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1 Introduction

This paper examines the expected returns of a family of option trading strategies to test

the monotonicity of the (projected) stochastic discount factor (SDF) in the terminal stock

price. We characterize the entire class of option trading strategies whose expected returns

are increasing in the strike under a monotonic SDF. We then examine average returns of

some common option trading strategies that are special cases of this class. Using data on

options on individual stocks, we find that the average returns of the option strategies are

increasing in strike which is consistent with a monotonically decreasing SDF in the terminal

stock price.

The relation between the stochastic discount factor and security payoffs is key to many

fundamental results in asset pricing theory. Technicalities aside, the existence of a SDF is

equivalent to the law of one price while the absence of arbitrage corresponds to the existence

of a strictly positive SDF. In the absence of arbitrage, all asset prices can be expressed as

the expected value of the product of the SDF and the security payoff. In a single period

setting, the SDF, or pricing kernel is a random variable mt+1 which satisfies the equation

Et [mt+1xt+1] = pt

for every security with payoff xt+1 at time (t+1) and price pt at time t, where Et denotes the

time-t conditional expectation operator. The SDF, when used with a probability model for

the states, gives a complete description of asset prices, expected returns, and risk premia.

Non-redundant asset pricing requires some equilibrium model for the SDF. For example,

a principal implication of the CAPM is that the SDF is linear in a single factor, the portfolio

of aggregate wealth. In a representative agent model with time-additive uitility, the SDF is

the intertemporal marginal rate of substitution (IMRS) of the consumer. In such a setting,

the pricing equation can be represented as the consumer’s intertemporal Euler equation,
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which is a necessary condition for an individual consumer’s optimization problem.

A negative correlation between returns and the SDF is equivalent to a positive risk

premium on the security. In the case where the SDF is the aggregate IMRS, a security will

earn a positive risk premium if it is positively correlated with aggregate consumption, and

therefore negatively correlated with marginal utility of aggregate consumption. The intuition

is that such a security is risky as it fails to deliver wealth precisely when it is most valuable

to the investor. The investor therefore demands a large risk premium to hold the security.

Although the relation between the risk premium and the SDF is easy to understand from

the intertemporal choice problem, it can be derived simply from the absence of arbitrage,

without assuming that investors maximize well-behaved utility functions.

A stronger condition than a negative correlation is monotonicity: the SDF projected on

the terminal stock price is a decreasing function. We show that the monotonicity of the SDF

is equivalent to negative correlation between the stock return and the SDF conditioning on

the stock price falling within any interval. Alternatively, strict monotonicity of the SDF

is essentially equivalent to the positivity of all “conditional” risk premium, defined as the

difference in returns between the stock and unit payouts, the payouts being made conditional

on the terminal stock price falling within some specified interval. In the Black-Scholes model,

for example, the SDF is always monotonic, and is decreasing if and only if the risk premium

is positive. Monotonicity also hold in a larger class of option pricing models.

Although testing SDF monotonicity is equivalent to testing that conditional risk premia

are positive, it is difficult to conduct such a test as we would need a continuum of binary cash-

or-nothing and binary asset-or-nothing contracts. Instead, we provide a much cleaner and

practical way to test the monotonicity of the SDF using commonly traded option strategies.

We characterize the enitre class of option strategies whose expected returns are increasing

in the strike price under a monotonic SDF. The class is characterized by the property that

the log-payout functions of the strategies are concave over the set of ending security prices
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where the payouts are positive. Call and put options are special cases, as shown in Coval

and Shumway (2001), but the class also includes butterfly spreads, bullish call spreads, and

binary options. One easy way to understand this characterization is that an increase in the

strike price for these strategies, shifts the payoff to lower utility states, requiring a higher

return to compensate. More precisely, an increase in the strike shifts the probability weighted

payoffs to lower values of the SDF, resulting in lower prices and higher expected returns.

A violation of monotonicity (in the strike) of expected returns of any of the strategies

implies a violation of the monotonicity of the SDF, but the converse is not true. For example,

the conditional covariance conditions in Coval and Shumway (2001) guarantees that the

expected returns for call and put options are increasing in strike, but they do not imply

that the SDF is a decreasing function of the terminal stock price. Hence we provide a set of

weaker SDF monotonicity conditions for some of the option trading strategies which implies

monotonicity of expected returns in the strike. Based on our empirical results on options on

individual stocks, we find that expected returns are increasing in the strike price for all the

option trading strategies considered in this paper, which is consistent with monotonicity of

the SDF.

Our paper contributes to the literature in the following ways. We extend the work in

Coval and Shumway (2001) by providing necessary and sufficient characterization of the

entire class of option strategy payoffs whose expected returns are increasing in strike when

the SDF is monotonic in the terminal stock price. Tests of monotonicity of the SDF also

provide a test of a family of option pricing models. The Black-Scholes model is a special case,

as are models with independent stochastic volatility. Our characterization of monotonicity

of the SDF can be applied to options on a proxy for the market portfolio (say the S&P

500) to test classes of models such as the CAPM (where the SDF is linear) or representative

agent models with expected utility (where the SDF is strictly monotonic under concave

utility). Our paper also contributes to the existing literature on viable price processes. Bick
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(1990) outlines conditions under which the state price density is a decreasing function of

the terminal stock price under the assumption that the state price density is a function of

only the terminal stock price. This assumption is very restrictive and is not generally true

(The Black-Scholes model with deterministic but time varying parameters being a simple

example). Our characterization of SDF monotonicity is much more general than what is

presented in Bick (1990).

Several researchers have attempted to estimate the shape of the SDF from index prices

and aggregate consumption data. However, such a study is difficult to conduct using individ-

ual stocks as we would have to estimate the shape of the projected SDF on each individual

stock. Moreover, the usefulness of options data is limited as the number of available strikes

is much fewer for individual stocks compared to a index like the S&P 500. Our paper con-

tributes to the literature by providing a simple framework to test properties of the projected

SDF without explicitly estimating its shape.

Our paper also contributes to the empirical literature on option returns. This is one of

the few papers ( Ni (2007), being one of the exceptions) that analyzes expected returns of

option strategies on individual stocks. The strategies that we consider in this paper include

traded strategies like calls, puts and butterfly spreads, as well as non-traded strategies like

binary calls1and bullish call spreads. To test the hypothesis that average strategy returns

are increasing in the strike price, we also use a nonparametric test that we borrow from the

behavioral sciences. The Page test for ordered alternatives tests the null hypothesis that

groups (or measures) are same versus the alternate hypothesis that the groups (or measures)

are ordered in a specific sequence. An advantage of the Page test is that it allows us to

test the monotonicity of expected returns by calculating a single test statistic. We extend

the original Page test statistic to allow for the fact that different underlying stocks have

options with varying number of strikes. The procedure outlined for implementing the Page

1CBOE has introduced binary options on SPX and VIX indices starting from July 2008
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test is quite general and can be applied to any finance problem where a variable of interest

is expected to be increasing across multiple, but related, samples.

Finally, this paper uses a very simple method for calculating skewness-adjusted t-statistics

and standard errors. The distribution of option returns are extremely skewed as out of the

money expirations generate a return of -100%. Central limit approximations are problematic

because of the irregular nature of option return distributions and usual standard errors and t-

statistics cannot be relied upon for assessing the significance of option returns. The skewness-

adjusted t-statistic was developed in Chen (1995) and has shown to be quite accurate for

small sample sizes and for distributions as asymmetric as the exponential distribution.

The remainder of the paper is organized as follows. In Section 2, we summarize the

prior relevant literature. In Section 3, we derive theoretical results regarding the SDF and

expected returns. In Section 4, we discuss our dataset, In Section 5, we test the implications

developed in Section 3. In Section 6 we provide some robustness tests. Section 7 concludes

the paper.

2 Previous Research

Academic research in options and other forms of derivative assets has grown exponentially

in the last few decades. A part of this interest in derivative research can be attributed to the

gradual growth in the derivatives market. A significant part, however, can be attributed to

the seminal work on options by Black-Scholes and Merton. Hence the Black-Scholes model

would be an appropriate starting point when relating our work to the existing literature.

In the constant-parameter setting of Black-Scholes option pricing framework where asset

prices follow a Geometric Brownian Motion (GBM), the SDF (projected on the terminal stock

price) is a strictly decreasing function of the stock price if and only if the risk premium of the

stock is positive. In such a setting, the instantaneous excess expected rate of return (over

the risk free rate) of a option is equal to the product of the option’s elasticity with respect to
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the underlying price times the instantaneous excess expected return of the underlying asset.

In this framework, it is straightforward to see that expected call and put returns should be

increasing in the strike price provided the risk premium of the stock is positive. Morever,

expected call returns should never be lower than the return on the underlying stock and

expected put returns should never be higher than the risk free rate. The above results can

easily be extended to any general one factor model. In particular the results would hold if

the volatility of the underlying stock is a function of the price of the underlying stock.

Coval and Shumway (2001) show that the above result hold under much weaker conditions

than implied by the Black-Scholes model. They show that under no arbitrage conditions as

long as the covariance of the SDF and the terminal stock price, conditional on the option

being in the money, is negative for all strikes, expected option returns would be increasing

in strike. Empirically, they show that the above restrictions are satisfied by options on

the S&P 500 and S&P 100 indices. On the other hand, Ni (2007) studies option returns on

individual stocks and shows that deep out-of-the-money (OTM) calls earn significantly lower

average returns than deep in-the-money (ITM) calls. She sorts call option contracts on each

buying date into portfolios based on the option’s moneyness and shows that the portfolio

with OTM options earns significantly lower returns than the portfolio with ITM option

contracts. She concludes that, unlike index options, individual stock options do not conform

to the monotonicity restrictions on call returns. She argues that investors are sometimes

risk-seeking and a preference for idiosyncratic skewness leads to a premium for deep OTM

options and is a possible explanation for the puzzling call returns.

