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Abstract

We use a sample of option prices, and the method of Bakshi, Kapadia and Madan (2003), to estimate

the ex ante higher moments of the underlying individual securities’ risk-neutral returns distribu-

tion. We find that individual securities’ volatility, skewness, and kurtosis are strongly related to

subsequent returns. Specifically, we find a negative relation between volatility and returns in the

cross-section. We also find a significant relation between skewness and returns, with more nega-

tively (positively) skewed returns associated with subsequent higher (lower) returns, while kurtosis

is positively related to subsequent returns. We analyze the extent to which these returns relations

represent compensation for risk. We find evidence that, even after controlling for differences in co-

moments, individual securities’ skewness matters. As an application, we examine whether idiosyn-

cratic skewness in technology stocks might explain bubble pricing in Internet stocks. However, when

we combine information in the risk-neutral distribution and a stochastic discount factor to estimate

the implied physical distribution of industry returns, we find little evidence that the distribution of

technology stocks was positively skewed during the bubble period – in fact, these stocks have the

lowest skew, and the highest estimated Sharpe ratio, of all stocks in our sample.
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1 Introduction

Models suggesting that investors consider higher moments in returns have a long history in

the literature. Researchers such as Rubinstein (1973) and Kraus and Litzenberger (1976,

1983) develop models of expected returns which incorporate skewness. More recent empirical

work provides evidence that higher moments of the return distribution are important in pric-

ing securities. For example, Harvey and Siddique (2000) test whether skewness is priced, and

Dittmar (2002) tests whether a security’s skewness and kurtosis might influence investors’

expected returns.1 In these papers, although additional restrictions are imposed on investors’

utility functions (e.g., that of decreasing absolute prudence), investors are still maximizing

expected utility, and evaluating risk in the context of optimal portfolios. Consequently, the

higher moments which are relevant for individual securities in these models are co-moments

with the aggregate market portfolio; the tests in these papers ask whether a security’s co-

skewness or co-kurtosis with the market is priced, and use historical returns data to measure

these co-moments.

Other recent papers have suggested that additional features of individual securities’ pay-

off distribution may be relevant for understanding differences in assets’ returns. For exam-

ple, Ang, Hodrick, Xing, and Zhang (2006a, 2006b) document that firms’ idiosyncratic return

volatility contains important information about future returns. The work of Barberis and

Huang (2004), Brunnermeier, Gollier and Parker (2007), and the empirical evidence presented

in Mitton and Vorkink (2007) and Boyer, Mitton and Vorkink (2008) suggest that the skew-

ness of individual securities may also influence investors’ portfolio decisions. Additionally,

Xing, Zhang, and Zhao (2007) find that portfolios formed by sorting individual securities on

a measure which is related to idiosyncratic skewness generate cross-sectional differences in

returns.

In this paper, we examine the importance of higher moments using a different approach.

We exploit the fact that if option and stock prices reflect the same information, then it is pos-

sible to use options market data to extract estimates of the higher moments of the securities’

(risk-neutral) probability density function. Our method has several advantages. First, option

prices are a market-based estimate of investors’ expectations. Authors such as Bates (1991),

Rubinstein (1985, 1994) and Jackwerth and Rubinstein (1996) have argued that option mar-

ket prices appear to efficiently capture the information of market participants. Second, the

use of option prices eliminates the need of a long time series of returns to estimate the mo-

ments of the return distribution; this is especially helpful when trying to forecast the payoff

1More recently, Chabi-Yo et al. (2006) present a general framework to disentangle the effects of heterogeneous
beliefs and preferences on asset prices and find empirically that both skewness and heterogeneous beliefs are
priced factors.
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distribution of relatively new firms or during periods where expectations, at least for some

firms, may change relatively quickly. Third, options reflect a true ex ante measure of ex-

pectations; they do not give us, as Battalio and Schultz (2006) note, the “unfair advantage

of hindsight.” As Jackwerth and Rubinstein (1996) state, “not only can the nonparametric

method reflect the possibly complex logic used by market participants to consider the signif-

icance of extreme events, but it also implicitly brings a much larger set of information . . . to

bear on the formulation of probability distributions.”

We begin with a sample of options on individual stocks, and test whether cross-sectional

differences in estimates of the higher moments of an individual security’s payoff extracted

from options are related to subsequent returns. Consistent with Ang, Hodrick, Xing, and

Zhang (2006a, 2006b) findings for physical volatility, we find a negative relation between

risk-neutral volatility and subsequent returns.2 We also document a significant negative re-

lation between firms’ risk-neutral skewness and subsequent returns-that is, more negatively

skewed securities have higher subsequent returns. In addition, we find a significant positive

relation between firms’ risk-neutral kurtosis and subsequent returns. These relations persist

after controlling for firm characteristics, such as beta, size, and book-to-market ratios, and

adjustment for the Fama and French (1993) risk factors.

We examine the extent to which these relations between idiosyncratic higher moments

and subsequent returns may be a function of differences in co-moments with the aggregate

portfolio. Using several different methods and various proxies for the benchmark portfolio,

we find that the relation between idiosyncratic higher moments, particularly skewness, and

risk-adjusted returns persists, even after controlling for differences in co-skewness and co-

kurtosis.

Our results are consistent with models such as Brunnermeier, Gollier and Parker (2007),

and Barberis and Huang (2004) which suggest that investors will trade off the benefits of

diversification and skewness, holding more concentrated positions in skewed securities, and

result in a negative relation between idiosyncratic skewness and expected returns. These

results are also consistent with the empirical evidence in Mitton and Vorkink (2007), who

examine the choices of investors in a sample of discount brokerage accounts and find that

investors appear to hold relatively undiversified portfolios and accept lower Sharpe ratios for

positively skewed portfolios and securities.

Our paper contains several methodological innovations as well. Sorting stocks on the basis

of risk neutral pricing is novel to the literature and has other potential applications as well.

2Spiegel and Wang (2006) also find a significant relation between idiosyncratic volatility and subsequent re-
turns, although the sign of the relation is reversed from the Ang et al. results.
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First, the fact that we sort on option-implied moments means that we sort on market-derived

measures of ex ante volatility, (co)skewness and (co)kurtosis estimates of individual stocks.

Second, we use estimates of the stochastic discount factor (SDF) and estimates of risk neu-

tral densities to obtain implied physical densities, or subjective probability distributions. The

idea is similar to a procedure in Bliss and Panigirtzoglou (2004), who use the SDF implied by

CRRA utility and risk neutral distributions to estimate the subjective probability distribution

of two broad-based indices and investigate temporal patterns in risk aversion. However, our

procedure differs from theirs both in the characterization of densities and the SDF. Third, the

analysis of implied physical densities, and particularly the higher moments of such densities,

is of interest, since recent models that consider the effects of skewness and fat tails in individ-

ual securities’ distributions on expected returns deal with investors’ estimates of the physical

distribution.

Evidence that other features of an individual security’s return distribution are relevant

for stock prices seems particularly intriguing in the context of anomalies which affect nar-

row sectors of the economy, such as the Internet bubble. Given that the rest of the market

appeared relatively unaffected during this period–in fact, Siegel (2006) argues that if one re-

moves technology and telecommunication stocks from the S&P 500, the remaining stocks had

depressed prices in early 2000 – it seems unlikely that the pricing of “bubble” stocks is due

to cross-sectional differences in the co-moments of their return distributions with the aggre-

gate portfolio; the dispersion in the co-moments, and the risk premium associated with the

exposure, would have to be implausibly high. However, if the characteristics of individual se-

curities’ payoff distribution are important, then the concentration of the ‘bubble’ in particular

segments of the market, which have large idiosyncratic differences in return distributions,

may be less puzzling.

To examine this possibility, we combine the information about risk-neutral distributions

contained in sector option prices, and estimates of the stochastic discount factor, to construct

the implied physical distributions of industry portfolios. Surprisingly, we find little evidence

that investors viewed technology stocks as having markedly higher probabilities of extreme

positive payoffs; in fact, technology stocks have the lowest skew, and the highest Sharpe ra-

tios, of any industry in our sample. Overall, while we find substantial evidence that individual

securities’ skewness affects prices in general, we find no evidence that skewness can explain

the bubble in particular.

The remainder of the paper is organized as follows. In section 2, we detail the method

we employ for recovering measures of volatility, skewness, and kurtosis, following Bakshi,

Kapadia, and Madan (2003) and we discuss the data (filters) used in our analysis. In Section 3

we focus on testing whether estimates of the ex ante higher moments of the payoff distribution
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obtained from options data are related to the subsequent returns of the underlying security.

In Section 4, we analyze the extent to which the relations between option-based ex ante higher

moment sorts and subsequent returns are due to investors seeking compensation for higher

co-moment risk, rather than idiosyncratic moments. In Section 5, we discuss the estimation of

implied physical distributions for different industries, and present these estimates for various

sub-periods in our sample. We conclude in Section 6.

2 Data and Computing Ex Ante Risk-Neutral Moments

We wish to examine the relation, if any, between features of the risk-neutral density func-

tion and the pricing of stocks. In this section we describe the data and the methods used to

compute ex ante estimates of volatility, skewness, and kurtosis.

Our data on option prices are from Optionmetrics (provided through Wharton Research

Data Services). We begin with daily option price data for all out-of-the-money calls and puts

for all stocks from 1996-2005.3 Closing prices are constructed as midpoint averages of the

closing bid and ask prices. In subsequent tests, we augment these data with complemen-

tary data for options on aggregate indices (S&P 500 and Nasdaq 100) and 14 industry index

options. We discuss these index option data in greater detail in Sections 4 and 5.

Data on stock returns are obtained from the Center for Research in Security Prices (again

provided through Wharton Research Data Services). We employ daily and monthly returns

from 1996-2005 for all individual securities covered by CRSP with common shares outstand-

ing. Risk free rates are the yield on secondary market three month Treasury Bills taken from

the Federal Reserve Report H.15. Daily returns on the aggregate and industry indices are

obtained from Datastream. Finally, we obtain balance sheet data for the computation of book-

to-market ratios from Compustat and compute these ratios following the procedure in Davis,

Fama, and French (2000).

To estimate the higher moments of the (risk-neutral) density function of individual securi-

ties, we use the results in Bakshi and Madan (2000) and Bakshi, Kapadia, and Madan (2003).

Bakshi and Madan (2000) show that any payoff to a security can be constructed and priced

using a set of option prices with different strike prices on that security. Bakshi, Kapadia,

and Madan (2003) demonstrate how to express the risk-neutral density moments in terms of

3We do not adjust for early exercise premia in our option prices. As Bakshi, Kapadia and Madan (2003) note,
the magnitude of such premia in OTM calls and puts is very small, and the implicit weight that options receive
in our estimation of higher moments declines as they get closer to at-the-money. Using the same method, BKM
show in their empirical work that, for their sample of OTM options, the implied volatilities from the Black-Scholes
model and a model of American option prices have negligible differences.
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quadratic, cubic, and quartic payoffs. In particular, Bakshi, Kapadia, and Madan (2003) show

that one can express the τ -maturity price of a security that pays the quadratic, cubic, and

quartic return on the base security i as

Vi,t (τ) =

∫ ∞

Si,t

2(1 − ln(Ki/Si,t))

K2
i

Ci,t(τ ;Ki)dKi (1)

+

∫ Si,t

0

2(1 + ln(Ki/Si,t))

K2
i

Pi,t(τ ;Ki)dKi

Wi,t(τ) =

∫ ∞

Si,t

6ln(Ki/Si,t) − 3(ln(Ki/Si,t))
2)

K2
i

Ci,t(τ ;Ki)dKi (2)

+

∫ Si,t

0

6ln(Ki/Si,t) + 3(ln(Ki/Si,t))
2

K2
i

Pi,t(τ ;Ki)dKi

Xi,t(τ) =

∫ ∞

Si,t

12(ln(Ki/Si,t))
2 − 4(ln(Ki/Si,t))

3)

K2
i

Ci,t(τ ;Ki)dKi (3)

+

∫ Si,t

0

12(ln(Ki/Si,t))
2 + 4(ln(Ki/Si,t))

3

K2
i

Pi,t(τ ;Ki)dKi

where Vi,t(τ), Wi,t(τ), and Xi,t(τ) are the time t prices of τ -maturity quadratic, cubic, and

quartic contracts, respectively. Ci,t(τ ;K) and Pi,t(τ ;K) are the time t prices of European calls

and puts written on the underlying stock with strike price K and expiration τ periods from

time t. As equations (1), (2) and (3) show, the procedure involves using a weighted sum of (out-

of-the-money) options across varying strike prices to construct the prices of payoffs related to

the second, third and fourth moments of returns.

Using the prices of these contracts, standard moment definitions suggest that the risk-

neutral moments can be calculated as

V ARQ
i,t(τ) = erτVi,t(τ) − µi,t(τ)2 (4)

SKEW Q
i,t(τ) =

erτWi,t(τ) − 3µi,t(τ)erτVi,t(τ) + 2µi,t(τ)3

[erτVi,t(τ) − µi,t(τ)2]3/2
(5)

KURTQ
i,t(τ) =

erτXi,t(τ) − 4µi,t(τ)Wi,t(τ) + 6erτµi,t(τ)2Vi,t(τ) − µi,t(τ)4

[erτVi,t(τ) − µi,t(τ)2]2
(6)

where

µi,t(τ) = erτ − 1 − erτVi,t(τ)/2 − erτWi,t(τ)/6 − erτXi,t(τ)/24 (7)

and r represents the risk-free rate. We follow Dennis and Mayhew (2002), and use a trape-
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zoidal approximation to estimate the integrals in expressions (1)-(3) above using discrete

data.4

In estimating equations (1) - (3), we use equal numbers of out-of-the-money (OTM) calls

and puts for each stock for each day. Thus, if there are n OTM puts with closing prices avail-

able on day t we require n OTM call prices. If there are N > n OTM call prices available on

day t, we use the n OTM calls which have the most similar distance from stock to strike as

the OTM puts for which we have data. We require a minimum n of 2.5 We also eliminate

options with prices less than $0.50 in order to remove especially thinly traded options. In

unreported results, we examine the sensitivity of our results to changing the requirement of

options available and both increasing and decreasing the price filter. The results are qual-

itatively unchanged. As an additional robustness check we investigate the effect of adding

a filter on option volume; these results are similar and are discussed in the appendix. The

resulting set of data consists of 3,722,700 daily observations across firms and maturities over

the 1996-2005 sample period.

In Table 1, we present descriptive statistics for the sample estimates of volatility, skew-

ness, and kurtosis. We report medians, 5th and 95th percentiles across time and securities for

each year during the sample period. There are clear patterns in the time series of these mo-

ments through the sample period, as well as evidence of interactions between them. Volatility

peaks in 2000, during the height of the “bubble” period, then declines through 2005. The

median risk-neutral skewness is negative, indicating that the distribution is left-skewed; the

median value stays relatively flat through 2000 after which it declines sharply, while the

median kurtosis estimate increases during that same period, more than doubling from 2000

through 2005.

3 Ex Ante Higher Moments and the Cross-section of Returns

Our focus in this section is on testing whether estimates of the ex ante higher moments of the

payoff distribution obtained from options data are related to the subsequent returns of the

underlying security.

4We are grateful to Patrick Dennis for providing us with his code to perform the estimation.
5Dennis and Mayhew (2006) examine and estimate the magnitude of the bias induced in Bakshi-Kapadia-

Madan estimates of skewness which is due to discreteness in strike prices. For $5 ($2.50) differences in strike
prices, they estimate the bias in skewness is approximately -0.07 (0.05). Since most stocks have the same dif-
ferences across strike prices, however, the relative bias should be approximately the same across securities, and
should not affect either the ranking of securities into portfolios based on skewness, or the nature of the cross-
sectional relation between skewness and returns which we examine. In our empirical implementation, the mon-
eyness of the options in our sample ranged roughly from .8 to 1.2 with on average 5 equally spaced contracts.
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3.1 Arbitrage Issues

Under the assumption that no-arbitrage rules hold between the options market and the un-

derlying security prices, the information set contained in both cash and derivatives markets

should be the same. Several authors have shown that information in option prices can provide

valuable forecasts of features of the payoff distributions in the underlying market. For exam-

ple, Bates (1991) examines option prices (on futures contracts) prior to the market crash of

1987 and concludes that the market anticipated a crash in the year, but not the two months,

prior to the October market decline. He also shows that fears of a crash increased immediately

after the crash itself.

Our sample period includes the Internet bubble, and some researchers have argued that

option prices and equity prices diverged during this period. For example, Ofek and Richard-

son (2003) propose that the Internet bubble is related to the ‘limits to arbitrage’ argument

of Shleifer and Vishny (1997). This argument requires that investors could not, or did not,

use the options market to profit from mis-pricing in the underlying market, and, in fact, they

also provide empirical evidence that option prices diverged from the (presumably misvalued)

prices of the underlying equity during this period. However, Battalio and Schultz (2006) use

a different dataset of option prices than Ofek and Richardson (2003), and conclude that short-

ing synthetically using the options market was relatively easy and cheap, and that short-sale

restrictions are not the cause of persistently high Internet stock prices. A corollary to their

results is that option prices and the prices of underlying stocks did not diverge during the

‘bubble’ period and they argue that Ofek and Richardson’s results may be a consequence of

misleading or stale option prices in their data set. Note that if option and equity prices do

not contain similar information, then our tests should be biased against finding a systematic

relation between estimates of higher moments obtained from option prices and subsequent re-

turns in the underlying market.6 However, motivated by the Battalio and Schultz results, we

employ additional filters to try to ensure that our results are not driven by stale or mislead-

ing prices. In addition to eliminating option prices below 50 cents and performing robustness

checks with additional constraints on option liquidity, as mentioned above, we also remove

options with less than one week to maturity, and eliminate days in which closing quotes on

put-call pairs violate no-arbitrage restrictions.

