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Abstract

I argue that time-varying Knightian uncertainty regarding economic fundamentals

plays a central role in accounting for the equity premium, return volatility and the

large, volatile variance premium embedded in equity index option prices. I build a

general equilibrium framework that incorporates time-varying Knightian uncertainty

about diffusive and jump shocks to the level and volatility of long-run cash-flow growth

rates. A calibrated model is shown to capture the variance premium and option skew

while simultaneously matching the moments of cash-flows and stock returns. The

model indicates that fluctuations in the variance premium strongly reflect changes in

the level of Knightian uncertainty and should predict monthly stock returns, consistent

with recent empirical evidence.
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1 Introduction

When making decisions an investor faces both risk and uncertainty. Risk represents random-

ness that the investor understands and can model, while Knightian or model uncertainty

represents ambiguity about the data-generating process itself.1 This paper argues that the

prices of index options are sensitive to investors’ level of uncertainty and that uncertainty

and its time-variation are central in allowing a general equilibrium model to jointly capture

option prices, the equity premium, and the properties of cash-flows.

The prices of index options and the implied-volatility skew pose a considerable challenge

to equilibrium asset pricing models. Studies have found that index options are priced with a

considerable premium.2 A measure of this is the variance premium, which is defined as the

difference between the option-implied (VIX) and statistical (true) expectation of one-month

return variance. By measuring the difference between risk-neutral and true expectations of

variance, the variance premium captures the impact that pricing concerns have on the value

of options. Empirically, the variance premium is found to be significant and systematically

positive, implying that buyers of index options pay a large hedging premium. Its variation

also appears to be related to expected equity returns, as recent studies have found that it is

able to predict stock returns at monthly horizons.

Time-varying model uncertainty presents an intuitive potential explanation for the large

magnitude and variation of the variance premium and the high option skew. Options provide

investors with a natural protection against worrisome model specification concerns. An

example of such concerns is underestimating the frequency or magnitude of jump shocks to

important economic state variables, such as the long-run growth rates of cash-flows. As a

result, time-variation in uncertainty concerns should be strongly reflected in option premia,

which further implies that options provide a hedge to variation in the level of uncertainty

itself.

In order to investigate the ability of uncertainty to quantitatively account for the variance

premium and option prices, I build a framework that incorporates time-varying uncertainty

about economic fundamentals into a representative agent equilibrium model that includes

1From now on, I shall take the terms uncertainty, ambiguity, and Knightian/model uncertainty to mean
the same thing and use them interchangeably.

2See for example, Coval and Shumway (2001), Pan (2002), Bakshi and Kapadia (2003), Eraker (2004),
and Carr and Wu (2007). Singleton (2006) contains a review of option-pricing studies.
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both diffusive and jump risks, and I solve for asset and option prices. The representative

agent in this economy has in mind a benchmark or reference model of the economy’s dynamics

that represents his best estimate of the data generating process. The agent is concerned that

his reference model is misspecified and that the true model is actually in a set of alternative

models that are statistically ‘close’ to the reference model. ‘Close’ means these alternative

models are difficult to distinguish statistically based on historical data, so the agent’s con-

cerns about the reference model are reasonable. The level of uncertainty determines the size

of the alternative set of models he worries about at a given time; when uncertainty increases

the set of alternative models expands.3

Within this framework I conduct a quantitative calibration of an economy where the

agent has uncertainty about the dynamics of long-run cash flow growth rates and the fre-

quency and magnitude of related jump shocks. The calibration demonstrates that the model

is able to capture the variance premium and option skew while simultaneously matching

the equity premium and return volatility, riskfree-rate, and moments of consumption and

dividends. The model also endogenously generates return predictability by the variance pre-

mium that is consistent with the data. It further predicts that option-implied quantities,

such as the variance premium and VIX, should be better predictors of excess stock returns

than statistical measures of variance, which is consistent with empirical findings.

A central challenge for general equilibrium asset pricing models that address these data

is that cross-asset relationships make it difficult to account for the properties of the variance

premium without implying an unrealistically high equity premium and return volatility or

excessively volatile cash-flow processes. By amplifying fears of jump shocks to the level and

volatility of long-run risks, uncertainty increases the prices of options. In addition, since

time-varying uncertainty acts like a risk-factor, options earn a premium for hedging changes

in uncertainty. This allows the model to match the data with a reasonable level of uncertainty

and a relative risk aversion of 5.

