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Introduction

Call
values

are often
obtained by integ-

rating their payoff against
a risk-neutral probability density

function. When the characteristic function
of the underlying asset is known in closed form,

call values can also be obtained by a single integration.
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A Brief History of Sines

• The history of integral transforms begins with d’Alembert in
1747.

• D’Alembert proposed using a superposition of sine functions
to describe the oscillations of a violin string.

• The recipe for computing the coefficients, later associated with
Fourier’s name, was actually formulated by Euler in 1777.

• Fourier proposed using the same idea for the heat equation in
1807.

• Since the introduction of periodic functions, mathematics has
never been the same...
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Fourier Frequency in Finance

• McKean (IMR 65) used Fourier transforms in his appendix to
Samuelson’s paper.

• Buser (JF 86) noticed that Laplace transforms with real argu-
ments give present value rules.

• Shimko (92) championed the use of Laplace transforms in his
book.

• Beaglehole (WP 92) used Fourier series to value double barrier
options.

• Stein & Stein (RFS 91) and Heston (RFS 93) started the ball
rolling with their use of Fourier transforms to analytically value
European options on stocks with stochastic volatility.

• While not necessary, Fourier methods simplify the development
of option pricing models which reflect empirical realities such
as jumps (Ait-Sahalia JF 02), volatility clustering (Engle 81),
and the leverage effect (Black 76).

• A bibliography at the end of this presentation lists 76 papers
applying integral transforms to option pricing.
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My Fast Fourier Talk (FFT)

• To survey integral transforms for option pricing in one hour,
I restrict the presentation to the use of Fourier transforms to
value European options on a single stock.

• Here’s an overview of my FFT:

1. What is a Fourier Transform (FT)?

2. What is a Characteristic Function (CF)?

3. Relating FT’s of Option Prices to CF’s

4. Pricing Options on Lévy Processes

5. Pricing Options on Lévy Processes w. Stochastic Volatility
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Fourier Transformation and Inversion

• Let f(x) be a suitably integrable function

• Letting δ(·) be Dirac’s delta function:

f(x) =

∫ ∞

−∞
f(y)δ(y − x)dy.

• The next page shows that δ(y − x) = 1
2π

∫ ∞
−∞ eiu(y−x)du.

• Substituting in this fundamental result implies:

f(x) =

∫ ∞

−∞
f(y)

1

2π

∫ ∞

−∞
eiu(y−x)dudy

=
1

2π

∫ ∞

−∞
e−iux

∫ ∞

−∞
f(y)eiuydydu.

• Define the Fourier transform (FT) of f(·) as:

Ff(u) ≡
∫ ∞

−∞
eiuyf(y)dy.

• Thus given the FT of f , the function f can be recovered by:

f(x) =
1

2π

∫ ∞

−∞
e−iuxFf(u)du.

• It is sometimes necessary to make u complex. When Im(u) ≡
ui 6= 0, the FT is referred to as a generalized Fourier transform.

f(x) =
1

2π

∫ iui+∞

iui−∞
e−iuxFf(u)du.
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No Potato, One Potato, Two Potato, Three...

• Note that:

1. the average of 1 and 1 is 1

2. the average of 1 and eiπ = −1 is 0.

1. The average of 1 and 1 and 1 is 1

2. The average of 1 and e
2π
3 i and e

4π
3 i is 0.

3. The average of 1 and e
4π
3 i and e

8π
3 i is 0.

1. The average of 1 and 1 and 1 and 1 is 1

2. The average of 1 and e
π
2 i and eπi and e

3π
2 i is 0.

3. The average of 1 and eπi and e2πi and e3πi is 0.

4. The average of 1 and e
3π
2 i and e3πi and e

9π
2 i is 0.

• As financial engineers, we conclude that for all d = 2, 3, 4 . . .:

1

d

d−1∑

k=0

e
2πi
d jk = 1j=0,

for j = 0, 1, . . . , d − 1.
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Yes, but...

• Recall our engineering style proof that for d = 2, 3, . . . ,:

1

d

d−1∑

k=0

e
2πi
d jk = 1j=0, j = 0, 1, . . . , d − 1.