6Robert Battalio graciously provided us with the OPRA data used in their analysis; unfortunately, these data,
provided by a single dealer, do not have a sufficient cross-section of data across calls and puts to allow us to
estimate the moments of the risk-neutral density function in which we are interested.
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3.2 Portfolio Sorts

We begin by selecting daily observations of prices of out-of-the-money calls and puts on in-

dividual securities, which have maturities closest to 1 month, 3 months, 6 months and 12

months, and group these options into separate maturity bins. In each maturity bin, we esti-

mate the moments of the risk-neutral density function for each individual security on a daily

basis. We remove observations in the top 1% and bottom 1% of the cross-sectional distribu-

tion of volatility, skewness, and kurtosis each day to mitigate the effect of outliers. Finally, we

remove firms that have less than 10 trading days of observations in a given calendar month.

Following Bakshi, Kapadia and Madan (2003), we average the daily estimates for each stock

over time (in our case, the calendar quarter). For each maturity bin, we further sort options

into terciles based on the moment estimates (volatility, skewness, or kurtosis); the ‘extreme’

terciles contain 30% of the sample, while the middle tercile contains 40% of the sample. On

the basis of these tercile rankings, we form equally-weighted portfolio returns on a monthly

basis over the subsequent calendar quarter.

In Table 2, we report results for portfolios sorted on the basis of estimated volatility (Panel

A), estimated skewness (Panel B), and estimated kurtosis (Panel C). Specifically, we report

the subsequent raw returns of the equally-weighted moment-ranked portfolios over the next

month in the column with label ‘Mean’. In the next column, we report the characteristic-

adjusted return over that same month. To calculate the characteristic-adjusted return, we

perform a calculation similar to that in Daniel et al. (1997). For each individual firm, we as-

sess to which of the 25 Fama-French size- and book-to-market ranked portfolios the security

belongs. We subtract the return of that Fama-French portfolio from the individual security re-

turn and then average the resulting excess or characteristic-adjusted ‘abnormal’ return across

firms in the moment-ranked portfolio. In the next three columns, for Panels A though C of

Table 2, we report the average risk-neutral volatility, skewness and kurtosis estimates for

each of the ranked portfolios. Finally, we report average betas, average (log) market value

and average book-to-market equity ratios of the securities in the portfolio.

Summary statistics in Panel A of Table 2 suggest a strong negative relation between

volatility and subsequent raw returns; for example, in the shortest maturity options (maturity

bin 1), the returns differential between high volatility (Portfolio 3) and low volatility (Portfo-

lio 1) securities is -34 basis points per month; longer maturities have differentials between 47

and 55 basis points per month. The columns of data which report the average characteristics

of securities in the portfolio show sharp differences in beta and size and more modest dif-

ferences in book-to-market equity ratios across these volatility-ranked portfolios. Low (high)

volatility portfolios tend to contain low (high) beta firms and larger (smaller) firms, while dif-
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ferences in book-to-market equity ratios across portfolios are relatively small and differ across

maturity bins. We adjust for these differences in size and book-to-market equity ratio in the

characteristic-adjusted return column. After adjusting for the differences in size and book-to-

market equity observed across the volatility portfolios, the return differentials are somewhat

attenuated in all four maturities. However, although the differential is reduced, it remains

significant, with lowest volatility portfolios earning between 12 and 24 basis points per month

more than the highest volatility portfolios in all four maturity bins.

Panel A also indicates that there is a weak positive relation between volatility and skew-

ness; in all maturity bins, skewness has a tendency to increase as volatility increases, al-

though the effect is not monotonic.7 The relation between volatility and kurtosis in Panel A

is much stronger: as average volatility increases in the portfolio, kurtosis declines in all four

maturity bins. Thus, the relation between volatility and returns may be confounded by the

effect, if any, of other moments on returns; we examine this possibility in later sections of the

paper. Finally, the average number of securities in each portfolio indicates that the portfolios

should be relatively well-diversified. The top and bottom tercile portfolios average 273 firms,

whereas the middle tercile portfolio averages 365 firms. Combined with the fact that we are

sampling securities which have publicly traded options, this breadth should reduce the effect

of outlier firms on our results.

Panel B of Table 2 sorts securities into portfolios on the basis of estimated skewness. In-

terestingly, we see significant differences in returns across skewness-ranked portfolios. The

raw returns differential is negative for all four maturities, at 25, 39, 49 and 45 basis points

per month, respectively. That is, on average, in each maturity bin the securities with lower

skewness earn higher returns in the next month, while securities with less negative, or pos-

itive, skewness earn lower returns. The differentials in raw returns are of the same order of

magnitude or larger than that observed in the volatility-ranked portfolios in Panel A. Com-

pared to the volatility-ranked portfolios, the skewness-ranked portfolios show relatively little

difference in their betas, and smaller differences in their market value, although differences

in book-to-market equity ratios remain. When we adjust for the size- and book-to-market

characteristics of securities, the characteristic-adjusted returns are reduced only slightly, and

average 22, 35, 38 and 38 basis points per month, respectively, across the maturity bins.8

7The moments reported in the paper are averages of the estimated risk neutral moments, not portfolio moments
or physical moments. In unreported results, we compare rolling physical skewnesses of industry index portfolios
to their lagged risk neutral skewness. We find that in both the time series and the cross-section, the physical
skewness is positively and significantly related to ex ante risk neutral skewness.

8In a different application, Xing, Zhang and Zhao (2007) find a positive relation between a skewness metric
taken from option prices and the next month’s returns. Their measure of skewness is the absolute value of the
difference in implied volatilities in out-of-the-money call option contracts, where the strike price is constrained
to be within the range of 0.8S to S, and preferably in the range of 0.95S to S. Thus, their skewness measure is
related to the slope of the volatility smile over a smaller range of strike prices. We conduct a Monte Carlo exercise
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In addition to the differences in returns, the table indicates that there is a negative rela-

tion between skewness and kurtosis. That is, kurtosis declines as we move across skewness-

ranked portfolios. As in Panel A, interactions between other moments and returns could be

masking or exacerbating the relation between skewness and returns. Consequently, in later

tests, we control for the relation of other higher moments to returns in estimating their effect.

Panel C of Table 2 reports the results when securities are sorted on the basis of estimated

kurtosis. Generally, we see a positive relation between kurtosis and subsequent raw returns;

the return differential is economically significant, at 14, 36, 34 and 41 basis points per month

across the four maturities. As with the other moment-ranked portfolios, the effect is reduced

after adjusting for book-to-market and market capitalization differences, but the differences

are very slight and the effect remains highly significant, at 20, 38, 33 and 39 basis points per

month across maturity bins. We also observe patterns in the other estimated moments, with

both volatility and skewness decreasing as kurtosis increases. Again, this emphasizes the

need to control for the relation of all higher moments to returns.

The results in Table 2, Panels A-C, suggest that, on average, higher moments in the distri-

bution of securities’ payoffs are related to subsequent returns. Consistent with the evidence in

Ang, Hodrick, Xing and Zhang (2006a), we see that securities with higher volatility have lower

subsequent returns. We also find that securities with higher skewness have lower subsequent

returns, while higher kurtosis is related to higher subsequent returns. In the next section, we

examine whether the returns are related to risk premia associated with characteristic-based

factors as in Fama and French (1993).

3.3 Factor-Adjusted Returns

In Table 2, we adjust for the differences in characteristics across portfolios, following Daniel

et al. (1997), by subtracting the return of the specific Fama-French portfolio to which an in-

dividual firm is assigned. However, Fama and French (1993) interpret the relation between

characteristics and returns as evidence of risk factors. Consequently, we also adjust for dif-

ferences in characteristics across our moment-sorted portfolios by estimating a time series

regression of the ‘factor-mimicking’ portfolio returns on the three factors proposed in Fama

and French (1993). The dependent variable in these regressions is the monthly return from

portfolios re-formed each month (as in Table 2), where the portfolios consist of a long position

in the portfolio of securities with the highest estimated moments, and a short position in the

using a Heston model with plausible parameter values, to compare the performance of our skewness metric to
theirs in a setting where skewness is known. In this controlled environment we find that the slope estimate of
skewness used by Xing et al. is extremely noisy (using a Mean Squared Error metric) compared to the Bakshi et
al. approach we use. Simulation details are available upon request.
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portfolio of securities with the lowest estimated moments. The three factors used as inde-

pendent variables in the regressions are the return on the value-weighted market portfolio

in excess of the risk-free rate (rMRP,t), the return on a portfolio of small capitalization stocks

in excess of the return on a portfolio of large capitalization stocks (rSMB,t), and the return on

a portfolio of firms with high book-to-market equity in excess of the return on a portfolio of

firms with low book-to-market equity (rHML,t). As in Table 2, firms are grouped by maturity

and sorted into portfolios on the basis of estimated moments (volatility, skewness and kurto-

sis). We report intercepts, slope coefficients for the three factors, and adjusted R-squareds.

Standard errors for the coefficients are presented in parentheses, and are adjusted for serial

correlation and heteroskedasticity using the Newey and West (1987) procedure.

Panels A-D of Table 3 present results for options closest to one, three, six, and twelve

months to maturity, respectively. The first row of each panel contains the results for the

long-short portfolio constructed from volatility-sorted portfolios. Consistent with the results

in Panel A of Table 2 for characteristic-adjusted returns, we observe negative alphas in our

“high-low” portfolio in all four maturity bins. Risk adjustment does not appear to have a

material impact on the returns to these portfolios. The alphas range from -41 basis points

(with a standard error of 36 bp) for the twelve-month maturity portfolio to -59 basis points

(and a standard error of 33 bp) for the one-month maturity portfolio. These alphas are con-

sistent with those of Ang, Hodrick, Xing and Zhang (2006), who show that firms with high

idiosyncratic volatility relative to the Fama-French model earn “abysmally low” returns.

The patterns in the intercepts for skewness-sorted portfolios (row 2 of Panels A-D of Table

3) are also consistent with those observed in Panel B of Table 2. Alphas are negative in all

four maturities, significant at the 10% level for the three month maturity and at the 5% level

for the six- and twelve-month maturities. The alphas remain roughly constant in magnitude

as we move from short-maturity options to long-maturity options, at -58, -65, -64 and -60 basis

points per month, respectively. The negative alphas still suggest a ‘low skewness’ premium;

that is, securities with more negative skewness earn, on average, higher returns in the sub-

sequent months, while securities with less negative, or positive skewness, earn lower returns

in subsequent months.

The evidence that skewness in individual securities is negatively related to subsequent re-

turns is consistent with the models of Barberis and Huang (2004), and Brunnermeier, Gollier

and Parker (2005). In their papers, they note that investors who prefer positively skewed dis-

tributions may hold concentrated positions in (positively skewed) securities–that is, investors

may trade off skewness against diversification, since adding securities to a portfolio will in-

crease diversification, but at the cost of reducing skewness. The preference for skewness will

increase the demand for, and consequently the price of, securities with higher skewness and
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consequently reduce their expected returns. This evidence is also consistent with the em-

pirical results in Boyer, Mitton and Vorkink (2008), who generate a cross-sectional model of

expected skewness for individual securities and find that portfolios sorted on expected skew

generate a return differential of approximately 67 basis points per month.

In the third rows of Panels A-D of Table 3, we report the results for kurtosis-sorted port-

folios. Consistent with the results in Table 2, we see positive intercepts in portfolios that are

long kurtosis. Alphas are positive and both economically and statistically significant, at 56,

67, 59 and 67 basis points per month, respectively, across the four maturities. Similar to the

characteristic-adjusted returns in Table 3, there is no discernible trend in these intercepts

across maturity bins. The magnitude of the alphas with respect to kurtosis is comparable to

that observed in the skewness and volatility sorted portfolios.

There is one other noteworthy feature of Table 3. The explanatory power of the Fama-

French three factors is, on average, lower for the kurtosis-sorted High-Low portfolios, and

much lower for the skewness-sorted portfolios, than the volatility-sorted portfolios. Some

of this difference is likely due to the fact that, as Table 2 shows, skewness and kurtosis-

sorted portfolios exhibit much smaller differences in size and beta than do the volatility-sorted

portfolios. However, it is also possible that there are features of the returns on moment-sorted

portfolios that are not captured well by the usual firm characteristics. This evidence suggests

that there is potentially important variation in the returns of higher moment sorted portfolios

that is not captured by the Fama and French (1993) risk adjustment framework.

As discussed above, one of our concerns following the findings of Battalio and Schultz (2006)

is that results might be driven by stale or misleading prices. As discussed above, we employ a

number of filters to attempt to mitigate these concerns. We further investigate these issues by

requiring additional, more stringent restrictions on the data. Additionally, we consider risk

adjustment relative to an aggregate liquidity factor, as in Pastor and Stambaugh (2004). The

results of this section are robust to these additional requirements, and are discussed in more

detail in the Appendix.

Overall, both the characteristic-adjusted returns in Table 2 and the regression results

in Table 3 provide evidence that higher moments in the returns distribution are associated

with differences in subsequent returns, and that not all of the return differential observed

can be explained by differences in the size, book-to-market, beta or liquidity differentials of

the moment-sorted portfolios. That is, on average, we see some relation between the higher

moments of risk-neutral returns distributions of individual securities and subsequent returns

on these stocks in the underlying market. In the next section, we allow the risk adjustment

for subsequent returns to incorporate higher co-moments as well.
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4 Higher Moment Returns: Systematic and Idiosyncratic Com-

ponents

In the previous section, we presented evidence that higher moments of individual securities

are related to subsequent returns, and that while firm characteristics and characteristic-

based risk factors do a relatively good job of explaining the cross-sectional differences in

volatility-sorted portfolios, they perform substantially less well in explaining the returns of

skew- and kurtosis-sorted portfolios. In this section, we analyze the extent to which these

relations are due to investors seeking compensation for higher co-moment risk, rather than

idiosyncratic moments. We perform a series of analyses. In each subsequent test, we decrease

the restrictions placed on the stochastic discount factor and test whether the relation between

higher moments and subsequent risk-adjusted returns persists.

4.1 Co-skewness, co-kurtosis and a single factor model

In addition to central higher moments, Bakshi, Kapadia, and Madan (2003) also suggest a

procedure for computing the co-skewness of an asset with a factor. Assuming a single factor

data generating process,

Ri,t = ai + biRm,t + ei,t, (8)

the authors note that co-skewness, as defined by Harvey and Siddique (2000) can be calculated

as

COSKEW Q
t (Ri,t+τ , Rm,t+τ ) =

EQ
t

[

(

Ri,t+τ − EQ
t [Ri,t+τ ]

)(

Rm,t+τ − EQ
t [Rm,t+τ ]

)2
]

√

V ARQ
t (Ri,t+τ ) V ARQ

t (Rm,t+τ )
(9)

= biSKEW Q
m,t (τ)

V ARQ
i,t (τ)

√

V ARQ
m,t (, τ)

(10)

In these expressions, Ri,t+τ is the τ -period return on the underlying security, SKEW Q is the

risk-neutral skewness, and COSKEW Q is the risk-neutral co-skewness with the single factor
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m. A similar argument can be invoked to derive co-kurtosis,

COKURTQ
t (Ri,t+τ , Rm,t+τ ) =

EQ
t

[

(

Ri,t+τ − EQ
t [Ri,t+τ ]

)(

Rm,t+τ − EQ
t [Rm,t+τ ]

)3
]

V ARQ
t (Ri,t+τ )V ARQ

t (Rm,t+τ )
(11)

= bi

KURTQ
m,t (τ)

V ARQ
i,t (τ) V ARQ

m,t (, τ)
(12)

Bakshi, Kapadia, and Madan note that the parameter bi is a risk-neutral parameter; in prin-

ciple, this parameter is the risk-neutral projection coefficient of the return on asset i on the

traded asset m.

We calculate the parameter bi following the procedure used in Coval and Shumway (2001).

The authors compute the beta of a call option under the Black-Scholes model as

bi =
Si,t

Ci,t
N
(

ln (Si,t/Ki) +
(

r − δ + 0.5σ2
)

τ

σ
√

τ

)

βi (13)

where N represents the normal distribution, δ is the stock’s dividend yield, σ2 is the volatility

of the underlying stock return, and βi is the slope coefficient from a projection of underlying

stock returns on the single factor. The authors report that their estimates following this pro-

cedure are very similar to those calculated by directly regressing option returns on the market

portfolio. We follow their lead, and use the average ratio of Si,t/Ci,t across calls and the risk

neutral variance calculated for each security i to compute our estimates of this parameter.9

While co-skewness and co-kurtosis can be characterized for any two assets, in general

these co-moments are measured relative to some aggregate equity portfolio return. The S&P

500 is a natural choice as a broad index of stocks that also has traded options to permit the

calculation of its risk neutral moments. Consequently, we estimate the slope coefficient in

the regression, βi, using one year of daily data on the returns to the individual asset and the

S&P 500, ending on the date of the option price data.10 We compute co-skewness and co-

kurtosis using equations 13, 10 and 12, and form portfolios for these co-moments in a manner

analogous to the total moment portfolio sorts in Section 3.

