
ity”, Journal of Econometrics, 45, 239-265.

Melino, A., and A. X. Yang (2003) : ”State Dependent Preferences Can Explain the Equity
Premium Puzzle”, Department of Economics, University of Toronto.

Merton, R. C. (1976) : ”Option Pricing When the Underlying Stock Returns are Discontinu-
ous”, Journal of Financial Economics, 3, 125-144.

Mittnick, S., and S. T. Rachev (1993a) : ”Modeling Asset Returns with Alternative Stable
Distributions”, Econometric Review, 12, 261-330.

Mittnick, S., and S. T. Rachev (1993b) : ”Reply to Comments on Modeling Asset Returns with
Alternative Stable Distributions and some extensions”, Econometric Review, 12, 347-389.

Mittnick, S., Paolella, M. S., and S. T. Rachev (1993a) : ”Modeling the Persistence of Con-
ditional Volatilities with GARCH-stable Processes”, Technical Report, University of California,
Santa Barbara.

Naik, V. (1993) : ”Option Valuation and Hedging Strategies with Jumps in the Volatility of
Asset Returns”, The Journal of Finance, 48, 1969-1984.

Palm, F. C., and P. J. G. Vlaar (1993) : ”The Message in Weekly Exchange Rates in the Eu-
ropean Monetary System: Mean Reversion, Conditional Heteroskedasticity, and Jumps”, Journal
of Business and Economic Statistics, 11, 351-360.

Palm, F. C., and P. J. G. Vlaar (1997) : ”Simple Diagnostic Procedures for Modeling Financial
Time Series”, Allgemeines Statistiches Archiv 81, 85-101.

Pan, J. (2002) : ”The Jump-Risk Premia Implicit in Options : Evidence from an Integrated
Time-Series Study”, Journal of Financial Economics, 63, 3-50.

Paolella, M. (1999) : ”Tail Estimation and Conditional Modeling of Heterosckedastic Time
Series”, Ph.D. Thesis, Institute of Statistics and Econometrics, University of Kiel.

Renault, E., and N. Touzi (1996) : ”Option Hedging and Implied Volatilities in a Stochastic
Volatility Model”, Mathematical Finance, 6, 279-302.

Ritchey, R. (1990) : ”Call Option Valuation for Discrete Normal Mixtures”, Journal of Financial
Research, 13, 285-296.

44



Rockinger, M., and E. Jondeau (2002) : ”Entropy Densities with Application to Autoregressive
Conditional Skewness and Kurtosis”, Journal of Econometrics, 106, 119-142.

Rubinstein, M. (1994) : ”Implied Binomial Trees”, The Journal of Finance, 49, 771-818.

Scott, L. (1987) : ”Option Pricing when the Variance Changes Randomly : Theory, Estimation,
and an Application”, The Journal of Financial and Quantitative Analysis, 22, 419-438.

Stein, E. M., and J. C. Stein (1991) : ”Stock Price Distributions with Stochastic Volatility: An
Analytic Approach”, The Review of Financial Studies, 4, 727-752.

Stutzer, M. (1996) : ”A Simple Nonparametric Approach to Derivative Security Valuation”,
The Journal of Finance 51(5), 1633-1652.

Tucker, A. L. (1992) : ”A Reexamination of Finite- and Infinite-Variance Distributions as
Models of Daily Stock Returns”, Journal of Business & Economic Statistics, 10, 1, 73-81.

Tucker, A. L., and L. Pond (1998) : ”The Probability Distribution of Foreign Exchange Price
Changes: Tests of Candidate Processes”, Review of Economics and Statistics, 11, 638-647.

Veronesi, P. (1999) : ”Stock Market Overreaction to Bad News in Good Times : A Rational
Expectations Equilibrium Model”, The Review of Financial Studies, 12, 975-1007.

Veronesi, P. (2000) : ”How Does Information Quality Affect Stock Returns?”, The Journal of
Finance, 55, 807-837.

Veronesi, P. (2004) : ”The Peso Problem Hypothesis and Stock Market Returns”, Journal of
Economic Dynamics and Control, 28, 707-725.

Whitelaw, R. F. (2000) : ”Stock Market Risk and Return : An Equilibrium Approach”, The
Review of Financial Studies, 13, 521-547.

45



46



47



48



49



50



51