• A mathematician would note that if we define r = e
2πi
d j, then

the LHS is 1
d

d−1∑
k=0

rk. If j = 0, then r = 1 and the LHS is clearly

1, while if j 6= 0, then the sum is a geometric series:

1

d

d−1∑

k=0

rk =
1

d

rd − 1

r − 1
= 0, since rd = e2πij = 1.

• Multiplying the top equation by d implies d1j=0 =
d−1∑
k=0

e
2πi
d jk.

• Putting our engineering cap back on on, letting d ↑ ∞ and
j = y − x:

δ(y − x) =

∫ ∞

−∞
ei2πω(y−x)dω.

• Letting u = 2πω:

δ(y − x) =
1

2π

∫ ∞

−∞
eiu(y−x)du.

• Fortunately, this can all be made precise.
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Basic Properties of Fourier Transforms

• Recall that the (generalized) FT of f(x) is defined as:

Ff(u) ≡
∫ ∞

−∞
eiuxf(x)dx,

where f(x) is suitably integrable.

• Three basic properties of FT’s are:

1. Parseval Relation:
Define the inner product of 2 complex-valued L2 functions
f(·) and g(·) as 〈f, g〉 ≡

∫ ∞
−∞ f(x)g(x)dx. Then:

〈f, g〉 = 〈Ff(u),Fg(u)〉.

2. Differentiation:

Ff ′(u) = −iuFf(u)

3. Modulation:

Fe`xf(u) = Ff(u − i`)
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What is a Characteristic Function?

• A characteristic function (CF) is the FT of a PDF.

• If X has PDF q, then:

Fq(u) ≡
∫ ∞

−∞
eiuxq(x)dx = EeiuX.

• For u real and fixed, the CF is the expected value of the loca-
tion of a random point on the unit circle. Hence the norm of
the CF is never bigger than one:

|Fq(u)| ≤ 1.

• The bigger the absolute value of the real frequency u, the wider
is the distribution of uX . Hence, if the PDF of uX is wrapped
around the unit circle, larger |u| leads to more uniform distri-
bution of probability mass on the circle, and hence smaller
norms of the CF.

• Symmetric PDF’s centered about zero have real CF’s.

• When the argument u is complex with non-zero imaginary
part, the PDF is wrapped around a spiral rather than a circle.
The larger is Im(u), the faster we spiral into the origin.

10



From Fourier to Finance

• Suppose we interpret the function f as the final payoff to a
derivative security maturing at T .

• Recall that f(FT ) =
∫ ∞
−∞ f(K)δ(FT − K)dK.

• This is a spectral decomposition of the payoff f into the payoffs
δ(·) from an infinite collection of Arrow Debreu securities.

• From Breeden & Litzenberger, ∂2

∂K2(FT − K)+ = δ(FT − K).

• Hence, static positions in calls can create any path-indep. pay-
off including er1x sin(r2x) & er1x cos(r2x), r1, r2 real. The pay-
offs from these sine and cosine claims are created model-free.

• As we saw, δ(FT − K) = 1
2π

∫ ∞
−∞ eiu(FT−K)du.

• When u is complex and u = ur + iui:

eiux = eurx cos(uix) + ieurx sin(uix).

• Hence, the payoff from each A/D security can in turn be repli-
cated by a static position in sine claims and cosine claims.

• Just as the payoffs from A/D securities may be a more conve-
nient basis to work with than option payoffs, the payoffs from
sine and cosine claims may be an even more convenient basis.

• The use of complex numbers is even more convenient. After all,
it is a lot easier to evaluate i2 than sin(u1 +u2) or cos(u1 +u2).
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Parsevaluation

• Let g(k) be the Green’s function (a.k.a the pricing kernel, but-
terfly spread price, and discounted risk-neutral PDF).

• Letting V0 be the initial value of a claim paying f(XT ) at T ,
risk-neutral valuation implies:

V0 =

∫ ∞

−∞
f(k)g(k)dk = 〈f, g〉,

where for any functions φ1(x) and φ2(x), the inner product is:

〈φ1, φ2〉 ≡
∫ ∞

−∞
φ1(x)φ2(x)dx.

• By the Fourier Inversion Theorem f(k) = 1
2π

∫ ∞
−∞ e−iukFf(u)du:

V0 =

∫ ∞

−∞

1

2π

∫ ∞

−∞
e−iukFf(u)dug(k)dk

=
1

2π

∫ ∞

−∞
Ff(u)

∫ ∞

−∞
g(k)e−iukdkdu

=
1

2π

∫ ∞

−∞
Ff(u)Fg(u)du.