The success of the model in reconciling a myriad set of cash-flow and asset pricing mo-

ments requires a flexible framework, which the paper builds and solves. The model that

the agent considers includes a persistent growth rate (long-run risk), moderate jump shocks,

3This framework corresponds to the literature on Robust Control, which has been pioneered by Hansen
and Sargent. See e.g. Anderson, Hansen, and Sargent (2003), Hansen, Sargent, Turmuhambetova, and
Williams (2006), Hansen and Sargent (2007), and Hansen and Sargent (2008). The preferences are in the
class of Recursive Multiple-Priors Utility of Epstein and Schneider (2003).
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and stochastic volatility. In addition to allowing the model to be realistic enough for the

calibration to match a large set of moments, this flexibility also allows model uncertainty

to operate through multiple channels. The equilibrium solution endogenously determines

the extent of specification concerns about different parts of the economic dynamics. The

amount of concern is determined through a tradeoff between the damage a model specifica-

tion error causes to lifetime utility and the difficulty of detecting it. The most important

specification errors have large effects on utility but are difficult to detect. In the calibration,

infrequent jump shocks related to long-run growth rates present prominent specification con-

cerns. Such shocks have large cumulative effects on utility and are also difficult to detect,

so underestimation of their frequency or size is a key specification concern.

Related Literature

This paper is related to a number of papers that study the variance premium and option

prices. Bollerslev, Gibson, and Zhou (2008) and Bollerslev and Zhou (2007) also measure

the variance premium using the difference between option-implied and realized variance

measures of volatility. Both papers find that their measures have significant predictive

power for stock returns at short horizons (a few months). Santa-Clara and Yan (2008)

extract a measure of jump intensity from their option-pricing model and find it predicts

stock returns. The paper is also related to option-pricing studies that confront their models

with both physical and risk-neutral (i.e. price) data and conclude that jumps are necessary

(e.g. Pan (2002), Eraker (2004), Broadie, Chernov, and Johannes (2007)). The model here

shares that view. A big difference is that the model here is preference-based and derives prices

starting from macroeconomic fundamentals. Benzoni, Collin-Dufresne, and Goldstein (2005)

combine recursive preferences with a very large and rare shock to a persistent component

in cash-flow growth rates to generate a steep implied-volatility smirk. Their model does

not incorporate stochastic volatility and they do not analyze the variance premium. Eraker

and Shaliastovich (2008) describe benefits of an equilibrium approach to option-pricing and

build a pricing framework based on recursive preferences and affine dynamics that expands on

Bansal and Yaron (2004) and Tauchen (2005) by including jump shocks and pricing options.

Eraker (2008) estimates such a model, which captures the variance premium with very rare

but large jumps in consumption volatility. In his model there is no persistent component in

cash-flow growth rates, an important risk channel in both Bansal and Yaron (2004) and this

paper. A very different paper that is also related is Anderson, Ghysels, and Juergens (2007),
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which constructs measures of Knightian uncertainty using survey forecasts and finds that

these measures are able to to predict stock returns in the time-series and the cross-section.

In its application of model uncertainty to explaining option prices, this paper is related

to Liu, Pan, and Wang (2005) (LPW), who use uncertainty towards rare events to explain

the smirk pattern in index options. There are, however, a number of significant differences

with LPW. The environment in LPW is i.i.d, so it cannot address the conditional moments

considered here, such as the volatility and return predictability of the variance premium, or

the ‘excess volatility’ of returns. Second, the calibration in LPW is limited to only the equity

premium and slope of the option smirk and does not consider other moments of equity re-

turns, the risk-free rate, or properties of cash flows. Third, LPW model robustness towards

’rare-disasters’, i.e. large, rare jumps in the aggregate endowment, while the calibration

here focuses on jumps that occur (on average) every year or two and are small to moderate.

Moreover, jump shocks enter the endowment only through a small, persistent component

in growth rates and therefore do not cause immediate, large drops in aggregate consump-

tion. Finally, the framework developed here allows for multiple state variables, uncertainty

regarding both diffusions and jumps, and recursive utility.4 The framework in this paper

is also related to the work in Trojani and Sbuelz (2008), who specify a time-varying set of

alternative models that depends on a state variable, and to Maenhout (2004), who solves for

the equity premium in an economy with a robust agent that has recursive utility.