The assumption that the SDF is negatively correlated with ending security prices is a

fundamental concept in any asset pricing theory, the intuition being that the SDF should be

high in bad states of the world and low in good states of the world. A sufficient condition

for this covariance to be negative is that the projection of the SDF on the ending level of the

security price is a monotonically decreasing function of the security price. Several researchers
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have attempted to recover the stochastic discount factor from security prices (e.g. Hansen

and Singleton (1982), Hansen and Singleton (1983) and Chapman (1997)). Jackwerth and

Rubinstein (1996), Jackwerth (1997), Brown and Jackwerth (2004) and Ait-Sahalia and Lo

(2000) provide empirical procedures for estimating a stochastic discount factor(SDF) from

option prices when a finite number of options exist instead of a dense set. Option data is

particularly helpful in this context because it is possible to develop a model-free option based

estimator that does not depend on a particular specification of consumer preferences or asset

price stochastics.

Brown and Jackwerth (2004) estimate the SDF by recovering the risk neutral probability

distribution from option prices on the S&P 500 index and the subjective distribution from

actual index returns. They estimate the SDF as a function of the ending level of the S&P

500 index and show that overall, the SDF is a decreasing function of the ending index

level. However, for index levels approximately ranging from 0.97 to 1.03 (a 3% deviation

from the current level), the SDF is increasing. They argue that such a shape of the SDF

function is inconsistent with traditional asset pricing framework as this would suggest that

the representative agent is locally risk seeking and the utility function is non-concave or

locally convex. They attempt to resolve this puzzle by introducing additional state variables.

Rosenberg and Engle (2002) analyze the empirical characteristic of investor risk aversion over

equity return states by estimating a time-varying SDF. They argue that the state prices and

probabilities in Jackwerth (1997) are averaged over time, so their estimates can be intepreted

as a measure of the average SDF over the sample period. Thus assets are correctly priced

only when risk aversion and state probabilities are at their average level.

Bick (1990)provides necessary and sufficient conditions for viability of diffusion price

processes. The paper identifies conditions under which the associated utility function to any

diffusion price process is consistent with an equilibrium. In particular, assuming that the

state price density (SPD) is only a function of the terminal stock price, the paper identifies

7



conditions under which the SPD is monotonic in the terminal stock price. As discussed in

the previous section, this assumption turns out to be quite restrictive for many simple asset

pricing models.

Our work contributes to the strands of literature discussed above. Our paper extends

the work in Coval and Shumway (2001) by characterizing the entire class of option trading

strategies whose expected returns are increasing in the strike price under a monotonic SDF.

On the other hand, our paper is related to the huge literature that attempts to estimate

the shape of the SDF from option prices. We do not try to estimate the shape of the SDF

directly, but instead use expected returns of a set of option strategies to test for violations of

the monotonicity of the SDF in the terminal stock price. Our paper also extends the work

in Bick (1990) as it provides characterizations of SDF monotonicity under much general

conditions. The next section characterizes the class of option trading strategies that we use

to test the monotonicity of the SDF and also derives necessary and sufficient conditions for

the monotonicity of the SDF.

3 Theoretical Results

3.1 Monotonicity of the SDF

Lemma 1 Let σ (ST ) denote the information set generated by the strictly positive terminal

stock price ST . For any A ∈ σ (ST ) satisfying P (A) > 0, let P 1
A and P S

A denote the prices

of payouts 1 and ST , respectively, in the set A:

P 1
A = E (m1A) , P S

A = E (mST1A) ;

and let R1 = 1/P 1
A and RS = ST/P

S
A denote the returns on set A. Furthermore, let m

denote the stochastic discount factor, and g (ST ) = E (m|ST ) its projection on ST .
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a) If g is continuous and strictly decreasing then E
(
RS −R1

A

∣∣A) > 0 for all A ∈ σ (ST )

satisfying P (A) > 0.

b) If g is continuously differentiable, and the distribution function of F is strictly increas-

ing on (0,∞), then g is strictly decreasing if and only if E
(
RS −R1

A

∣∣ST ∈ [α, β]
)
> 0 for

all 0 ≤ α < β.

Proof. See appendix

Lemma 1 states that the strict monotonicity of the SDF is essentially equivalent to the

positivity of all “conditional” risk premia, defined as the difference in returns between the

stock and unit payouts, the payouts being made conditional on the terminal stock price falling

within some specified interval. Alternatively, a strictly decreasing SDF would imply that the

risk premium of the stock is positive for all possible return distributions. Lemma 1 provides

a good understanding of the monotonicity of the SDF with respect to the risk premium, but

testing the conditional risk premium empirically is difficult with traded securities.

We instead test the monotoncity of the SDF in a much cleaner way by characterizing

a class of option strategies whose expected returns are increasing in the strike price under

a monotonic SDF. A violation in the monotonicity of expected returns in the strike price

implies a violation of the monotonicity of the SDF, but the converse is not true. Hence we

provide weaker conditions for some of the option strategies which implies monotonicity of

expected returns in the strike. The theoretical results are presented in the next subsection.

3.2 Theoretical Expected Returns

Let ST denote the stock price at expiration, and interpret the constant (shift parameter)

K ≥ 0 as the strike price. We characterize the class of functions G () such that the expected

return corresponding the payout G (ST −K) is increasing in the strike for all stock-price

distribution functions and all monotonically decreasing stochastic discount factors (that

is, for all stochastic discount factors whose projection on ST are monotonically decreasing
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functions of ST ) We then consider some common option trading strategies that are special

cases, which we use to test weaker forms of monotonicity.

Without loss of generality, we assume throughout the following regularity condition of

G:

Condition 1 Assume G (x) > 0 for x ∈ (x1, x2), where −∞ ≤ x1 < x2 ≤ ∞, and G (x) = 0

for x /∈ [x1, x2]. Furthermore, G (x) is continuous for x ∈ (x1, x2) and G′ (x) is piecewise

continuous for x ∈ (x1, x2).

We let m denote a stricly positive stochastic discount factor for pricing time-T payouts,

and let m (s) = E (m|ST = s), s ∈ [0,∞) denote the projection of m on the terminal stock

price.

Proposition 1 The expected return

R (K) =
E {G (ST −K)}

E {m (ST )G (ST −K)}

is increasing in K for all distribution functions F (satisfying E {G (ST −K)} 6= 0) and any

monotonically decreasing m () if and only if

G′ (x)

G (x)
is decreasing in x for all x ∈ (x1, x2) . (1)

Proof. See Appendix

Proposition 1 says that if the projected stochastic discount factor is monotonically de-

creasing in the terminal stock price, then concavity of the logarithm of the payoff function

is equivalent to monotonicity of the expected return in the strike for all return distribution
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functions. The concavity of the log-payoff condition implies that increases in the strike

shifts (in the first-order dominance sense) the probability-weighted payoffs to higher stock

prices; the lower values of the SDF corresponding to higher stock prices implies a lower price

(per unit probability-weighted payoff) and therefore a higher expected return.

The following three examples present exchange-traded strategies with payoffs that sat-

isfy the condition in equation (1). Monotonicity of m () therefore implies monotonicity of

expected returns in the strike price. Conversely, monotonicity of expected returns in the

strike price in each case implies a weaker form of monotonicity.

Example 1 (Call options) The payoff function is G (x) = x+. Coval and Shumway

(2001) show that the derivative of the expected return with respect to the strike is proportional

to the conditional covariance between the stock price and the SDF on the set where the option

expires in the money:

R′ (K) = −

(
P (ST > K)

E
{
m· (ST −K)+}

)2

Cov (ST ,m |ST > K ) .

Therefore monotonicity of expected returns in the strike implies negative instantaneous con-

ditional covariances.

Example 2 (Put options) The payoff function G (x) = (−x) .+ Analogous to the call

case, we get from Coval and Shumway (2001)

R′ (K) = −

(
P (ST < K)

E
{
m· (K − ST )+}

)2

Cov (ST ,m |ST < K ) .

Example 3 (Butterfly spread) A strategy of long 1 call each at strike prices K − ∆K

and K + ∆K, and short two calls at strike K has the payoff function G (x) = (∆K − |x|)+.
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The expected return is

R(K) =
E{(∆K − |x|)+}

E{m(ST )(∆K − |x|)+}

The inverse of the expected return is a weighted average of the stochastic discount factor,

with the weights proportional to the product of the density and payoff functions and the

result follows directly from Proposition 1

The following examples also satisfy the concavity condition in equation (1), but are not

exchange-traded.

Example 4 (Binary cash-or-nothing option) The payoff function for the call version

is G (x) = 1{x≥0} The expected return is

R (K) =
P (ST ≥ K)

E
{
m1{ST≥K}

} = {E (m |ST ≥ K )}−1 ,

and is therefore increasing in K if and only if E (m |ST > K ) is decreasing in K, which is

equivalent to

m (K) > E (m |ST ≥ K ) for all K ≥ 0.

The payoff function of the put version is G (x) = 1{x≤0}, and the expected return is increasing

in K if and only if

m (K) < E (m |ST ≤ K ) for all K ≥ 0.

If the expected returns of vanilla call options, and the expected returns of binary cash-

or-nothing call options are both increasing in the strike, then

m (K) > E (m |ST ≥ K ) >
E (m· (ST −K) |ST ≥ K )

E (ST −K |ST ≥ K )
all K.
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The call-option-return test puts much more weight on the right tail of the distribution than

the binary test. For example, if m (s) is not monotonic, but declines sharply as s becomes

large, then call option returns may be increasing in the strike, but the binary calls may not.

