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Abstract

We estimate an empirical model of consumption disasters using a new panel data set on

consumption for 24 countries and more than 100 years. The model allows for permanent and

transitory effects of disasters that unfold over multiple years. It also allows the timing of disasters

to be correlated across countries. We estimate the model using Bayesian methods. Our estimates

imply that the average length of disasters is roughly 6 years and that more than half of the short

run impact of disasters on consumption are reversed in the long run on average. We investigate

the asset pricing implications of these rare disasters. In a model with power utility and standard

values for risk aversion, stocks surge at the onset of a disaster due to agents’ strong desire to

save. This causes a low equity premium, especially in normal times. In contrast, a model with

Epstein-Zin-Weil preferences and an intertemporal elasticity of substitution equal to 2 yields a

sizeable equity premium in normal times for modest values of risk aversion.
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1 Introduction

The average return on stocks is roughly 7% higher than the average return on bills across a large

cross-section of countries in the twentieth century (Barro and Ursua, 2008). Mehra and Prescott

(1985) argue that this large equity premium is difficult to explain in simple consumption based

asset pricing models. A large subsequent literature in finance and macroeconomics has sought to

explain this “equity premium puzzle”. One strand of this literature has investigated whether the

equity premium may be compensation for the risk of rare but disastrous events. This hypothesis

was first put forward by Rietz (1988).1 A drawback of Rietz’s paper is that it does not provide

empirical evidence regarding the plausibility of the parameter values needed to generate a large

equity premium based on rare disasters.

Barro (2006) uses data on GDP for 35 countries over the 20th century from Maddison (2003)

to empirically evaluate Rietz’s hypothesis. His main conclusion is that a simple model calibrated

to the empirical frequency and size distribution of large economic contractions in the Maddison

data can match the observed equity premium. In subsequent work, Barro and Ursua (2008) have

gathered a long term data set for consumption in over 20 countries and shown that the same

conclusions hold using this data.

Barro (2006) and Barro and Ursua (2008) analyze the effects of rare disasters on asset prices

in a model in which consumption follows a random walk, disasters are modeled as instantaneous,

permanent drops in consumption and the timing of disasters are uncorrelated across countries.

They show that it is straightforward to calculate asset prices in this case. However, the tractability

of their model comes at the cost of empirical realism in certain respects.

First, their model does not allow for recoveries after disasters. Gourio (2008) argues that

disasters are often followed by periods of rapid growth. A world in which all disasters are permanent

is far riskier than one in which recoveries often follow disasters. Assuming that all disasters are

permanent therefore potentially overstated the asset pricing implications of disasters. Second, their

model assumes that the entire drop in consumption due to the disaster occurs over a single time

period, as opposed to unfolding over several years as in the data. This assumption is criticized in

Constantinides (2008). Third, their model assumes that output and consumption follow a random
1Other prominent explanations for the equity premium include models with habits (Campbell and Cochrane,

1999), heterogeneous agents (Constantinides and Duffie, 1996) and long run risk (Bansal and Yaron, 2004).
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walks in normal times as well as times of disaster. A large literature in macroeconomics has debated

the empirical plausibility of this assumption (Cochrane, 1988; Cogley, 1990) Forth, Barro (2006)

and Barro and Ursua (2008) fit their model to the data using an informal estimation procedure

based on the average frequency of large economic contractions and the distribution of peak-to-

trough drops in consumption during such contraction. Formal estimation could yield different

results.2 Finally, the assumption that the timing of disasters is uncorrelated across countries is

clearly unrealistic. Relaxing this assumption is important in assessing the statistical uncertainty

associated with estimates of the model’s key parameters.

In this paper, we consider a richer model of disasters than that considered in Barro (2006)

and Barro and Ursua (2008). Our aim is to improve on this earlier work along the dimensions

discussed above. Our model allows for permanent and transitory effects of disasters that unfold

over multiple years. It allows for transitory shocks to growth in normal times. The model also

allows for correlation in the timing of disasters across countries. We formally estimate our model.

The model is challenging to estimate using maximum likelihood methods, because it has a large

number of unobserved state variables. It is, however, relatively straightforward to estimate the

model using Bayesian Markov Chain Monte Carlo (MCMC) methods. We estimate the model

using a Metropolized Gibbs sampler.3 We use the Barro-Ursua consumption data in our analysis.

Our model identifies only very severe contractions as disasters. The probability of entering a

disaster is 1.4% per year. A majority of these disasters occur during World War I and World War II.

Other disasters identified by the model include the Spanish Civil War, the collapse of the Chilean

economy starting around the time of the Pinochet coup and the effects of the Asian financial crisis

on Korea. On average, disasters last roughly six years. Consumption drops sharply during disasters.

In the disaster episodes we identify in our data, consumption drops on average by 33% in the short

run. A large part of this drop in consumption is reversed in the long run. The long run effect

of disaster episodes on consumption in our data is a drop of 15% on average. Uncertainty about

future consumption growth is massive in the disaster state. The standard deviation of consumption

growth in this state is roughly 16%.
2Julliard and Ghosh (2008) develop a novel estimation approach for analyzing the plausibility of rare disasters for

the equity premium using data on both consumer expenditures and returns for the United States over the twentieth
century. They argue that rare disasters are not a likely explanation for the observed equity premium.

3A Metropolized Gibbs Sampler is a Gibbs Sampler with a small number of Metropolis steps. See e.g. Gelfand
(2000) and Smith and Gelfand (1992) for particularly lucid short descriptions of Bayesian estimation methods. See
e.g. Gelman, Carlin, Stern, and Rubin (2005) and Geweke (2004) for a comprehensive treatment of these methods.
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We adopt the representative agent endowment economy approach to asset pricing, following

Lucas (1978) and Mehra and Prescott (1985). Within this framework, we assess the asset pricing

implications of our model of consumption under alternative specifications of the utility function for

the representative consumer. We begin by analyzing the power utility case considered in Mehra and

Prescott (1985), Rietz (1988), and Barro (2006). Unlike in the simple disaster model considered

in earlier work, our model generates highly counterfactual implications for the behavior of asset

prices during disasters under power utility. For standard parameter values, the onset of a disaster

counterfactually generates a stock market boom, leading to a negative equity premium in normal

times.

The key reason for the difference versus earlier models of disasters is that in our model disasters

unfold over multiple periods rather than occurring instantaneously. Entering the disaster state in

our model therefore causes agents to expect steep future declines in consumption. This generates a

strong desire to save. When the intertemporal elasticity of substitution is substantially below one,

this savings effect dominates the expectations of lower dividends from stocks due to the disaster and

therefore raises the price of equity. The large movements in consumption growth associated with

disasters provide a strong test of consumers’ willingness to substitute consumption over time. The

strong desire of consumers with low intertemporal elasticities of substitution to smooth consumption

over time yields highly counterfactual implications for asset pricing. The sharp drop in stock prices

that typically accompanies the onset of a major disaster suggests that consumers have a relatively

high willingness to substitute consumption over time (at least at these points).

These results suggest that we should consider a utility specification with both a coefficient of

relative risk aversion above one and an intertemporal elasticity of substitution above one. We

therefore consider Epstein-Zin-Weil preferences. We find that this model generates asset prices

that are much more in line with data. For an intertemportal elasticity of substitution of 2 and

a coefficient of relative risk aversion of 7, we find that the model generates an unlevered equity

premium of 4.8% with a risk free rate of 1%. The asset pricing implications of the model depend

importantly on permanence of the disasters in our estimated model. If the disasters we estimate

were completely permanent, the equity premium would be more than twice as large for the same

coefficient of relative risk aversion.

Another way of stating our results is to consider what parameters are appropriate to calibrate a
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simple model of permanent disasters such as the one considered in Barro and Ursua (2008). As we

discuss in section 6, the appropriate parameterization of a model of permanent disasters based on

our results is that the probability of such disasters is p = 0.0138 with a constant size of b = 0.30. In

contrast, the baseline calibration in Barro and Ursua (2008) assumes substantially more frequent—

p = 0.0363—and slightly larger disasters—their results on the equity premium can be roughly

replicated with a constant size of disasters of b = 0.35. The difference in the two calibrations

reflects the fact that we are accounting explicitly for partial recoveries following disasters.

A limitation of some existing models that have been proposed as resolutions of asset pricing

puzzles is that it is difficult to find direct evidence for the underlying mechanism these models

rely on. This has meant that in many cases the literature has sought to distinguish between these

models by assessing whether they resolved not only the equity premium puzzle but also a number

of other asset pricing puzzles.