Finally, this paper is related to Drechsler and Yaron (2008), who build an extended long-

run risks model with jump shocks that captures the size and predictive power of the variance

premium. They demonstrate that the variance premium effectively reveals variation in the

intensity of jump shocks, which accounts for its predictive power. This paper differs in its

focus on Knightian uncertainty as a key component of the model. While time-variation in

the risk of jump shocks is still the main driver of the variance premium, it arises from the

combination of jump risks in the reference model and model uncertainty. Model uncertainty

amplifies concerns about influential jump shocks, so that less is needed in terms of physical

jumps. This feature enables the model in this paper to capture the equity premium and

option prices with a relatively low risk aversion of 5. Finally, the model in this paper

generates stochastic return volatility through two channels–stochastic cash-flow volatility

4Tractability is an issue when solving for equilibrium prices in models with uncertainty or robustness.
Many financial applications have focused on either log utility, which aids tractability, or i.i.d or single state
variable environments. Some examples are Kleshchelski and Vincent (2007), Ulrich (2008), Brevik (2008),
Trojani and Sbuelz (2008), Maenhout (2004), and Uppal and Wang (2003).
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and stochastic uncertainty. This makes return volatility, the VIX, and variance premium

be imperfectly correlated and allows the model to capture why the latter two quantities are

superior predictors of equity returns.

2 Definitions and Data

The definitions of key terms is similar to those in Bollerslev and Zhou (2007) and follows

related literature. I define the variance premium as the difference between the risk neutral

and physical expectations of the market’s total return variation. I focus on a one month

variance premium, so the expectations are of total return variation between the current

time, t, and one month forward, t + 1. Thus, vpt,t+1, the (one-month) variance premium

at time t, is defined as EQ
t

[∫ t+1

t
(d lnRm,s)

2
]

- Et

[∫ t+1

t
(d lnRm,s)

2
]

where Q denotes the

risk-neutral measure and lnRm,s is the (log) return on the market.

Demeterfi, Derman, Kamal, and Zou (1999) and Britten-Jones and Neuberger (2000)

show that, in the case that the underlying asset price is continuous, the risk neutral ex-

pectation of total return variance is equal to the value of a portfolio of European calls on

the asset. Jiang and Tian (2005) and Carr and Wu (2007) show this result extends to the

case where the asset is a general jump-diffusion. This approach to calculating risk-neutral

variance expectations is model-free since the calculations do not depend on any particular

model of options prices. The VIX Index is calculated by the Chicago Board Options Ex-

change (CBOE) using this model-free approach to obtain the risk-neutral expectation of

total variation over the subsequent 30 days. I obtain closing values of the VIX from the

CBOE and use it as my measure of risk-neutral expected variance. Since the VIX index is

reported in annualized “vol” terms, I square it to put it in “variance” space and divide by

12 to get a monthly quantity. Below I refer to the resulting series as squared VIX.

As the definition of vpt,t+1 indicates, in order to measure it one also needs conditional

forecasts of total return variation under the physical measure. To obtain these forecasts I

measure the total realized variation of the market, or realized variance, for the months in my

sample. For a given month, this measure is created by summing the squared five-minute log

returns on the S&P 500 futures over the whole month. I obtain the high frequency futures

data used in the construction of the realized variance measure from TICKDATA. To get the

conditional forecasts, I project the realized variance measure on the value of the squared VIX
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at the end of the previous month and on lagged realized variance and use the resulting series

of forecasts for realized variance. The forecast series serves as the proxy for the conditional

expectation of total return variance under the physical measure. The difference between

the risk neutral expectation, measured using the squared VIX, and the contemporaneous

conditional forecast from the projection, gives the series of one-month variance premium

estimates. The projection specification I use is the same as in Drechsler and Yaron (2008).

See that paper for further details.

The data series for the VIX and realized variance measures covers the period January

1990 to March 2007. The main limitation on the length of the sample comes from the

VIX, which is only published by the CBOE beginning in January of 1990. I also present a

comparison of the empirical and model-based implied-volatility surfaces for S&P 500 index

options. Daily data on the volatility surface was obtained from Citigroup and covers October

1999 to June 2008. The model calibration I conduct also requires data on consumption and

dividends and I use the longest sample available (1930:2006). Per-capita consumption of

non-durables and services is taken from NIPA. The per-share dividend series for the stock

market is constructed from CRSP by aggregating dividends paid by common shares on the

NYSE, AMEX, and NASDAQ. Dividends are adjusted to account for repurchases as in

Bansal, Dittmar, and Lundblad (2005).