• Hence V0 = 〈f, g〉 = 1
2π〈Ff ,Fg〉 by a change of basis.

• Note that Fg(u) = B0(T )Fq(−u), i.e. discount factor × CF.

• By restricting the payoff, more efficient Fourier methods can
be developed.
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Breeden Litzenberger in Logs

• Let C(K, T ) relate call value to strike K and maturity T

• The Green’s f’n G(K, T ) is B0(T )Q{FT ∈ d(K, K + dK)}.
• From Breeden & Litzenberger (JB 78), G(K,T ) = ∂2

∂K2C(K, T ).

• Let k ≡ ln(K/F0) measure moneyness of the T maturity call.

• Let γ(k, T ) ≡ C(K, T ) relate call value to k and T .

• Let Xt ≡ ln(Ft/F0) be the log price relative.

• Let g(k, T ) ≡ G(K, T ) be the Green’s function of XT .

• How are g and γ related?

• By no arbitrage, the call value is related to g by:

γ(k, T ) = F0

∫ ∞

k

(ey − ek)g(y, T )dy.

• To invert this relationship, differentiate w.r.t. k:
∂

∂k
γ(k, T ) = −F0

∫ ∞

k

ekg(y, T )dy.

Hence:
e−k

F0

∂

∂k
γ(k, T ) = −

∫ ∞

k

g(y, T )dy.

• Differentiating w.r.t. k again gives the desired result:

g(k, T ) =
∂

∂k

e−k

F0

∂

∂k
γ(k, T ).
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Relationship Between Fourier Transforms

• Recall that Green’s function g of XT = ln(FT/F0) is related
to the call price as a function γ of moneyness k ≡ ln(K/F0):

g(k, T ) =
∂

∂k

e−k

F0

∂

∂k
γ(k, T ).

• Multiply both sides by eiθk where θ ∈ C and integrate out k:

F [g](θ, T ) ≡
∞∫

−∞

eiθkg(k, T )dk = F
[

∂

∂k

e−k

F0

∂

∂k
γ

]
(θ, T ).

• The differentiation and modulation rules for FT’s imply:

F [q](θ, T ) = (−iθ)F
[
e−k

F0

∂

∂k
γ

]
(θ, T )

=
(−iθ)

F0
F

[
∂

∂k
γ

]
(θ + i, T )

=
−θ(θ + i)

F0
F [γ](θ + i, T ).

• Letting u = θ + i, solving for F [γ](θ + i, T ):

F [γ](u, T ) =
F0F [g](u − i, T )

(i − u)u
.

• Carr Madan (JCF 98) compute this (generalized) FT via FFT.
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More on the FFT Method

• Since γ(k) is not integrable, its generalized FT is only defined
on a subset of the complex plane that excludes the real line.

• If we invert an FT for call value at n strikes, the work is O(n2)
since each inversion is a numerical integration.

• Using the FFT to invert the FT of the call value reduces the
work to O(n ln n), a considerable improvement.

• The formula is only for European options. However, Lee (03)
extends it to a bigger class of path-independent payoffs and
Dempster & Hong (WP 02) extend it to spread options.

• Lee (03) develops error bounds for the FFT method.

• Inversion returns option prices as a function of (log) strike,
which is useful for calibrating to market option prices.

• Alternatively, one can calibrate directly in Fourier space relying
on Parseval to ensure that errors do not magnify on inversion.

• If call values are homogeneous in spot and strike, one also gets
option prices in terms of spot (hedging/risk management).

• When the CF is available in closed form, both Parsevaluation
and the FFT method give closed form expressions for the gen-
eralized FT of a claim value. But where do we get closed form
expressions for CF’s?
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Options on Lévy Processes

• Fortunately, an important class of stochastic processes called
Lévy processes are specified directly in terms of the CF of a
random variable.

• Lévy processes are right continuous left limits processes with
stationary independent increments.

• Important examples include arithmetic brownian motion (ABM)
and compound Poisson processes.

• The only continuous Lévy process is ABM:

dAt = bdt + σdWt, t ≥ 0.