In contrast, we focus primarily on documenting the existence of rare disasters in long-term

consumption data. A number of recent papers study whether the presence of rare disasters may also

help to explain other anomalous features of asset returns, such as the predictability and volatility

of stock returns. These papers include Farhi and Gabaix (2008), Gabaix (2008), Gourio (2008),

and Wachter (2008). Martin (2008) presents a tractable framework for asset pricing in models of

rare disasters.

The paper proceeds as follows. Section 2 discusses the Barro-Ursua data on long-term consump-

tion. Section 3 presents the empirical model. Section 4 discusses our estimation strategy. Section

5 presents our empirical estimates. Section 6 studies the asset pricing implications of our model.

Section 7 concludes.

2 Data

Since rare disasters occur infrequently, by definition, short time series provide little information

about the appropriate parameter values for a model of rare disasters. A short sample is likely to

contain no disasters even if the true probability is in the range considered by Barro (2006) of 1-2%.

Furthermore, sample selection issues are an important problem in disaster studies because data

tend to be missing precisely when disasters occur. It is therefore crucial to analyze data covering

long time spans, where the starting and ending points are relatively unaffected by the occurrence
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of disasters.

In this vein, Barro (2006) uses output data from Maddison (2003) for 35 countries for 1900-

2000 to estimate the distribution of disasters. However, economic models of asset pricing require

consumption rather than output data. Barro and Ursua (2008) have since undertaken a major

data collection project to develop a long-term panel dataset on consumption similar to Maddison’s

dataset on output. They also expand and improve Maddison’s original output data. In particular,

they note that missing data are sometimes filled in with smooth trends or data from other countries

during disasters in the Maddison (2003) data, and correct for the filled-in data.

We use Barro and Ursua’s (2008) dataset on consumption. Our sample selection rules follow

theirs. We include a country only if uninterrupted data are available back at least before World

War I. This procedure yields a sample of 17 OECD countries (4 are dropped because of missing

data) and 7 non-OECD countries (11 are dropped due to missing data).4 To avoid sample selection

bias problems associated with the starting dates of the series, we include only data after 1890.5 The

resulting dataset is an unbalanced panel from 24 countries, with data from each country starting

between 1890 and 1914. This yields a total of 2685 observations.6

One limitation of the Barro-Ursua consumption data set is that it does not allow us to distin-

guish between expenditures on non-durables and services versus durables. Consumer expenditures

generate a flow of consumption services. It is this flow of consumption services that we would

like to analyze for asset pricing purposes. Equating consumption with consumer expenditures may

overstate the severity of consumption disasters because consumer expenditures on durables fall

more than durable consumption flows. Unfortunately, separate data on durable and non-durable

consumption are simply not available for most of the countries and time periods we study. Barro

and Ursua (2008) document the behavior of consumer expenditures on durables and non-durables

during consumption disasters for the subset of cases for which data are available. Their analysis
4The OECD countries are: Australia, Belgium, Canada, Denmark, Finland, France, Germany, Italy, Japan,

Netherlands, Norway, Portugal , Spain, Sweden, Switzerland, U.K. and U.S. The non-OECD countries are Argentina,
Brazil, Chile, Mexico, Peru, South Korea, and Taiwan. See Barro and Ursua (2008) for a detailed description of the
available data and the countries dropped due to missing data. In cases where there is a change in borders, as in the
case of the unification of East and West Germany, Barro and Ursua (2008) smoothly paste together the initial per
capita series for one country with that for the unified country.

5Barro and Ursua (2008) use data back to 1870.
6Our use of the representative approach to analyzing per-capita consumption ignores the distribution of consump-

tion within a country. This approach to analyzing per-capita consumption may be justified under certain conditions.
See Caselli and Ventura (2000).
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shows that declines in consumer expenditures on durables are indeed much larger than declines

in consumer expenditures on non-durables during disasters. Nevertheless, declines in consumer

expenditures on non-durables are on average only 3 percentage points smaller than for overall

consumer expenditures during disasters because durables represent only a small fraction of overall

consumption. Barro and Ursua (2008) argue that the difference between the decline in overall

consumer expenditures versus only non-durable expenditures is even smaller for the case of large

disasters. Since durables represent only a small fraction of total expenditures, the decline in durable

expenditures during a disaster can only be so large (durable expenditures are bounded below by

zero).

We will also make use of data on the total returns on stocks, bills and bonds. We follow

Barro and Ursua (2008) in using data from Global Financial Data (GFD). This dataset is largely

based on the dataset of Dimson, Marsh, and Staunton (2002). To our knowledge, it is the most

comprehensive data on total returns available. Unfortunately, it is less comprehensive than the

Barro-Ursua consumption and output data. It may come as a surprise that less comprehensive

asset price data exists than consumption and output data. The limiting factor regarding total

returns data is dividend yields. These are not avaible for many countries for the early part of the

20th century or earlier. Also, the GFD data contain more gaps during disaster periods—in some

cases due to the closure of markets.

3 An Empirical Model of Consumption Disasters

We model log consumption as the sum of three unobserved components:

ci,t = xi,t + zi,t + εi,t, (1)

where ci,t denotes log consumption in country i at time t, xi,t denotes “potential” consumption

in country i at time t, zi,t denotes the “disaster gap” of country i at time t—i.e., the amount by

which consumption differs from potential due to current and past disasters—and εi,t denotes an

i.i.d. normal component with a country specific variance σ2
ε,i,t that potentially varies with time.

The occurrence of disasters in each country is governed by a Markov process Ii,t. Let Ii,t = 0

denote “normal times” and Ii,t = 1 denote times of disaster. The probability that a country that is

not in the midst of a disaster will enter the disaster state is made up of two components: a world
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component and an idiosyncratic component. Let IW,t be an i.i.d. indicator variables that takes

the value IW,t = 1 with probability pW . We will refer to periods in which IW,t = 1 as periods in

which “world disasters” begin. The probability that a country not in a disaster in period t − 1

will enter the disaster state in period t is given by pCbW IW,t + pCbI(1 − IW,t), where pCbW is the

probability that a particular country will enter a disaster when a world disaster begins and pCbI is

the probability that a particular country will enter a disaster “on its own”. Once a country is in a

disaster, the probability that it will exit the disaster state each period is pCe.

We model disasters as affecting consumption in two ways. First, disasters cause a large short

run drop in consumption. Second, disasters may affect the level of potential consumption to which

the level of actual consumption will return. We model these two effects separately. First, let θi,t

denote a one-off permanent shift in the level of potential consumption due to a disaster in country

i at time t. Second, let φi,t denote a shock that causes a temporary drop in consumption due

to the disaster in country i at time t. For simplicity, we assume that θi,t does not affect actual

consumption on impact while φi,t does not affect consumption in the long run. In this case, θi,t

may represent a permanent loss of time spent on R&D and other activities that increase potential

consumption or a change in institutions that the disaster induces. On the other hand, φi,t could

represent destruction of structures, crowding out of consumption by government spending and

temporary weakness of the financial system during the disaster. The disaster shocks θi,t and φi,t

are i.i.d. and their distributions are θi,t ∼ N(θ, σ2
θ) and φi,t ∼ N(φ, σ2

φ).

Potential consumption evolves according to

∆xi,t = µi,t + ηi,t + Ii,tθi,t, (2)

where ∆ denotes a first difference, µi,t is a country specific average growth rate of trend consumption

that may vary over time, ηi,t is an i.i.d. normal shock to the growth rate of trend consumption with

a country specific variance σ2
η,i,t that may vary with time. This process for potential consumption

is similar to the process assumed by Barro (2006) for actual consumption. Notice that consumption

in our model is trend stationary if the variance of ηi,t and θi,t are zero.

The disaster gap follows an AR(1) process:

zi,t = ρzzi,t−1 − Ii,tθi,t + Ii,tφi,t + νi,t, (3)

where 0 ≤ ρz < 1 denotes the first order autoregressive coefficient, φi,t is the short run disaster
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shock and νi,t is an i.i.d. normal shock with a country specific variance σ2
ν,i. Since θi,t is assumed to

affect potential consumption but to leave actual consumption unaffected on impact, it gets added

to the disaster gap when the disaster occurs. The only reason we introduce νi,t to the “disaster

gap” equation is to help the algorithm converge.7 Our choice of priors restricts σ2
ν,i to be small.

A striking feature of the data is the dramatic drop in consumption volatility following WWII.

At least part of this drop in consumption volatility probably reflects changes in the procedures for

constructing national accounts.8 To allow for this break, we assume that σ2
ε,i,t and σ2

η,i,t each take

two values for each country: one before 1946 and one after. We assume that µi,t takes three values

for each country: one before 1946, one for the period 1946-1972 and one for the period since 1973.