Example 5 (Modified bullish call spread) Consider a portfolio that is long a call with

strike K, short a call with strike K + ∆K, where ∆K > 0, and short a cash-or-nothing

binary call with payoff ∆K · 1{ST>K+∆K} (all on the same stock and same expiration T ).

The portfolio payoff is (ST −K) 1{ST∈[K,K+∆K]}, the expected return of the portfolio is

R (K) =
E
{

(ST −K) 1{ST∈[K,K+∆K]}
}

E
{
m (ST −K) 1{ST∈[K,K+∆K]}

} ,
and the derivative with respect to K is

R′ (K) = −

(
P (ST ∈ [K,K + ∆K])

E
{
m· (ST −K) 1{ST∈[K,K+∆K]}

})2

Cov (ST ,m |ST ∈ [K,K + ∆K] )

As the interval shrinks to zero, R′ (K) becomes proportional to the slope of m ():

lim
∆k↓0

Cov (ST ,m| ST ∈ [K,K + ∆K])

Var (ST | ST ∈ [K,K + ∆K])
= m′ (K) .

The final example presents a payoff function which results in an expected return invariant

to K for all distribution functions F

Example 6 (Strike-Invariant Expected Return) Suppose G (x) = exp (−kx), some k ∈ R.

Then the expected return (when it exists) is invariant to K for any distribution function F .

4 Data

The data on options are from the OptionMetrics Ivy DB database. The dataset contains

information on the entire US equity option market from 1996 to 2008 and includes daily
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volume, open interest, best daily closings bid and ask quotes, option Greeks and implied

volatilities. The implied volatilities and Greeks are calculated using a binomial tree model

developed by Cox, Ross, and Rubinstein (1979). The data set also includes information on

daily prices, returns and distribution of all exchange traded stocks.

We select option contracts that satisfy the following criteria. Since the monotonicity

restrictions on options are applicable to European style options, we restrict our analysis to

only those option contracts for which the underlying stock do not have an ex-dividend date

during the remaining life of the contract.2 It is well known that it is never optimal to exercise

non-dividend paying American style call options early. American put options however might

be optimally exercised early irrespective of whether the underlying stock pays dividend or

not.

In accordance with the standard practice in empirical option studies, we choose only

those call and put option contracts for which the bid price is greater than or equal to $0.125.

We also eliminate contracts for which the recorded ask price is lower than the bid price.3

The arbitrage bound filter that we use requires that option prices, estimated as the bid-ask

midpoint, should be greater than S −Ke−rτ for calls and Ke−rτ −S for puts,where S is the

price of the underlying asset, K is the options strike price, r is the risk free rate and τ is the

time to expiration. In an unreported robustness check, our results hold when we also run

our tests on option contracts that satisfy the put-call parity bounds. That is, the bid and

ask prices should satisfy Cbid − Pask ≤ S −Ke−rτ ≤ Cask − Pbid, where C and P are the call

and put prices respectively. On each expiration Friday from January, 1996 to June, 2005,

we first identitfy option contracts that expire on the next expiration Friday. We then use

prices observed on Tuesdays to calculate weekly returns for the option contracts identified

in the first step. Our initial sample consists of 2,123,004 call returns and the sample reduces

2It is not difficult to adjust the returns for the case when we have an ex-dividend date prior to maturity.
We will include them in our next version.

3A significant violation is observed in the data.
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to 1,643,925 after all the restrictions have been applied. The mean (median) number of

unique stocks on each buying date is 1380 (1421) and the mean (median) number of strikes

for each stock on each buying date is 3.43 (3.00). Since deep in-the-money (ITM) and deep

out-of-the-money (OTM) options are thinly traded we note the possibility of prices being

estimated from stale quotes. As a robustness test we repeat our analysis with only those

option contracts which have a positive volume on the buying date. The number of calls in

our sample that have a positive volume on the buying date is 598,826.

5 Empirical Results

5.1 Average returns

We consider some common option trading strategies that are special cases of the particular

class of payoff functions for which the logarithm of the payoff function is concave. We find

results in support of the hypothesis that the average return of these option strategies are

monotonic with respect to shifts in the payoff of the strategey induced by an increase in

strike, except for put options for which the evidence is somewhat weak. The results are

reported in Table 1.

A Call options

To test the monotonicity restriction on call returns, we first divide the calls into strike groups

based on the difference between their strike prices and the strike price of the call which is

closest to being at the money. In particular, for any underlying stock on any buying date

we identify the call option contract that is closest to being at the money and assign a strike

group value of 3. The next two higher strikes and the two lower strikes are assigned strike

group values of 4, 5 and 2, 1 respectively. Note that the option contracts are first divided

into strike groups before any filters are applied to the data. Excess returns for any particular
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strike group are calculated by taking the return differences between the return of an option

in a particular strike group and the return in the immediate lower strike group. Returns for

strike group 1 are represented in excess of the return on the underlying stock for the same

holding period. Since a non-dividend paying stock is essentially equivalent to a zero-strike

call option, excess returns for strike group 1 can be thought of as being calculated in excess

of the return on a call with the lowest possible strike.

The return differences for each strike group are averaged across different stocks to form

a weekly time series of average return differences. The average of the weekly time series

and the t statistics are reported in Table 1. We find that the average return differences for

call options are positive and statistically significant suggesting that average call returns are

monotonically increasing in the strike price.

Table 1 also provides a skewness-adjusted t-statistic for the average return differences.

The distribution of call option returns are extremely skewed as OTM expirations generate a

return of -100%. Central limit approximations are problematic because of the short sample

size and irregular nature of option return distributions. Thus usual standard errors and t

statistics cannot be relied upon for assessing the significance of option returns. We use a

very simple method for calculating skewness-adjusted standard errors and t-statistics. This

statistic for testing the mean of positively skewed distributions was developed by Chen (1995)

and is an extension of Johnson (1978) and Sutton (1993). It is derived using Hall’s t-type

inversion of the Edgeworth expansion and has been shown to be quite accurate for sample

sizes as small as 13 and for distributions as asymmetric as the exponential distribution.

Further details on this test statistic are provided in the appendix. The skewness-adjusted

t statistic would provide estimates closer to the usual t statistics if the distribution is close

to normal. As one would expect, the adjusted t statistics estimate for out of the money

calls differ significantly from the usual t statistic. This is because the return distribution for

OTM calls is much more positively skewed compared to the return distribution for ATM or
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ITM calls.

B Put options

The possibility of early exercise complicates analysis of put option returns. For American

put options early exercise might be optimal even if the underlying stock pays no dividends.

Optimal stopping theory implies that it is optimal to exercise a put option at a given time

if and only if the market price and the intrinsic price are identical. Under complete markets

and additional regularity conditions, it is suboptimal to not exercise at the first instance

when the market price coincides with the intrinsic value of the put options [See Duffie, Liu,

and Poteshman (2005)]. In practice, American put option should always be exercised early

if it is sufficiently in the money.

Several researches have attempted to estimate this early exercise premium for puts using

different valuation approaches. Engstrom and Norden (2000) uses Swedish equity options

data and finds a substantial early exercise premium for American put options. The premium

increases with moneyness and time left to expiration, while the effect of volatility and interest

rates is dependent on the moneyness of the option 4. In our analysis of average put option

returns we believe that early exercise premium should be small because of the short maturity

of our option contracts and low interest rates for the period.

Although, the monotonicity test result from Table 1 for put options is somewhat weak,

it is still consistent with our theoretical predictions. In-the-money puts earn significantly

higher average returns than at-the-money and out-of-the-money puts. Moreover, the Page

test and the elasticity test to be discussed later also provide strong evidence in support of

the monotonicity hypothesis.

To adjust the expected returns to account for an early exercise premium, we would

fisrt have to estimate the critical stock price boundary below which early exericse would be

4This is surprising since the early exercise premium should be increasing in the interest rate.
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optinal. Using the idea behind the representation in Theorem 1 in Carr, Jarrow, and Myneni

(1992), the gross return on an American put option over the interval (t, t + ∆t), including

any interest earned on the strike over any subinterval in which early exercise is optimal is

P (St+∆t, t+ ∆t) + rK
∫ t+∆t

t
er(t+∆t−u)1{Su≤Bu}du

P (St, t)

where r is the short rate, and Bt is the critical time-t stock price below which early exercise

is optimal at t (we assume that the stock price is the only source of uncertainty). A future

version of this paper would have some results on put returns adjusted for early exercise using

the above method.

C Butterfly spreads

A butterfly spread with call options is a strategy that is created by taking a long position

in a call with strike price (K −∆K), a long position in a call with strike price (K + ∆K),

and a short position in two calls with strike K. To calculate the return differences for the

butterfly spreads, we impose the following restrictions: 1) There should exist at least four

valid strikes for any underlying stock on any buying date to estimate at least one return

difference. 2) The estimated price of the spread must be greater than $0.01 to reduce the

possibility of unrealistic returns 5 and 3) The value of ∆K should be the same across all

butterfly spreads on the same underlying stock and the same buying date. We allow the

spreads to have overlapping strikes, that is, the middle and right strike of a spread could

be the left and middle strike respectively of the next higher spread. Results are stronger if

we restrict the butterfly spreads to have non-overlapping strikes and/or the value of ∆K is

increased but this comes at a cost of losing a lot of observations. The total number of valid

butterfly returns after the restrictions on the calls and the spreads are imposed is 192,823.