• Note that the Black Scholes model assumes that the log price
is ABM. Thus, if we are going to go beyond Black Scholes and
we want to price options on assets whose log price is a Lévy
process, then we are going to have to make our peace with
pricing options in the presence of jumps.

• Work on this issue is also motivated by Hakansson’s catch 22
and Sandy Grossman’s crack on ketchup economics.
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Complete Markets

• The Black Scholes model prices all stock price contingent claims
uniquely by no arbitrage using just a bond and the underlying
stock in the replicating portfolio.

• The basic intuition comes from seeing Black Scholes as a con-
tinuous time limit of the binomial model, where at each discrete
time the increment in the stock price is Bernoulli distributed.

• Some SV models and jump models have all of the above fea-
tures of Black Scholes, eg. CEV model or Cox Ross (JFE 76)
fixed jump model (also see Rogers & Hobson (MF 98) and
Dritschel & Protter (MF 99)).

• However, these models are still limits of discrete time models
in which the local movement in the stock price process is still
conditionally binary.
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Pricing Options on Assets which Jump

• Rejecting the conditionally binary assumption on empirical
grounds, we can still price claims by using some subset of:

1. Restricting the target claim space

2. Restricting the underlying price process

3. Increasing the basis asset space

4. Assuming more than no arbitrage

5. Giving up on unique pricing.

• For example, suppose the target claim space is restricted to
arbitrary European options & the underlying price process is
restricted to an arbitrary Lévy process. Suppose dynamic trad-
ing is restricted to stock & bond, but static positions are al-
lowed in N < ∞ options with different strikes &/or maturities.

• Then we can still uniquely price options by assuming more than
no arbitrage. For example, we can assume that asset markets
are in equilibrium and hence is using this criterion to select
one arbitrage-free pricing rule from the many that reprice the
options and their underlying stock.

• To learn this pricing rule, we may specify ex ante a family of
Lévy processes with M < N parameters. Then the parameters
are determined from market option prices by say a least squares
fit. But how do we specify a Lévy process?
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Lévy Khintchine Theorem

• Once one specifies the distribution of an infinitely divisible
random variable at time 1, the corresponding Lévy process is

determined by Xt
d
= tX1.

• The Lévy Khintchine theorem characterizes all infinitely divis-
ible random variables in terms of their CF.

• For simplicity, I will only present the theorem for Lévy processes
started at 0 and whose jump component has sample paths of
finite variation.

• By the Lévy Khintchine theorem, all such processes have a CF:

EeiuXt = e
t

[
ibu−σ2u2

2 +
∫

<−{0}
(eiux−1)`(dx)

]

, t ≥ 0.

• The Lévy process is specified by the drift rate b, the diffusion
coefficient σ, and the so-called Lévy measure `(dx).

• Loosely speaking, the Lévy measure `(dx) specifies the arrival
rate of jumps of size (x, x+dx). Hence, it must be nonnegative
and no measure is assigned to the origin. So that the process
has well-defined quadratic variation, the Lévy measure must
also integrate x2 around the origin i.e.∫

<−{0}

x21(|x| < 1)`(dx) < ∞.
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Applying Lévy Khintchine

• Recall the Lévy Khintchine theorem:

EeiuXt = e
t

[
ibu−σ2u2

2 +
∫

<−{0}
(eiux−1)`(dx)

]

.

• If the Lévy process is ABM (dAt = bdt + σdWt, t ≥ 0), then:

EeiuAt = e
t
[
ibu−σ2u2

2

]
.

• For Black Scholes with constant interest rate r and dividend
yield q, the drift of the log stock price relative is b = r−q− σ2

2
and we are done.

• Merton’s jump diffusion model assumes that the log price rel-
ative is the sum of an ABM and an independent compound
Poisson process. The conditional distribution of the jump size
is normal with mean α and standard deviation σj. The Lévy

measure is `(dx) = λe
−1

2

(
x−α
σj

)2

√
2πσj

dx. Hence, the CF is:

EeiuXt = e

t


ibu−σ2u2

2 + λ√
2πσj

∫
<−{0}

(eiux−1)e
−1

2

(
x−α
σj

)2

dx



.

• The last integral can be done in closed form. Once one relates
the risk-neutral drift b to the parameters r, q, σ, λ, α, and σj,
European option pricing is straightforward.
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An Interpretation of Lévy Khintchine

• All Lévy processes arise as limits of compound Poisson processes.