This captures in a crude way the very high growth rate many countries experienced for roughly

25 years after WWII. Notice that we have assumed that all parameters that relate to disasters are

common across countries but that all the other parameters vary across countries.

Figure 1 provides an illustration of a the type of disaster our model can generate. For simplicity,

we abstract from trend growth and set all other shocks than φi,t and θi,t to zero. The figure depicts

a disaster that lasts six periods and in which φi,t = −0.15 and θi,t = −0.05 in each period of the

disaster. Cumulatively, log consumption drops by roughly 0.67 from peak to trough. Consumption

then recovers substantially. In the long run, consumption is 0.30 lower than it was before the

disaster. This disaster is therefore partially permanent. The negative θi,t shocks during the disaster

permanently lower potential consumption. The fact that the shocks to φi,t are more negative than

the shocks to θi,t mean that consumption falls below potential consumption during the disaster.

The difference between potential consumption and actual consumption is the disaster gap in our

model. The disaster gap is transitory. In the long run, the disaster gap closes—i.e., consumption

recovers—so that only the drop in potential consumption has a long run effect on consumption.

Our model can generate a wide range of disasters. If θi,t = 0 throughout the disaster, the entire

disaster is transitory. If on the other hand φi,t = θi,t throughout the disaster, the entire disaster is

permanent.

One can show that the model is formally identified except for a few special cases in which
7MCMC algorithms have trouble converging when the objects one is estimating are highly correlated. In our case,

zt and zt+j for small j are highly correlated when there are no disturbances in the disaster gap equation between
time t and time t + j. This was the case in the “no crisis” periods in our original model (actually zt and zt+j were
perfectly correlated in this case). It was in order to avoid this extremely high correlation that we introduced small
disturbances to the disaster gap equation.

8See Romer (1986) and Balke and Gordon (1989).
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multiple shocks have zero variance. Nevertheless, the main challenge in estimating the model is the

relatively small number of disaster episodes observed in the data. Due to this scarcity of data on

disasters, we assume that all the disaster parameters—pW , pCbW , pCbI , pCe, ρz, θ, σ2
θ , φ, σ2

φ—are

common across countries and time periods. This strong assumption allows us to pool information

about the disasters that have occurred in different countries and at different times. In contrast, we

allow that the non-diaster parameters—µi,t, σ2
ε,i,t, σ

2
η,i,t, σ

2
ν,i—to vary across countries.

4 Estimation

The model presented in section 3 decomposes consumption into three unobserved components:

potential consumption, the disaster gap and a transitory shock. One way of viewing the model

is, thus, as a filter. Our interest is in making post-sample inference about the unobserved state

variables and parameters of the model. Maximum likelihood estimation of this model is difficult

since it involves carrying out numerical optimization over a high dimensional space of states and

parameters. We instead use Bayesian methods to estimate the model. Specifically, we calculate

the posterior distributions of the parameters and states using a Gibbs sampler augmented with

Metropolis steps when needed.9

To carry out our Bayesian estimation we need to specify a set of priors on the parameters of

the model. We can then condition the resulting full probability model on the observed data. This

yields a posterior distribution for the unobserved states and parameters. The estimates we report

are based on this posterior distribution. To minimize the influence of the priors on our results, we

specify relatively uninformative priors for the majority of the parameters of the model. In other

words, we assume that we have little idea what values should be taken by these parameters before

observing the data.

In a few cases, we use informative priors. First, we assume that disasters are rare and large.

Specifically, we assume that pW ∼ Beta(1, 49), pCbI ∼ Beta(1, 49) and φ ∼ N(−0.15, 0.007). We

make this assumption to ensure that the disaster parameters in our model truly capture rare

disasters as opposed to other features of the data such as normal business cycles. Rietz (1988)

and Barro (2006) show that large disasters are disproportionately important for asset pricing. We
9The estimates discussed in section 5 are based on four independent Markov chains each with 1 million draws.

The first 100,000 draws from each chain is dropped as burnin. These chains are started from 2 different starting
values, 2 chains from each starting value.
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are therefore disproportionately interested in accurately measuring disasters. If we do not impose

informative priors the features of the model that we intend to capture disasters may be used to

capture high frequency features of the data. Notice that imposing these priors on pW , pCbI and

φ in no way ensures that our model will have disasters: the prior puts substantial weight on the

model without disasters, i.e. a model with pW = 0 and pCbI = 0.

In addition, we restrict ρz to lie in the interval [0, 0.9]. Within this interval we assume that

ρz is uniformly distributed. These assumptions ensure that the half-life of the disaster gap is less

than 6.5 years. Again, we make these assumptions to ensure that the disasters generated by our

algorithm correspond to our intuitive notion of disasters. These assumptions rule out the possibility

that consumption growth in a given period can be explained by disasters that occurred many years

earlier. In the absence of these assumptions, the model yields imprecise estimates of the parameters

and convergence of the estimation algorithm is problematic.

Finally, we restrict νi,t to be small. Specifically, we assume that σ2
ν,i ∼ U(0, 0.0001). Recall

that we introduced νi,t for purely numerical reasons, to facilitate the estimation of the model. We

therefore restrict its magnitude such that it has a negligible effect on the predictions of the model.

The specific distributional assumptions we make for the remaining priors are in most cases

guided by a desire to have as many “conjugate” priors as possible since this improves the speed of

the numerical algorithm. Our choices for the remaining priors are:

σ2
ε,i,t ∼ U(0, 0.152), σ2

η,i.t ∼ U(0, 0.152),

σ2
ν,i.t ∼ U(0, 0.0001), µi,t ∼ N(0.02, 1),

pCbI ∼ U(0, 1), pCe ∼ U(0, 1),

θ ∼ N(0, 0.22), 1/σ2
θ ∼ Gamma(10/3, 0.1/3),

1/σ2
φ ∼ Gamma(10/3, 0.1/3).

Given these assumptions we have a fully specified probability model for the evolution of consump-

tion.

5 Empirical Results

Table 1 presents our estimates of the disaster parameters, while tables 2 -4 present our estimates

of µi,t, σε,i,t and ση,i,t, respectively. For each parameter, we present the assumed prior mean, prior

10



standard deviation and prior distribution, as well as the posterior mean and posterior standard

deviation. We refer to the posterior mean of each parameter as our point estimate of that parameter.

Consider first our estimates of the disaster parameters in table 1. We estimate the probability

of a world disaster to be 0.0194 per year. The probability that a world disaster will trigger a

disaster in a particular country is 0.5193. When the world is not in a disaster, the probability that

a country will enter a disaster “on its own” is 0.0043. The overall probability that a country will

enter a disaster is pW pCbW + (1 − pW )pCbI . Since the three parameters involved are correlated,

we cannot multiply together the posterior mean estimates we have for them to get a posterior

mean of the overall probability of entering a disaster. Instead, use the joint posterior distribution

of these three parameters to calculate a posterior mean estimate of the overall probability that a

country enters a disaster of 0.0138. A centered 90% probability interval for this overall probability

is [0.0064, 0.0231]. In contrast, a country that is already in a disaster will continue to be in the

disaster in the following year with a 0.833 probability. This estimate implies that disasters last on

average roughly six years.

Our estimate of ρz is 0.540. Our estimates of φ and σφ—the mean and standard deviation

of φi,t—are -0.134 and 0.110, respectively. The large negative estimate of φ is largely determined

by the informative prior we impose on this parameter. The large estimated value of σφ, however,

gives us a quantitative sense of the huge uncertainty associated with the short term evolution of

consumption during disasters.

Our estimates of θ and σθ—the mean and standard deviation of θi,t—are -0.025 and 0.105

respectively. This estimate of θ implies that disasters do on average have negative long run effects

on consumption. The fact that θ is estimated to be much smaller than φ, however, implies that a

large part of the effect of disasters on consumption in the short run is reversed in the long run. The

ratio of these estimates implies that only roughly 20% of the drop in consumption during disasters

is permanent. The large estimate of σθ reveals that there is a huge amount of uncertainty during

disasters about the long run effect of the disaster on consumption as well as the short run effect

of the disaster on consumption. Taken together, these estimates put a substantial weight on the

possibility of extremely large negative shocks.

To get a better sense for what these parameters imply about the nature of consumption disasters,

figures 2 and 3 provide two different visual representations of the size of disasters and the extent
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of recovery from disasters. Figure 2 plots the impulse response of an “typical disaster”. This is a

disaster than lasts for 6 years and the size of the short terms effects and the long run effects are

set equal to the posterior mean of these parameters for each of the six disaster years (i.e. φi,t = φ

and θi,t = θ). It shows that the maximum short run effect of this typical disaster is approximately

a 32% fall in consumption (a 0.38 fall in log consumption), while the long run negative effect of the

disaster is approximately 14%.