5Although convexity in option prices should ensure that the price of a butterfly spread be always positive,
a significant violation is observed in the data
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D Binary call options

Estimating average return differences for non-exchange traded securities is slightly more

involved. Note that the cash-or-nothing binary option pays a fixed amount of cash if the

option expires in-the-money and nothing otherwise. The binary options are not exchange

traded 6 and so we estimate their prices by using a smooth implied voltility curve estimated

using calls on all available strikes on the same underlying stock and same trading day. Let

B (K) denote the price of the binary option with strike K that pays a dollar if it expires in

the money.

B (K) = E
{
m1{ST>K}

}
.

In general,

d

dK
C (K) =

d

dK
E
{
m· (ST −K) 1{ST>K}

}
= −B (K) .

If the short rate is deterministic, B (K) is the product of the risk-neutral probability of the

call being in the money, P rn (ST > K), and the discount factor.

Because strikes are not dense enough, a better way to compute d
dK
C (K) (rather than

differencing premiums at different strikes and scaling) is to estimate a smooth Black-Scholes

implied volatility curve σ (K) and then estimate B (K) from the B-S model in the following

way. Assuming a deterministic short rate, and letting r denote the annualized continuously

compounded zero yield from 0 to T (on a discount bond), then (assuming a smooth B-S

implied volatility curve σ ()):

B (K) = − d

dK
CBS (S,K, σ (K)) = −CBS

K (S,K, σ (K))− dσ (K)

dK
CBS
σ (S,K, σ (K))

6CBOE has introduced binary options on SPX and VIX indices from July 2008

19



Substituting, we get

B (K) = e−rT
{
N (d2)−KN ′ (d2)

√
Tσ′ (K)

}
. (2)

The no-arbitrage bound on the binary call options are calculated as follows: If there is

no arbitrage (and a continuum of strikes), the European calls must satisfy

dC

dK
∈
(
−e−rT , 0

)
.

implying that the prices of the binary calls should lie in the interval
(
0, e−rT

)
. The second

derivative satisfies

d2C

dK2
= e−rT

{
N ′ (d2)−KN ′′ (d2)

√
Tσ′ (K)

}{ 1

Kσ (K)
√
T

+ d1
σ′ (K)

σ (K)

}
+ e−rTKN ′′ (d2)

√
Tσ′′ (K)

Substituting N ′′ (x) = −xN ′ (x) we get

d2C

dK2
= e−rT

N ′ (d2)

σ (K)

{
1 + d2K

√
Tσ′ (K)

}{ 1

K
√
T

+ d1σ
′ (K)

}
+ e−rTKN ′ (d2)

√
Tσ′′ (K) (3)

and the no-arbitrage condition (assuming a continuum) is

d2C

dK2
≥ 0.

To estimate a smooth B-S implied volatility curve, we first compute the implied volatilities

of all the call options in our sample. The implied volatilities corresponding to calls on the

same stock and same buying date are then used to fit a smooth curve using cubic spline
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interpolation. We also compute the first and second derivatives of the estimated implied

volatility curve at the traded points. The first derivative is used to compute the price of the

binary call option using equation (2) and the second derivative is used to estimate equation

(3) to check if the binary call satisfies the no-arbitrage condition. To ensure better estimation

of the implied volatility curve, we restrict our sample to only those calls whose underlying

stocks have at least four strikes on any trading day. 7 Finally, to reduce the possibility of

unrealistic returns, we restrict our sample to only those binary calls for which the estimated

price is at least $0.01 giving us a total of 162,964 valid binary call returns that satisfies all the

restrictions. Results indicate that the average returns of the binary calls are monotonically

increasing in the strike price.

E Modified bullish call spreads

Once we have the prices of the cash-or-nothing binary call option, computing the prices of

the modified bullish call spread is straightforward. Recall that we defined a modified bullish

call spread as a portfolio that is long a call with strike K, short a call with strike K + ∆K,

where ∆K > 0, and short a cash-or-nothing binary call with payoff ∆K · 1{ST>K+∆K}.(all

on the same stock and same expiration T ). We do not impose any other restriction on the

bullish call spreads other than setting the minimum bound on the prices to 0.01 giving us a

total of 80,988 bullish call return observations. Average returns are seen to be increasing in

K.

5.2 Page test for ordered alternatives

In summary, the results in Table 1 are consistent with monotonicity of expected returns in the

strike price. In particular, we show that average return for each strike group is greater than

the average return for the immediate lower strike group. However, testing the monotonicity

7We get similar results when we require at least three strikes instead of four.

21



restriction convincingly requires that we design a test that allows us to compare more than

two strike groups simultaneously. When k(> 2) samples are to be compared, it is necessary

to use a statistical test which will indicate whether there is an overall difference among the k

samples before choosing any pair of samples to test the significance of the difference between

them. In other words, we need a single statistic for monotonicity of expected returns in the

strike price.

Consider our setting where we use a two-sample statistical test to test for differences

among five consecutive strike groups. We conduct five two-sample statistical tests in order

to test if the average returns are increasing when we move from one strike group to the

next higher strike group. Such a procedure could lead to erroneous conclusions because

it capitalizes on chance. We are giving ourselves five chances rather than one chance to

reject the null hypothesis. Now, with an α of 0.05, we are taking the risk of rejecting the

null hypothesis erroneously five percent of the time. But if we make five statistical tests of

the same hypothesis, we are increasing the probability to 0.23 that a two sample statistical

test will find one or more significant differences.The “ actual significance ” level in such a

procedure becomes α = 0.23.8 It is only when an overall k-sample test allows us to reject the

null hypothesis that we are justified in employing a procedure for testing differences between

any two of the k samples [See Siegel and Castellan Jr. (1988) for a review of available k-

sample tests]. In other words, an appropriate k-sample test would compliment the results in

Table 1 and together would be a convincing and rigorous test of the monotonicity restrictions.

The k-sample test that we use is the ”Page test for ordered alternatives” and it tests the

null hypothesis that the groups (or measures) are the same versus the alternative that the

groups (or measures) are ordered in a specific sequence. In particular let θj be the population

mean for the jth group. Then we may write the null hypothesis that the means are the same

8α = 1− (0.95)5 = 0.23
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as

H0 : θ1 = θ2 = · · · = θk

and the alternative hypothesis may be written as

HA : θ1 ≤ θ2 ≤ · · · ≤ θk

If the null hypothesis is rejected then at least one of the differences is a strict inequality (<).

To apply the Page test we first assign the option strategies to strike groups as in Table 1.

We then estimate expected returns for the strategy by computing the time series average of

the strategy return for each underlying stock and each strike group. Assuming ki strikes for

the ith underlying stock, we rank the average returns of the strike groups for the ith stock

on a scale of 1 to ki. Assuming we had k strikes for each of the m underlying stocks (we will

relax this assumption momentarily), the ranks are cast into a two-way table having m rows

and k columns. The null hypothesis is that the average rank in each of the columns are the

same against the alternative that the average rank increases across groups 1 to k. The Page

statistic Lm is defined as

Lm =
k∑
j=1

Yj

m∑
i=1

Xij =
m∑
i=1

(
k∑
j=1

YjXij

)

where i indexes the m observations (unique underlying stocks in our case), j indexes the k

strike groups, Xij is the rank of the average return of the ith stock and the jth strike group

and Yj is the a priori ordering of the group which in our case is equal to j. Then under the

null hypothesis

E
k∑
j=1

YjXij =
k (k + 1)2

4
.
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and

V ar

(
k∑
j=1

YjXij

)
=

1

144
k2 (k + 1)2 (k − 1) .

Assuming the weighted ranks

{
k∑
j=1

YjXij

}
i=1,...,m

are independent across different stocks,

the CLT implies

Lm −mE
k∑
j=1

YjXij(
mV ar

(
k∑
j=1

YjXij

))−1/2
→ N (0, 1) .

From the results above, this is equivalent to

z =
12Lm − 3mk (k + 1)2

(mk2 (k + 1) (k2 − 1))1/2
→ N (0, 1) .

The expression above is the original Page test statistic9 (see Page (1963) and Pirie (1985))

and is only valid for samples which have the same k treatments for each observation. To

account for the fact that underlying stocks have diffrent number of strikes, we modify the

original Page test statistic to allow for varying number of treatments. Let ki be the number

of treatments for the ith observation (e.g. the number of strikes for the ith underlying stock).

We then have

E

ki∑
j=1

YjXij =
1

4
ki (ki + 1)2

V ar

(
ki∑
j=1

YjXij

)
=

1

144
k2
i (ki + 1)2 (ki − 1)

9See appendix for a detailed proof of the original Page statistic

24



Then, defining

Lm =
m∑
i=1

(
ki∑
j=1

YjXij

)

the CLT implies

zhigh =

12Lm − 3
m∑
i=1

ki (ki + 1)2

(
m∑
i=1

k2
i (ki + 1) (k2

i − 1)

)1/2
→ N (0, 1) (4)

The statistic zhigh essentially gives less weight to observations (i’s) with fewer treatments(strike

groups). Alternatively, we can standardize the weighted rank for each observation, and define

L̃m =
m∑
i=1


12

ki∑
j=1

YjXij − 3ki (ki + 1)2

(
k2
i (ki + 1)2 (ki − 1)

)1/2


Here we essentially scale up the statistics for observations with fewer strikes. Then

zlow =
L̃m√
m
→ N (0, 1) (5)

Table 2 reports the number of unique underlying stocks and the values of the modified

Page test statistics for all the option strategies. Recall that the statistic zhigh refers to the

case where we give less weight to stocks that have fewer number of strikes and zlow refers to

the case where we scale up the statistics for stocks that have fewer number of strikes. Note

that to be consistent with the analysis in Table 1, the maximum number of strike groups

that we consider is five. Panel A reports the results for the whole sample and panel B reports

the results for subsamples which have to satisfy an additional restriction. To ensure better

estimation of the expected returns, we require that the option strategies on each underlying

stock and for each strike group have a minimum number of weekly observations. For calls and

puts we require at least 150 weekly observations. For the remaining strategies, we require at
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least 50 weekly observations 10 to be included in the Page test. From Table 2, we see that the

Page statistics for all the option strategies are positive and very highly significant suggesting

that the average returns of the option strategies are ordered in an increasing sequence across

strike groups. As an added robustness test, we repeat the above analysis with only those

observations which have at least five strike groups so that the assumptions of the original

Page test are satisfied. Results are qualitatively similar to those reported in Panel A.