• To see why, recall the Lévy Khintchine theorem:

EeiuXt = e
t

[
ibu−σ2u2

2 +
∫

<−{0}
(eiux−1)`(dx)

]

. (1)

• A Poisson process jumping by k with arrival rate λ has CF:

EeiukNt(λ) =
∞∑

n=0

eiukne−λt(λt)n

n!
= et(eiuk−1)λ. (2)

• (1) and (2) are the same if b = σ = 0 and the Lévy measure
is:

`(dx) = λδ(x − k)dx.

• The term ibu in (1) is arising from cumulative drift bt. Now:

lim
k↓0

eiuk − 1

k
= iu.

• Hence, this term can come from (2) by letting λ = b
k and

letting k ↓ 0.

21



Diffusions as Jumps

• Recall the Lévy Khintchine theorem:

EeiuXt = e
t

[
ibu−σ2u2

2 +
∫

<−{0}
(eiux−1)`(dx)

]

. (3)

and the CF for a Poisson process jumping by k with arrival
rate λ:

EeiukNt(λ) = et(eiuk−1)λ. (4)

• The difference of 2 IID Poissons jumping by k has CF:

Eeiuk[N1t(λ)−N2t(λ)] = et[(eiuk−1)+(e−iuk−1)]λ. (5)

• The term σ2u2

2
in (3) is arising from the CF of σWt, where W

is SBM. Now:

lim
k↓0

(eiuk − 1) + (e−iuk − 1)

k2
= −u2.

• Hence, this term can come from (4) by letting λ = σ2

2k2 and
letting k ↓ 0.

• Where does the term
∫

<−{0}

(
eiux − 1

)
`(dx) in (3) come from?
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Poisson Processes as Building Blocks

• Recall the Lévy Khintchine theorem:

EeiuXt = e
t

[
ibu−σ2u2

2 +
∫

<−{0}
(eiux−1)`(dx)

]

. (6)

• Suppose that a Poisson process Pt jumps by the fixed size x
and has an infinitessimally small arrival rate `(dx):

Pt = xNt(`(dx)).

• Its CF is:
EeiuPt = et(eiux−1)`(dx). (7)

• Now consider a continuum of such processes where each process
is independent of every other.

• The integral in (6) can be thought of as arising from a calcu-
lation of the CF of a superposition of these processes:

It ≡
∫

<−{0}

xNt(`(dx)).

The rareness of jumps ensures that at every time, there are
either no jumps or only one.

• Since drift and diffusion also come from limiting linear com-
binations of standard Poisson processes, we see that these
processes are the building blocks of Lévy processes.
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You Say Tomato

• Many Lévy processes can go negative while futures prices of
limited liability assets must be nonnegative.

• Suppose we assume that the log of the futures price relative is
a Lévy process started at zero:

Xt = ln(Ft/F0).

• No arbitrage implies that the futures price Ft = F0e
Xt is a

positive martingale under a risk-neutral measure Q.

• Since the exponential function is convex, Jensen’s inequality
forces the process X to have negative drift.

• For example in the Black model, the log futures price relative
is ABM and the drift of the log futures price relative is −σ2/2.

• This negative drift is often termed a convexity correction, but
it should be called a concavity correction if the log is concave.
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Convexity Correction

• To determine the convexity correction when the log futures
price relative is a Lévy process, let Lt be a Lévy process with
zero drift whose jump component has sample paths of finite
variation. We term L the driver of the futures price process.

• By the Lévy Khintchine theorem, we have:

EeiuLt = e
t[−u2σ2

2 +
∫

<−{0}
(eiux−1)`(dx)]

= e−tΨ(u),

where Ψ(u) ≡ − ln EeiuL1 = u2σ2/2−
∫

<−{0}
(eiux − 1)`(dx) is

called the characteristic exponent of the driver.

• Assuming that expectations are finite, evaluating the top equa-
tion at u = −i:

EeLt = e−tΨ(−i) and hence EetΨ(−i)+Lt = 1.

Let:

b ≡ Ψ(−i) = −σ2/2 −
∫

<−{0}

(ex − 1)`(dx).

• Then Xt ≡ bt + Lt is a Lévy process with the property that
eXt is a positive martingale started at 1.