Figure 3 provides a slightly different view of disasters. Imagine an agent at time 1 who knows

that a disaster will begin at time 2 but knows nothing about the character of this disaster beyond the

unconditional distribution of disasters. The solid line in figure 3 plots the mean of the distribution

of beliefs of such an agent about the change in log consumption going forward upon receiving news

of the disaster. The dashed lines in the figure plot the median and 5% and 95% quantiles of this

same distribution. This figure therefore gives an ex ante view of disasters, while figure 2 gives an

ex post view of a particular disaster.

The shape of the solid line in figure 3 is quite different from the shape of the “typical” disaster

depicted in figure 2. In figure 3, the long run drop in the solid line is roughly 65% of the maximum

drop, while in figure 2 this ratio is only roughly 45%. This difference between the two figures arises

because, from the perspective of the agent standing at time 1, the distribution of the change in

consumption looking forward 10 or 15 years is highly skewed. On the one hand, most disasters

end within 6 years. On the other hand, if a disaster lasts beyond this, it is likely to be extremely

severe.10

Table 5 reports summary statistics for the main disaster episodes our model identifies. We

define a disaster episode as a set of consecutive years for a particular country such that: 1) The

probability of a disaster in each of these years is larger than 10%, and 2) The sum of the probability

of disaster for each year over the whole set of years is larger than one.11 Using this definition we

identify 34 disaster episodes. These episodes vary greatly in size and shape. On average, the

maximum drop in consumption due to the disasters is 33%. The permanent effect of disasters on

consumption is on average 15%. However, the largest short run effect of a disaster is a 60% drop
10One way in which our model may understate the severity of disasters is that we assume that both φi,t and θi,t

have normal distributions. The fact that large negative events are much more frequent than large positive events
suggests that perhaps a distribution with a fatter left tail than right tail may be more appropriate.

11More formally: A disaster episode is a set of consecutive years for a particular country, Ti, such that for all t ∈ Ti

P (Ii,t = 1) > 0.1 and
∑

t∈Tt
P (Ii,t = 1) > 1.
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in consumption in Japan during WWII. Quite a few of the disaster episodes have huge long run

effects. For example, we estimate the long run effect of the disaster episode in Chile in the 1970’s

and early 1980’s to be a 51% drop in consumption, while the long run effect of the Spanish Civil

War and the subsequent turmoil was a 47% drop in consumption.

The bulk of the disaster episodes we identify occur during World War I and World War II.

Figure 4 plots our estimates of the probability that a “world disaster” began in each year.12 Our

model clearly identifies 1914 and 1940 as years in which world disasters began. In both of these

world wars, the model identifies a second year (1916 and 1943) in which these disasters seem to have

“intensified” and/or spread. In the case of WWII, 1943 marks a dramatic escalation of hostilities

in the Pacific theater. Apart from WWI and WWII, the model places a roughly 25% probability

on the Great Depression counting as a world disasters. This relatively low values reflects the fact

that our model identifies only extremely serious events.

The model identifies six disaster episodes that are not associated with WWI and WWII. These

include two of the model serious disaster episodes: Spain during and after the Civil War and Chile

during the early period of the reign of General Pinochet. The U.S. Great Depression is identified

as a disaster according to our model. And so is the Asian Financial Crisis in Korea. However, both

of these events are relatively minor disasters compared to other events in the sample.

Figure 5 provides more detail about how our model interprets the evolution of consumption

for France, Korea, Chile and the United States.13 The two lines in each panel plot consumption

and our estimate of potential consumption. The bars give our posterior probability estimate that

a country was in a disaster in each year. The left axis gives values of the probability of disaster,

while the right axis gives values for log consumption and potential consumption.

For France, the model picks up WWI and WWII as disasters. The model views WWII as largely

a transitory event for French consumption. The permanent effect of WWII on French consumption

is estimated to be only about 6%. The French experience in WWII is typical for many European

countries. For Korea, our model interprets the entire period from 1940 to 1954 as single long

disaster. This long disaster spans both WWII and the Korean War. In contrast to the experience

of many European countries, our estimates suggest that the crisis in the 1940’s and 1950’s had a
12This is the posterior mean of IW,t for each year. In other words, with the hindsight of all the data up until 2006,

what is our estimate of whether a world disaster began in say 1940?
13More detailed figures for all the countries in our study are reported at the back of the paper. The series presented

in these figures are described in appendix A.
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large permanent effect on Korean consumption (41%). This is typical of the experience of Asian

countries in our sample during WWII. For Korea, we also identify the Asian Financial Crisis as a

disaster.

Chile is one of the most volatile countries in our sample. Our model identifies two disaster

episodes for Chile. The first begins in WWI and spans the early years of the Great Depression.

The second disaster in Chile began in 1972 during the tenure of Salvator Allende but intensified

greatly in the early years of General Pinochet’s rule. The late 1970’s and early 1980’s are a period

of recovery. But another period of huge declines in consumption starts in 1982 and lasts until

1987. This long disaster period is the most severe disaster we identify outside of periods of major

world wars. The last panel in figure 5 plots results for the United States. Relative to most other

countries in our sample, the United States was a tranquil place during our sample period. The Great

Depression is identified as a disaster. But it is a marginal disaster with the posterior probability

that a disaster occurred peaking at only about 30%.

Tables 2 - 4 present the remaining parameter estimates for our empirical model. Table 2 presents

country-specific estimates of the mean growth rate of potential consumption for the countries in our

sample. Our model estimates sizable breaks in the average growth rate of potential consumption

both in 1946 and in 1973 for many countries, especially those for which WWII was most disastrous.

For example, we estimate that the growth rate of potential consumption rose in Japan from 0.6%

per year before 1946 to 7.5% per year during 1946-1973 and then fell back to 2.2% per year after

1973. Similar, if somewhat less extreme, changes in growth rates are estimated for Germany, France,

Italy and many other countries.14

Table 3 and 4 present country-specific estimates of the variance of both permanent and tran-

sitory shocks to consumption. We find a great deal of evidence that the stochastic properties of

consumption were different pre-1946 than they have been post-1946. For many countries, our esti-

mates of the variance of both the permanent shocks to potential consumption and the transitory

shocks to consumption fell dramatically from the earlier period to the later period. This general
14If we do not allow for breaks in the mean growth rate, the model yields quite different results. In this case, WWII

is interpreted as having had a very large positive long run effect for Japan, France and Italy (but a negative short
run effect). The model interprets the rapid growth from 1946 to 1973 as slow convergence to a much higher level
of potential consumption. While this may be considered a plausible alternative interpretation of the high growth
between 1946-1973 in these countries, this specification of the model yields less reasonable results for other countries
and other periods and a substantially worse overall fit. An alternative to allowing for breaks is to specify a model for
time variation in the average growth rate µ as in Bansal and Yaron (2004). Bansal and Yaron’s results suggest that
introducing this type of variation in growth rates may increase the equity premium implied by our model.
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pattern is true for most of the original OECD members. A notable exception is the U.K. This

pattern of volatility reduction is also not nearly as pronounced for the Latin American countries in

our sample.

6 Asset Pricing

We follow Mehra and Prescott (1985) in analyzing the asset pricing implications of the consumption

process we estimate above within the context of a representative consumer endowment economy.

We assume that the representative consumer in our model has preferences of the type developed by

Epstein and Zin (1989) and Weil (1990). For this preference specification, Epstein and Zin (1989)

show that the return on an arbitrary cash flow is given by the solution to the following equation:

Et

βξ (Ci,t+1

Ci,t

)(−ξ/ψ)

R
−(1−ξ)
w,t,t+1Ri,t,t+1

 = 1, (4)

where Ri,t,t+1 denotes the gross return on an arbitrary asset in country i from period t to period

t + 1, Rw,t,t+1 denotes the gross return on the agent’s wealth, which in our model is equal to the

endowment stream. The parameter β represents the subjective discount factor of the representative

consumer. The parameter ξ = 1−γ
1−1/ψ , where γ is the coefficient of relative risk aversion and ψ is

the intertemporal elasticity of substitution.

Much work on asset pricing—including Mehra and Prescott (1985), Rietz (1988) and Barro

(2006)—considers the special case of power utility. In this case, γ = 1/ψ. A single parameter,

therefore governs both consumers’ willingness to bear risk, and their willingness to substitute

consumption over time. Bansal and Yaron (2004) and Barro (2008) among others have emphasized

the importance of delinking these two features of consumer preferences. Our results below provide

additional evidence in support of the more flexible model.