6 Robustness Tests

The previous section provides strong evidence that average returns of the option strategies

whose payout belong to a particular class of payout functions are montonic in the strike

price of the strategy. This is consistent with the hypothesis that the (projected) SDF is a

decreasing function of the terminal stock price. This section of the paper provides several

robustness test on call returns. We focus primarily on calls because of the recent empirical

evidence suggesting that average call returns violate the monotonicity of expected returns in

the strike price. Moreover, all the option strategies considered in this paper are combinations

of call options and it is imperative that our results on calls are robust to different testing

procedures 11.

A traditional approach to understanding why expected call returns should be increasing

in strike is the following: A call option is equivalent to a levered long position in the stock.

In terms of rate of return, a levered position is more risky than an unlevered one, and

leverage amplifies the risk premium of the option. Since higher strike calls are more levered

positions than lower strike calls, expected returns would be larger for higher strike prices.

10Raising the minimum number of required observations to 100 or 150 reduces the number of unique stocks
significantly.

11Note that the empirical tests conducted in this section are also valid for other strategies and results
could be provided if necessary
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As moneyness increases with strike price of the option, expected option returns should be

increasing in the moneyness of the option.

A seemingly intuitive way to test the above hypothesis would be to sort option con-

tracts into portfolios based one their moneyness. Ni (2007) sorts call option contracts on

each buying date into five portfolios based on moneyness and shows that the portfolio with

OTM option contracts earns significantly lower returns than the portfolio with ITM option

contracts. She suggests that investors are sometimes risk-seeking and a preference for id-

iosyncratic skewness leads to a premium for deep OTM options and is a possible explanation

for the puzzling call returns. We will provide evidence that such a testing procedure could

lead to erroneous conclusions primarily because the underlying asset of the call options do

not remain the same. Consider the example provided in Table 3. The example looks at

actual data on option contracts on two underlying stocks on the same buying date with ap-

proximately the same moneyness range. However, the Black-Scholes elasticity of the lowest

strike call on ”AIG” is almost equal to the elasticity of the highest strike call on ”USRX”.

Thus call options on ”AIG” on this buying date are more levered positions than call options

on ”USRX” and should be expected to earn higher returns.

Table 4 reports the Black-Scholes deltas and elasticites of calls sorted into strike groups

based on the option’s moneyness. The sample and moneyness cutoffs 12 used are from Ni

(2007). We see that although the average deltas are monotonically increasing across strike

groups, the same cannot be said about the elasticities. The mean and median elasticities of

deep out of the money calls are smaller than that of at the money calls. Also note that the

standard deviation of the elasticities are enormous suggesting huge variations within strike

groups. In the Black-Scholes continuous time framework the elasticity (or leverage) of an

option would depend on the moneyness of the option and the volatility of the underlying

12The moneyness cutoffs used are as follows: [K/S ≤ 0.85, 0.85 < K/S ≤ 0.95, 0.95 < K/S ≤ 1.05, 1.05 <
K/S ≤ 1.15,K/S > 1.15]
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stock. For options on the same underlying stock, elasticities and hence expected returns are

monotonically increasing in the moneyness of the option. When the underlying asset is not

constant, a higher moneyness would not necessarilly imply a higher elasticity [This is also

easy to confirm in a simulation setting]. Note that monotoncity of the elasticity in strike

price is true for all the option strategies considered in this paper. Of course, unlike call and

put options, the elasticities would not necessarily be of the same sign. For example, the

elasticity of a butterfly spread is negative for in the money and positive for out of the money

contracts.

Another problem with testing the monotonicity hypothesis by sorting by moneyness is

illustrated through the following example: Consider a call option with a strike price of 35

when the underlying stock is worth $30. The moneyness of this option is 1.17 and would be

assigned a strike group value of five using the cutoffs used in Ni (2007). In fact, all out of the

money calls in this case will be assigned a strike group value of five. Alternatively, when the

stock price is high ($175 for example), most of the out of the money calls will be assigned a

strike group value of three. In other words, when current stock prices are low or high, the

sorting of option contracts into bins depend more on the level of the current stock price than

on its leverage or its distance from being at the money. In summary, this procedure neither

test whether expected returns are increasing when moving from one strike to the next higher

strike nor does it test whether expected returns are increasing in the leverage of the option.

Table 5 reports the average of the monthly and weekly time series of call returns and

return differences sorted by leverage. We sort option contracts into leverage groups by sorting

option contracts on each buying date into quintiles based on their elasticities with respect

to the underlying stock. Panel A reports the one month holding-till-maturity returns 13 and

Panel B reports the weekly buy-and-hold returns. Since the underlying stock that does not

pay dividend has the same return structure as a call option with zero strike, we calculate

13One month holding till maturity returns are calculated following Ni (2007).
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all option returns in excess of that of the return on the underlying stocks. 14 Options on

individual stocks earn higher returns than the underlying stock and returns are monotonically

increasing with leverage. The portfolio with the highest leverage call option contracts earn

significantly higher returns than the portfolio with lowest leverage call options. Our results

are also robust to the cases when (1) we remove the top and bottom 1% of the elasticities

from our sample, and (2) when we consider only those option contracts that have a positive

volume on the buying date.

We estimate expected put returns in the same way as we do for call options and the

results are reported in Table 6. Since a put option with infinite strike price has an expected

return equal to the risk-free rate, expected put returns must always be below the risk-free

rate (if the risk premium of the underlying stock is positive). Expected stock returns are

typically higher than the risk-free rate; so expected put returns should always be lower than

the return on the underlying stock. We find that average put returns are lower than the

average return on the underlying stock and the returns are increasing with leverage. We also

confirm that the average put returns are never higher than the average risk free rate.

In Table 7 we use regressions to test the monotonicty restriction in call option returns.

Note that option payoffs are non-linear functions of the underlying stock and any discrete

time linear model that attempts to explain option returns would be inherently wrong. In

fact, our regression results confirm the presence of significant non-linearity’s in call returns.

However, we use regression models as an added robustness test to check if the results are

consistent with our theoretical predictions.

In our regressions, the dependent variable is the excess call option return over the risk free

rate. Averages of the weekly cross-sectional regression estimates as well as Fama-MacBeth

t statistics adjusted for third order serial dependency are reported. Specification (1) of

Table 7 regresses the excess option return on dummy variables for the strike groups where

14Results are stronger if returns are not calculated in excess of the return on the underlying stock
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strike group 1 is considered as the base group for all our regressions. The strike groups are

defined in the same way as before. The estimates in specification (1) are consistent with

the results in Table 1. The coefficients of the strike group dummy variables are all positive,

significant and increasing with strike group. In specification (2) we add the independent

variable excess stock return which is the excess return of the underlying stock over the

risk free rate. Controlling for the risk premium of the underlying stock, we still find that

coefficients on the dummy variables are positive and increasing except for the coefficient on

strike which is the dummy variable for strike group 5. Although, the coefficient on strike5

is slightly lower than that on strike4, the difference is not statistically significant. This can

be confirmed by repeating the above regression with strike group 4 or 5 as the base group.

The effect of leverage in option returns can be seen in specifications (3), (4) and (5).

The basic idea is to test whether the increase in expected call option returns for increases

in the excess return on the underlying stock is the same for all strike groups. We include

interaction terms of the strike group dummy variables with excess stock return to allow

for a difference in slopes for different strike groups. In specification (3) we find that the

coefficients on the interaction terms are all positive, significant and increasing except again

for the coefficient on interaction term of strike5 and excess stock return, which is although

slightly lower than the interaction term of strike group 4 but is not significantly different. We

find that the intercepts of the different strike groups are all negative. This is not surprising

because the intercepts indicate the return differentials when the excess return of the stock is

zero. When the excess return on the underlying stock is very low or zero, the expected call

option returns should be negative. Specification (3) captures the effect of leverage in call

option returns. The results show that for an increase in the excess return of the underlying

stock, the increase in the excess return of the call option would be higher for a higher strike

price option.

As discussed earlier, option payoffs are nonlinear functions of the underlying stock return
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and any discrete time linear model trying to explain option returns should be incorrect. We

confirm this by including a nonlinear explanatory variable (excess stock return ∗ elast)2 in

specification (4). This variable is defined as the square of the elasticity weighted excess stock

return. The coefficient on this variable is very significant suggesting significant nonlinearities

in call option returns. The significance of the nonlinear explanatory variable is robust to

different choices of the explanatory variables. The other variables that we have used are

the square of the excess return of the underlying stock and the excess return of the stock

multiplied by an indicator function for a positive excess return. Note that we do not try to

interpret the coefficients on these nonlinear explanatory variables. These are just used as

proxies to test for nonlinearities in the call returns. Thus we conclude that, although the

results from the regression analysis are consistent with our hypotheses, a linear model for

call option returns can be rejected.