• Hence, St ≡ S0e
(r−q)t+Xt has the desired risk-neutral dynam-

ics, since:
ESt = S0e

(r−q)t, t ≥ 0.
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The thigh bone’s connected to the..

• Recall from way back when that γ(k) is a function relating the
call price to the moneyness k ≡ ln(K/F0).

• Carr Madan relate the FT of γ to the CF of XT ≡ ln
(

FT
F0

)
:

Fγ(u, T ) =
F0B0(T )Fq(u − i, T )

(i − u)u
,

where q(k, T ) ≡ Q {XT ∈ (k, k + dk)} is the risk-neutral PDF
of XT and B0(T ) is the price of a bond paying $1 at T .

• The CF of Xt = ln
(

Ft
F0

)
is det’d by the char. exponent Ψ(u):

F [q](u, T ) = EeiuXT = eiubT−TΨ(u), where b = Ψ(−i).

• The characteristic exponent is det’d by the Lévy measure `(dx):

Ψ(u) = u2σ2/2 −
∫

<−{0}

(eiux − 1)`(dx).

• If `(dx) is chosen so that
∫

<−{0}
(eiux−1)`(dx) can be evaluated

in closed form, then the CF and FT of γ are also closed form.

• The table on the next page gives several popular Lévy measures
and closed form expressions for the corresponding characteris-
tic exponents.
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Lévy Measures & Characteristic Exponents

Table 1:

Driver’s Lévy Measure Characteristic Exponent
Name `(dx)/dx Ψ(u) ≡ − ln EeiuL1

Purely Continuous Lévy Driver

ABM µt + σWt 0 −iµu + 1
2
σ2u2

Finite Activity Pure Jump Lévy components

Merton Jump Part λ 1√
2πσ2

j

exp
(
− (x−α)2

2σ2
j

)
λ

(
1 − eiuα− 1

2
σ2

j u2
)

Kou’s Double Exp’l λ 1
2η

exp
(
− |x−k|

η

)
λ

(
1 − eiuk 1−η2

1+u2η2

)

Eraker (2001) λ 1
η

exp
(
−x

η

)
λ

(
1 − 1

1−iuη

)

Infinite Activity Pure Jump Lévy Driver

Normal Inv. Gauss eβx δα
π|x|K1(α|x|) −δ

[√
α2 − β2 −

√
α2 − (β + iu)2

]

Hyperbolic eβx

|x|

[∫ ∞
0

e−
√

2y+α2|x|

π2y
(
J2
|λ|(δ

√
2y)+Y 2

|λ|(δ
√

2y)
)dy − ln

[ √
α2−β2√

α2−(β+iu)2

]λ [
Kλ

(
δ
√

α2−(β+iu)2
)

Kλ

(
δ
√

α2−β2
)

]

+1λ≥0λe−α|x|)

CGMY

{
Ce−G|x||x|−Y −1, x < 0,
Ce−M |x||x|−Y −1, x > 0

CΓ(−Y )
[
MY − (M − iu)Y + G − (G + iu)Y

]

Variance Gamma
µ2
±

v±

exp
(
−µ±

v±
|x|
)

|x| λ ln
(
1 − iuα + 1

2
σ2

j u
2
)

(µ± =

√
α2

4λ2 +
σ2

j

2
± α

2λ
, v± = µ2

±/λ)

FiniteMomLogStbl c|x|−α−1, x < 0 −cΓ(−α) (iu)α
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Stochastic Volatility and Timex

• By definition, Lévy processes have stationary independent in-
crements.

• As a consequence, squared returns are independent i.e. volatil-
ity does not cluster.

• However, there is much empirical evidence to the contrary.

• Fortunately, one can capture volatility clustering by time-
changing a Lévy process. If a Lévy process is run on a stochas-
tic clock whose increments are correlated, then the increments
in the Lévy process inherit this correlation.

• Mathematically, a stochastic clock (technically a subordinator)
is a right continuous increasing stochastic process started at 0.

• Intuitively, think of it as a $5 Rolex.