The asset pricing implications of our model with Epstein-Zin-Weil (EZW) preferences cannot be

derived analytically. We therefore use standard numerical methods. Initially, we calculate returns

for two assets: a one period risk-free bond and an unlevered claim on the consumption process. In

section 6.3, we allow for partial default on the bond and discuss asset prices for a long term bond.

We set the discount factor equal to β = exp(−0.035). Variation in this parameter has only minimal

affects on the equity premium in our model.15 It does however, affect the risk free rate. Given a
15In the continuous time limit of our discrete time model, the equity premium is unaffected by β.
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calibration of γ and ψ, we can pick β to match the risk free rate generated by the model to the risk

free rate observed in the data. Mehra and Prescott (1985) suggest that values for the coefficient of

relative risk aversion below 10 are “reasonable”. We consider a range of values in this reasonable

range.

There is some debate in the macroeconomics and finance literature about the appropriate pa-

rameter value for the intertemporal elasticity of substitution (IES). Hall (1988) estimates the IES

to be close to zero. His estimates of the IES are obtained by analyzing the response of consump-

tion growth to movements in the interest rate. Yet, as noted by Bansal and Yaron (2004) and

Gruber (2006), such estimates are potentially subject to important endogeneity concerns. Both

the interest rate and consumption growth are the product of capital market equilibrium, making it

difficult to estimate the causal effect of one on the other. These concerns are sometimes addressed

by using lagged interest rates as instruments for movements in the current interest rate. However,

this instrumentation strategy is only successful if there are no slowly moving technology or prefer-

ence parameters that affect both interest rates and consumption growth. Alternative procedures

for identifying exogenous variation in the interest rate sometimes generate much larger estimates

of the IES. Gruber (2006) makes use of tax-based instruments for interest rates and estimates a

values close to 2 for the IES. As a consequence of this dispersion in empirical estimates, a wide

variety of parameter values for the IES are used in the asset pricing literature. On the one hand,

Campbell (2003) and Guvenen (2008) advocate values for the IES well below one, while Bansal

and Yaron (2004) use a value of the IES of 1.5 and Barro (2008) uses a value of 2. We argue below

that low values of the IES are starkly inconsistent with the observed behavior of asset prices during

consumption disasters. We will therefore focus on parameterizations with φ = 2 as our baseline

case.

Barro and Ursua (2008) present data on rates of return for stocks and bonds for 17 countries

over a long sample period. The average arithmetic real rate of return on stocks in their data is

8.1% per year. The average arithmetic real rate of return on short term bills is 0.9% per year.

The average equity premium in their data is therefore roughly 7.2%. If we view stock returns as a

leveraged claim on the consumption stream, the target equity premium for an unlevered claim on

the consumption stream is lower than that for stocks. The debt-equity ratio for U.S. non-financial

corporations is roughly one-half. This suggests that the target equity premium for our model should
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be 4.8

The asset pricing results for our model are presented in table 6. We present results for both

the power utility case with γ = 1/ψ = 4 and also for EZW utility with ψ = 2 and a range of values

for γ. Our baseline model has partially temporary disasters that unfold over multiple periods. We

also consider two alternative specifications. First, we consider a version of our model in which the

entire disaster occurs in one period. In this case, we scale up the size of the disasters to make them

roughly comparable to the baseline case.16 Second, we consider a version of the model in which the

disasters are permanent on average.17 We present results on the one hand for a long sample with

a representative set of disasters and on the other hand for a long sample for which agents expect

disasters to occur with their normal frequency but no disasters actually occur. This latter case is

meant to capture asset returns in normal time such as the post-WWII period in OECD countries.

Finally, we present results for a version of the model in which we turn off the disasters completely.

Without disasters, the model generates an equity premium that is too small by a factor between

10 and 20. This is in line with the results of Mehra and Prescott (1985).

In our analysis, we use the actual consumption data for the countries we study. These data

presumably reflect any international risk sharing that agents may have engaged in. The asset pricing

equations we use are standard Euler equations involving domestic consumption and domestic asset

returns. We could also investigate the asset pricing implications of Euler equations that link

domestic consumption, foreign consumption and the exchange rate (see, e.g., Backus and Smith,

1993). A large literature in international finance explores how the form that these Euler equations

take depends crucially on the structure of international financial markets. Analyzing these issues

is beyond the scope of this paper. However, recent work suggests that a time-varying probability

of rare disasters can help to explain anomalies in the behavior of the real exchange rate (Farhi and

Gabaix, 2008).
16The average duration of disasters in our baseline model is 5.98 years. When we consider single period disasters,

we scale up φi,t by a factor of 1 + ρ+ ρ2 + ρ3 + ρ4 + 0.98ρ5, while we scale up θi,t by a factor of 5.98.
17Specifically, we raise the mean and standard deviations of θi,t to equal those of φi,t.
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6.1 The Equity Premium with Power Utility

We begin by discussing the asset pricing implications of the simple power utility model with γ =

1/ψ = 4.18 In the our baseline case, the equity premium is 1.4%. This is substantially less than the

equity premium of 3.6% in Barro (2006). However, a much more serious concern is that conditional

on no disasters, the equity premium is -0.3%, i.e., it is lower than in a model in which no disasters

can happen. The overall equity premium is, therefore, entirely coming from superior equity returns

during disasters. This contrasts with the results in Barro (2006) in which the equity premium arises

in normal times and stocks do poorly during disasters.

Why does our model with power utility yield such different results from earlier work by Barro

(2006)? The important difference is that disasters unfold over multiple periods in our model. A

version of our model with power utility and one period partially temporary disasters yields an

equity premium of 2.5% overall and 2.8% in normal times. To provide more intuition into what

generates these counterintuitive results, figure 6 presents a time series plot of the behavior of equity

and bond returns over the course of a “typical” disaster, for our baseline model with power utility.

Notice that there is a huge positive return on equity at the start of the disaster (when the news

arrives that a disaster has struck).

The reason for this large positive return is that entering the disaster state causes agents in

the model to expect further drops in consumption going forward. Since the agents in the model

have an IES equal to only 1/4 they have a tremendous desire to smooth consumption over time.

This implies that they have a tremendous desire to save when they receive news that they are in a

disaster. This desire to save is so strong that it dominates the fact that entering a disaster is bad

news about the dividends of stocks. The disaster therefore causes a sharp rise in stock prices. In

contrast to stocks, the one period risk-free bond delivers a “normal” return in the first period of

the disaster. Together, these two facts imply that agents do not demand a high return for holding

stocks in normal times as a compensation for disaster risk. In contrast, stockholders demand a

large equity premium during disasters to a large extent because they are scared that the disaster

might end, since this lowers considerably the demand for assets and therefore causes a sharp drop

in stock prices.
18In this case, it is possible to solve for the return on the assets we consider analytically using an extension of the

calculations in Barro (2006).
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Figure 7 presents a set of analogous results for the case of single period disasters with power

utility. The results for this case are much more intuitive. The disaster does not affect expectations

about consumption growth going forward. Moreover, the trough of consumption coincides with the

news of the disaster striking. As a consequence, equity fares extremely poorly relative to bonds

during disasters and this generates a large equity premium in normal times.

Needless to say, the prediction of our multi-period disaster model with power utility that stocks

yield hugely positive returns at the onset of disasters is highly counterfactual. We take this as

strong evidence against low values of the IES at least during times of disaster.

6.2 The Equity Premium with Epstein-Zin-Weil Preferences

Given these counterfactual implications of the power utility model, we focus on asset pricing with

EZW preferences and an IES equal to 2. The asset pricing results from this specification are

presented in the lower half of table 6.19 Consider first the results for the baseline model with

partially temporary multi-period disasters. For γ = 7, the baseline model renerates an equity

premium of 4.8%. Importantly, this case also generates a large equity premium in normal times.

The equity premium in the sample conditional on no disasters is also 4.8%. Furthermore, the mean

return on the risk-free bond is 1.0%, which is close to its value in the data. This specification

therefore generates both a large equity premium and a low risk-free rate with reasonable preference

parameters.