In specification (5) we introduce other explanatory variables that have been suggested in

the literature to have an effect on option returns. Coval and Shumway (2001) and Buraschi

and Jackwerth (2001) find evidence that volatility is priced in option markets. We use the

change in implied volatility delivol as an explanatory variable in call option returns. In an

efficient market, any deviation from no arbitrage values should trigger an immediate response

from investors leading to the rapid disappearance of the arbitrage opportunity. However,

the empirical asset pricing literature suggests the existence of market frictions that impede

the arbitrage process. Liquidity has often been argued as an important limit to arbitrage

because it makes arbitrage more risky and costly and might lead to persistence in mispricing

in assets. We use the call trading volume on the buying date as a proxy for liquidity in our

regressions. From specification (5) we find that the coefficients on delivol turn out to be

statistically significant. However, the value of the coefficient on volume is very small and not

statistically significant and does not appear to have a significant effect on option returns.

The sign of the coefficient on volume however turn out to be consistent with theoretical
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predictions. The nonlinear term remains significant in this specification.

Finally, in specification (6) we regress excess option returns on elasticity weighted excess

return on the stock; Vega weighted change in implied volatility, trading volume on the buying

date and a nonlinear term. If discrete time option returns were just explained by the CAPM,

the coefficient on the elasticity weighted excess return would be one or at least very close to

one. A coefficient of 0.87 and significantly different from 1 suggests that discrete time option

returns are not fully explained by the CAPM. The other explanatory variables along with

the nonlinear term are also significant but the value of the coefficient on volume remains very

small. Note however, that elasticity weighted excess return of the stock, by itself, explains

about 90% of the variation in call returns.

Table 8 presents some more robustness tests on average call returns. To eliminate call

prices estimated from stale quotes, Panel A repeats the test for call options reported in

Table 1 with the added restrictions that the calls should have a positive volume on the

buying date. Although the results are qualitatively similar to those reported in Table 1, we

find that the return difference estimates for out of the money calls are lower consistent with

the fact that out of the money calls are thinly traded in comparison to at the money calls.

Panel B tests the monotonicty restriction where the average returns are calculated in the

same way as for the Page test. We first estimate expected returns for the calls by computing

the time series average of the call returns for each underlying stock and each strike group.

Return differences are calculated for each stock and then averaged across different stocks.

Average return differences are all positive and significant consistent with the results in table

1. The results in panel B are robust to the case when we restrict our analysis to the sub-

sample where calls on each underlying stock and each strike group have at lease 150 weekly

observations. The results are reported in Panel C.
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7 Conclusion

This paper examines the expected returns of a family of option trading strategies on individ-

ual stocks to test whether the (projected) stochastic discount factor(SDF) is monotonic in the

terminal stock price. We show that strict monotonicity of the SDF is essentially equivalent

to the positivity of all “conditional” risk premia, defined as the difference in returns be-

tween the stock and unit payouts, the payouts being made conditional on the terminal stock

price falling within some specified interval. Alternatively, we show that a strictly monotonic

SDF in the terminal stock price guarantees a positive risk premium for all possible return

distributions of the underlying stock return.

To test the monotonicity of the SDF, we characterize a class of strategies whose expected

returns are increasing in the strike price under a monotonic SDF. The class of strategies

include all payout functions for which the logarithm of the payout function is concave. The

concavity of the log-payout function implies that increases in the strike shifts the probability

weighted payoffs to lower values of the SDF and therefore a higher expected return. Call

and put options are special cases, but the class also include butterfly spreads, bullish call

spreads and binary calls.

A violation in monotonicity of expected returns for any of the strategies would imply a

violation in monotonicty of the SDF, but the converse is not true. Hence, we also provide

weaker conditions for monotoncity of expected returns in the strike price for some of the

option trading strategies. Using data on option contracts on individual stocks, we find that

the average weekly returns of the option trading strategies are increasing in the strike price

of the strategy which is consistent with a monotonic SDF in the terminal stock price. Our

theoretical results characterizes the entire class of option trading strategies whose expected

returns are increasing under a monotonic SDF in the terminal stock price. Our characteri-

zation of monotonicity of the SDF can be applied, in future work, to test classes of models
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such as the CAPM or representative agent models with expected utility.
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8 Appendix

8.1 Monotoncity of the SDF

Lemma 1 Let σ (ST ) denote the information set generated by the strictly positive terminal

stock price ST . For any A ∈ σ (ST ) satisfying P (A) > 0, let P 1
A and P S

A denote the prices

of payouts 1 and ST , respectively, in the set A:

P 1
A = E (m1A) , P S

A = E (mST1A) ;

and let R1 = 1/P 1
A and RS = ST/P

S
A denote the returns on set A. Furthermore, let m

denote the stochastic discount factor, and g (ST ) = E (m|ST ) its projection on ST .

a) If g is continuous and strictly decreasing then E
(
RS −R1

A

∣∣A) > 0 for all A ∈ σ (ST )

satisfying P (A) > 0.

b) If g is continuously differentiable, and the distribution function of F is strictly increas-

ing on (0,∞), then g is strictly decreasing if and only if E
(
RS −R1

A

∣∣ST ∈ [α, β]
)
> 0 for

all 0 ≤ α < β.

Proof. From the definitions of P 1
A and P S

A we get

0 = E
{
m
(
RS −R1

A

)∣∣A}
and therefore

E
(
RS −R1

A

∣∣A) = −
Cov

(
m,RS

∣∣A)
E (m|A)

.

If A ∈ σ (ST ) (that is, 1A is a function of ST ) then, letting g (ST ) =E(m|ST ),

E
(
RS −R1

A

∣∣A) = −Cov (g (ST ) , ST |A)

P S
AE (m|A)

for all A ∈ σ (ST ) .
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The result follows from Lemma 2 and the strict positivity of m and therefore E(m|A) and

P S
A .

Lemma 2 Suppose Y is a random variable with distribution function F , and let σ (Y ) denote

the information set generated by Y . a) If g is continuous and strictly decreasing then

Cov (Y, g (Y )| A) < 0 for all A ∈ σ (Y ) and P (A) > 0.

b) If g is continuously differentiable, the support of Y is [a, b], where −∞ ≤ a < b ≤ ∞, and

F is strictly increasing on [a, b] (no zero probability intervals), then g is strictly decreasing

if and only if

Cov (Y, g (Y )| Y ∈ [α, β]) < 0 for all a ≤ α < β ≤ b. (1)

Proof. Part a) Define

h (x;A) =

∫ x

{E (Y | A)− y} 1{y∈A}
dF (y)

P (A)
,

which satisfies h (α) = h (β) = 0 and h (x) > 0 for all x such that P (Y ∈ A and Y ≤ x) ∈

(0, 1). Using integration by parts:

Cov (Y, g (Y )| A) =

∫
(y − E (Y | A)) 1{y∈A}g (y)

dF (y)

P (A)

= −
∫
g (y) dh (y;A)

=

∫
h (y;A) dg (y)

If g is strictly decreasing then the left hand side must be strictly negative.
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Part b) Suppose (1) holds, but g is not strictly decreasing. Then there must exist points

c < e such that g (c) ≤ g (e), and therefore a point d ∈ (c, e) such that g′ (d) > 0 (we can rule

out g′ (x) = 0 for all x ∈ (c, e), because this contradicts Cov
(
Y, g (Y ) 1{Y ∈[c,e]}

)
< 0). Conti-

nuity of g′ implies g′ (x) > 0 for x in a neighborhood of d, implying Cov
(
Y, g (Y ) 1{Y ∈[d−ε,d+ε]}

)
>

0 for some ε > 0, contradicting (1).

8.2 Monotoncity in expected returns

Proposition 1 The expected return

R (K) =
EG (ST −K)

E {m (ST )G (ST −K)}

is increasing in K for all distribution functions F (satisfying EG (ST −K) 6= 0) and any

monotonically decreasing m () if and only if

G′ (x)

G (x)
is decreasing in x for all x ∈ (x1, x2) . (1)

Proof. We assume, for simplicity, that G is right continuous at x1 and left continuous at x2

(that is, G (x1) = lims↓x1 G (s) and G (x2) = lims↑x2 G (s)).

a) Sufficiency of (1): Let F be some absolutely continuous distribution function F and

let α =
∫∞

0
G (u−K) dF (u) (which represents the expected payout under F ). Define the

distribution function W :

W (s;K) =
1

α

∫ s

0

G (u−K) dF (u) s ∈ [0,∞). (2)

The inverse of the expected return is

1

R (K)
=

∫ ∞
0

m (s) dW (s;K) . (3)
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We show that R (K) is strictly increasing in K when m (s) is strictly decreasing in s by

showing that W (s;K) is decreasing in K for all s ∈ (0,∞) and K ≥ 0. That is, W (·;K2)

stochastically dominates W (·;K1) in the first order sense for any 0 ≤ K1 < K2.15 If

s−K < x1, thenW (s; k) = 0 for k in some neighborhood ofK and therefore d
dK
W (s;K) = 0.

We therefore consider only s ≥ K + x1. Differentiating (2), we have d
dK
W (s;K) ≤ 0 is

equivalent to H (s) ≤ 0 where

H (s) = −α
∫ s

0

F ′ (u) dG (u−K) +

∫ ∞
0

F ′ (u) dG (u−K)

∫ s

0

G (u−K) dF (u) .

Substituting W ′ (s;K) = α−1G (s−K)F ′ (s), then d
dK
W (s;K) ≤ 0 if and only if

∫ ∞
0

1u−K∈[x1,x2]W
′ (u;K)

dG (u−K)

G (u−K)
≤
∫ s

0

1{u−K∈[x1,x2]}
W ′ (u;K)

W (s;K)

dG (u−K)

G (u−K)

which follows for all s because of the monotonicity condition in (1).

a) Necessity of (1): Consider first the case of a jump in G′ () /G (), and suppose contrary to

the hypothesis that

lim
s↑ŝ

G′ (s)

G (s)
< lim

s↓ŝ

G′ (s)

G (s)
some ŝ ∈ (x1, x2) ,

and define the midpoint

m =
1

2

(
lim
s↑ŝ

G′ (s)

G (s)
+ lim

s↓ŝ

G′ (s)

G (s)

)
.