• If the Lévy process is standard Brownian motion and the sto-
chastic clock is τ (t) ≡

∫ t

0 σ2
t dt, then:

dBτ(t)
d
= σtdBt,

by the Brownian scaling property. If σt is a random continuous
process, then the increments of Bτ(t) become correlated.
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FT of Time Changed Lévy Process

• Let X be a Lévy process started at 0 and whose jump compo-
nent has sample paths of finite variation. Then its CF is:

FXt(u) ≡ EeiuXt = e−tΨx(u), t ≥ 0,

where Ψx(u) ≡ −ibu + σ2u2

2 −
∫

<−{0}

(
eiux − 1

)
`(dx) is the

characteristic exponent of Xt.

• Let τ be a subordinator which is independent of X and let
Yt ≡ Xτt, t ≥ 0. Then the CF of Y involves expectations over
2 sources of randomness:

FYt(u) ≡ EeiuYt = EeiuXτt = E
[
E

[
eiuXτt|τt = u

]]
.

• If τt is independent of X , then the randomness due to the Lévy
process can be integrated out using the top equation:

FYt(u) = Ee−τtΨx(u) ≡ Lτt(Ψx(u)),

where Lτt(λ) ≡ Ee−λτt is the Laplace Transform (LT) of τt,
λ ∈ C, Re(λ) ≥ 0.

• Thus, the CF of Yt is just the LT of τt evaluated at the char-
acteristic exponent of X .

• Clearly, if the LT of τt and the characteristic exponent of X
are both available in closed form, then so is the CF of Yt.
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Laplace Transforms and Bond Prices

• Consider specifying the clock in terms of an activity rate vt:

τt =

∫ t

0

vs−ds, vs ≥ 0.

• Then the Laplace transform of the clock has form:

Lτt(λ) ≡ E
[
e−λτt

]
= E

[
e−λ

∫ t
0 vs−ds

]
.

• This formulation arises in the bond pricing literature if we
regard λvt as the instantaneous interest rate.

• If the Lévy process being time changed is Brownian motion,
then v is the variance rate.

• The instantaneous interest rate and the instantaneous activity
rate are both required to be non-negative and are commonly
thought to be mean reverting.

• Thus, one can adopt the vast literature on bond pricing to
obtain Laplace transforms in closed form.

• In particular, one can apply 2 tractable bond pricing classes,
namely affine and quadratic interest rate models.

• These classes are summarized in the table on the next page.

• See CGMY (MF 03) and Carr & Wu (JFE 03) for various
pairings of Lévy processes and stochastic clocks.
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Activity Rate Processes & LT of Clock

Under each class of activity rate processes, the entries summarize the specification of the activity rate and
the corresponding Laplace transform of the random time.

Activity Rate Specification Laplace Transform
vt LTt(λ) ≡ E

[
e−λTt

]

Affine: Duffie, Pan, Singleton (2000)

vt = b>
v Zt + cv,

µ(Zt) = a − κZt,[
σ(Zt)σ(Zt)

>]
ii

= αi + β>
i Zt,[

σ(Zt)σ(Zt)
>]

ij
= 0, i 6= j,

γ(Zt) = aγ + b>
γ Zt.

exp
(
−b(t)>z0 − c(t)

)
,

b′(t) = λbv − κ>b(t) − 1
2
βb(t)2

−bγ ( Lq(b(t)) − 1) ,
c′(t) = λcv + b(t)>a − 1

2
b(t)>αb(t)

−aγ ( Lq(b(t)) − 1) ,
b(0) = 0, c(0) = 0.

Generalized Affine: Filipovic (2001)

Af(x) = 1
2
σ2xf ′′(x) + (a′ − κx)f ′(x)

+
∫
R+

0
(f(x + y) − f(x) + f ′(x) (1 ∧ y))

(m(dy) + xµ(dy)) ,
a′ = a +

∫
R+

0
(1 ∧ y) m(dy),∫

R+
0

[(1 ∧ y)m(dy) + (1 ∧ y2) µ(dy)] < ∞.

exp (−b(t)v0 − c(t)) ,
b′(t) = λ − κb(t) − 1

2
σ2b(t)2

+
∫
R+

0

(
1 − e−yb(t) − b(t)(1 ∧ y)

)
µ(dy),

c′(t) = ab(t) +
∫
R+

0

(
1 − e−yb(t)

)
m(dy),

b(0) = c(0) = 0.