Table I provides summary statistics for the VIX, the measure of futures realized variance,

and the variance premium measure (VP). Note that the mean of the variance premium

is sizeable in comparison with that of the squared VIX and realized variance. It is also

quite volatile. Since any difference between risk-neutral and physical expectations is due

to pricing considerations, the large, positive variance premium indicates that the VIX and

option prices embed a substantial pricing premia. Capturing this premia and its volatility

is a major challenge for an equilibrium model. Note further that all three variance-related

series display significant deviation from normality. The mean to median ratio is large, the

skewness is positive and greater than 0, and the kurtosis is clearly much larger than 3.

Table II provides return predictability regressions. There are two sets of columns with

regression estimates. The first set shows OLS estimates and the second set provides estimates

from robust regressions. Robust regression performs estimation using an iterative reweighted

least squares algorithm that downweights the influence of outliers on estimates but is nearly

as statistically efficient as OLS in the absence of outliers. It provides a check that the results

are not driven by outliers. The robust regression R2s reported are calculated as the ratio
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of the variance of the regression forecast to the variance of the dependent variable, which

corresponds to the usual R2 calculation in the case of OLS. The first two regressions are

one-month ahead forecasts using the variance premium as a univariate regressor, while the

third forecasts one quarter ahead. The quarterly return series is overlapping. The last two

specifications add the price-earnings ratio, which is commonly used variable for predicting

returns. As a univariate regressor, the variance premium can account for about 1.5-4.0%

of the monthly return variation. The multivariate regressions lead to a substantial further

increase in the R2 – a feature highlighted in Bollerslev and Zhou (2007). In conjunction

with the price-earnings ratio, the in-sample R2 increases to over 13%. Note that in all cases

the variance premium enters with a significant positive coefficient. This sign and magnitude

will be shown to be consistent with the theory in this paper. Finally, note that the robust

regression estimates agree both in magnitude and sign with the OLS estimates and in fact,

some of the R-squares are even larger than their OLS counterparts.

3 Model

The setting is an infinite-horizon, continuous-time exchange economy with a representative

agent who has utility over consumption streams. This agent has in mind a benchmark or

reference model of the economy that represents his best estimate of the economy’s dynamics.

However, the agent does not fully trust that his model is correct. His model uncertainty

concerns cause him to worry that the true model lies in a set of alternative models that are

difficult for him to reject based on the data. This set of models is ‘close’ to the reference

model in the sense that they are statistically difficult to distinguish from the reference model.

The agent guards against model uncertainty by acting cautiously and evaluating his future

prospects under the worst-case model in the alternative set of models. The details follow.

3.1 The Reference Model

This section describes the agent’s reference model. Let Yt denote the n-dimensional vector

of state variables. The reference model dynamics follow a continuous-time affine jump-
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diffusion:5

dYt = µ(Yt)dt+ Σ(Yt)dZt + ξt · dNt (1)

where Zt is an n-dimensional Brownian motion, µ(Yt) is an n-dimensional vector, Σ(Yt) is n×
n-dimensional matrix and both ξt and Nt are n-dimensional vectors. The term ξt·dNt denotes

component-wise multiplication of the jump sizes in the random vector ξt and the vector of

increments in the Poisson (counting) processes Nt. The Poisson arrivals are conditionally

independent and arrive with a time-varying intensity given by the n-dimensional vector lt.

The jump sizes in ξt are assumed to be i.i.d through time and in the cross-section. To

handle the jumps, it is convenient to specify their moment generating function (mgf). Let

ψk(u) = E[exp(uξk)] be the mgf of the random jump size ξk. It is convenient to stack the

mgf’s into a vector function denoted ψ(u). Thus, for u, an n-dimensional vector, ψ(u) is the

vector with k-th component ψk(uk). It is also assumed that log consumption and dividend

growth are linear in Yt:

d lnCt = δ′cdYt

d lnDt = δ′ddYt

For convenience lnCt and lnDt are included in Yt, so δc and δd are just selection vectors.