Using piecewise continuity, choose ε > 0 sufficiently small that G′ (x) /G (x) < m for x ∈

[ŝ − ε, ŝ) and G′ (x) /G (x) > m for x ∈ (ŝ, ŝ + ε), and concentrate F on [ŝ− ε, ŝ+ ε] (let

F (ŝ− ε) = 0, and F (ŝ+ ε) = 1). Define

Φ (s) =

∫ s

ŝ−ε

G′ (u)

G (u)
dW (u; 0) .

15See Huang and Litzenberger (1988, Ch 2).
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Then H (ŝ) ≤ 0 is equivalent to Φ (ŝ+ ε) ≤ Φ (ŝ) /W (ŝ; 0) But Φ (ŝ) /W (ŝ; 0) < m and

Φ (ŝ+ ε) = W (ŝ; 0)

(
Φ (ŝ)

W (ŝ; 0)

)
+ {1−W (ŝ; 0)}

(
Φ (ŝ+ ε)− Φ (ŝ)

1−W (ŝ; 0)

)
> W (ŝ; 0)

(
Φ (ŝ)

W (ŝ; 0)

)
+ {1−W (ŝ; 0)}m

Together with

Φ (ŝ+ ε)− Φ (ŝ)

1−W (ŝ; 0)
> m >

Φ (ŝ)

W (ŝ; 0)

we get Φ (ŝ+ ε) > Φ (ŝ) /W (ŝ; 0), a contradiction. Therefore G′ () /G () cannot increase at

a jump.

Now consider the possibility of an increase in G′ () /G () over any interval. Suppose

G′ (s2)

G (s2)
>
G′ (s1)

G (s1)
(4)

for some s1 < s2, where s1, s2 ∈ (x1, x2). Let s∗ ∈ arg inf {G′ (s) /G (s) ; s ∈ [s1, s2]}.

Concentrating F on [s∗, s2] (let F (s∗) = 0, and F (s2) = 1), then, for any s ∈ (s∗, s2),

H (s) ≤ 0 is equivalent to

∫ s2

s∗

G′ (u)

G (u)
dW (u; 0) ≤

∫ s

s∗

G′ (u)

G (u)

dW (u; 0)

W (s; 0)
,

Letting s ↓ s∗, ∫ s2

s1

G′ (u)

G (u)
dW (u; 0) ≤ lim

s↓s∗
G′ (s)

G (s)
,

which contradicts (4).
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8.3 Skewness-adjusted t statistics

The proposed statistic for testing the mean of positively skewed distributions is taken from

Chen (1995) and is derived using the Edgeworth expansion as follows:

P

{√
n(X̄ − µ)

S
≤ x− 1

6
√
n
β̂1(1 + 2x2)

}
= Φ(x) + o(n−1/2), (1)

where Φ(x) is the standard normal distribution, S2 =
∑

(Xi−X̄)2

(n−1)
, and β̂1 = n−1

∑
(Xi−X̄)3

S3

(For more details on the Edgeworth expansion, see Hall (1983)). To test the hypothesis

H0 : µx = µ0 against H0 : µx > µ0 is to reject H0 when

√
n(X̄ − µ0)

S
> zα −

1

6
√
n
β̂1(1 + 2z2) (2)

where zα satisfies the equation 1 − Φ(zα) = α. Chen (1995) argues that the critical point

of the above hypothesis test depends on the skewness of each sample. thus to find a more

accurate and powerful test with a common critical point for a given significance level α, we

use the following approach. We first solve
√
n(X̄−µ0)

S
> x− 1

6
√
n
β̂1(1 + 2x2) for x. Let α = β̂1

6
√
n

and t =
√
n(X̄−µ)
S

. Thus, when n is large such that 1− 8a(t+ a) ≥ 0, we have from (1),

P

{
1−

√
1− 8a(t+ a)

4a
> zα or

1 +
√

1− 8a(t+ a)

4a
< zα

}
= α + o(n−1/2)

Thus we have

P

{
1−

√
1− 8a(t+ a)

4a
> zα

}
≤ α

Using Taylor series expansion we then have

1−
√

1− 8a(t+ a)

4a
= t+ a+ 2at2 + 4a2(t+ 2t3) + o(n−1/2) (3)
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Equation (3) is the skewness adjusted t statistic that we have used in this paper. An

advantage of this test statistic is that it can be used for sample sizes as small as 13 and for

distributions as asymmetric as the exponential distribution. Expressing (3) in terms of the

original variables, we get the following expression:

tskew =

√
n(X̄ − µ0)

S
+

1

6
√
n
β̂1

[
1 + 2

(√
n(X̄ − µ0)

S

)2
]

+
1

9n
β̂2

1

[√
n(X̄ − µ0)

S
+ 2

(√
n(X̄ − µ0)

S

)2
]

(4)

8.4 Proof of the Page test

The Page statistic Lm is defined as

Lm =
k∑
j=1

Yj

m∑
i=1

Xij =
m∑
i=1

(
k∑
j=1

YjXij

)

where i indexes the m observations (or ”levels” or ”ranking”) and j indexes the k treatments.

Let p̃ (i) denote the ith position of a random permutation of {1, . . . , k} (each permutation

is equally likely). Then

E

k∑
j=1

YjXij = E

k∑
j=1

jp̃ (j) =
k∑
j=1

jEp̃ (j) =

(
k + 1

2

) k∑
j=1

j =
k (k + 1)2

4
. (1)

The variance is derived next.

Lemma 1

V ar

(
k∑
j=1

YjXij

)
=

1

144
k2 (k + 1)2 (k − 1) (2)
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Proof. The variance of any index value is

V ar (p̃ (i)) =
1

k

k∑
j=1

(
j − k + 1

2

)2

=
1

12
(k + 1) (k − 1) , for i ∈ {1, . . . , k} ,

where we have used
k∑
j=1

j2 =
k (k + 1) (2k + 1)

6
.

We next show (recall that p̃ (j) and p̃ (i) are the values ith and jth positions of a given

random permutation p̃)

Cov (p̃ (j) , p̃ (i)) = − 1

k − 1
V ar (p̃ (j)) i 6= j, i, j ∈ {1, . . . , k}

This is done by defining the random variable

x =

 p̃ (i) with probability (k − 1) /k

p̃ (j) with probability 1/k

Note that x is uniformly distributed on {1, . . . , k} and is independent of p̃ (j). Therefore

0 = Cov (p̃ (j) , x) =
k − 1

k
Cov (p̃ (j) , p̃ (i)) +

1

k
V ar (p̃ (j)) .
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Finally

V ar

(
k∑
j=1

YjXij

)
=

k∑
j=1

k∑
i=1

ijCov (p̃ (j) , p̃ (i))

= V ar (p̃ (1))

{
k∑
j=1

j2 − 1

k − 1

k∑
j=1

∑
i 6=j

ij

}

= V ar (p̃ (1))


k∑
j=1

j2 − 1

k − 1

[ k∑
j=1

j

]2

−
∑
j

j2


= V ar (p̃ (1))

k2 (k + 1)

12

Substituting gives the result.

Assuming the weighted ranks

{
k∑
j=1

YjXij

}
i=1,...,m

are independent, the CLT implies

Lm −mE
k∑
j=1

YjXij(
mV ar

(
k∑
j=1

YjXij

))−1/2
→ N (0, 1) .

From the results above, this equivalent to

12Lm − 3mn (k + 1)2

(mn2 (k + 1) (k2 − 1))1/2
→ N (0, 1) . (3)
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Table 1

Average Return Differences

This table reports the weekly buy and hold return differences for some common option trading
strategies that are special cases of the class of payout functions for which the growth rate is
monotonic. Strike groups are defined using the following algorithm: For each underlying stock
and buying date we find the option contract which has a strike price is closest to the price of the
underlying stock and assign that to strike group 3. The next two higher strikes are assigned to
groups 4 and 5 respectively. Similarly, the previous two lower strikes are assigned to groups 1 and
2 respectively. The options have to satisfy the following conditions to be included in the sample:
(1) The bid price is strictly larger than $0.125, (2) the ask price is greater than the bid price, (3)
the underlying stock does not have an ex-dividend date prior to maturity and (4) the option prices
satisfies a no-arbitrage restriction.