The results for the IES=2 case are much less sensitive to whether the disaster unfolds over

multiple periods or occurs in one period. This is a direct implication of the more moderate con-

sumption smoothing desire of agents with an IES of 2 than agents with an IES of 1/4. However,

the permancence of the disaster has a substantial effect on the size of the equity premium in the

IES=2 case. The case with permanent disasters we consider in table 6 yields a very large equity

premium for modest values of risk aversion. The fact that we need to raise the value of risk aversion

to seven while Barro and Ursua (2008) can match the equity premium with a value of 3.5 is thus

largely due to the partially temporary nature of disasters in our model.
19In this case, analytical computation of asset returns are not possible. We therefore employ a standard

numerical algorithm to solve the integral in equation (4) on a grid. Specifically, we rewrite equation (4) as
PDRt = Et[f(∆Ct+1, PDRt+1)], where PDRt denotes the price dividend ratio of the asset in question, and solve
numerically for a fixed point for PDRt as a function of the state of the economy on a grid. This is a similar approach
to the approach used by Campbell and Cochrane (1999) and Wachter (2008).
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Figure 8 depicts equity and bond returns over the course of an “typical” disaster for the IES=2

case. The figure shows that the behavior of asset prices during a disaster is far more intuitive in this

case than in the case of power utility discussed above. Equity performs poorly relative to bonds at

the onset of the disaster, leading to an equity premium in normal times.

In a multi-period disaster in our model, much of the bad news associated with the disaster is

revealed at the start of the disaster—for example, at the start of a war. Stock market returns are

particularly low when this information is revealed. However, the low-point in consumption does not

occur until several years later. The low returns on equity during the disaster occur at a time when

consumption has just started to fall. In contrast, in the Barro-Rietz model, equity returns crash

precisely in the period when consumption has bottomed out and marginal utility is highest. This

feature of single-period disasters also contributes to a higher equity premium in the Barro-Rietz

model.

The asset pricing exercises discussed above are based on the posterior mean of the parameters

of our model. Given the limited amount of data we have to estimate the frequency, size and shape

of rare disasters, the posterior standard deviation of the parameters governing disasters are in

some cases substantial. Using the posterior distribution of the parameters of our model, we can

calculate a posterior distribution for the equity premium. This distribution is plotted in figure 9.

In calculating this distribution, we assume that agents have β = exp(−0.035), γ = 7 and ψ = 2.

Figure 9 shows that our estimates place a large weight on parameter combinations that generate

a significant equity premium. Parameter combinations that generate an equity premium of less

than 2% get only roughly 5% weight. On the other hand, the model places substantial weight on

parameter combinations that generate a very large equity premium. Parameter combinations that

generate an equity premium of more than 10% get only roughly 10% weight.

Figure 8 shows that the average return on bills are lower during disasters than they are during

normal times. Furthermore, returns on bills are temporarily high during the recovery periods after

disasters. These features of asset prices in our model line up well with the data. Barro (2006)

reports low returns on bills during many disasters. He also presents evidence that real returns

on U.S. Treasury bills have been unusually low during wars. This regularity is inconsistent with

many macroeconomic models (Barro, 1997, Ch. 12). There is furthermore some evidence that real

returns on bills is temporarily high after wars. This occurred in the U.S. after the Civil War and
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after WWI.

One way to think about the importance of the features we have added relative to earlier work

on disasters is to ask how we could recalibrate the simpler model used in Barro and Ursua (2008)

to generate an equity premium of the same size as the equity premium our model yields. Recall

that in their model, all disasters are completely permanent. The appropriate parameters for the

model may, therefore, differ from the observed probability of (partially transient) disasters in the

data. The equity premium in Barro and Ursua (2008) is given by

logERe − logRf = γσ2 + pE{b[(1− b)−γ − 1]},

where p denotes the probability of disasters, b denotes the permanent instantaneous fraction by

which consumption drops at the time of disasters, σ2 denotes the variance of consumption growth

in normal times and γ denotes the coefficient of relative risk aversion. For simplicity, consider

a version of this model in which b is a constant. Barro and Ursua (2008) consider consumption

drops larger than 10% and find that the probability of these events is p = 0.0363. Their results

on the equity premium can be roughly replicated with a constant size of disasters of b = 0.35. In

contrast, with our estimated overall probability of disaster, p = 0.0138, we can roughly replicate

our results on the equity premium by assuming a size of permanent disasters equal to b = 0.30.

The substantially lower probability of disasters in our calibration as compared to Barro and Ursua

(2008)—and the corresponding lower equity premium for any given value of risk aversion—arises

mainly from the fact that our estimated model includes partial recoveries after many disasters.

6.3 Long Term Bonds, Inflation Risk and Partial Default

Our model generates variation in expected growth of consumption. This implies that the model

gives rise to a non-trivial term structure of interest rates. While one period bonds are risk-free,

the same is not true of longer term bonds. The return on long term bonds will reflect their risk

properties. Most long term government bonds promise a fixed set of payments in nominal terms.

Inflation risk will therefore affect the prices of these securities. Barro and Ursua (2008) present

data on long term bonds for 15 countries over a long sample period. These are nominal government

bonds usually of ten year maturity. The average arithmetic real rate of return in their data is

2.7% per year. The real return on bills for the same sample is 1.5% per year. The average real

term premium in their data is therefore 1.2% per year. To approximate such long bonds in our
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model, we consider a perpetuity with coupon payments that decline over time. We denote the gross

annual growth rate of the coupon payments by Gp. We report results for Gp = 0.9 as this implies

a duration for our perpetuity that is similar to real-world ten year coupon bonds.

The returns on such long term bonds are reported in table 7. The average return is -1.6% per

year. This implies a term premium of -2.6% per year. The reason the long bond has such low

average returns is that it is an excellent hedge against disaster risk. The term premium in a version

of our model without disasters is virtually zero. To understand why the long bond is a valuable

hedge against disasters, it is useful to compare it to stocks. When a disaster occurs, stocks are

affected in two ways. First, the disaster is a negative shock to future expected dividends. This

effect tends to depress stock prices. Second, the representative consumer has an increased desire

to save. This tends to raise stock prices. With an IES=2, the first effect dominates the second

one and stocks decline at the beginning of a disaster. The difference between a long term bond

and stocks is that the coupon payments on the long term bonds are not affected by the disaster.

The only effect that the disaster has on the long term bond is therefore to raise its price because

of consumers’ increased desire the save. Since the price of long term bonds rises at the onset of a

disaster, long term bonds earn a lower rate of return than bills in normal times.

An important concern with comparing the long term bond in our model with the long term

bonds in the data is inflation risk during disasters. In some fraction of the disasters episodes

we identify in our data, inflationary policies by the governments of the countries involved caused

substantial declines in the real value of coupon payments on long term nominal bonds. Barro (2006)

suggests that in roughly 40% of the disasters he identifies, real bill returns were as low as the real

return on stocks mainly due to inflation. He incorporates this inflation risk into his asset pricing

model by allowing for a probability of partial default on bills in which case bill returns are equal

to stock returns. We extend this idea to the case of our perpetuity. The second column in table

7 reports results for a case in which the probability of partial default on the perpetuity is 40%.

This raises the average return on the perpetuity to -0.2% implying a term premium of -1.1%. The

third column considers a case in which the probability of partial default is 70%. In this case, the

return on the perpetuity is 2% and the term premium is 1.1%. In other words, to match the term

premium in the data, the perpetuity we consider need only provide insurance against three of every
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10 disasters.20

Barro and Ursua (2008) argue that bill returns during normal times should be less affected by

inflation risk during disasters than the partial default model of Barro (2006) suggests because the

inflation occurs gradually over the course of disasters. The relative return of stocks and bills at the

onset of disasters is what determines the equity premium in normal times. The gradual nature of

inflation implies that the effect of inflation on the real return on bills at the onset of a disaster is

likely to be minimal. The last two columns of table 7 nevertheless report for robustness results for

cases in which their is partial default on bills as well as the perpetuities. The partial default lowers

the equity premium from 4.8% to 3.3%. Raising the coefficient of risk aversion from 7 to 8 restores

the equity premium to 4.7%.

7 Conclusion

In this paper, we estimate an empirical model of disasters building on the work of Rietz (1988),

Barro (2006) and Barro and Ursua (2008). The key innovations of our model are that we allow

disasters to be partly transitory, to unfold over multiple periods and for the timing of disasters

to be correlated across countries. Furthermore, we use a formal Bayesian estimation procedure

to match the data to the model. We find that it is possible to get into the right ballpark for

the observed equity premium using the estimated model, given “reasonable” values for the risk

aversion of the representative consumer. The degree of risk aversion we need to assume to match

the empirical equity premium is higher than in Barro (2006) and Barro and Ursua (2008) mainly

because we estimate substantial recoveries after disasters. Our asset pricing results depend crucially

on the assumption that the coefficient of relative risk aversion and the intertemporal elasticity of

substitution may be disentangled from the as in the Epstein-Zin-Weil specification of preferences

so that both of these parameters can take values above one. With an interpemporal elasticity

of substitution substantially below one, our asset pricing model counterfactually generates stock

market booms at the onset of disasters.
20One difference between our partial default assumption is that the probability of partial default takes some value

ql each year and is i.i.d. across years in the same disaster. However, since the term premium in normal times is
determined by the relative return on the perpetuity and the bill in the initial period of the disaster, we believe this
is not important for our results.
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A Estimation Results for All Countries

Key to the country figures at the back of the paper:

1. The top-left figures plot consumption (black), the posterior mean of potential consumption

(green) and the probability of disaster (red).