The relation between co-skewness and subsequent returns is reported in Table 4, Panel

A; this table is identical in structure to Table 2. Similar to the results for skewness, sorting

9We experimented with using the most and least out-of-the-money calls in our estimates and found little cross-
sectional sensitivity to the choice of call options.

10Of course, for the purposes of pricing assets, any co-skewness should be related to factors that are relevant
for characterizing the stochastic discount factor. We discuss this issue and investigate its empirical importance in
greater detail later in Section 4.
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on co-skewness generates a negative spread in returns, ranging from 10 basis points for the

six-month maturity to 29 basis points for the one-month maturity. In contrast to the results

in Table 2, co-skewness seems considerably more related to firm characteristics. Indeed, as

noted in the table, characteristic adjustment shrinks the magnitude of the average return dif-

ference between high and low co-skew firms, and in fact generates a positive relation between

characteristic-adjusted returns and co-skewness for all but the one-month maturity portfolio.

Co-skewness is positively related to volatility and negatively related to co-kurtosis, but ap-

pears to have virtually no relation to total skewness or kurtosis. These results are broadly

consistent with Harvey and Siddique (2000), who also document a co-skewness premium and

link co-skewness to characteristics.

Similar summary statistics for co-kurtosis are presented in Panel B of Table 4. Co-kurtosis

generates a small positive return premium, ranging from nine basis points for the six-month

maturity portfolio to 19 basis points for the twelve-month maturity portfolio. Again, char-

acteristic adjustment has a substantial impact on the returns of these portfolios; in all four

cases, the difference in high and low characteristic-adjusted co-kurtosis returns becomes neg-

ative. Co-kurtosis is negatively related to total volatility and co-skewness, and exhibits some

positive relation with total kurtosis. There is little evidence of a relation between co-kurtosis

and total skewness.

We test whether the returns related to the total moments presented in the previous section

can be traced to co-moments. Specifically, we regress the returns of total moment portfolios

on the returns of these co-moment portfolios. We estimate:

rit(τ) = αi + βi,mrprmrp,t + βi,csrcs,t(τ) + βi,ckrck,t(τ) + ǫi,t (14)

where rit(τ) is the ‘factor-mimicking’ moment portfolio, constructed by taking the time t re-

turn of the τ -maturity option highest tercile moment portfolio in excess of the lowest tercile

moment portfolio, rmrp,t is the return on the S&P 500 index in excess of the return on a one-

month Treasury Bill, rcs,t(τ) is the return of the τ -maturity option highest tercile co-skewness

portfolio in excess of the lowest tercile return, and rck,t(τ) is the return of the τ -maturity op-

tion highest tercile co-kurtosis portfolio in excess of the lowest tercile return. Results of these

regressions are shown in Table 5.

As shown in Table 5, the index and co-moment portfolios explain much of the time-series

variation in the returns on volatility-sorted portfolios. The R2’s from the regressions exceed

90% for all four maturities, and the slope coefficients are all precisely estimated. The results

suggest that the volatility returns load positively on the S&P 500 index, but negatively on

co-skewness and co-kurtosis. However, the portfolios retain substantial returns in excess
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of that explained by the co-moments. The intercepts are economically large, ranging from

−26 basis points to −55 basis points, and are statistically significant in all but the 12-month

maturity case. Thus, the table suggests that while co-moment adjustment can explain much

of the time series variation in the return on volatility-sorted portfolios, it fails to capture the

average return associated with these portfolios.

Similar to the Fama-French three-factor regressions in Table 3, the co-moment factors are

much less successful in capturing variation in the returns on skewness and kurtosis-sorted

portfolios. The coefficients are estimated with substantially less precision than those for the

volatility-sorted portfolios, and the explanatory power of the regressions is much weaker. As

a result of the low explanatory power, for both kurtosis-sorted and skewness-sorted portfolios,

the intercepts remain economically large, but are not statistically significant. In the case of

skewness, these intercepts range from -15 basis points for the one-month-maturity returns to

-54 basis points for the six-month-maturity returns. Only the latter is statistically significant

at conventional levels, despite the fact that the magnitude of the intercepts is similar to that of

the volatility-sorted portfolios. Intercepts for the kurtosis-sorted portfolios range from 9 basis

points for the one-month-maturity returns to 41 basis points for the twelve-month-maturity

returns. Again, the magnitude is large, but only the six and twelve month maturity returns

are marginally statistically significant.

Overall, we note that while risk-neutral co-moments, constructed from a single factor

model, do have some association with returns, portfolios sorted on total moments bear premia

that do not appear to be related to these co-moment returns. Of course, this may be due to the

way in which we measure sources of co-moment risk. In subsequent subsections of the paper,

we analyze progressively less restrictive measures of co-moment risk to ask whether these

total moments are in fact attributable to co-movement with some source of aggregate risk.

4.2 Parametric stochastic discount factors with higher moments

In the previous section, we attempt to form portfolios that capture time series variation in

co-moment risk to isolate sources of total moment risk from co-moment risk. In this section,

we follow an approach that similarly assumes that risk premia arise due to exposure to a

common discount factor. However, we relax the functional form of this relationship and the

nature of the risk premia. Specifically, we start from the observation that, under the law of

one price, there exists a stochastic discount factor, Mt (τ) that satisfies the Euler equation

Et [Mt (τ) ri,t (τ)] = 0 (15)
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where ri,t is an excess return for asset i. Under a correctly specified stochastic discount fac-

tor, this relation will hold exactly, implying that the payoff to asset i is determined by the

covariance of the payoff with the stochastic discount factor. In contrast, if this condition does

not hold, the implication is that payoffs to the asset cannot be described by covariance with

the stochastic discount factor; in our context, where assets are moment-sorted portfolios, the

failure of equation (15) suggests that idiosyncratic moments are associated with returns, even

after controlling for co-moments with the SDF.

Of course, inferences about the importance of idiosyncratic moments are relative to a par-

ticular specification of the stochastic discount factor. Failure of the Euler equation condition to

hold may represent the importance of idiosyncratic risk or mis-specification of the stochastic

discount factors. In the next three subsections, we use several methods to estimate stochastic

discount factors that allow for higher co-moments to influence required returns. These meth-

ods differ in the details of specific factor proxies, the number of higher co-moments allowed,

and the construction of the stochastic discount factor. However, the goal in each case is to

estimate the relation between idiosyncratic moments and residual returns, after adjusting for

risk.

We begin by considering a parametric stochastic discount factor (SDF) that incorporates

information about higher moments of the SDF, and consequently adjusts for co-moment risk

with the SDF. In particular, Harvey and Siddique (2000) and Dittmar (2002) examine poly-

nomial stochastic discount factors that account for co-skewness and co-kurtosis risk, respec-

tively. These stochastic discount factors are nested in the polynomial specification

Mt(τ) = d0 + d1 (R∗
t (τ)) + d2 (R∗

t (τ))2 + d3 (R∗
t (τ))3 (16)

where R∗
t (τ) is the τ -period return on a traded portfolio that captures the relevant risks in the

SDF. We discuss various approaches to this formulation of the SDF in subsections 4.2.1 and

4.2.2; in section 4.3, we consider a nonparametric approach.

4.2.1 The S&P 500 Index

Similar to our analysis of co-skewness and co-kurtosis above, our first test uses the S&P

500 as the tangency portfolio in estimating Mt using equation (16). While numerous studies

have documented violations of the CAPM, evidence in support of higher co-moment CAPMs

is stronger. For example, Harvey and Siddique (2000) investigate an SDF that is quadratic

in the return on the market portfolio, consistent with a three-moment CAPM. Dittmar (2002)

investigates an SDF that is cubic in the return on the market, consistent with a four-moment
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CAPM. Both studies document empirical evidence suggesting that higher-moment CAPMs

improve upon the standard two-moment CAPM.11

The parameters are estimated in equation (16) via GMM using the sample moment re-

strictions

α̂ =
1

T

T
∑

t=1

(Ri,t (τ) Mt − 1N ) = 0 (17)

where Ri,t(τ) is a 10 × 1 vector of gross returns comprising 3 portfolios sorted on τ -maturity

risk-neutral volatility, 3 portfolios sorted on τ -maturity risk-neutral skewness, 3 portfolios

sorted on τ -maturity risk-neutral kurtosis, and a Treasury Bill. We include the risk-free re-

turn since Dahlquist and Söderlind (1999) show that failing to do so can result in an SDF that

implies a downward-sloping capital market line. We examine three versions of the polynomial

SDF, Mt. The first is linear (d2 = d3 = 0), accounting for covariance with the tangency portfo-

lio, the second is quadratic (d3 = 0), accounting for coskewness, and the unrestricted version

accounts for cokurtosis.

In Table 6, Panels A through D, we report the parameter estimates, Hansen’s (1982) J-

statistic of overidentifying restrictions, and point estimates of the excess returns (pricing er-

rors) implied by the SDF for the three high minus low moment portfolio returns. In addition,

we present Newey and West (1987) standard errors or p-values for the J-statistic in parenthe-

ses. Panel A presents results for the moment-sorted portfolios based on one-month maturity

options; Panels B-D present complementary results for options based on three, six, and twelve

months to maturity. In all cases, we use data over the period 4/30/1996 through 1/31/2005 for

106 monthly observations.12 The results in Panels A and B suggest that at shorter maturi-

ties, the candidate models cannot be rejected at conventional significance levels. However,

examination of the standard errors of the parameter estimates suggest that this failure to

reject is more likely attributable to lack of power than fit of the model. With the exception

of the intercept term, few of the parameter estimates are statistically different than zero at

conventional levels.13 Further, at the longer-horizon maturities shown in Panels C and D,

the specifications are formally rejected at the 10% significance level. One positive result is

that the point estimates correspond with economic arguments about co-moment preference;

negative signs on the coefficients d1 and d3 suggest aversion to covariance and co-kurtosis,

11The S&P 500 is not a perfect proxy for the value-weighted market portfolio. However, in order to facilitate
comparison with later results, we use this index rather than a broader index such as the CRSP value-weighted
index.

12In later tests, we use overlapping annual returns. For comparison purposes, we truncate the data at 1/31/2005.
13Statistical inference in these tests would, of course, be affected by the relatively small sample and the

collinearity between the polynomial terms in the SDF that we employ. As a consequence, the magnitude of the
intercepts may be a more useful guide in inferring the economic importance of higher moments unrelated to the
SDF.

18



whereas the positive sign on d2 suggests preference for co-skewness.

More importantly, the point estimates of the excess returns on high minus low volatil-

ity, skewness, and kurtosis-sorted portfolios are large in magnitude. Excess returns average

-101, -42, and 32 basis points per month across specifications and maturities for the volatility-

sorted, skewness-sorted, and kurtosis-sorted high minus low portfolios, respectively. Pricing

errors for the skewness-sorted portfolios tend to be somewhat more precisely estimated than

those of the volatility-sorted portfolios; pricing errors range from 2 basis points (SE = 0.38) to

-72 basis points (SE = 0.28) for the skewness-sorted portfolios, with five out of twelve specifi-

cations significant at conventional levels, compared to only three specifications significant for

volatility-sorted portfolios. However, the magnitude of the alphas for volatility-sorted portfo-

lios is economically quite large. In contrast, the evidence for significant excess returns in the

pricing errors for the kurtosis-sorted portfolios is both economically and statistically weaker;

the alphas range from -13 basis points (SE = 0.28) to 65 basis points (SE = 0.29), with only

one out of twelve specifications significant at conventional levels.

In summary, the evidence suggests that the payoffs to higher moment-sorted portfolios,

particularly skewness-sorted portfolios, cannot be traced to higher co-moments with respect

to a value-weighted market proxy. While the statistical magnitude of the pricing errors is

not consistent across all specifications, the economic magnitude of the pricing errors is large.

Relative to the risks associated with returns on an S&P 500 tangency portfolio, the returns to

the moment-sorted high minus low portfolios appear to be idiosyncratic.14

4.2.2 Industry Tangency Portfolio

Our second investigation of the systematic and idiosyncratic components of the payoffs to

higher-moment sorted portfolios estimates the parameters of an SDF polynomial in the re-

turns on the tangency portfolio constructed by a set of basis assets. Our choice of this proxy

is motivated by several considerations. First, we focus on a tangency portfolio as it correctly

prices the assets included in its formation by construction. As discussed in Hansen and Ja-

gannathan (1991), there is a one-to-one correspondence under the law of one price between

this tangency portfolio and the minimum variance SDF that correctly prices assets. Second,

as mentioned above, although the CAPM suggests that the value-weighted market is the tan-

14One potential issue in our analysis so far may be that the candidate tangency portfolios examined may be
dominated by larger, older firms with less skewness and kurtosis in their payoffs. Hence, measurement of co-
skewness may be obscured by the lack of skewness in the index payoff. We therefore examine the Nasdaq 100
index as a proxy for the tangency portfolio as it generally comprises smaller, younger firms that may be more
likely to exhibit skewed and leptokurtic payoffs. These results are very similar to those obtained using the S&P
500 as the market proxy; they are discussed in more detail in the Appendix.
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gency portfolio, a large body of empirical evidence suggests that this hypothesis is violated.

King (1966) and Ahn, Conrad, and Dittmar (2007) suggest that industry portfolios represent a

reasonable basis for asset pricing, as sorting on industries tends to maximize within-portfolio

covariation and minimize across-portfolio covariation. Consequently, we use a set of 14 in-

dustry portfolios to form our tangency portfolio. Descriptions of the industry indices and the

tangency portfolio are presented in Table A1.

Table 6, Panels E-H contains the results from estimating the polynomial equation (13)

using the industry tangency portfolio to estimate Mt via GMM. As shown in the table, the

results are qualitatively unchanged from those estimated using the S&P 500 index. There is

a slightly larger tendency to reject the overidentifying restrictions of the model, as indicated

by the relatively smaller p-values of the tests compared to those in Panels A-D. However, as in

the previous table, any failure to reject seems likely to be due to lack of power, as suggested by

the large standard errors of the point estimates of the parameters. We cannot reject the null

hypothesis that the parameters are significantly different than zero at conventional levels for

any of the specifications.

It should finally be noted that the point estimates of pricing errors in Panels E through

H remain large. The average excess return on the high minus low volatility portfolio varies

from -40 to -183 basis points per month depending on maturity, comparable to that estimated

using the value-weighted market portfolio. Similar results for skewness portfolios indicate

average excess returns varying between 5 and -66 basis points, whereas average excess re-

turns for kurtosis-sorted portfolios range from -16 to 67 basis points. Several of these esti-

mates are statistically different from zero at the 10% level. Thus, similar to our conclusion

for the value-weighted market portfolio, we conclude that relative to the risks present in the

industry tangency portfolio, the returns to moment-sorted extremum portfolios appear to be

idiosyncratic.

4.3 Non-Parametric Stochastic Discount Factors with Higher Moments

In the preceding sections, we estimated the parameters of polynomial stochastic discount fac-

tors using different proxies for the tangency portfolios, and examined whether these discount

factors could explain the returns on moment-sorted portfolios. The evidence suggests that

they cannot, indicating that the returns related to these moments appear to be idiosyncratic

to the risks embodied in the returns employed in the SDFs. In this section, we pursue a

more nonparametric approach for investigating the SDF using the relation between the risk-

neutral and physical densities of a candidate asset.
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The no-arbitrage condition in asset pricing suggests that the risk-neutral and physical

probability measures are related by the equation

Mt(s, τ)Pt(s) = exp (rτ)Qt(s) (18)

where Mt(s, τ) is the τ -period SDF at time t, contingent on state s, Pt(s) is the physical proba-

bility of state s occurring at time t, and Qt(s) is the risk neutral probability of state s occurring

at time t. Given an estimate of the physical and risk neutral probabilities, this equation im-

plies

Mt(s, τ) = exp (rτ)Qt(s)/Pt(s). (19)

Researchers have used this relation in several ways. It is possible to use restrictions on M ,

combined with estimates of the risk-neutral distribution Q and generate an estimate of the

physical distribution P . For example, Bliss and Panagirtzoglou (2004) assume that investors

have either power or exponential utility functions and estimate the risk-neutral distribution

of the FTSE100 and S&P500 using options data in order to generate an estimate of the sub-

jective probability distribution of the underlying indexes. They provide evidence that these

subjective distributions are better forecasters of the underlying index returns. Alternatively,

it is possible to combine estimates of the physical distribution generated from a time-series

of returns, with estimates of the risk-neutral distribution inferred from option prices, and

use equation (20) to infer something about the stochastic discount factor M . For example,

Jackwerth (2001) and Ait-Sahalia and Lo (2000) employ this approach to estimate empirical

risk-aversion functions.