Table 1 (Average return differences by strike group)
Strike Groups 1 2’-1’ 3’-2’ 4’-3’ 5’-4’
call returns 0.010 0.006 0.014 0.102 0.070
t statistics 2.33 2.25 2.23 8.81 3.82
Skewness adjusted t statistics 2.30 2.25 2.28 15.07 6.27

put returns -0.009 0.002 -0.004 0.013 0.012
t statistics -0.16 0.07 -0.36 0.97 1.73
Skewness adjusted t statistics -0.11 0.17 -0.39 0.85 1.63

butterfly spread returns 0.108 -0.009 0.079 0.193 0.333
t statistics 6.48 -0.53 3.95 4.94 3.08
Skewness adjusted t statistics 7.76 -0.55 4.31 6.74 5.21

binary call returns 0.050 0.000 0.006 0.059 0.225
t statistics 8.32 0.04 0.54 3.30 3.04
Skewness adjusted t statistics 7.80 0.04 0.63 3.70 5.63

modified bullish call returns 0.174 0.062 0.092 0.334 0.351
t statistics 9.28 3.53 4.98 6.67 6.06
Skewness adjusted t statistics 15.63 3.42 5.35 36.82 9.62
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Table 2

Page Test for Ordered Alternatives

Panel A reports the results of the ”Page Test for Ordered Alternatives” for option strategies on
individual stocks. Option contracts are first divided into strike groups using the algorithm described
in Table 1. Expected strategy returns for each underlying stock and strike group are estimated by
taking the average of the available weekly returns for the same underlying stock and strike group.
Average strategy returns for each underlying stock are ranked in an increasing sequence across strike
groups giving us a set of rankings for each underlying stock. These sets of ranking are then used to
calculate the statistics for the Page test. Option contracts satisfy the same restrictions outlined in
Table 1. Panel B repeats the analysis in Panel A with the added restriction that there should be
minimum number of weekly observations available to estimate the expected returns. We require at
least 150 weekly observations for the call and put options and a minimum of 50 observations for
the remaining strategies

Table 2 : Page Test
Panel A

No. of stocks zhigh zlow
call options 3531 41.23 40.73
put options 3532 17.39 16.60
butterfly spreads 2600 26.30 22.54
binary call options 1683 28.24 21.23
modified bullish call spreads 1771 26.52 25.24

Panel B
No. of stocks zhigh zlow

call options 1222 35.84 36.36
put options 927 9.17 8.69
butterfly spreads 360 8.97 5.09
binary call options 69 4.72 3.53
modified bullish call spreads 75 2.90 2.44
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Table 3

Appropriate measure of leverage

This table illustrates that sorting by moneyness might not be equivalent to sorting by leverage by
using an example from the actual data

Table 3:
date ticker option id stock price strike moneyness elasticity

19-Jan-96 AIG 10415728 94.25 80.00 0.85 6.24
19-Jan-96 AIG 10394678 94.25 85.00 0.90 9.19
19-Jan-96 AIG 11008635 94.25 90.00 0.95 14.86
19-Jan-96 AIG 11132774 94.25 95.00 1.01 24.34
19-Jan-96 AIG 10105028 94.25 100.00 1.06 33.24

date ticker option id stock price strike moneyness elasticity
19-Jan-96 USRX 11566685 89.50 75.00 0.84 4.27
19-Jan-96 USRX 10755696 89.50 80.00 0.89 4.54
19-Jan-96 USRX 11569192 89.50 85.00 0.95 5.29
19-Jan-96 USRX 10055356 89.50 90.00 1.01 5.95
19-Jan-96 USRX 11499707 89.50 95.00 1.06 6.90
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Table 4

Average Deltas and Elasticities by strike group

This table reports the mean, median and standard deviation of the elasticities and deltas of call
options on each buying date sorted by moneyness. Strike Groups are estimating using the Ni
(2007) moneyness cutoffs. They are as follows: [K/S ≤ 0.085, 0.85 < K/S ≤ 0.95, 0.95 < K/S ≤
1.05, 1.05 < K/S ≤ 1.15,K/S > 1.15]. Call options are selected on each option expiration date
that mature on the next expiration date if the following conditions are satisfied: (1) The bid price
is strictly larger than $0.125, (2) the ask price is greater than the bid price, (3) the underlying
stock does not have an ex-dividend date prior to maturity and (4) the call and put prices satisfies
a no-arbitrage restriction.

Table 4:
Panel A: call deltas sorted by moneyness

Strike Group 1 2 3 4 5
mean 0.92 0.81 0.54 0.30 0.20
median 0.94 0.81 0.55 0.30 0.19
std. deviation 0.05 0.09 0.12 0.09 0.09

Panel B: call elasticities sorted by moneyness
mean 3.82 7.20 12.87 13.60 9.51
median 3.79 6.83 11.13 12.37 8.80
std. deviation 1.05 2.18 7.52 6.49 3.59
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Table 5

Average call returns sorted by elasticity

This Table reports average returns and return differences of call options sorted by elasticity. Panel
A reports the one-month holding till maturity (HTM) returns and Panel B reports the weekly
returns. HTM returns are calculated following Ni (2007). Usual restrictions on call options apply.
HTM returns are calculated following Ni (2007).

Table 5
Panel A : average call option returns sorted by elasticity (holding till maturity)

Leverage Group 1 2 3 4 5 5’-1’ 4’-2’ 5’-3’
Avg. Return 0.004 0.012 0.035 0.059 0.083 0.080 0.047 0.049
t stats. 0.16 0.39 0.97 1.41 1.48 2.04 2.70 1.52
t stats. (skewness adjusted) 0.16 0.40 0.98 1.43 1.53 2.16 2.79 1.61

Panel B : average call option returns sorted by elasticity (weekly buy-and-hold)
Leverage Group 1 2 3 4 5 5’-1’ 4’-2’ 5’-3’
Avg. Return 0.010 0.028 0.060 0.103 0.123 0.113 0.075 0.063
t stats. 0.90 1.79 3.03 4.43 4.78 5.98 6.72 4.49
t stats. (skewness adjusted) 0.95 1.92 3.43 5.44 5.91 8.28 12.79 5.31
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Table 6

Average put returns sorted by elasticity

This Table reports average returns and return differences of put options sorted by elasticity. Panel
A reports the one-month holding till maturity (HTM) returns and Panel B reports the weekly
returns. Usual restrictions on put options apply.

Table 6
Panel A : average put option returns sorted by elasticity (holding till maturity)

Leverage Group 1 2 3 4 5 5’-1’ 4’-2’ 5’-3’
Avg. Return -0.210 -0.170 -0.143 -0.103 -0.063 0.146 0.067 0.080
t stats. -2.20 -2.34 -2.03 -1.65 -1.27 1.97 2.14 2.38
Panel B : average put option returns sorted by elasticity (weekly buy-and-hold)

Leverage Group 1 2 3 4 5 5’-1’ 4’-2’ 5’-3’
Avg. Return -0.618 -0.507 -0.442 -0.338 -0.170 0.448 0.169 0.272
t stats. -24.87 -21.63 -19.37 -15.14 -9.25 22.52 14.58 26.56
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Table 7

Regression Analysis

In this table we regress excess option returns on a number of factors. ”strike(i)” is a dummy variable
that takes values 1 if the option contract is assigned to strike group ”i”. ”excess stock ret” is the
excess return of the underlying stock over the risk free rate, ”volume” is the trading volume on
each buying date, ”delivol” is the change in implied volatility of the option, ”vega” is the option
Vega, and ”elast” is the elasticity of the option. Averages of the cross-sectional estimates as well
as Fama-MacBeth t statistics adjusted for third order serial dependency are reported.

Table 7
Dependent variable is excess call return

(1) (2) (3) (4) (5) (6)
constant 0.014 -0.051 0.000 -0.020 -0.140 -0.218

(2.14) (-8.23) (0.27) (-10.66) (-28.84) (-53.08)
strike2 0.014 -0.051 0.000 -0.020 -0.140 -0.21754

(2.42) (3.32) (-1.5) (-13.93) (7.82)
strike3 0.020 0.024 -0.015 -0.070 -0.004

(2.65) (3.08) (-5.65) (-29.78) (-0.75)
strike4 0.084 0.066 -0.078 -0.237 -0.178

(4.25) (3.68) (-11.22) (-43.82) (-26.84)
strike5 0.107 0.056 -0.177 -0.425 -0.398

(3.4) (2.26) (-11.17) (-31.69) (-29.58)
excess stock ret 7.244 3.162 3.833 3.448

(54.3) (89.09) (74.82) (22.2)
excess stock ret ∗ strike2 1.065 0.970 1.562

(48.97) (27.88) (11.49)
excess stock ret ∗ strike3 4.088 3.528 4.924

(32.38) (29.51) (24.37)
excess stock ret ∗ strike4 9.590 7.026 7.695

(20.52) (23.99) (24.22)
excess stock ret ∗ strike5 8.581 5.991 5.885

(16.75) (18.63) (14.91)
volume 0.000 0.000

(-0.63) (-11.48)
delivol 0.612

(29.85)
excess stock ret ∗ elast 0.870

(201.42)
delivol ∗ vega 0.359

(22.4)
(excess stock ret ∗ elast)2 0.278 0.343 0.287

(38.66) (40.83) (68.09)
Average R-Squared 0.027 0.525 0.629 0.814 0.846 0.91
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Table 8

Robsutness Tests

This table presents some more robustness tests on call returns. Panel A repeats the analyis for call
options reported in Table 1 with the added restriction that calls should have a positive volume on
the buying date. Panel B reports average return differences calculated as follows: Option contracts
are first divided into strike groups using the algorithm described in Table 1. Expected strategy
returns for each underlying stock and strike group are estimated by taking the average of the
available weekly returns for the same underlying stock and strike group. Return differences are
calculated between consequent strike groups and then averaged across different stocks. Panel C
repeats the analysis in Panel B with the added restriction that there should be at least 150 weekly
observations available to estimate the expected returns.

Table 8
Panel A

Strike Groups 1 2’-1’ 3’-2’ 4’-3’ 5’-4’
Average call returns 0.011 0.005 0.015 0.072 0.055
t statistics 1.60 1.34 2.13 5.07 3.25

Panel B
Strike Groups 1 2’-1’ 3’-2’ 4’-3’ 5’-4’
Avg. call returns 0.001 0.008 0.016 0.124 0.040
t statistics. 1.11 8.27 13.59 25.74 3.95

Panel C
Strike Groups 1 2’-1’ 3’-2’ 4’-3’ 5’-4’
Avg. call returns 0.013 0.010 0.019 0.094 0.033
t statistics. 16.52 16.95 15.83 33.83 3.82
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