It is assumed that the drift, diffusion and jump intensity functions have an affine struc-

ture. Specifically,

µ(Yt) = µ+KYt

where µ and K are n and n × n-dimensional respectively. It is further assumed that the

economy’s dynamics under the reference model are independent of the level of consumption

Ct. This standard asset pricing assumption leads to an equilibrium that is homogenous in

the level of consumption. The assumption can be formalized as Kδc = 0, i.e. the column

corresponding to Ct is just 0. To simplify some of the later exposition, let K̃ denote the

n × (n − 1) dimensional sub-matrix of K which excludes this column and let Ỹt be the

sub-vector of Yt that excludes Ct. The assumption can then be rewritten as KYt = K̃Ỹt.

Let Y = (Y1,t, Y2,t) be a partition of the state vector. The diffusion covariance matrix

5The notation used here for the jump-diffusion specification is similar to that in Duffie, Pan, and Singleton
(2000) and Eraker and Shaliastovich (2008).
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has a block-diagonal form:

Σ(Yt)Σ(Yt)
′ =

[
Σ1,tΣ

′
1,t 0

0 Σ2,tΣ
′
2,t

]

where the upper block corresponds to Y1,t and the lower block to Y2,t. Σ1,tΣ
′
1,t has a general

affine form:

Σ1,tΣ
′
1,t = h+

∑
i

HiYt,i

Let qt denote a particular state variables in Yt. This variable will appear repeatedly through-

out the model and has the important role of governing variation in the agent’s level of

uncertainty, as discussed below. I assume that

Σ2,tΣ
′
2,t = Hqq

2
t

Finally, let the jump intensity vector take the form lt = l1q
2
t where l1 is an n-dimensional

vector.6 The partition of Yt relates to which subset of the model dynamics the agent is

uncertain about. I make the agent uncertain about only the dynamics of Y2,t, which contains

the variables the agent feels are difficult to detect or estimate.7

The specification makes qt drive the volatility of shocks about which there is uncertainty.

There are several motivations for this specification. First, it seems reasonable that the level

of uncertainty should rise when there is an elevated risk of large shocks to important state

variables, i.e. it seems plausible that the level of uncertainty be related to economic risk.

The calibration section discusses some evidence on an empirical measure of uncertainty that

is consistent with this idea. Finally, this specification also facilitates analytical tractability.

To isolate the pure effects of variation in uncertainty in a stark manner, I also include a

discussion at the end of the paper of a modified model where qt is orthogonal to the other

processes.

6It possible to also partition the jump intensity vector and let the intensity for one partition have a
general affine form. Since this generality is not needed in what follows, it is omitted to reduce notational
complexity.

7Of course we can have Y2,t = Yt
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3.2 Alternative Models

This section describes the agent’s set of alternative models. An alternative model is defined

by its probability measure. A requirement of this probability measure is that it put positive

probability on the same events as the reference model’s probability measure (i.e. they are

equivalent measures). Let P be the probability measure associated with the reference model

(1). An alternative model is defined by a probability measure P (η), which is determined

by the process ηt for its Radon-Nikodym derivative (likelihood ratio) with respect to P .

It is useful to specify models through their Radon-Nikodym derivative since this permits

a convenient definition of the set of models that are statistically close to (or difficult to

distinguish from) the reference model. I now construct the Radon-Nikodym derivatives

under consideration by the agent and describe how they map to specifications of dynamics.

The intention is to consider the most general set of dynamics possible, before restricting the

alternatives to the subset of models that are statistically close to the reference model.

From the expression for ηt, one can derive the resulting dynamics under P (η). Changes

to the reference dynamics caused by η are referred to as “perturbations”, and the resulting

model is called the “perturbed model”. Perturbations fall into two categories. The first are

perturbations to the diffusion components via changes in the probability law of Zt. For this

category the perturbations considered are completely general, i.e. all equivalent changes of

measure are included. The second category are perturbations to the jumps. For tractability,

perturbations to the jumps are restricted to changes in the jump intensity and changes to

the parameters of the jump size distributions. By Girsanov’s theorem for Itô-Lévy Processes

we can write ηt = ηdZt ηJt where ηdZ perturbs dZt and ηJt perturbs the jumps.8

ηdZt is defined by the SDE:
dηdZt
ηdZt

= hTt dZt

where ht is an n-dimensional process and ηdZ0 = 1. From Girsanov’s theorem we have

that Zη
t = Zt −

∫
htdt is a Brownian motion under P (η), which implies that dY c

t =

[µ(Yt) + Σ(Yt)ht] dt+ Σ(Yt)dZ
η
t . 9 Thus, these perturbations change the drift dynamics and

8See, for example, Oksendal and Sulem (2007), Theorem 1.31. This multiplicative form arises from the
fact that a Brownian motion Zt and Poisson process Nt defined on the same filtration are independent, which
follows from [Z,N ](t) = 0, i.e. their cross-variation is 0.