We take a slightly different approach. Specifically, we follow Eriksson, Ghysels and Wang

(2009) and use a Normal Inverse Gaussian (NIG) approximation to generate an estimate

of both the subjective and risk-neutral probability distributions. The particular appeal to

this approach is that the density is characterized entirely by the first four moments of the

distribution. Hence, given estimates of the mean, variance, skewness, and kurtosis, we can

characterize assets’ conditional densities. Importantly, the authors show that this method is

particularly well-suited when the distribution exhibits skewness and fat tails, as it does in

the returns distributions which we examine in this application.

Since the results in the preceding section were little affected by our choice of benchmark

portfolio, for convenience we focus on the stochastic discount factor implied by the S&P 500.

This choice allows us to easily compute the risk-neutral moments of the benchmark: options

on this index are heavily traded, and we can compute these moments analogously to the pro-

cedure employed in Section 3 for individual assets. This contrasts with alternative stochastic

discount factors, such as those implied by the industry index tangency portfolio or the Fama-
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French factors, for which options are not traded on the combination of the assets that generate

the tangency portfolio.

The Bakshi, Kapadia, and Madan (2003) procedure provides a straightforward approach

for the computation of risk neutral moments; computation of conditional physical moments

is somewhat more problematic. While procedures exist for estimating conditional variance,

econometric work surrounding the estimation of conditional skewness and kurtosis is lacking.

We follow Jackwerth (2000) and use four years of daily data through the first date of our option

sample period to estimate sample variance, skewness, and kurtosis. In their empirical work,

Bakshi, Kapadia and Madan (2003) note that skew and kurtosis may be underestimated using

short windows. Consequently, in the Appendix, we examine the robustness of our approach

for measuring physical higher moments to different sample periods, the use of rolling and

autoregressive estimates of the moments, as well as longer windows.

Finally, to estimate the conditional physical mean of the market µt we follow Jackwerth

(2000) and add a risk premium of 8% to the risk-free rate observed at time t.15 Once physical

and risk-neutral distributions are estimated using the NIG method, the τ -period SDF, Mt(τ)

is computed as in equation (19) by taking the risk-free discounted ratio of the risk-neutral to

physical distribution.

The time series average of stochastic discount factor functions is depicted in Figure 1. In

addition to the SDF obtained using the NIG approximation to the density, we also present

averages of SDFs obtained by fitting linear, quadratic, and cubic functions of the S&P 500

return support to the NIG approximation each period. The Figure shows that the linear and

quadratic stochastic discount factors are downward sloping throughout their range, consis-

tent with decreasing risk aversion over all levels of wealth. In contrast, the NIG SDF and,

to a lesser extent the cubic SDF, are upward-sloping over some portion of the support. In

particular, the NIG stochastic discount factor has a segment in the mid-range of the graph

which is increasing, consistent with the evidence in Jackwerth (2000) and Brown and Jackw-

erth (2001).16

While the NIG class is versatile (e.g., as Eriksson, Forsberg and Ghysels (2004) note, its

domain is much wider than Gram-Charlier or Edgeworth expansions), there are some re-

15We examine the sensitivity of our results to this assumption, considering risk premia of 4% and 12% per
annum as well. While the shape of the SDF is affected by this assumption, our results are qualitatively unchanged.

16Both Jackwerth (2000) and Brown and Jackwerth (2001) examine possible reasons for this pattern, which
suggests that the representative agent may be risk-seeking over the upward-sloping range. Although not the
focus of our paper, it is interesting to note that we obtain similar results despite using a sample period that
does not overlap with Jackwerth (2001) or Brown and Jackwerth (2001) and an entirely different methodology.
Golubev et al. (2008) also report a similar pattern of the pricing kernel using German DAX index data, and propose
a statistical test for monotonicity. Using their test they find statistically significant against monotonicity; hence,
their results also provide support for the presence of upward sloping segments.
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strictions on its use. In particular, the parameters of the NIG approximation may become

imaginary and so the distribution cannot be computed. This constraint does not arise in the

case of 3- and 12-month to maturity options, and arises in only one month for the 6-month

maturity options. However, this condition is frequently violated in the case of 1-month to

maturity options. As a result, we compute stochastic discount factors using only 3-, 6-, and

12-month maturity options.

In Table 7, we report estimates of alphas (pricing errors) of the moment-sorted portfolios

implied by the Euler equation calculated from each of the stochastic discount factors esti-

mated above, using options closest to 3, 6, and 12 months to maturity. In general, across

all specifications, precision of the estimates is quite poor; despite this, the results suggest

that regardless of the specification of the stochastic discount factor, the sign and the economic

magnitudes of the alphas across volatility-, skewness- and kurtosis-sorted portfolios after

risk-adjustment remain similar to those observed in Table 2.

In all, the results of this section appear to corroborate the findings from the preceding

sections. There is little evidence to suggest that the payoffs of moment-sorted portfolios are

related to systematic exposure to a stochastic discount factor. It is important, however, to note

that our results do not necessarily imply that the alpha, or residual return, is an arbitrage

profit. Related to the possibility of a mis-specified stochastic discount factor, the estimates

of the stochastic discount factor used to construct α control only for non-diversifiable risk

(including the risk of higher co-moments) in the context of a well-diversified portfolio. For

example, if investors have a preference for individual securities’ skewness, they may, as in

Brunnermeier et al., hold concentrated portfolios and push up the price of securities which

are perceived to have a higher probability of an extremely good outcome. As a consequence,

the lower subsequent returns of high-skew stocks may represent an equilibrium result.

In the next section of the paper, we address two final issues related to whether perception

of highly skewed payoffs may affect investors’ valuations. We examine the ex ante physical

probability measures for different industries implied by the stochastic discount factors ex-

amined in this section. More specifically, we ask whether industries that were suspected of

having particularly high valuations over our sample period are associated with higher ex ante

skewness. We also explore the sensitivity of our risk-neutral measure results to measurement

under the physical probability distribution.

23



5 Implied Physical Probability Distributions

To this point, we have focused on the estimation of risk-neutral moments, and the relation of

these moments to returns. However, the models that consider the effects of skewness and fat

tails in individual securities’ distributions on expected returns deal with investors’ estimates

of the physical distribution. The no arbitrage restriction, equation (18), suggests that, given

a stochastic discount factor and a risk neutral distribution, one can retrieve the physical

distribution. In this section, we use this procedure to estimate the physical distributions of a

set of sector portfolios.

The approach we adopt in this section has similarities with the Bliss and Panigirtzoglou (2004)

paper, but is different in several important ways. First, for risk-neutral density approxima-

tion, we continue to use the NIG density approximations constructed from risk-neutral mo-

ments, as discussed in Section 4.3. Second, we use a different specification of the SDF; Bliss

and Panigirtzoglou (2004) use an SDF implied by CRRA utility, whereas ours is constructed to

satisfy the law of one price as discussed below. Finally, instead of a single benchmark index,

we examine the distributions of a set of sector options spanning several industries. In par-

ticular, we use the same underlying indices that were used in Section 4 to create a tangency

portfolio. As stated above, industry descriptions are provided in Table A1. The industries

cover a number of different sectors of the economy, incorporating financials in the Bank (BKX)

and Broker/Dealer (XBD) indices, mainline firms in the Consumer (CMR) and Cyclical (CYC)

indices, high-tech firms in the High-Tech (MSH) and Computer Technology (XCI) industries,

more traditional growth firms in the Biotech (BTK) and Pharmaceutical (DRG) indices, and

commodities in the Gold and Silver (XAU) and Oil (XOI) indices. Components of these indices

include Goldman Sachs, Johnson & Johnson, Citigroup, Ford Motor, Apple, Cisco Systems,

Merck, and Exxon-Mobil. The broad cross-section of firms contained in these indices should

allow us to capture important features of the stochastic discount factor.

One potential limitation of this approach is that the relation linking the physical and

risk neutral measures, equation (18), are based on an SDF that satisfies no arbitrage. As

our results in the preceding section suggest, this condition is unlikely to be satisfied for any

of the SDFs that we have used thus far. However, we can construct an SDF that satisfies

the law of one price unconditionally in sample. Specifically, as noted by Hansen and Jagan-

nathan (1991), an SDF that is linear in the base assets under consideration satisfies the Law

of One Price. Specifically, an SDF constructed as

Mt(s) = d0 + d1r
T (s) (20)
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where

d1 = − r̄T − rf

(sT )
2
(1 + rf )

(21)

d0 =
1

1 + rf
− d1r̄

T . (22)

and rT (s) represents the return on the sample tangency portfolio in state s, which by con-

struction satisfies the Law of One Price.

We use the returns on the 14 industry index portfolios and the returns on the skewness-

sorted portfolios as base asset returns. Our rationale for doing so is that we are examining

moments of the industry index portfolios, and thus want to ensure that the Law of One Price

is satisfied for these assets. Further, we include the skewness sorted portfolios in order to

incorporate the information in these portfolios that the results of the previous sections suggest

are important for understanding the investment opportunity set. We calculate the weights on

the tangency portfolio and the coefficients d0 and d1 using sample moments of the base assets.

The stochastic discount factor function in each period is then formed by varying rT (s) over its

support.17

5.1 Implied Moments of Physical Probability Distributions

We are interested in the moments of the physical probability distributions of the industry

index portfolios. To estimate the physical distributions, we start with calculating risk neu-

tral moments of the industries using sector options, and then apply the NIG approximation

to obtain the risk neutral density for each sector. Finally, we use (18) with the linear SDF

appearing in (20) to obtain the physical distribution. We integrate numerically over the dis-

tribution to obtain the first four central moments for each industry every month. We average

these estimates over four subperiods. The first subperiod, Q2.1996 - Q2.1998, captures the

behavior of the industries prior to the Asian currency crisis, arguably the period prior to the

inflation of the so-called Internet Bubble. The second subperiod, Q3.1998 - Q1.2000, captures

the expansion of the bubble. The third subperiod, Q2.2000 - Q4.2002, roughly captures the

bursting of the bubble, the ensuing recession, and the September 11, 2001 event. The final

period, Q1.2003 - Q4.2004, represents the beginning of the economic recovery.

Average moments are presented in Table 8. For brevity, we present results only for options

17In unreported results, we have also used the stochastic discount factors investigated in the preceding sections
as candidates for the SDF in this section. The qualitative conclusions of this section are not affected by the use of
these alternative SDFs.
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that have closest to 12 months remaining to maturity.18 We present results for Subperiod 1 in

Panel A and Subperiods 2-4 in Panels B-D. We observe substantial cross-sectional variation

in estimated moments across industries. For the first subperiod, the results suggest that the

highest expected return is in the Morgan-Stanley High Tech Industry Index (MSH), and the

lowest in the Utilities (UTY) index. Interestingly, the MSH index also exhibits high volatility,

the lowest skewness of the group, and relatively low kurtosis. In fact, expected returns in

this subperiod are strongly correlated with volatility (at 0.82), strongly negatively correlated

with skewness (at -0.51), and strongly negatively correlated with kurtosis (at 0.76). How-

ever, a cross-sectional regression of expected returns on the moments in this subperiod (not

reported) suggests a positive and statistically significant relation between expected returns

and volatility, with the remaining moments statistically insignificant.

In the Bubble subperiod, the high-tech index, MSH, is again the index with the highest

expected return, although Banking (BKX) and Computer Technology (XCI) also display rel-

atively high returns. Again, these high returns are associated with high ex ante volatility;

the correlation between expected returns and volatility is 70%. In this subperiod, skewness is

only minimally correlated with expected returns (at 0.10), suggesting little economic relation,

and kurtosis is negatively correlated with returns, at -83%. In unreported cross-sectional re-

gressions, only the relation with kurtosis is marginally statistically significant–that is, in the

period most closely aligned with the bubble, differences in expected returns do not appear to

be particularly sensitive to investors’ estimates of the likelihood of extreme outcomes. In fact,

in this period industries associated with the bubble and growth do not exhibit particularly

high skewness. Biotech (BTK), High-Tech (MSH), and Computer Equipment (XCI) all exhibit

negative skewness, while Consumer (CMR) and Oil (XOI) are more positively skewed.

The moments in the third subperiod, spanning the collapse of the bubble and the ensuing

recession, are the most correlated with mean returns. Volatility is very strongly positively

correlated with expected returns (at 0.95), skewness is strongly negatively correlated with

expected returns (at -0.83), and kurtosis is very strongly negatively correlated with expected

returns, at -0.95. Nearly all of the industry indices exhibit negative skewness; the only ones

that do not are Consumer (CMR) and Oil (XOI). Technology-oriented industries, such as MSH

and TXX are among the most negatively skewed.

Finally, in the post-recession period, we again observe a positive correlation between ex-

pected returns and volatility, a mild negative relation with skewness, and a moderate neg-

ative relation with kurtosis. Interestingly, in this subperiod, all fourteen industry indices

have negative skewness. The most negatively skewed is Airlines, which may correspond to

18These data are also the least likely to violate the conditions for the NIG distribution above, and hence lead to
the greatest number of available observations.
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expectations about the impact of fuel costs on this industry at that time as well as several

bankruptcies. Again, the growth indices, BTK and MSH, are among the most negatively

skewed.

We find it striking that the technology-oriented industry indices display little evidence of

positive skewness, in contrast to hypotheses that suggest that stocks in these indices might

exhibit ‘lottery-like’ features. Rather, considering the implied means and standard deviations,

investors appeared to view technology stocks as relatively good Sharpe ratio bets. In both the

first and second subperiods, leading up to the internet bubble, the ratio of expected returns

to volatility are highest for the high-tech industry, MSH. That is, according to our estimates,

investors viewed these stocks as “good deals” rather than as lotteries.

Two cautions are worth emphasizing. First, inclusion in an index may prevent us from

sampling the youngest, most highly skewed firms, particularly in those industries whose com-

position is changing the most rapidly. More importantly, the use of options data to infer higher

moments limits us not just in the cross-section, but in the horizon over which we can estimate

investors’ expectations. If investors’ expectations of moments over horizons longer than one

year (the longest horizon for which we have data) are both relevant for prices, and significantly

different from the shorter-horizon moments that we have estimated, then our results may be

incomplete and/or our inferences may be incorrect. For example, if investors believed that

technology stocks’ extreme payoffs would occur over, say, five year intervals, then differences

in five-year skewness may potentially explain high valuations.19 While we cannot rule this

out, it is worth pointing out that the relation between shorter horizon skewness and Sharpe

ratios in Table 7 is remarkably stable across all four intervals we examine. Since these inter-

vals include the ‘pre-bubble’ and ‘post-bubble’ periods, any separate effect of longer horizon

skewness would suggest a very marked term premium in the skew which differs dramatically

across these intervals.

5.2 Sorts on Implied Physical Moments

In our final investigation, we note that the theories to which we appeal about the importance

of skewness in determining asset valuations pertain to the physical, rather than the risk neu-

tral moments as analyzed in Sections 3 and 4. In principle, one could use the procedure of

the previous subsection to retrieve physical moments for every individual security. Unfortu-

nately, practical limitations, including estimating a tangency portfolio across a broad class

of assets and computational concerns in integrating densities for a large number of assets,

makes doing so somewhat daunting. However, we provide some insight into this question by

19We are grateful to Paul Pfleiderer for an analysis of a setting in which this situation could arise.
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sorting the industry portfolios into groups on the basis of the physical moments calculated in

the preceding section, and analyzing whether these sorts are related to subsequent returns.

Specifically, we form sets of three portfolios each month on the basis of estimates of their

expected returns, volatility, skewness, and kurtosis implied by the physical densities calcu-

lated in the preceding section. The high-moment portfolio is the equally weighted average

of the three industries with the highest moment (mean, volatility, skewness, or kurtosis) in

the preceding month and the low-moment portfolio is the equally weighted average return on

the three industries with the lowest moments. Since we form our densities based on twelve-

month-maturity options, we calculate returns over the subsequent year. We present (overlap-

ping) averages in Table 9 and convert the averages to monthly returns for comparison with

earlier results.

For our purposes, the main result of the table is that estimated physical moments pre-

dict average returns with the same sign as the risk neutral moments. That is, high physi-

cal volatility indices predict lower returns than low volatility indices, high skewness indices

predict lower average returns than low skewness indices, and high kurtosis indices predict

higher average returns than low kurtosis indices. Further, the magnitude of these average

return differentials is economically significant; -52 basis points for volatility, 14 basis points

for skewness and 47 basis points for kurtosis. Interestingly, the implied expected return also

appears to forecast returns positively; the highest implied expected return firm outperforms

the lowest by an average of 48 basis points per month.

6 Conclusions

We explore the possibility that higher moments of the returns distribution are important in

explaining security returns. Using a sample of option prices from 1996-2005, we estimate the

moments of the risk-neutral density function for individual securities using the methodology

of Bakshi, Kapadia and Madan (2003). We analyze the relation between volatility, skewness

and kurtosis and subsequent returns.

We find a strong relation between these moments and returns. Specifically, we find that

high (low) volatility firms are associated with lower (higher) returns over the next month.

This result is consistent with the results of Ang, Hodrick, Xing and Zhang (2006). We also

find that skewness has a strong negative relation with subsequent returns; firms with lower

negative skewness, or positive skewness, earn lower returns. That is, investors seem to prefer

positive skewness, and the returns differential associated with skewness is both economically

and statistically significant. We also find a positive relation between kurtosis and returns.
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These relations are robust to controls for differences in firm characteristics, such as firm size,

book-to-market ratios and betas, as well as liquidity and momentum.