2. The top-right figures plot the posterour mean of the disaster gap (black) and 5% and 95%

posterior probability bands (green and blue, respectively).

3. The middle-left figures plot the posterour mean of the size of the short run disaster shock

(red) as well as consumption and potential consumption. More specifically, the red line is the

posterior mean of Ii,tφi,t, i.e., E[Ii,tφi,t|T ].

4. The middle-right figures plot the posterour mean of the size of the long run disaster shock

(red) as well as consumption and potential consumption. More specifically, the red line is the

posterior mean of Ii,tθi,t, i.e., E[Ii,tθi,t|T ].

5. The bottom-left figures plot the size of the short run shocks conditional on a disaster, i.e.,

E[Ii,tφi,t|T ]/E[Ii,t|T ].

6. The bottom-right figures plot the size of the long run shocks conditional on a disaster, i.e.,

E[Ii,tθi,t|T ]/E[Ii,t|T ].
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Prior Dist. Prior Mean Prior SD Post. Mean Post SD.
pW Beta 0.020 0.020 0.019 0.011
pCbW Unif 0.500 0.289 0.519 0.116
pCbI Beta 0.020 0.020 0.004 0.002
1-pCe Unif 0.500 0.289 0.833 0.032
ρz Unif† 0.500 0.289 0.540 0.072
φ Normal -0.150 0.007 -0.134 0.008
θ Normal 0.000 0.200 -0.025 0.008
σφ Inv-Gamma* 0.113 0.038 0.110 0.012
σθ Inv-Gamma* 0.113 0.038 0.105 0.022

TABLE I
Disaster Parameters

* The prior on the variance of φ and θ that is distributed Inv-Gamma.
† The Uniform distribution on ρ is over the interval [0,0.9].



Prior Dist. Prior Mean Prior SD Post. Mean Post SD. Post. Mean Post SD. Post. Mean Post SD.
Argentina Normal 0.02 1.00 0.013 0.009 0.018 0.011 0.007 0.010
Australia Normal 0.02 1.00 0.008 0.010 0.021 0.005 0.020 0.003
Belgium Normal 0.02 1.00 0.007 0.008 0.027 0.005 0.019 0.003
Brazil Normal 0.02 1.00 0.022 0.010 0.038 0.010 0.017 0.008
Canada Normal 0.02 1.00 0.020 0.009 0.025 0.004 0.018 0.004
Chile Normal 0.02 1.00 0.017 0.010 0.024 0.009 0.037 0.011
Denmark Normal 0.02 1.00 0.018 0.003 0.021 0.005 0.012 0.004
Finland Normal 0.02 1.00 0.021 0.008 0.042 0.007 0.023 0.006
France Normal 0.02 1.00 0.004 0.004 0.037 0.003 0.019 0.002
Germany Normal 0.02 1.00 0.011 0.005 0.050 0.004 0.018 0.003
Italy Normal 0.02 1.00 0.008 0.003 0.046 0.004 0.021 0.003
Japan Normal 0.02 1.00 0.006 0.005 0.075 0.005 0.022 0.003
Korea Normal 0.02 1.00 0.016 0.005 0.033 0.008 0.050 0.006
Mexico Normal 0.02 1.00 0.006 0.010 0.025 0.007 0.015 0.006
Netherlands Normal 0.02 1.00 0.011 0.005 0.034 0.007 0.015 0.004
Norway Normal 0.02 1.00 0.013 0.004 0.028 0.004 0.025 0.004
Peru Normal 0.02 1.00 0.019 0.006 0.031 0.007 0.008 0.008
Portugal Normal 0.02 1.00 0.012 0.010 0.042 0.007 0.030 0.006
Spain Normal 0.02 1.00 0.009 0.007 0.054 0.008 0.021 0.004
Sweden Normal 0.02 1.00 0.026 0.004 0.025 0.005 0.013 0.003
Switzerland Normal 0.02 1.00 0.013 0.005 0.027 0.003 0.009 0.002
Taiwan Normal 0.02 1.00 0.004 0.010 0.056 0.008 0.055 0.006
U.K. Normal 0.02 1.00 0.010 0.002 0.020 0.004 0.024 0.004
U.S. Normal 0.02 1.00 0.013 0.006 0.025 0.003 0.022 0.003

Median 0.012 0.006 0.029 0.005 0.019 0.004
Simple Average 0.013 0.007 0.034 0.006 0.022 0.005

Post-1973

Mean Growth Rate of Potential Consumption
TABLE II

Prior Pre-1946 1946-1972



Prior Dist. Prior Mean Prior SD Post. Mean Post SD. Post. Mean Post SD.
Argentina Unif* 0.26 0.09 0.055 0.017 0.058 0.008
Australia Unif* 0.26 0.09 0.055 0.014 0.019 0.004
Belgium Unif* 0.26 0.09 0.033 0.010 0.019 0.003
Brazil Unif* 0.26 0.09 0.059 0.018 0.047 0.006
Canada Unif* 0.26 0.09 0.054 0.009 0.021 0.003
Chile Unif* 0.26 0.09 0.050 0.017 0.042 0.011
Denmark Unif* 0.26 0.09 0.018 0.004 0.023 0.003
Finland Unif* 0.26 0.09 0.046 0.010 0.031 0.004
France Unif* 0.26 0.09 0.023 0.008 0.013 0.002
Germany Unif* 0.26 0.09 0.028 0.006 0.018 0.002
Italy Unif* 0.26 0.09 0.019 0.005 0.019 0.002
Japan Unif* 0.26 0.09 0.033 0.005 0.020 0.003
Korea Unif* 0.26 0.09 0.023 0.010 0.029 0.004
Mexico Unif* 0.26 0.09 0.057 0.013 0.036 0.004
Netherlands Unif* 0.26 0.09 0.028 0.007 0.024 0.003
Norway Unif* 0.26 0.09 0.023 0.004 0.022 0.003
Peru Unif* 0.26 0.09 0.041 0.006 0.037 0.006
Portugal Unif* 0.26 0.09 0.048 0.013 0.033 0.004
Spain Unif* 0.26 0.09 0.043 0.012 0.023 0.004
Sweden Unif* 0.26 0.09 0.024 0.008 0.019 0.002
Switzerland Unif* 0.26 0.09 0.031 0.009 0.011 0.002
Taiwan Unif* 0.26 0.09 0.055 0.015 0.034 0.004
U.K. Unif* 0.26 0.09 0.013 0.002 0.020 0.002
U.S. Unif* 0.26 0.09 0.039 0.008 0.017 0.002

Median 0.036 0.009 0.022 0.003
Simple Average 0.037 0.010 0.026 0.004
* The variance of the permanent shock that has a uniform prior (U(0,0.152)).

Prior Pre-1946 Post-1946

TABLE III
Standard Deviation of Permanent Shocks to Potential Consumption



Prior Dist. Prior Mean Prior SD Post. Mean Post SD. Post. Mean Post SD.
Argentina Unif* 0.26 0.09 0.039 0.019 0.017 0.008
Australia Unif* 0.26 0.09 0.023 0.010 0.005 0.003
Belgium Unif* 0.26 0.09 0.012 0.007 0.005 0.002
Brazil Unif* 0.26 0.09 0.059 0.014 0.015 0.007
Canada Unif* 0.26 0.09 0.018 0.008 0.005 0.002
Chile Unif* 0.26 0.09 0.038 0.017 0.022 0.009
Denmark Unif* 0.26 0.09 0.009 0.004 0.007 0.003
Finland Unif* 0.26 0.09 0.016 0.008 0.006 0.004
France Unif* 0.26 0.09 0.029 0.005 0.003 0.001
Germany Unif* 0.26 0.09 0.011 0.006 0.003 0.002
Italy Unif* 0.26 0.09 0.012 0.004 0.004 0.002
Japan Unif* 0.26 0.09 0.012 0.005 0.005 0.003
Korea Unif* 0.26 0.09 0.029 0.007 0.006 0.003
Mexico Unif* 0.26 0.09 0.027 0.011 0.008 0.004
Netherlands Unif* 0.26 0.09 0.016 0.007 0.004 0.002
Norway Unif* 0.26 0.09 0.006 0.003 0.006 0.003
Peru Unif* 0.26 0.09 0.011 0.006 0.007 0.004
Portugal Unif* 0.26 0.09 0.020 0.010 0.007 0.004
Spain Unif* 0.26 0.09 0.040 0.009 0.005 0.003
Sweden Unif* 0.26 0.09 0.018 0.007 0.004 0.002
Switzerland Unif* 0.26 0.09 0.033 0.007 0.002 0.001
Taiwan Unif* 0.26 0.09 0.033 0.015 0.006 0.003
U.K. Unif* 0.26 0.09 0.005 0.002 0.004 0.002
U.S. Unif* 0.26 0.09 0.019 0.006 0.004 0.002

Median 0.018 0.007 0.005 0.003
Simple Average 0.022 0.008 0.007 0.003
* The variance of the permanent shock that has a uniform prior (U(0,0.152)).