9The notation Y c
t means the continuous part of Yt, i.e. the process obtained by removing the jumps of

Yt.
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leave the diffusion unchanged. Note that the drift perturbation is driven directly by ht.

Since only the dynamics of Y2,t are ambiguous, I impose ht = [0, h2,t]
′, where the 0 and h2,t

vectors have the dimensions of Y1,t and Y2,t respectively. The block-diagonal structure of the

diffusion covariance matrix then implies that only the drift of Y2,t is perturbed.

ηJ is constructed to change the jump intensity and jump size distribution under P (η). I

discuss the jump dynamics that result for P (η) and leave the construction of ηJ to Appendix

A.1. Consider first the jump intensity. The jump intensity lη under P (η) is given by

lηt = exp(a)lt

where a is a scalar parameter. Thus, ηJ perturbs the jump intensity by a factor of exp(a). For

the jump sizes, I consider two specific jump size distributions, which are the ones used in the

calibration below: (i) normally distributed jumps: ξj ∼ N (µ, σ2), and (ii) gamma distributed

jumps: ξj ∼ Γ(k, θ) where k and θ are the shape and scale parameters respectively. ηJ is

constructed to change the parameters of these distributions so that, under P (η), the jump

size distributions are:

ξηj ∼ N (µ+ ∆µ, σ2sσ) ξηj ∼ Γ(k,
θ

1− θb
)

For the normal distribution, the mean is shifted by an amount ∆µ, while the variance is

scaled by sσ. For the gamma distribution, the scale parameter is increased or decreased

depending on the sign of b. Note that, when ∆µ = b = a = 0 and sσ = 1, we are back to

the jump distributions of the reference model. Combining the perturbations, the dynamics

under P (η) can be written as:

dYt = [µ(Yt) + Σ(Yt)ht] dt+ Σ(Yt)dZ
η
t + ξηt · dN

η
t (2)

In addition, denote the moment generating function under P (η) by ψη(u).

Thus, the alternative one-step-ahead dynamics the agent worries about at time t are

determined by the set of ht, a, ∆µ, sσ, and b that he considers.10 The determination of this

set is now explained.

10In other words, this set determines the agent’s multiple priors over one-step-ahead probabilities. The
agent’s behavior falls within the Multiple-Priors framework axiomatized by Epstein and Schneider (2003). As
Epstein and Schneider (2003) show, when beliefs are built up as the product of one-step ahead probabilities,
the agent’s decision-making is guaranteed to be dynamically consistent.
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3.3 The Size of the Alternative Set

As mentioned earlier, model uncertainty leads the agent to consider a set of alternative

models that are statistically close to the reference model – close in the sense that they are

difficult to distinguish from the reference model using historical data. A commonly used

measure of the statistical ‘distance’ between a model and a reference model is its relative

entropy. Relative entropy is directly related to statistical detection and is defined in terms

of the alternative model’s Radon-Nikodym derivative with respect to the reference model.

The agent’s set of alternative models is defined by placing an upper bound on the growth

rate of alternative models’ relative entropy.11

The growth in entropy of P (η) relative to P between time t and t + ∆t is defined as

H(t, t + ∆t) = Eη
t [ln η(t + ∆t)] − ln η(t). Thus, lim∆t→0

H(t,t+∆t)
∆t

gives the instantaneous

growth rate of relative entropy at time t. It is illustrative to look at this quantity for the

diffusion perturbation. A standard calculation (see Appendix A.2) shows that for ηdZ the

instantaneous growth rate of relative entropy is just 1
2
h′tht.

This simple expression says that the rate of relative entropy growth at time t is just half

the norm of the ht vector. Hence, for ht = 0 (the reference model), the rate is 0. As ht

increases, the entropy growth rate increases. This is indicative of the tight link between

relative entropy and the ‘distance’ between P (η) and P . Moreover, it indicates that the set

of alternative models can be implicitly defined by placing an upper bound on their relative

entropy growth rates.