Quadratic: Leippold and Wu (2002)

µ(Z) = −κZ, σ(Z) = I,
vt = Z>

t AvZt + b>
v Zt + cv.

exp
[
−z>0 A (t) z0 − b (t)> z0 − c (t)

]
,

A′(t) = λAv − A (t) κ − κ>A (τ) − 2A (t)2 ,

b′(t) = λbv − κb(t) − 2A (t)> b (t) ,
c′(t) = λcv + trA (t) − b(t)>b(t)/2,
A(0) = 0,b(0) = 0, c(0) = 0.
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Correlation and the Leverage Effect

• To capture the well documented volatility clustering phenom-
enon, we time-changed a Lévy process using an independent
subordinator.

• It is also well documented that percentage changes in the un-
derlying’s price and volatility are correlated, typically nega-
tively.

• Whether or not this correlation is due to leverage, it is com-
monly referred to as the leverage effect.

• Carr and Wu (JFE 03) show how to calculate the CF of a Lévy
process time-changed by a correlated subordinator.

• Monroe (1978) showed that any semi-martingale can be char-
acterized as Brownian motion time-changed by a possibly cor-
related subordinator.

• Hence, the entire class of processes used in derivatives pricing
can now be captured by Fourier methods.
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Motivating Complex Measure

• Recall that if the Lévy process X and the clock τt are inde-
pendent, then the CF of Yt ≡ Xτt is given by:

φYt(u) = Lτt(Ψx(u)) = EQ
[
e−Ψx(u)τt

]
,

where Ψx(u) is the characteristic exponent of X .

• Suppose for simplicity that the PDF of X is symmetric (eg.
SBM). Then the PDF of Y is also symmetric and the charac-
teristic functions and exponents of both X and Y are real.

• One can introduce skewness into the distribution of Y by in-
troducing correlation between increments in τ and X . Then,
the CF of Y takes on a non-zero imaginary part.

• Suppose we still want to relate CF’s to LT’s and to character-
istic exponents, as in the top equation.

• As the characteristic exponent of X and the clock τt are both
real, the only way to accomplish this is to allow the probability
measure Q used in the expectation to become complex.
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Changing to Complex Measure

• Let Q be the usual risk-neutral measure under which a Lévy
process X has characteristic exponent Ψx(u).

• Let τt be a stochastic clock and let Mt(u) ≡ eiuXτt+τtΨx(u).

• Carr and Wu use the Optional stopping theorem to show
that Mt(u) is a well-defined complex-valued Q-martingale and
hence can be used to change the real valued probability mea-
sure Q into a complex valued measure Q(u):

EQ
[
eiuYt

]
= EQ

[
eiuYt+τtΨx(u)−τtΨx(u)

]
= EQ

[
Mt(u)e−τtΨx(u)

]

= EQ(u)
[
e−τtΨx(u)

]
≡ Lu

τt
(Ψx(u)) .

• Thus, the generalized CF of the time-changed Lévy process
Yt ≡ XTt under measure Q is just the (modified) Laplace
transform of τ under the complex-valued measure Q(u), eval-
uated at the characteristic exponent Ψx(u) of Xt.

• Just as Cox-Ross (JFE 76) show that correct valuation arises if
a risk-neutral investor uses Q in place of statistical measure, we
show that correct valuation arises if an investor who believes
in independence uses Q(u) in place of Q. For this reason, we
term Q(u) the leverage-neutral measure. We illustrate many
old models (eg. Heston (RFS 93)) and many new models from
the perspective of this generalized framework.
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Summary and Future Research

• After reviewing the meanings of FT and CF, we showed how
options can be priced by a single integration once one knows
the CF of the underlying log price in closed form.

• To obtain this CF in closed form, we can time-change a Lévy
process using a stochastic clock whose increments are in general
correlated with returns.

• This allows us to rapidly develop and test a wide variety of
option pricing models, which reflect empirical realities such as
jumps, volatility clustering, and the leverage effect.

• A quick glance at my bibliography should convince you that
Fourier methods are already being applied to many areas of
finance besides option pricing.

• Judging from the enormity of the applications of harmonic
analysis in mathematics and the hard sciences, it is not too
hard to predict that much work remains to be done.

• Copies of these transparencies can be downloaded from:
www.petercarr.net (and clicking on Papers) or
www.math.nyu.edu\research\carrp\papers\pdf
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