We use several different methods to estimate stochastic discount factors to control for

differences in higher co-moments, and their related compensation for risk. We use these

stochastic discount factors to calculate risk-adjusted returns to portfolios sorted on the basis

of volatility, skewness and kurtosis, where the risk-adjustment explicitly takes higher co-

moments into account. After controlling for higher co-moments, we continue to find evidence

that idiosyncratic moments matter.

We use estimates of the stochastic discount factor, and the risk-neutral distributions calcu-

lated for sector options, to estimate implied physical distributions across different industries.

We find several interesting results. First, our results suggest that implied physical distribu-

tions are much more stable than those constructed using historical data. Second, in implied

physical distributions, we find evidence of a trade-off between skewness in industry portfo-

lios and ex ante estimates of the Sharpe ratios for the industry. That is, our results suggest

a trade-off between expected returns and higher moments, with higher (lower) traditional

risk-reward measures associated with lower (higher) skewness. However, we also find that

the portfolio containing technology firms has low ex ante physical skew and kurtosis, and a

high Sharpe ratio. Consequently, while we find both that higher moments matter, and that

investors’ expectations of higher moments change through time, our results do not appear to

be an explanation of bubble pricing in the Internet period.

Finally, we examine whether portfolios sorted on the moments of implied physical mo-

ments have predictive power for subsequent returns. We find that the explanatory power of

risk-neutral moments are preserved in physical moments–returns differentials for objective

volatility, skewness and kurtosis are economically significant and identical in sign to those

observed by sorting on risk-neutral measures.
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[35] Golubev, Y., W. Härdle, and R. Timonfeev, 2008, “Testing Monotonicity of Pricing Ker-

nels,” SFB 649 Discussion Papers, Humboldt University.

[36] Hansen, L.P. and R. Jagannathan, “Implications of Security Market Data for Models of

Dynamic Economies,” 1991, Journal of Political Economy 91, 249-265.

[37] Harvey, C. and A. Siddique, “Conditional skewness in asset pricing tests,” 2000, Journal

of Finance 55, pp. 1263-1296.

[38] Huberman, G. and E. Kandel, “Mean-Variance Spanning”, 1987, Journal of Finance 42,

pp. 873-888.

[39] Jackwerth, J.,“Recovering Risk Aversion from Option Prices and Realized Returns”,

2000, Review of Financial Studies 13, pp. 433-451.

[40] Jackwerth, J. and M. Rubinstein, “Recovering probability distributions from option

prices”, 1996, Journal of Finance 51, pp. 1611-1631.

[41] Mitton, T. and K. Vorkink, ”Equilibrium Underdiversification and the Preference for

Skewness”, 2007, Review of Financial Studies 20, pp. 1255-1288.

[42] Ofek, E. and M. Richardson, 2003, “DotCom mania: The rise and fall and fall of internet

stocks,” forthcoming, Journal of Finance.

32



[43] Pastor, L. and R. Stambaugh, 2003, “Liquidity risk and expected stock returns,” Journal

of Political Economy 111, pp. 642-685.

[44] Rubinstein, M., “Nonparametric tests of alternative option pricing models using all re-

ported trades and quotes on the 30 most active CBOE option classes from August 23,

1976 through August 31, 1978,” 1985, Journal of Finance 40, pp. 455-480.

[45] Rubinstein, M., “Implied binomial trees,” 1994, Journal of Finance 49, pp. 771-818.

[46] Shleifer, A. and R. Vishny, “The limits of arbitrage”, 1997, Journal of Finance 52, pp.

35-55.

[47] Siegel, J., “Irrational exuberance, reconsidered,” December 6, 2006, Wall Street Journal.

[48] Spiegel, M. and X. Wang, “Cross-sectional variation in stock returns: Liquidity and Id-

iosyncratic Risk,” 2006, Unpublished manuscript, Yale University.

[49] Tversky, A., and D. Kahneman, “Advances in prospect theory: Cumulative representation

of uncertainty,” 1992, Journal of Risk and Uncertainty 5, pp. 297-323.

[50] Xing, Y., X. Zhang and R. Zhao, “What Does Individual Option Volatility Smirk Tell Us

about Future Equity Returns?” 2007, forthcoming, Journal of Financial and Quantita-

tive Analysis.

33



Table 1: Descriptive Statistics: Risk Neutral Moments

Entries to the table are the 5th percentile, median, and 95th percentiles of risk neutral volatility, skewness, and kurtosis across securities by year.
We calculate the risk neutral moments following the procedure in Bakshi, Kapadia, and Madan (2003) using data on out of the money (OTM) puts
and calls. We require at least two OTM puts and two OTM calls to calculate the moments. Further, we restrict attention to options with prices in
excess of $0.50 for which we have at least 10 quotes per month and are not expiring within one week. Finally, we eliminate any options that violate
put-call parity restrictions and lie in the extreme 1% of the distribution of the risk neutral moments. The sample consists of 3,722,700 option-day
combinations over the time period January 1996 through December 2005.

Volatility Skewness Kurtosis
Year P5 P50 P95 P5 P50 P95 P5 P50 P95

1996 11.09 24.20 43.91 -3.61 -0.30 0.92 1.23 3.75 18.59

1997 11.42 23.89 44.10 -4.04 -0.32 0.88 1.22 3.77 23.05

1998 12.27 24.76 48.01 -3.63 -0.30 1.06 1.24 3.96 21.85

1999 13.31 27.03 55.34 -3.88 -0.35 0.85 1.12 3.67 23.04

2000 15.49 30.55 61.91 -3.47 -0.42 0.86 1.09 3.68 20.55

2001 14.53 30.17 69.55 -3.28 -0.57 0.81 1.30 4.05 19.08

2002 13.81 27.54 69.26 -3.55 -0.63 0.89 1.41 4.50 22.11

2003 12.03 25.57 81.23 -4.46 -1.14 0.63 1.55 5.58 27.95

2004 10.52 23.81 74.79 -4.87 -1.20 0.77 1.71 6.78 33.38

2005 9.39 22.33 55.73 -5.48 -1.34 0.76 1.76 7.70 38.66
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Table 2: Descriptive Statistics

Panels A-C present summary statistics for portfolios sorted on measures of firms’ risk-neutral moments. Firms
are sorted on average risk-neutral volatility, skewness, and kurtosis within each calendar quarter into terciles

based on 30th and 70th percentiles. We then form equally-weighted portfolios of these firms, holding the moment
ranking constant for the subsequent calendar quarter. Risk-neutral moments are calculated using the proce-
dure in Bakshi, Kapadia, and Madan (2003); the options used are those closest to one, three, six, and twelve
months to maturity. The first column of each panel presents mean monthly returns. The second column presents
characteristic-adjusted returns, calculated by determining, for each firm, the Fama-French 5X5 size- and book-
to-market portfolio to which it belongs and subtracting that return. The next three columns present the average
beta, log market value and book-to-market equity ratio of the portfolio, while the next three columns present
the average volatility, skewness and kurtosis of the portfolio. Monthly return data cover the period 4/96 through
12/05, for a total of 117 monthly observations.

Panel A: Volatility-Sorted Portfolios

1 Month to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM

1 1.22 0.27 16.49 -1.52 11.38 0.89 15.71 0.37
2 0.98 0.14 25.78 -1.04 7.50 1.28 14.31 0.39
3 0.87 0.15 44.83 -1.13 5.33 1.78 13.61 0.42

3-1 -0.34 -0.12 28.34 0.38 -6.05 0.89 -2.10 0.05

3 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM

1 1.21 0.25 17.57 -1.33 9.38 0.84 15.68 0.38
2 1.08 0.21 27.27 -1.00 6.93 1.29 14.30 0.39
3 0.74 0.06 46.74 -1.15 5.31 1.83 13.64 0.40

3-1 -0.47 -0.19 29.17 0.18 -4.08 0.99 -2.04 0.02

6 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM

1 1.21 0.23 19.23 -0.86 5.56 0.82 15.62 0.40
2 1.13 0.27 29.46 -0.65 4.56 1.29 14.33 0.39
3 0.67 -0.01 48.61 -0.73 3.64 1.86 13.66 0.39

3-1 -0.55 -0.24 29.38 0.14 -1.92 1.05 -1.97 -0.01

12 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM
1 1.24 0.23 19.84 -0.84 5.39 0.82 15.46 0.40
2 1.06 0.20 30.36 -0.68 4.64 1.29 14.35 0.39
3 0.74 0.09 50.77 -0.80 3.77 1.85 13.81 0.38

3-1 -0.50 -0.14 30.94 0.04 -1.62 1.02 -1.65 -0.02

Table continued on next page...
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Panel B: Skewness-Sorted Portfolios

1 Month to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM

1 1.23 0.38 26.47 -2.65 15.03 1.25 15.37 0.34
2 0.88 0.07 30.37 -1.03 5.78 1.35 14.38 0.40
3 0.99 0.15 28.73 -0.02 3.97 1.27 13.86 0.44

3-1 -0.25 -0.22 2.26 2.63 -11.06 0.02 -1.51 0.10

3 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM
1 1.27 0.40 29.30 -2.52 13.20 1.24 15.34 0.35
2 0.93 0.12 31.43 -0.97 5.31 1.35 14.41 0.39
3 0.88 0.05 29.47 0.00 3.67 1.29 13.86 0.43

3-1 -0.39 -0.35 0.17 2.52 -9.53 0.05 -1.47 0.08

6 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM
1 1.37 0.50 32.40 -1.73 8.10 1.22 15.35 0.38
2 0.85 0.00 31.51 -0.59 3.45 1.30 14.48 0.39
3 0.88 0.12 32.72 0.07 2.58 1.37 13.76 0.41

3-1 -0.49 -0.38 0.32 1.80 -5.53 0.15 -1.59 0.03

12 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM

1 1.35 0.50 34.74 -1.84 8.42 1.21 15.42 0.38
2 0.85 0.00 32.32 -0.58 3.33 1.31 14.43 0.39
3 0.90 0.12 33.27 0.07 2.51 1.38 13.74 0.41

3-1 -0.45 -0.38 -1.47 1.91 -5.91 0.17 -1.68 0.04

Table continued on next page...
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Panel C: Kurtosis-Sorted Portfolios

1 Month to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM

1 1.01 0.11 34.80 -0.35 2.24 1.35 13.69 0.46
2 0.93 0.15 28.71 -1.00 5.81 1.32 14.37 0.39
3 1.15 0.32 22.62 -2.37 16.70 1.22 15.55 0.32

3-1 0.14 0.20 -12.18 -2.02 14.46 -0.12 1.87 -0.14

3 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM

1 0.92 0.06 35.36 -0.33 2.18 1.37 13.68 0.45
2 0.89 0.09 30.26 -0.94 5.38 1.33 14.38 0.39
3 1.28 0.44 24.97 -2.23 14.57 1.18 15.54 0.34

3-1 0.36 0.38 -10.40 -1.90 12.39 -0.20 1.87 -0.12

6 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM

1 0.92 0.10 36.13 -0.18 1.71 1.38 13.70 0.43
2 0.91 0.07 32.45 -0.58 3.46 1.36 14.39 0.39
3 1.26 0.43 27.73 -1.50 8.95 1.14 15.51 0.36

3-1 0.34 0.33 -8.40 -1.32 7.24 -0.24 1.81 -0.07

12 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta ln MV BM

1 0.90 0.07 36.49 -0.17 1.67 1.40 13.71 0.43
2 0.89 0.08 33.75 -0.57 3.35 1.36 14.36 0.39
3 1.30 0.45 29.61 -1.61 9.22 1.12 15.55 0.36

3-1 0.41 0.39 -6.88 -1.44 7.55 -0.27 1.84 -0.06
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Table 3: Time Series Regressions: Fama-French Factor Risk Adjustment

The table presents the results of time series regressions of excess return differentials (Hi-Lo) between portfolios
ranked on risk neutral volatility, skewness, and kurtosis on the three Fama and French (1993) factors MRP (the
return on the value-weighted market portfolio in excess of a one-month T-Bill), SMB (the difference in returns on a
portfolio of small capitalization and large capitalization stocks), and HML (the difference in returns on a portfolio
of high and low book equity to market equity stocks). The moment-sorted portfolios are equally-weighted, formed
on the basis of terciles and re-formed each quarter. The table presents point estimates of the coefficients and
Newey-West standard errors in parentheses. Estimates that are statistically significant at the 10% or higher
critical level are presented in boldfaced type. Data cover the period April 1996 through December 2005 for 117
monthly observations.

Panel A: 1 Month to Maturity Panel B: 3 Months to Maturity

α βMRP βSMB βHML R2 α βMRP βSMB βHML R2

Vol -0.59 0.51 0.82 -0.55 75.83 -0.54 0.56 0.88 -1.02 83.85
(0.33) (0.10) (0.09) (0.11) (0.34) (0.11) (0.09) (0.12)

Skew -0.58 0.18 -0.02 0.50 18.34 -0.65 0.24 -0.07 0.32 10.52
(0.37) (0.09) (0.16) (0.14) (0.35) (0.08) (0.17) (0.15)

Kurt 0.56 -0.16 -0.24 -0.53 28.04 0.67 -0.28 -0.15 -0.24 14.27
(0.22) (0.06) (0.10) (0.08) (0.24) (0.07) (0.13) (0.12)

Panel C: 6 Months to Maturity Panel D: 12 Months to Maturity

α βMRP βSMB βHML R2 α βMRP βSMB βHML R2

Vol -0.52 0.59 0.89 -1.22 85.28 -0.41 0.54 0.81 -1.27 85.16
(0.35) (0.12) (0.09) (0.13) (0.35) (0.11) (0.08) (0.12)

Skew -0.64 0.23 0.07 0.00 11.44 -0.60 0.26 0.09 -0.02 14.76
(0.28) (0.07) (0.15) (0.14) (0.28) (0.08) (0.17) (0.14)

Kurt 0.59 -0.29 -0.22 -0.05 28.47 0.67 -0.32 -0.25 -0.04 33.26
(0.22) (0.06) (0.12) (0.10) (0.22) (0.07) (0.13) (0.10)
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Table 4: Descriptive Statistics: Co-Moment Portfolios

Panels A-B present summary statistics for portfolios sorted on measures of firms’ risk-neutral co-moments. Firms
are sorted on average risk-neutral co-skewness, and co-kurtosis with respect to the S&P 500 index within each

calendar quarter into terciles based on 30th and 70th percentiles. We then form equally-weighted portfolios of
these firms, holding the moment ranking constant for the subsequent calendar quarter. Risk-neutral moments
are calculated using the procedure in Bakshi, Kapadia, and Madan (2003); the options used are those closest to
one, three, six, and twelve months to maturity. The first column of each panel presents mean monthly returns.
The second column presents characteristic-adjusted returns, calculated by determining, for each firm, the Fama-
French 5X5 size- and book-to-market portfolio to which it belongs and subtracting that return. The next three
columns present the risk-neutral volatility, skewness, and kurtosis for the portfolios, followed by the beta, risk-
neutral co-skewness, and risk-neutral co-kurtosis. The final two columns present the average log market value
and book-to-market equity ratio of the portfolio. Monthly return data cover the period 4/96 through 12/05, for a
total of 117 monthly observations.