TABLE IV

Prior Pre-1946 Post-1946

Standard Deviation of Temporary Shock to Consumption



Start Date End Date Max Drop Perm Drop Perm/Max
Argentina 1890 1904 -0.15 0.01 -0.09
Australia 1914 1919 -0.13 -0.08 0.60
Australia 1940 1955 -0.28 0.00 0.01
Belgium 1913 1919 -0.42 -0.03 0.08
Belgium 1940 1950 -0.50 -0.11 0.22
Canada 1914 1924 -0.24 -0.14 0.58
Chile 1914 1934 -0.52 -0.33 0.64
Chile 1972 1987 -0.56 -0.51 0.91
Denmark 1914 1926 -0.16 -0.08 0.52
Denmark 1940 1949 -0.29 -0.11 0.40
Finland 1914 1920 -0.40 -0.17 0.43
Finland 1940 1945 -0.28 -0.12 0.43
France 1914 1920 -0.23 0.04 -0.18
France 1940 1946 -0.55 -0.06 0.11
Germany 1914 1931 -0.44 -0.13 0.29
Germany 1940 1949 -0.48 -0.33 0.69
Italy 1940 1948 -0.31 -0.12 0.40
Japan 1940 1951 -0.60 -0.40 0.66
Korea 1940 1954 -0.55 -0.41 0.75
Korea 1997 2000 -0.18 -0.10 0.53
Mexico 1914 1918 -0.18 0.17 -0.90
Netherlands 1914 1919 -0.45 -0.07 0.15
Netherlands 1940 1950 -0.55 -0.07 0.13
Norway 1914 1923 -0.13 -0.02 0.15
Peru 1978 1993 -0.29 -0.24 0.82
Portugal 1914 1920 -0.12 -0.06 0.52
Spain 1933 1961 -0.54 -0.47 0.87
Sweden 1914 1922 -0.22 -0.15 0.68
Sweden 1940 1951 -0.29 -0.16 0.54
Switzerland 1940 1948 -0.23 -0.14 0.62
Taiwan 1940 1951 -0.59 -0.36 0.60
United.Kingdom 1914 1920 -0.20 -0.09 0.47
United.Kingdom 1940 1946 -0.20 -0.09 0.46
United.States 1930 1933 -0.08 -0.04 0.43

Average -0.33 -0.15 0.40
Median -0.29 -0.11 0.46

Disaster Episodes
TABLE V

A disaster episode is defined as a set of consecudite years for a particular country such that:
1) The probability of a disaster in each of these years is larger than 10%, 2) The sum of the
probability of disaster for each year over the whole set of years is larger than 1. Max Drop is
the posterior mean of the maximum shortfall in the level of consumption due to the disaster.
Perm Drop is the posterior mean of the permanent effect of the disaster on the level potential
consumption. Perm/Max is the ratio of Perm Drop to Max Drop.



Specification
Equity 
Return

Bill   
Return

Equity 
Premium

Equity 
Return

Bill   
Return

Equity 
Premium

1. Power Utility -- No Disasters 4 0.25 0.119 0.116 0.003 0.119 0.116 0.003
2. Power Utility -- Baseline 4 0.25 0.115 0.101 0.014 0.101 0.103 -0.003
3. Power Utility -- One Period 4 0.25 0.114 0.090 0.025 0.103 0.075 0.028

3 2 0.047 0.044 0.002 0.047 0.044 0.002
9 2 0.048 0.041 0.006 0.048 0.041 0.006
3 2 0.047 0.041 0.006 0.049 0.042 0.007
5 2 0.051 0.032 0.019 0.052 0.034 0.018
7 2 0.057 0.010 0.048 0.058 0.010 0.048
9 2 0.064 -0.022 0.086 0.065 -0.023 0.088
3 2 0.047 0.040 0.007 0.048 0.039 0.010
5 2 0.049 0.031 0.017 0.050 0.030 0.020
7 2 0.052 0.009 0.043 0.054 0.008 0.046
9 2 0.058 -0.042 0.100 0.060 -0.044 0.104
3 2 0.057 0.006 0.051 0.063 0.011 0.052
5 2 0.073 -0.058 0.131 0.079 -0.058 0.137
7 2 0.085 -0.106 0.190 0.092 -0.110 0.201
9 2 0.094 -0.138 0.231 0.101 -0.144 0.245

TABLE VI
Asset Pricing Results

4. Epstein-Zin Utility -- No Disasters

5. Epstein-Zin Utility -- Baseline

Coef. Rel. 
Risk Av. 

Int. Elast. 
Sub.

6. Epstein-Zin Utility -- One Period

7. Epstein-Zin Utility -- Perm.

Full Sample Cond. On No Disasters

In all cases, the discount factor is exp(-0.035), and the model of consumption dynamics is parameterized according to the estimates presented
in section 5. The "No Disasters" case is this model where the probability of a disaster is set to zero. "Full Sample" refers to a long sample with
a representative set of disasters. "Conditional on No Disaster" refers to a long sample with no disasters. "Baseline" refers to cases with multi-
period and partially temporary disasters. "One Period" refers to cases where the disaster is made to occur in a single period but the disasters are
partially temporary. "One Per. Permanent" refers to cases with one period disasters that are fully permanent.



(1) (2) (3) (4) (5)
Coefficient of relative risk aversion 7 7 7 7 8
Intertemporal elasticity of substitution 2 2 2 2 2
Rate of time preference 0.035 0.035 0.035 0.035 0.035

Dividend growth for perpetuity 0.9 0.9 0.9 0.9 0.9
Probability of partial default on perpetuity 0.0 0.4 0.7 0.4 0.4
Probability of partial default on one period bond 0.0 0.0 0.0 0.4 0.4

Log expected return on equity 0.057 0.057 0.057 0.057 0.061
Log expected return on one period bond 0.010 0.010 0.010 0.024 0.014
Log expected return on perpetuity -0.016 -0.002 0.020 -0.002 -0.017

Equity premium 0.048 0.048 0.048 0.033 0.047
Term premium -0.026 -0.011 0.011 -0.026 -0.031

Average duration of perpetuity in normal times 10.6 9.2 7.7 9.2 10.7

TABLE VII
Long Term Bonds and Parial Default



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE I 

A Partially Permanent Disaster 
Note: The figure plots the evolution of consumption and potential consumption during and after 
a disaster lasting six periods with φ = -0.15 and θ = -0.05 in each period of the disaster. For 
simplicity, we abstract from trend growth and assume that all other shocks are equal to zero over 
this period. 
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FIGURE II 

A Typical Disaster 
Note: The figure plots the evolution of log consumption during and after a disaster that strikes in 
period 1 and lasts for 5 years. Over the course of the disaster, both φ and θ take values equal to 
their posterior means in each period. For simplicity, we abstract from trend growth and assume 
that all other shocks are equal to zero over this period.  
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FIGURE III 
Ex Ante Disaster Distribution 

Note: The solid line is the mean of the distribution of the change in log consumption relative its 
previous trend from the perspective of agents that have just learned that they have entered the 
disaster state but do not yet know the size of length of the disaster. The black dashed line is the 
median of this distribution. The grey dashed lines are the 5% and 95% quantiles of this 
distribution. 
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FIGURE IV 
World Disaster Probability 

Note: The figure plots the posterior mean of IW,t, i.e., the probability that the world entered a 
disaster in each year evaluated using data up to 2006. 
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Figure VI
Multi-Period Disaster with Power Utility
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Single Period Disaster with Power Utility
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Multi-Period Disaster with EZW Utility
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