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What is the question?

e |Is the skew observed in equity index options consistent with Barro-Rietz style
consumption disasters required to explain the equity premium in consumption
based models with standard preferences and iid consumption, and vice versa?
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e Disaster models and options data have some striking commonalities

e Both imply negatively skewed consumption growth or positively skewed
stochastic discount factors (pricing kernels)

e Both exhibit similar “moderate” tail behavior

Prob(3 std jump] ~ 1%

e But there are some important differences

e Disaster models require much larger extreme tail events

Probpissseer[5 std jump] ~ 0.8% versus Probogions[5 std jump] ~ 0%

e Options data imply heavily state-dependent preferences to explain large SRs
from selling deep out-of-the-money puts



What is new?

e Combining consumption-based models with options data is not new

e There are lots of papers that try to use consumption-based models to price
options and match the implied volatility skew

e There are also lots of papers that use options data to address macro-finance
puzzles, particularly the role of volatility and jump risk in the equity premium

o Both sets of papers arrive at roughly the same “sort of’ conclusion
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e Combining consumption-based models with options data is not new

e There are lots of papers that try to use consumption-based models to price
options and match the implied volatility skew

e There are also lots of papers that use options data to address macro-finance
puzzles, particularly the role of volatility and jump risk in the equity premium

o Both sets of papers arrive at roughly the same “sort of’ conclusion

e Rare events are a focal point of the options literature, so that is not new



What is new? (cont)

e The main contribution is methodological — the paper reverse engineers the
higher-order moment properties of the pricing kernel required either to fit the
equity premium via the disaster channel or to fit option prices

e Focusing on the properties of the pricing kernel is nice because it serves as
neutral ground between two relatively different modeling paradigms

e Reminds me of Backus and Zin (1994), which reverse engineers the
autocorrelation properties of the pricing kernel implied by term premia
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Entropy, cumulants, and the Alvarez-Jermann bound
e Entropy is a dispersion measure

L(x) = InE[x] — E[In x]

e |t depends on all cumulants of the (log) random variable

L(x) = Inxz &
=7

with variance, skewness, and kurtosis of In x being the first three terms

e Alvarez and Jermann (2005) derive a Hansen-Jagannathan style bound on
the entropy of pricing kernel m

L(m) > E[Inr — In rf]

which shows conceptually that the risk premium puzzle can be solved with
low volatility but positive skewness of m (the Barro-Rietz point)



Disasters, risk aversion, and entropy
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Option prices and entropy

High-Order Cumulants

Model Entropy Variance/2 Odd Even
Normal consumption growth

a=2 0.0025 0.0025 0 0
a=5 0.0153 0.0153 0 0
a=10 0.0613 0.0613 0 0

a = 10.52* 0.0678 0.0678 0 0
Bernoulli consumption growth

a=2 0.0029 0.0025 0.0004 0.0000
a=5 0.0234 0.0153 0.0060 0.0021
a=10 0.1614 0.0613 0.0621 0.0380
a=10,0 = +0.3 (boom) 0.0372 0.0613 -0.0621 0.0380
a=10,0 = —-0.15,w = 0.02 0.0765 0.0613 0.0115 0.0038
o = 6.59* 0.0478 0.0266 0.0147 0.0065
Poisson consumption growth

a=2 0.0033 0.0025 0.0007 0.0002
a=5 0.0356 0.0153 0.0132 0.0071
a=10 0.5837 0.0613 0.2786 0.2439

a=538" 00449 00177
Models fit to option prices
Merton equity returns 0.7647 04699

Implied consumption growth 0.0650 0.0621 0.0023 0.0006




A closer look at the models

Normal Bernoulli Poisson Merton Implied
Cons Gr Cons Gr Cons Gr Returns Cons Gr
Parameter (1) (2) (3) (4) (5)
Preferences
a 10.52 6.59 5.38 — 10.07
True distribution
I 0.0200 0.0230 0.0230 0.0832 0.0283
o 0.0350 0.0183 0.0100 0.1377 0.0212
w 0.0100 0.0100 1.5120 1.3864
0 0.3000 0.3000 0.0259 0.0060
) — — 0.1500 0.0407 0.0229
Risk-neutral distribution
o 0.0071 0.0208 0.0225 0.0547 0.0238
w* — 0.0680 0.0695 1.5120 1.5120
0* 0.4210 0.4210 0.0482 0.0112
o* 0.1500 0.0981 0.0229
Properties of distributions
7 (true) 0 ~6.11 ~11.02 -0.07 -0.31
vz (true) 0 50.26 145.06 0.05 0.87
7} (risk-neutral) 0 -3.15 —4.33 —0.32 -0.53
; (risk-neutral) 0 8.72 20.20 0.46 0.91
1 (logm) 0 6.11 11.02 0.08 0.31
”/2 (logm) 0 50.26 145.06 2.16 0.87
Tail prob (< —3 st dev) 0.0013 0.0100 0.0090 0.0040 0.0086
Tail prob (< —5 st dev) 0.0000 0.0100 0.0079 0.0000 0.0002

Entropy
L(m) = L(p*/p) 0.0678 0.0478 0.0449 0.7647 0.0650




A closer look at the models (cont)
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What's going on with the options models?

e The options model has huge entropy (0.75 versus 0.05) but less severe tails



What's going on with the options models?

e The options model has huge entropy (0.75 versus 0.05) but less severe tails
e Explanation

e High entropy is required to explain the high SR of selling out-of-the-money
puts — the Alvarez-Jermann bound holds within the model

L(m) > E[In fous — In rf]

e High entropy is generated by a large price of left-tail risk

e Such large price of tail risk, in turn, requires state-dependent preferences,
not CRRA type preferences, consistent with Bates (2008)



What's going on with the options models? (cont)

e Back to the objective of the paper — do we call this a success or failure in
reconciling the the disaster models with option prices?

e Yes, option prices do imply (too) high entropy (success!) but the economic
mechanism by which option pricing models achieve high entropy is very
different from the disaster models (failure?)



Taking

e | am

a few steps back

skeptical that option prices are consistent with Barro-Rietz

skewness, kurtosis
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skewness " kurtosis

e Option markets learned about tail risk (or their aversion to it) in 1987

e The equity risk premium, in contrast, was just as high, if not higher, pre 1987
e E.g., Mehra and Prescott (1985)



State dependent preferences
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State dependent preferences
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e Question: Once we have state dependent preferences, do we really still need
consumption disasters to explain the equity risk premium?



Revising the HJ/AJ bounds?

e Question: With more consumption-based papers looking at options data, is it
not time to change the hurtle for these models from explaining the equity risk
premium (SR ~ 0.5) to explaining the risk premium earned in the option
market (SR ~ 1.57) = pricing kernels are three times as volatile!
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