Panel A: Co-Skewness-Sorted Portfolios

1 Month to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta Co-Skew Co-Kurt ln MV BM
1 1.29 0.24 0.21 -1.20 9.63 1.55 -6.46 6.25 15.03 0.38
2 1.16 0.22 0.28 -1.11 9.03 1.43 -3.10 2.00 14.45 0.39
3 1.00 0.21 0.34 -1.24 9.69 0.86 -1.15 0.54 14.37 0.40

3-1 -0.29 -0.03 0.13 -0.04 0.06 0.69 5.31 -5.71 -0.66 0.02

3 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta Co-Skew Co-Kurt ln MV BM

1 1.23 0.18 0.22 -1.18 9.15 1.56 -2.28 11.00 15.06 0.38
2 1.19 0.24 0.29 -1.06 8.25 1.44 -1.09 3.76 14.46 0.39
3 1.03 0.24 0.36 -1.13 8.24 0.85 -0.38 0.89 14.33 0.41

3-1 -0.20 0.06 0.14 0.05 -0.91 -0.71 1.90 -10.11 -0.73 0.03

6 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta Co-Skew Co-Kurt ln MV BM

1 1.19 0.16 0.23 -0.71 5.90 1.59 -2.53 13.72 15.13 0.38
2 1.17 0.22 0.31 -0.66 5.47 1.45 -1.29 4.77 4.47 0.39
3 1.09 0.29 0.37 -0.73 5.41 0.80 -0.47 1.26 14.24 0.41

3-1 -0.10 0.13 0.14 -0.02 -0.49 -0.79 -2.06 -12.46 -0.89 0.03

12 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta Co-Skew Co-Kurt ln MV BM

1 1.24 0.19 0.24 -0.71 5.83 1.61 -2.03 14.96 15.03 0.38
2 1.12 0.18 0.32 -0.71 5.49 1.44 -1.03 4.95 14.49 0.38
3 1.10 0.31 0.39 -0.80 5.50 0.79 -0.36 1.32 14.33 0.41

3-1 -0.14 0.12 0.15 -0.09 -0.33 -0.82 1.67 -13.64 -0.70 0.03

Table continued on next page...
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Panel B: Co-Kurtosis-Sorted Portfolios

1 Month to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta Co-Skew Co-Kurt ln MV BM

1 0.99 0.19 0.39 -1.22 8.31 1.12 -1.25 0.46 14.08 0.42
2 1.25 0.29 0.26 -1.08 9.12 1.42 -3.15 1.91 14.43 0.39
3 1.17 0.17 0.18 -1.25 10.88 1.30 -6.28 6.44 15.35 0.37

3-1 0.18 -0.02 -0.21 -0.03 2.57 0.28 -5.03 5.98 1.27 -0.05

3 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta Co-Skew Co-Kurt ln MV BM

1 1.00 0.19 0.40 -1.17 7.36 1.13 -0.42 0.74 14.06 0.41
2 1.26 0.31 0.28 -1.04 8.41 1.43 -1.11 3.58 14.44 0.39
3 1.16 0.14 0.19 -1.17 9.82 1.29 -2.21 11.38 15.35 0.38

3-1 0.16 -0.05 -0.21 0.00 2.46 0.16 -1.79 10.64 1.29 -0.03

6 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta Co-Skew Co-Kurt ln MV BM

1 1.07 0.25 0.42 -0.77 5.02 1.08 -0.52 1.08 14.03 0.41
2 1.20 0.28 0.30 -0.64 5.56 1.47 1.31 4.59 14.45 0.38
3 1.16 0.12 0.21 -0.70 6.18 1.28 -2.46 14.13 15.38 0.39

3-1 0.09 -0.13 -0.19 0.07 1.16 0.20 -1.98 13.05 1.35 -0.02

12 Months to Maturity

Rank Mean Char Adj Vol Skew Kurt Beta Co-Skew Co-Kurt ln MV BM

1 1.04 0.22 0.44 -0.86 5.13 1.08 -0.40 1.14 14.16 0.41
2 1.16 0.23 0.31 -0.68 5.58 1.46 -1.04 4.78 14.44 0.38
3 1.25 0.21 0.21 -0.69 6.08 1.29 -1.97 15.37 15.25 0.39

3-1 0.19 -0.01 -0.13 0.17 0.95 0.21 -1.57 14.23 1.09 -0.02
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Table 5: Time Series Regressions: Co-Moment Risk Adjustment

The table presents the results of time series regressions of excess return differentials (Hi-Lo) between portfolios
ranked on risk neutral volatility, skewness, and kurtosis on portfolios representing co-moment risk. Excess port-
folio returns are regressed on the excess return on the S&P 500 in excess of the one month T-Bill return (MRP),
the excess return on a portfolio long stocks with high risk-neutral co-skewness with the S&P 500 and short low
risk-neutral co-skewness (CS), and the excess return on a portfolio long stocks with high risk-neutral co-kurtosis
with the S&P 500 and short low risk-neutral co-kurtosis (CK). The moment-sorted portfolios are equally-weighted,
formed on the basis of terciles and re-formed each quarter. The table presents point estimates of the coefficients
and Newey-West standard errors in parentheses. Point estimates that are statistically significant at the 10%
critical level or higher are presented in boldfaced type. Data cover the period April 1996 through December 2005
for 117 monthly observations.

Panel A: 1 Month to Maturity Panel B: 3 Months to Maturity

α βMRP βCS βCK R2 α βMRP βCS βCK R2

Vol -0.44 0.16 -1.55 -2.36 92.95 -0.45 0.17 -1.64 -2.54 95.07
(0.20) (0.06) (0.08) (0.07) (0.20) (0.05) (0.12) (0.08)

Skew -0.15 0.15 0.76 0.43 15.43 -0.43 0.31 0.71 0.40 20.63
(0.34) (0.15) (0.38) (0.36) (0.33) (0.14) (0.31) (0.29)

Kurt 0.09 0.04 -0.07 0.08 3.83 0.39 -0.18 -0.08 0.14 16.75
(0.26) (0.12) (0.32) (0.28) (0.24) (0.12) (0.26) (0.25)

Panel C: 6 Months to Maturity Panel D: 12 Months to Maturity

α βMRP βCS βCK R2 α βMRP βCS βCK R2

Vol -0.55 0.18 -1.63 -2.47 96.28 -0.26 0.13 -1.70 -2.52 96.45
(0.18) (0.05) (0.09) (0.07) (0.17) (0.04) (0.08) (0.07)

Skew -0.54 0.18 -0.05 -0.21 16.67 -0.47 0.17 -0.18 -0.30 19.43
(0.27) (0.12) (0.25) (0.25) (0.29) (0.13) (0.27) (0.27)

Kurt 0.39 -0.16 0.21 0.35 31.94 0.41 -0.15 0.32 0.45 37.88
(0.22) (0.09) (0.17) (0.16) (0.22) (0.10) (0.15) (0.16)
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Table 6: Parametric Stochastic Discount Factor Risk Adjustments

The table presents point estimates of the parameters of a stochastic discount factor polynomial in the returns of two candidate portfolios. Results
using the S&P 500 index as the candidate portfolio are presented in Panels A-D and results using the tangency portfolio return implied by 14 industry
index portfolios are presented in Panels E-H. The stochastic discount factor is specified as

mt = d0 + d1rT,t + d2r
2
T,t + d3r

3
T,t

where rT,t is either the return on the S&P 500 index (Panels A-D) or the return on the industry index tangency portfolio (Panels E-H). The parameters
are estimated via GMM using the sample moment restrictions

α̂ =
1

T

T
X

t=1

((1 + rt)mt − 1N ) = 0

where rt is a 10× 1 vector of returns comprising 3 portfolios sorted on risk-neutral volatility, 3 portfolios sorted on risk-neutral skewness, 3 portfolios
sorted on risk-neutral kurtosis, and a Treasury Bill. The column titled ‘J ’ presents the test statistic for the overidentifying restrictions. In addition
to point estimates, we present the pricing errors associated with high-low factor mimicking portfolios formed on volatility, skewness, and kurtosis in
the columns αvol, αskew, and αkurt, respectively. We examine three versions of the model above. The first restricts d2 = d3 = 0, representing a linear
specification, the second restricts d3 = 0, representing a quadratic specification, and the final, representing a cubic specification, is unrestricted.
Panel A and E presents results for returns formed on the basis of options with one month to maturity; Panels B-D and F-H present complementary
results for options based on three, six, and twelve months to maturity. The 14 industries used in defining the tangency portfolio are described in
Table A1. Newey-West standard errors are presented in parentheses below the point estimates and p-values for the J-statistic are presented in
parentheses below the statistic. Point estimates of coefficients that are statistically significant at the 10% level or greater are presented in boldfaced
type. The data cover the period 4/30/1996 through 1/31/2005 for 106 monthly observations.

Panel A: rT,t S&P 500 index and 1 Month to Maturity Panel B: rT,t S&P 500 index and 3 Months to Maturity
.
d0 d1 d2 d3 J αvol αskew αkurt d0 d1 d2 d3 J αvol αskew αkurt

1.00 -3.24 9.35 -0.79 0.02 -0.13 1.00 -3.28 12.20 -1.23 -0.22 0.24
(0.03) (2.04) (0.31) (0.70) (0.38) (0.28) (0.03) (2.02) (0.14) (0.87) (0.35) (0.34)
0.99 -1.57 0.58 9.61 -0.54 -0.21 0.08 0.99 -0.73 1.09 8.69 -0.54 -0.50 0.43

(0.01) (5.84) (5.82) (0.21) (0.44) (0.09) (0.23) (0.01) (5.54) (5.74) (0.28) (0.32) (0.20) (0.31)
1.00 0.44 4.15 -7.14 8.85 -1.16 -0.12 0.05 1.00 -3.10 4.18 -3.28 8.52 -1.33 -0.40 0.36

(0.04) (5.95) (7.55) (9.90) (0.18) (0.55) (0.22) (0.15) (0.04) (4.71) (6.54) (7.57) (0.20) (0.77) (0.25) (0.27)

Panel C: rT,t S&P 500 index and 6 Months to Maturity Panel D: rT,t S&P 500 index and 12 Months to Maturity
.
d0 d1 d2 d3 J αvol αskew αkurt d0 d1 d2 d3 J αvol αskew αkurt

1.00 -3.51 19.30 -1.39 -0.48 0.32 1.00 -3.57 15.12 -1.36 -0.44 0.41
(0.03) (1.95) (0.01) (0.92) (0.35) (0.32) (0.03) (2.00) (0.06) (0.90) (0.37) (0.34)
0.99 -0.17 1.43 17.65 -0.43 -0.65 0.47 0.99 -0.26 1.38 12.68 -0.40 -0.59 0.51

(0.01) (5.22) (6.49) (0.01) (0.22) (0.31) (0.34) (0.01) (5.30) (6.70) (0.08) (0.20) (0.31) (0.33)
1.00 -4.34 5.40 -2.66 15.79 -1.43 -0.70 0.49 1.00 -2.88 7.43 -5.78 11.73 -1.52 -0.72 0.65

(0.05) (6.11) (8.77) (7.72) (0.02) (0.88) (0.25) (0.26) (0.06) (6.64) (9.76) (9.00) (0.07) (0.89) (0.28) (0.29)

Table continued on next page...
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Panel E: rT,t Industry Tangency and 1 Month to Maturity Panel F: rT,t Industry Tangency and 3 Months to Maturity
.
d0 d1 d2 d3 J αvol αskew αkurt d0 d1 d2 d3 J αvol αskew αkurt

1.00 -3.60 7.73 -0.84 0.05 -0.16 1.00 -3.36 12.83 -1.22 -0.19 0.23
(0.03) (2.08) (0.46) (0.70) (0.38) (0.28) (0.03) (2.02) (0.12) (0.85) (0.37) (0.31)
0.99 -1.57 0.58 8.48 -0.54 -0.21 -0.08 0.99 -0.73 1.09 13.27 -0.54 -0.50 -0.43

(0.01) (5.84) (5.81) (0.29) (0.44) (0.09) (0.23) (0.01) (5.54) (5.57) (0.07) (0.32) (0.20) (0.31)
1.00 0.41 3.24 -6.90 7.22 -1.20 -0.02 -0.02 1.00 -3.03 0.73 -1.03 12.84 -1.29 -0.21 0.25

(0.04) (4.92) (7.18) (8.55) (0.30) (0.62) (0.21) (0.15) (0.03) (4.81) (5.53) (7.47) (0.05) (0.76) (0.26) (0.26)

Panel G: rT,t Industry Tangency and 6 Months to Maturity Panel H: rT,t Industry Tangency and 12 Months to Maturity
.
d0 d1 d2 d3 J αvol αskew αkurt d0 d1 d2 d3 J αvol αskew αkurt

1.00 -3.71 16.95 -1.44 -0.47 0.31 1.00 -3.60 14.38 -1.36 -0.44 0.41
(0.03) (1.96) (0.03) (0.93) (0.35) (0.32) (0.03) (2.00) (0.07) (0.90) (0.37) (0.34)
0.99 -0.17 1.43 15.81 -0.43 -0.65 0.47 0.99 -0.27 1.38 12.12 -0.40 -0.59 0.51

(0.01) (5.21) (6.49) (0.03) (0.22) (0.31) (0.34) (0.01) (5.30) (6.69) (0.10) (0.20) (0.31) (0.33)
1.00 0.30 5.41 -8.46 12.31 -1.83 -0.59 0.48 1.00 0.48 7.52 -9.65 10.37 -1.71 -0.66 0.67

(0.05) (6.40) (9.71) (8.04) (0.06) (0.90) (0.26) (0.29) (0.06) (8.54) (10.09) (9.25) (0.11) (0.84) (0.29) (0.31)
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Table 7: Parametric versus Non-Parametric Stochastic Discount Factor Risk Adjustments

The table presents risk adjustments for the volatility, skewness, and kurtosis factor mimicking portfolios using stochastic discount factors implied
by the S&P 500 risk neutral and physical densities. The stochastic discount factor is formed as a risk-free scaled ratio of the risk-neutral to physical
probability measure

mt (x, s, τ ) = e
−r

f
t (τ) f

Q
t (x, s, τ )

fP
t (x, s, τ )

where f
Q
t (·) is the risk-neutral probability measure at time t, fP

t (·) is the physical probability measure at time t, and τ is the horizon. We approx-
imate the risk-neutral and physical probability distributions using the Normal Inverse Gaussian (NIG) distribution. The risk neutral measure is
approximated using the risk neutral moments calculated in the paper and the physical measure is calculated using returns data on the S&P 500
over the 1000 days prior to 3/31/1996. The table presents excess returns implied by discounting the factor mimicking portfolios by the stochastic
discount factor,

α̂ =
1

T

T
X

t=1

rt (τ )mt (xt, τ )

where rt (τ ) is the τ -period return on the factor-mimicking portfolio at time t, and mt (xt, τ ) is the stochastic discount factor evaluated at the observed
τ -period realization of the S&P 500 at time t. The column labeled “NIG” represents the discount factor implied by the NIG approximations to the
densities. Columns “Linear,” “Quad,” and “Cubic” represent discount factors obtained by projecting the density-implied discount factor onto a linear,
quadratic, and cubic polynomial, respectively. Panel A presents results for the volatility-sorted factor mimicking portfolio with rows representing
portfolios formed on volatility estimated using options with one, three, six, and twelve-months to maturity. Panels B and C present complementary
results for skewness- and kurtosis-sorted factor mimicking portfolios. We separately examine stochastic discount factors based on options and returns
with three, six, and 12 month horizons. Data for the three, six, and twelve month horizons begin in January, 1997, July, 1996, and April,1996,
respectively. All three horizons extend through December, 2005 for 106 (overlapping) observations. Point estimates are scaled to the monthly
frequency, and Newey-West standard errors are presented in parentheses below the point estimates. Point estimates that are significantly different
than zero at the 10% or higher significance level are presented in boldfaced type.

Panel A: Volatility

Three Month Six Month Twelve Month

NIG Linear Quad Cubic NIG Linear Quad Cubic NIG Linear Quad Cubic

1 Month -0.17 0.15 0.17 0.16 -0.55 -0.24 -0.22 -0.26 -1.03 -0.17 -0.21 -0.27
(0.37) (0.37) (0.37) (0.37) (0.79) (0.69) (0.71) (0.70) (0.61) (0.64) (0.65) (0.65)

3 Month -0.19 0.17 0.18 0.16 -0.72 -0.48 -0.45 -0.50 -1.51 -0.31 -0.40 -0.46
(0.51) (0.50) (0.50) (0.50) (1.12) (0.95) (0.96) (0.96) (0.92) (0.90) (0.91) (0.91)

6 Month -0.19 0.18 0.17 0.15 -0.79 -0.58 -0.56 -0.60 -1.73 -0.37 -0.47 -0.55
(0.58) (0.57) (0.58) (0.57) (1.29) (1.08) (1.10) (1.10) (1.07) (1.03) (1.04) (1.04)

12 Month -0.16 0.19 0.18 0.16 -0.74 -0.60 -0.58 -0.62 -1.70 -0.35 -0.46 -0.53
(0.58) (0.57) (0.57) (0.57) (1.29) (1.06) (1.07) (1.07) (1.07) (1.03) (1.04) (1.04)

Table continued on next page ...
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Panel B: Skewness

Three Month Six Month Twelve Month

NIG Linear Quad Cubic NIG Linear Quad Cubic NIG Linear Quad Cubic

1 Month -0.21 -0.22 -0.20 -0.20 -0.52 -0.09 -0.03 -0.05 0.08 -0.43 -0.34 -0.32
(0.26) (0.31) (0.32) (0.31) (0.60) (0.53) (0.55) (0.55) (0.45) (0.54) (0.55) (0.54)

3 Month -0.29 -0.27 -0.27 -0.27 -0.70 -0.28 -0.24 -0.25 -0.27 -0.58 -0.52 -0.51
(0.21) (0.25) (0.26) (0.25) (0.44) (0.39) (0.40) (0.40) (0.27) (0.42) (0.42) (0.241)

6 Month 0.30 -0.27 -0.27 -0.27 -0.79 -0.49 -0.44 -0.46 -0.60 -0.69 -0.65 -0.65

(0.13) (0.16) (0.16) (0.16) (0.28) (0.28) (0.29) (0.28) (0.24) (0.31) (0.30) (0.30)
12 Month -0.28 -0.21 -0.21 -0.21 -0.70 -0.39 -0.34 -0.36 -0.55 -0.58 -0.54 -0.55

(0.12) (0.16) (0.16) (0.16) (0.27) (0.28) (0.28) (0.28) (0.23) (0.28) (0.27) (0.27)

Panel C: Kurtosis

Three Month Six Month Twelve Month

NIG Linear Quad Cubic NIG Linear Quad Cubic NIG Linear Quad Cubic

1 Month 0.15 0.07 0.05 0.05 0.33 -0.06 -0.11 -0.09 -0.05 0.20 0.15 0.14
(0.19) (0.23) (0.23) (0.23) (0.44) (0.41) (0.41) (0.41) (0.37) (0.38) (0.38) (0.38)

3 Month 0.26 0.16 0.15 0.16 0.69 0.28 0.24 0.26 0.53 0.52 0.49 0.50

(0.12) (0.17) (0.17) (0.17) (0.28) (0.30) ( 0.31) (0.30) (0.22) (0.30) (0.30) (0.29)
6 Month 0.23 0.13 0.12 0.13 0.63 0.30 0.27 0.29 0.60 0.48 0.47 0.49

(0.12) (0.15) (0.15) (0.15) (0.27) (0.32) ( 0.33) (0.32) (0.28) (0.30) (0.30) (0.29)
12 Month 0.27 0.16 0.15 0.16 0.69 0.36 0.33 0.35 0.69 0.52 0.52 0.53

(0.13) (0.14) (0.15) (0.15) (0.28) (0.33) (0.33) (0.33) (0.30) (0.28) (0.29) (0.28)

4
5



Table 8: Implied Physical Moments

The table presents the moments of the implied physical distributions of 14 industry index portfolios. Distributions are imputed by letting the physical
distribution, fP (x, s, τ ) be related to the risk neutral distribution, fQ(x, s, τ ) by

f
P (x, s, τ ) = e

−rf τ fQ(x, s, τ )

m(x, s, τ )

where m(x, s, τ ) is the linear stochastic discount factor implied by the tangency portfolio pricing the 14 industry portfolios plus the two extreme
skewness portfolios. The risk neutral distribution is the NIG approximation to the industry risk neutral portfolio using risk neutral moments
computed from industry index portfolio option data via the Bakshi, Kapadia, and Madan (2003) methodology. The 14 industries used in defining the
tangency portfolio are described in Table A1. Average moments are computed for four subperiods: 1996 Q2 - 1998 Q2, 1998 Q3 - 2000 Q1, 2000 Q2 -
2002 Q4, and 2003 Q1 - 2005 Q4 in Panels A, B, C, and D, respectively. In all three cases, we utilize the stochastic discount factor with a horizon of
12 months.

Panel A: Subperiod I: 1996 Q2 - 1998 Q2

BKX BTK CMR CYC DRG MSH TXX UTY XAL XAU XBD XCI XNG XOI

Mean 4.50 4.77 4.26 4.02 4.65 5.34 4.33 2.91 3.89 3.78 5.28 5.28 3.62 3.36
Std. Dev. 11.01 12.73 10.61 10.13 11.20 12.58 11.26 8.47 9.41 12.02 11.66 12.24 10.25 9.41
Skew. 0.21 0.01 0.34 0.32 0.25 -0.12 0.13 0.29 0.37 -0.21 0.03 0.20 0.37 0.56
Kurt. 24.09 13.98 21.10 21.68 19.46 16.61 21.88 28.89 25.09 16.30 18.58 14.25 22.11 26.39

Panel B: Subperiod II: 1998 Q3 - 2000 Q1

BKX BTK CMR CYC DRG MSH TXX UTY XAL XAU XBD XCI XNG XOI

Mean 5.62 4.46 5.36 5.16 5.02 5.66 4.71 3.52 3.71 4.23 4.64 5.00 3.49 4.16
Std. Dev. 13.48 12.52 12.27 12.41 12.73 12.68 11.58 10.35 10.24 13.82 13.12 12.49 10.68 11.16
Skew. 0.02 -0.14 0.50 0.32 0.18 -0.10 0.00 0.34 -0.20 -0.51 -0.19 -0.12 0.04 0.40
Kurt. 11.13 16.78 10.59 11.98 12.08 14.46 20.01 21.89 19.36 14.12 14.26 13.10 22.09 16.46

Panel C: Subperiod III: 2000 Q2 - 2002 Q4

BKX BTK CMR CYC DRG MSH TXX UTY XAL XAU XBD XCI XNG XOI

Mean 5.15 5.38 3.36 4.28 3.96 5.25 4.84 3.73 4.69 5.41 4.81 5.02 4.06 3.52
Std. Dev. 12.88 14.25 10.39 11.83 11.92 13.76 13.65 11.32 13.48 14.47 13.17 12.76 12.00 10.79
Skew. -0.27 -0.61 0.09 -0.03 -0.19 -0.45 -0.51 -0.14 -0.58 -0.50 -0.39 -0.38 -0.36 0.14
Kurt. 16.36 14.84 25.49 19.27 19.03 15.26 15.55 21.86 17.14 12.78 16.25 14.62 20.80 21.08

Panel D: Subperiod IV: 2003 Q1 - 2005 Q4

BKX BTK CMR CYC DRG MSH TXX UTY XAL XAU XBD XCI XNG XOI
Mean 2.24 3.32 1.67 2.93 2.33 3.30 3.22 1.95 1.28 4.62 3.46 3.00 1.97 1.69
Std. Dev. 8.46 11.20 7.79 10.64 9.27 11.22 11.24 7.74 3.79 12.88 11.22 10.86 8.61 7.88
Skew. -0.41 -0.59 -0.24 -0.37 -0.40 -0.58 -0.45 -0.30 -1.21 -0.77 -0.47 -0.47 -0.41 -0.23
Kurt. 49.33 29.17 61.09 28.38 39.52 28.06 26.01 74.75 15.99 16.84 27.48 31.50 47.72 58.63
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Table 9: Sorts on Implied P -measure Moments

The table presents average returns on portfolios of industry indices sorted on P -measure moments. P -measure
probability distributions are computed by assuming that the stochastic discount factor, M(x, s, τ ) is given by

M(RT
, s, τ ) = d0 + d1R

T (s, τ )

where d0 and d1 are coefficients implied by moments of the tangency portfolio, RT . The tangency portfolio is
defined by the fourteen index returns plus the extreme skewness-sorted portfolio returns. The physical measure
is constructed as

P (i, RT
, s, τ ) = exp(rτ )

Q(i,RT , s, τ )

M(RT , s, τ )

where Q(i, RT , s, τ ) is the risk-neutral distribution implied by the NIG approximation calculated from the industry
index’ τ -period risk neutral moments. Each month, we integrate over the physical probability measure to obtain
expectations, standard deviations, skewnesses, and kurtoses of the 14 industry indices and rank industry indices
on the basis of these physical moments. We form equally-weighted portfolios on the basis of these rankings and
hold the portfolio for the subsequent month. Portfolio P1 represents the bottom three industries, P2 the middle
eight, and P3 the top three. The table presents average monthly returns over the period 4/1997-12/2005.

P1 P2 P3

Expectation 0.95 1.02 1.44
Std. Dev. 1.14 1.25 0.63
Skewness 1.19 1.08 1.05
Kurtosis 1.15 0.88 1.62
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Figure 1: Stochastic Discount Factors

The plots depict stochastic discount factors formed using risk neutral moments of S&P 500 index options at the
12-month maturity. The plot labeled ‘NIG’ represents stochastic discount factors, M(x, s, τ ), formed as

M(x, s, τ ) = e
−rf τ fQ (x, s, τ )

fP (x, s, τ )

where f(·) is the NIG probability density function, Q denotes the risk-neutral probability measure, and P denotes
the physical measure. The risk neutral measure is calculated using risk neutral moments retrieved from option
prices and the physical measure using the historical moments of the S&P 500 index from 1992 through 1995.
’Linear,’ ’Quadratic,’ and ’Cubic’ represent linear, quadratic, and cubic polynomial fits to the NIG kernel.
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A1: Robustness Checks

We perform several additional robustness checks on our results to examine the possibility that

return differentials are driven by liquidity issues, either in the underlying equity returns or by

stale or illiquid option prices. To examine the latter possibility, we add an additional filter to

our sample, and eliminate the observation if there is no trading in any of the out-of-the-money

options on a particular day. These results are presented in Appendix Table A2. The principal

impact of this restriction is to substantially reduce our sample. As discussed above, on average

there are 911 firms per month in our original sample (273/365/273 by tercile). Imposing the

trading restriction reduces the average number of firms to 307. However, as shown in the

table, with the exception of short-maturity kurtosis-sorted portfolios, the magnitude of return

differentials across portfolios remains stable, or actually increases. Thus, we continue to

find that returns are negatively related to volatility and skewness, and positively related to

kurtosis.20

Second, we add the liquidity factor of Pastor and Stambaugh (2003) to our time series re-

gression and re-estimate the factor-adjusted returns. These results are presented in Appendix

Table A3. Data on the liquidity factor are taken from Wharton Research Data Services, and

cover the sample period only through December, 2004. The basic results change very little.

The intercepts retain negative signs for volatility and skewness and positive signs for kur-

tosis across all three maturity bins. Statistical significance declines slightly; the alpha for

the volatility portfolio loses its statistical significance for all maturities. The alpha for the

skewness portfolio also loses significance in the shortest maturity option sort. Finally, the

liquidity factor does add explanatory power, particularly in the case of the skewness-sorted

portfolios, with regression R2’s nearing or exceeding 40%. However, the overall conclusions

are similar: high volatility and high skewness stocks earn negative excess returns, and high

kurtosis stocks earn positive excess returns.

A third robustness check involves the stochastic discount factor of Section 4.2. As noted

therein, our choice of the S&P 500 and industry indices as the index returns in the stochastic

discount factor may bias our results toward larger, more established firms that exhibit less

skewness in returns. Consequently, we replicate our analysis using the Nasdaq 100 index

as an alternative. Results are presented in Table A4. As shown in the table, the use of the

Nasdaq 100 does not qualitatively change our conclusions. The majority of moment-sorted

portfolio alphas remain large in economic magnitude, but inference remains problematic as

the standard errors are large. These results mirror those using the S&P 500 and the industry

20For brevity, we report only the average and characteristic-adjusted average returns to these portfolios. The
remaining characteristics exhibit similar patterns to those depicted in Table 2. These results are available from
the authors upon request.
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tangency portfolio as the arguments of the stochastic discount factor.

The implied physical distributions in Sections 4.3 and 5 are constructed with a combi-

nation of forward-looking data from option prices, and an estimate of the market’s physical

distribution estimated from historical market returns data. Since this use of historical mar-

ket returns is the only instance where ex post data are used, we explore the sensitivity of

our results in Section 4.3 to different choices of the historical record to estimate the market’s

underlying returns distribution. First, we maintain the length of the 1000-day window, but al-

low the window to roll forward with the corresponding risk-neutral distribution obtained from

option prices. Results of this estimation are presented in Table A5. As shown in the Table,

results for the skewness and kurtosis-sorted portfolios are materially unchanged; skewness-

sorted returns maintain negative and frequently statistically significant pricing errors, while

kurtosis-sorted returns retain positive pricing errors. The main difference in these results

is that, using the three month and six month stochastic discount factor, the volatility-sorted

portfolio pricing errors are no longer statistically or economically significant.

Second, to ensure that the window includes relatively rare ‘extreme’ events, but to main-

tain the rolling nature of our estimates, we estimate an AR(1) for each of the moments over

the period January, 1962 through March, 1996. At the end of each month, we calculate the

moment over the past 1000 days as above. We then estimate an AR(1) on each moment, θn
t ,

θn
t = θn

0 + ρθnθn
t−1 + ηn

t (A1)

where n = 2, 3, 4 are the moments. Each month from April, 1996, through December, 2005,

we calculate the predicted moment from these parameters,

θ̂n
t = θ̂n

0 + ρ̂θnθn
t−1 (A2)

where θn
t−1 is the rolling sample moment. Results using these estimates of physical moments

are presented in Table A6. As shown in the table, these results are quite similar to those

reported previously.
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Table A1: Industry Definitions

Ticker Description

BKX KBW Bank Index
BTK AMEX Biotechnology Index
CMR Morgan Stanley Consumer Index
CYC Morgan Stanley Cyclical Index
DRG AMEX Pharmaceutcial Index
MSH Morgan Stanley High-Technology Index
TXX CBOE Technology Index
UTY PHLX Utility Sector Index
XAL AMEX Airline Index
XAU PHLX Gold and Silver Sector Index
XBD AMEX Securities Broker/Dealer Index
XCI AMEX Computer Technology Index
XNG AMEX Natural Gas Index
XOI AMEX Oil Index
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Table A2: : Summary Statistics: Moment-Sorted Portfolios with Volume Screens

Panels A-C present summary statistics for portfolios sorted on measures of firms’ risk-neutral moments. Firms are sorted on average risk-neutral

volatility, skewness, and kurtosis within each calendar quarter into terciles based on 30th and 70th percentiles. We then form equally-weighted
portfolios of these firms, holding the moment ranking constant for the subsequent calendar quarter. Risk-neutral moments are calculated using the
procedure in Bakshi, Kapadia, and Madan (2003); the options used are those closest to one, three, six, and twelve months to maturity. We eliminate
firms that do not have trading volume in at least one OTM put and OTM call in a calendar month. The first column of each panel presents mean
monthly returns. The second column presents characteristic-adjusted returns, calculated by determining, for each firm, the Fama-French 5X5 size-
and book-to-market portfolio to which it belongs and subtracting that return. Monthly return data cover the period 4/96 through 12/05, for a total of
117 monthly observations.

Panel A: Volatility-Ranked Portfolios

1 Month Maturity 3 Month Maturity 6 Month Maturity 12 Month Maturity

Rank Mean Char Adj Rank Mean Char Adj Rank Mean Char Adj Rank Mean Char Adj

1 1.29 0.35 1 1.28 0.37 1 1.34 0.44 1 1.35 0.44
2 0.89 0.52 2 0.99 0.10 2 1.01 0.14 2 0.99 0.09
3 1.00 0.22 3 0.86 0.13 3 0.77 0.00 3 0.79 0.08

3-1 -0.29 -0.13 3-1 -0.42 -0.24 3-1 -0.57 -0.44 3-1 -0.56 -0.36

Panel B: Skewness-Ranked Portfolios

1 Month Maturity 3 Month Maturity 6 Month Maturity 12 Month Maturity

Rank Mean Char Adj Rank Mean Char Adj Rank Mean Char Adj Rank Mean Char Adj

1 1.28 0.38 1 1.36 0.46 1 1.45 0.55 1 1.45 0.57
2 0.97 0.16 2 0.99 0.20 2 0.98 0.15 2 1.04 0.20
3 0.89 0.04 3 0.79 -0.10 3 0.71 -0.12 3 0.63 -0.22

3-1 -0.39 -0.34 3-1 -0.57 -0.56 3-1 -0.74 -0.67 3-1 -0.82 -0.79

Panel C: Kurtosis-Ranked Portfolios

1 Month Maturity 3 Month Maturity 6 Month Maturity 12 Month Maturity

Rank Mean Char Adj Rank Mean Char Adj Rank Mean Char Adj Rank Mean Char Adj
1 0.95 0.329 1 0.74 -0.08 1 0.62 -0.22 1 0.63 -0.25
2 0.97 0.103 2 1.06 0.23 2 1.13 0.30 2 1.11 0.31
3 1.22 0.196 3 1.30 0.42 3 1.34 0.46 3 1.35 0.46

3-1 0.27 -0.133 3-1 0.56 0.50 3-1 0.72 0.68 3-1 0.72 0.71
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Table A3: Time Series Regressions

The table presents the results of time series regressions of excess return differentials (Hi-Lo) between portfolios ranked on risk neutral volatility,
skewness, and kurtosis on the three Fama and French (1993) factors MRP (the return on the value-weighted market portfolio in excess of a one-month
T-Bill), SMB (the difference in returns on a portfolio of small capitalization and large capitalization stocks), and HML (the difference in returns on a
portfolio of high and low book equity to market equity stocks), and LIQ, the liquidity factor from Pastor and Stambaugh (2001). The moment-sorted
portfolios are equally-weighted, formed on the basis of terciles and re-formed each quarter. The table presents point estimates of the coefficients and
standard errors in parentheses. Point estimates that are statistically significant at the 10% level or greater are in boldfaced type. Data cover the
period April 1996 through December 2005 for 117 monthly observations.

Panel A: 1 Month to Maturity Panel B: 3 Months to Maturity

α βMRP βSMB βHML βLIQ R2 α βMRP βSMB βHML βLIQ R2

Vol -0.58 0.52 1.01 -0.61 -0.28 80.89 -0.60 0.57 1.00 -1.06 -0.17 85.47
(0.36) (0.11) (0.10) (0.12) (0.06) (0.39) (0.13) (0.11) (0.13) (0.07)

Skew -0.48 0.16 0.23 0.41 -0.40 51.71 -0.57 0.22 0.16 0.23 -0.37 41.15
(0.32) (0.06) (0.10) (0.12) (0.07) (0.33) (0.07) (0.11) (0.14) (0.08)

Kurt 0.51 -0.15 -0.38 -0.48 0.23 49.37 0.64 -0.27 -0.28 -0.19 0.22 29.58
(0.22) (0.05) (0.07) (0.08) (0.04) (0.26) (0.07) (0.10) (0.11) (0.06)

Panel C: 6 Months to Maturity Panel D: 12 Months to Maturity

α βMRP βSMB βHML βLIQ R2 α βMRP βSMB βHML βLIQ R2

Vol -0.58 0.59 1.00 -1.26 -0.15 86.62 -0.45 0.55 0.90 -1.31 -0.13 86.28
(0.40) (0.13) (0.11) (0.14) (0.07) (0.40) (0.13) (0.11) (0.13) (0.07)

Skew -0.63 0.22 0.24 -0.07 -0.28 32.80 -0.58 0.25 0.28 -0.11 -0.30 36.89
(0.28) (0.07) (0.11) (0.13) (0.07) (0.29) (0.07) (0.11) (0.13) (0.08)

Kurt 0.58 -0.27 -0.33 0.01 0.20 40.70 0.65 -0.30 -0.37 0.02 0.22 46.67
(0.24) (0.07) (0.09) (0.09) (0.05) (0.24) (0.08) (0.09) (0.09) (0.05)
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Table A4: Parametric Stochastic Discount Factor Risk Adjustments: Nasdaq 100

The table presents point estimates of the parameters of a stochastic discount factor polynomial in the returns of two candidate portfolios. Results
using the Nasdaq 100 index as the candidate portfolio are presented in Panels A-D. The stochastic discount factor is specified as

mt = d0 + d1rT,t + d2r
2
T,t + d3r

3
T,t

where rT,t is either the return on the S&P 500 index (Panels A-D) or the return on the industry index tangency portfolio (Panels E-H). The parameters
are estimated via GMM using the sample moment restrictions

α̂ =
1

T

T
X

t=1

((1 + rt)mt − 1N ) = 0

where rt is a 10× 1 vector of returns comprising 3 portfolios sorted on risk-neutral volatility, 3 portfolios sorted on risk-neutral skewness, 3 portfolios
sorted on risk-neutral kurtosis, and a Treasury Bill. The column titled ‘J ’ presents the test statistic for the overidentifying restrictions. In addition
to point estimates, we present the pricing errors associated with high-low factor mimicking portfolios formed on volatility, skewness, and kurtosis in
the columns αvol, αskew, and αkurt, respectively. We examine three versions of the model above. The first restricts d2 = d3 = 0, representing a linear
specification, the second restricts d3 = 0, representing a quadratic specification, and the final, representing a cubic specification, is unrestricted.
Panel A presents results for returns formed on the basis of options with one month to maturity; Panels B-D present complementary results for
options based on three, six, and twelve months to maturity. Newey-West standard errors are presented in parentheses below the point estimates
and p-values for the J-statistic are presented in parentheses below the statistic. Point estimates that are statistically significant at the 10% level or
greater are in boldfaced type. The data cover the period 4/30/1996 through 1/31/2005 for 106 monthly observations.

Panel A: rT,t 1 Month to Maturity Panel B: rT,t 3 Months to Maturity
.
d0 d1 d2 d3 J αvol αskew αkurt d0 d1 d2 d3 J αvol αskew αkurt

1.00 -1.70 10.41 -1.05 -0.17 0.22 1.00 -0.09 16.76 -0.59 -0.42 0.41
(0.02) (2.08) (0.24) (0.48) (0.39) (0.30) (0.00) (1.42) (0.03) (0.62) (0.40) (0.28)
0.99 -0.28 1.01 7.61 -0.50 -0.22 0.12 1.00 1.33 16.84 8.18 -0.33 -0.33 0.04

(0.01) (1.92) (5.80) (0.37) (0.22) (0.31) (0.17) (0.17) (4.39) (13.44) (0.32) (0.22) (0.78) (0.70)
1.00 -0.61 0.97 -1.43 9.93 -0.98 -0.16 0.19 1.00 1.64 9.54 -2.96 12.05 -0.91 -0.35 0.35

(0.02) (5.93) (4.50) (8.18) (0.13) (0.42) (0.38) (0.24) (0.08) (9.74) (7.75) (15.83) (0.06) (0.71) (0.53) (0.33)

Panel C: rT,t 6 Months to Maturity Panel D: rT,t 12 Months to Maturity
.
d0 d1 d2 d3 J αvol αskew αkurt d0 d1 d2 d3 J αvol αskew αkurt

1.00 -0.29 21.24 -0.77 -0.58 0.45 0.96 -0.62 17.85 -0.88 -0.55 0.56
(0.00) (1.50) (0.01) (0.63) (0.35) (0.24) (0.01) (1.52) (0.02) (0.63) (0.36) (0.25)
0.99 1.56 16.33 9.33 -0.26 -0.70 0.06 0.99 1.36 14.43 11.42 -0.24 -0.71 0.15

(0.01) (5.21) (6.49) (0.23) (0.22) (0.49) (0.64) (0.14) (4.03) (15.32) (0.12) (0.19) (0.41) (0.57)
1.00 19.73 16.97 -29.33 9.62 -0.26 -0.55 -0.40 1.00 40.85 21.23 -62.85 6.59 -0.41 -0.47 0.47

(0.17) (12.88) (10.99) (21.25) (0.14) (1.07) (0.65) (0.49) (0.33) (38.25) (22.92) (63.19) (0.36) (1.67) (1.06) (0.76)
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Table A5: Parametric versus Non-Parametric Stochastic Discount Factor Risk Adjustments: Rolling Physical Moments

The table presents risk adjustments for the volatility, skewness, and kurtosis factor mimicking portfolios using stochastic discount factors implied
by the S&P 500 risk neutral and physical densities. The stochastic discount factor is formed as a risk-free scaled ratio of the risk-neutral to physical
probability measure

mt (x, s, τ ) = e
−r

f
t (τ) f

Q
t (x, s, τ )

fP
t (x, s, τ )

where f
Q
t (·) is the risk-neutral probability measure at time t, fP

t (·) is the physical probability measure at time t, and τ is the horizon. We approx-
imate the risk-neutral and physical probability distributions using the Normal Inverse Gaussian (NIG) distribution. The risk neutral measure is
approximated using the risk neutral moments calculated in the paper. Physical moments are estimated as sample moments calculated over the past
1000 days, updated each month. The table presents excess returns implied by discounting the factor mimicking portfolios by the stochastic discount
factor,

α̂ =
1

T

T
X

t=1

rt (τ )mt (xt, τ )

where rt (τ ) is the τ -period return on the factor-mimicking portfolio at time t, and mt (xt, τ ) is the stochastic discount factor evaluated at the observed
τ -period realization of the S&P 500 at time t. The column labeled “NIG” represents the discount factor implied by the NIG approximations to the
densities. Columns “Linear,” “Quad,” and “Cubic” represent discount factors obtained by projecting the density-implied discount factor onto a linear,
quadratic, and cubic polynomial, respectively. Panel A presents results for the volatility-sorted factor mimicking portfolio with rows representing
portfolios formed on volatility estimated using options with one, three, six, and twelve-months to maturity. Panels B and C present complementary
results for skewness- and kurtosis-sorted factor mimicking portfolios. We separately examine stochastic discount factors based on options and returns
with three, six, and 12 month horizons. Data for the three, six, and twelve month horizons begin in January, 1997, July, 1996, and April,1996,
respectively. All three horizons extend through December, 2005 for 106 (overlapping) observations. Point estimates are scaled to the monthly
frequency, and Newey-West standard errors are presented in parentheses below the point estimates. Point estimates that are statistically significant
at the 10% level or greater are in boldfaced type.

Panel A: Volatility

Three Month Six Month Twelve Month

NIG Linear Quad Cubic NIG Linear Quad Cubic NIG Linear Quad Cubic

-0.04 -0.02 0.02 0.01 -0.07 -0.48 -0.42 -0.42 -0.65 -0.34 -0.30 -0.34
(0.31) (0.37) (0.38) (0.37) (0.85) (0.62) (0.65) (0.64) (0.54) (0.59) (0.64) (0.63)
-0.02 -0.01 0.04 0.03 -0.01 -0.69 -0.61 -0.61 -0.93 -0.47 -0.45 -0.49
(0.41) (0.49) (0.52) (0.51) (1.17) (0.85) (0.91) (0.90) (0.77) (0.83) (0.90) (0.89)
-0.01 0.00 0.05 0.03 0.04 -0.78 -0.69 -0.70 -1.06 -0.53 -0.52 -0.56
(0.46) (0.55) (0.59) (0.58) (1.36) (0.97) (1.04) (1.03) (0.89) (0.94) (1.03) (1.01)
0.00 0.03 0.08 0.06 0.08 -0.75 -0.67 -0.67 -1.01 -0.48 -0.47 -0.51

(0.45) (0.55) (0.59) (0.58) (1.35) (0.96) (1.04) (1.02) (0.89) (0.94) (1.04) (1.02)

Table continued on next page ...

5
5



Panel B: Skewness

Three Month Six Month Twelve Month

NIG Linear Quad Cubic NIG Linear Quad Cubic NIG Linear Quad Cubic

1 Month -0.20 -0.27 -0.31 -0.30 -0.73 -0.23 -0.26 -0.26 -0.20 -0.51 -0.50 -0.48
(0.23) (0.29) (0.32) (0.31) (0.65) (0.49) (0.54) (0.53) (0.43) (0.50) (0.56) (0.55)

3 Month -0.25 -0.31 -0.36 -0.35 -0.75 -0.39 -0.43 -0.43 -0.43 -0.65 -0.65 -0.64
(0.19) (0.24) (0.26) (0.25) (0.51) (0.36) (0.40) (0.39) (0.30) (0.39) (0.43) (0.42)

6 Month -0.23 -0.32 -0.34 -0.34 -0.70 -0.60 -0.61 -0.61 -0.60 -0.74 -0.77 -0.75

(0.14) (0.15) (0.16) (0.16) (0.29) (0.27) (0.28) (0.28) (0.23) (0.28) (0.31) (0.30)
12 Month -0.20 -0.27 -0.30 -0.29 -0.59 -0.51 -0.52 -0.52 -0.55 -0.65 -0.67 -0.65

(0.13) (0.15) (0.16) (0.16) (0.27) (0.26) (0.27) (0.27) (0.22) (0.25) (0.27) (0.27)

Panel C: Kurtosis

Three Month Six Month Twelve Month

NIG Linear Quad Cubic NIG Linear Quad Cubic NIG Linear Quad Cubic

1 Month 0.13 0.14 0.15 0.14 0.42 0.09 0.10 0.10 0.12 0.30 0.27 0.26
(0.17) (0.20) (0.22) (0.21) (0.43) (0.36) (0.39) (0.38) (0.32) (0.34) (0.38) (0.37)

3 Month 0.19 0.21 0.23 0.23 0.57 0.38 0.40 0.40 0.51 0.57 0.58 0.57

(0.13) (0.15) (0.15) (0.15) (0.31) (0.25) (0.26) (0.26) (0.21) (0.26) (0.28) (0.27)
6 Month 0.14 0.18 0.20 0.19 0.45 0.40 0.42 0.42 0.51 0.53 0.56 0.56

(0.14) (0.13) (0.13) (0.13) (0.24) (0.26) (0.27) (0.27) (0.24) (0.25) (0.27) (0.26)
12 Month 0.16 0.22 0.23 0.23 0.48 0.46 0.47 0.47 0.57 0.57 0.60 0.60

(0.13) (0.13) (0.12) (0.13) (0.23) (0.27) (0.27) (0.26) (0.23) (0.23) (0.25) (0.24)
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Table A6: Parametric versus Non-Parametric Stochastic Discount Factor Risk Adjustments: Autoregressive Rolling Phys-
ical Moments

The table presents risk adjustments for the volatility, skewness, and kurtosis factor mimicking portfolios using stochastic discount factors implied
by the S&P 500 risk neutral and physical densities. The stochastic discount factor is formed as a risk-free scaled ratio of the risk-neutral to physical
probability measure

mt (x, s, τ ) = e
−r

f
t
(τ) f

Q
t (x, s, τ )

fP
t (x, s, τ )

where f
Q
t (·) is the risk-neutral probability measure at time t, fP

t (·) is the physical probability measure at time t, and τ is the horizon. We approx-
imate the risk-neutral and physical probability distributions using the Normal Inverse Gaussian (NIG) distribution. The risk neutral measure is
approximated using the risk neutral moments calculated in the paper. Physical moments are estimated as predicted moments;

θ̂t = θ̂0 + ρ̂θθt−1

where θ̂0 and ρ̂ are AR(1) estimates for the moments over the period January, 1962 through March, 1996, and θt represents the volatility, skewness,
or kurtosis of returns on the S&P 500 index over the past 1000 days, sampled at the monthly frequency. The table presents excess returns implied
by discounting the factor mimicking portfolios by the stochastic discount factor,

α̂ =
1

T

T
X

t=1

rt (τ )mt (xt, τ )

where rt (τ ) is the τ -period return on the factor-mimicking portfolio at time t, and mt (xt, τ ) is the stochastic discount factor evaluated at the observed
τ -period realization of the S&P 500 at time t. The column labeled “NIG” represents the discount factor implied by the NIG approximations to the
densities. Columns “Linear,” “Quad,” and “Cubic” represent discount factors obtained by projecting the density-implied discount factor onto a linear,
quadratic, and cubic polynomial, respectively. Panel A presents results for the volatility-sorted factor mimicking portfolio with rows representing
portfolios formed on volatility estimated using options with one, three, six, and twelve-months to maturity. Panels B and C present complementary
results for skewness- and kurtosis-sorted factor mimicking portfolios. We separately examine stochastic discount factors based on options and returns
with three, six, and 12 month horizons. Data for the three, six, and twelve month horizons begin in January, 1997, July, 1996, and April,1996,
respectively. All three horizons extend through December, 2005 for 106 (overlapping) observations. Point estimates are scaled to the monthly
frequency, and Newey-West standard errors are presented in parentheses below the point estimates. Point estimates that are statistically significant
at the 10% level or greater are in boldfaced type.

Panel A: Volatility

Three Month Six Month Twelve Month

NIG Linear Quad Cubic NIG Linear Quad Cubic NIG Linear Quad Cubic

1 Month -0.20 0.05 0.02 0.00 -0.17 -0.35 -0.40 -0.41 -0.48 -0.23 -0.29 -0.33
(0.30) (0.37) (0.36) (0.35) (0.84) (0.65) (0.65) (0.64) (0.51) (0.63) (0.63) (0.61)

3 Month -0.20 0.06 0.00 -0.02 -0.07 -0.54 -0.60 -0.60 -0.55 -0.34 -0.44 -0.47
(0.36) (0.49) (0.50) (0.48) (1.12) (0.90) (0.91) (0.89) (0.65) (0.87) (0.88) (0.84)

6 Month -0.20 0.07 -0.01 -0.03 0.01 -0.63 -0.69 -0.69 -0.61 -0.39 -0.50 -0.54
(0.39) (0.56) (0.57) (0.55) (1.29) (1.02) (1.04) (1.02) (0.73) (0.99) (1.00) (0.96)

12 Month -0.18 0.09 0.02 -0.01 0.07 -0.61 -0.67 -0.67 -0.54 -0.35 -0.46 -0.49
(0.37) (0.56) (0.56) (0.55) (1.28) (1.01) (1.03) (1.01) (0.72) (1.00) (1.01) (0.96)

Table continued on next page ...
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Panel B: Skewness

Three Month Six Month Twelve Month

NIG Linear Quad Cubic NIG Linear Quad Cubic NIG Linear Quad Cubic

1 Month -0.18 -0.25 -0.24 -0.22 -0.73 -0.24 -0.24 -0.25 -0.39 -0.51 -0.45 -0.43
(0.18) (0.30) (0.31) (0.29) (0.61) (0.52) (0.53) (0.52) (0.38) (0.54) (0.54) (0.52)

3 Month -0.21 -0.30 -0.30 -0.29 -0.72 -0.40 -0.41 -0.41 -0.51 -0.63 -0.59 -0.57
(0.15) (0.24) (0.24) (0.23) (0.48) (0.38) (0.39) (0.38) (0.30) (0.41) (0.41) (0.39)

6 Month -0.20 -0.30 -0.31 -0.30 -0.66 -0.58 -0.58 -0.58 -0.50 -0.72 -0.70 -0.68

(0.12) (0.16) (0.16) (0.15) (0.28) (0.27) (0.27) (0.27) (0.20) (0.29) (0.28) (0.27)
12 Month -0.19 -0.25 -0.26 -0.25 -0.57 -0.49 -0.50 -0.50 -0.47 -0.62 -0.60 -0.59

(0.12) (0.15) (0.15) (0.15) (0.25) (0.27) (0.26) (0.26) (0.18) (0.26) (0.25) (0.24)

Panel C: Kurtosis

Three Month Six Month Twelve Month

NIG Linear Quad Cubic NIG Linear Quad Cubic NIG Linear Quad Cubic

1 Month 0.16 0.11 0.10 0.09 0.46 0.07 0.08 0.09 0.29 0.28 0.24 0.23
(0.15) (0.21) (0.22) (0.21) (0.39) (0.39) (0.39) (0.38) (0.27) (0.37) (0.37) (0.36)

3 Month 0.20 0.19 0.21 0.20 0.55 0.37 0.39 0.39 0.49 0.54 0.54 0.52

(0.13) (0.16) (0.15) (0.15) (0.30) (0.27) (0.27) (0.26) (0.20) (0.28) (0.27) (0.26)
6 Month 0.16 0.17 0.18 0.18 0.44 0.38 0.41 0.41 0.41 0.51 0.52 0.50

(0.13) (0.14) (0.14) (0.14) (0.22) (0.28) (0.27) (0.27) (0.19) (0.27) (0.26) (0.25)
12 Month 0.18 0.19 0.21 0.20 0.48 0.43 0.46 0.46 0.47 0.54 0.56 0.54

(0.13) (0.13) (0.13) (0.13) (0.21) (0.28) (0.27) (0.27) (0.18) (0.25) (0.24) (0.24)
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