Since η = ηdZηJ , the overall relative entropy growth of P (η) is the sum of the relative

entropy growth rates of ηdZ and ηJ . The relative entropy of ηJ is just the sum of the relative

entropies for the individual jump perturbations. Appendix A.2 derives the relative entropies

for the normal and gamma jump perturbations and gives an expression for the total relative

entropy of P (η), which is denoted R(ηt). As Appendix A.2 shows, the expression for R(ηt)

is in terms of (ht, a, ∆u, sσ, b).

We now exploit the link between entropy and statistical proximity to define the set

of alternative models that concern the agent. The alternative set is defined by choosing all

models whose relative entropy growth rateR(ηt) is less than some upper bound. The intuition

11The use of entropy and the link to statistical detection is due to Hansen and Sargent (see Hansen and
Sargent (2008)). The approach used here for time-varying uncertainty is used in Trojani and Sbuelz (2008)
in a pure diffusion setting.
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is that, if the relative entropy of a given model is below the bound, then distinguishing

this model from the reference model is difficult enough that it warrants concern that this

alternative model (and not the reference model) is the true data generating process. This is

known as a model detection error. The bound on entropy therefore determines the size of the

alternative set. A large bound is interpreted as high uncertainty, since a larger set of models

will fall below the bound. In that case, the agent has little confidence in the correctness of

his reference model. At the other extreme, a bound of 0 on R(ηt) means the alternative set

is empty and the agent has full confidence in the reference model.

To model time-varying uncertainty, the bound on R(ηt) is allowed to vary over time based

on the value of q2
t , the variable that controls variation in the level of uncertainty. Hence, the

alternative set of dynamics at time t is defined by:

{ηt : R(ηt) ≤ ϕq2
t } (3)

where ϕ > 0 is a constant. Since q2
t > 0, the bound is always positive. Without loss of

generality, I normalize the process for q2
t so that E[q2

t ] = 1. Then, the unconditional mean

of the bound is simply equal to ϕ, while variation in the bound is due to q2
t . The constant

ϕ is part of the agent’s preferences. If ϕ = 0 then the agent has full confidence in the

reference model, while increasing the value of ϕ expands the size of the alternative set to

include models that are statistically ‘further’ away from the reference model. In calibrating

the model, the specific value of ϕ is chosen to imply a particular bound on the probability

of making a model detection error. This is discussed in detail in the calibration section

and in Appendix G. The idea is that if the probability of making a model detection error

is not too low, then the alternative models are reasonably difficult to distinguish from the

reference model. Finally, while ϕ determines the agent’s average level of uncertainty, q2
t

controls variation in uncertainty over time. When q2
t increases, the agent is more uncertain

and worries about a larger set of alternative models that includes models that are further

away from the reference model.

3.4 Utility Specification

For a given probability model, the agent’s utility over consumption streams is given by

the stochastic differential utility of Duffie and Epstein (1992), which is the continuous-time

13



version of the recursive preferences of Epstein and Zin (1989). Denote the agent’s value

function by Jt and the normalized aggregator of consumption and continuation value in

each period by f(Cs, Js). Therefore, for a given probability model, lifetime utility is given

recursively by: Jt = Et
[∫∞
t
f(Cs, Js)ds

]
. The set of probability measures considered by

the agent is given by the reference model and alternative set, as described above. The

representative agent’s utility is then given by:

J = min
P (η)

Eη
0

[∫ ∞
0

f(Cs, Js)ds

]
(4)

where Eη denotes expectation taken under the probability measure P (η).12This utility spec-

ifies that the agent expresses his aversion to model uncertainty by being cautious and eval-

uating his future prospects under the worst-case model within the set of alternatives.

The functional form used for f(C, J) is standard:

f(C, J) = δ
γ

ρ
J

[
Cρ

γ
ρ
γ J

ρ
γ

− 1

]
(5)

where δ is the rate of time preference, γ is 1−RRA (i.e. one minus the agent’s relative risk

aversion), and ρ = 1 − 1
ψ

, where ψ is the intertemporal elasticity of substitution (IES). An

important special case of this aggregator is γ = ρ, in which case the agent’s relative risk

aversion equals 1/ψ and the aggregator reduces to the additive power utility function.

As Epstein and Schneider (2003) show, rectangularity of beliefs implies that Jt solves the

following Hamilton-Jacobi-Bellman (HJB) equation:

0 = min
P (ηt)

f(Cs, Js) + Eη
t [dJ ] (6)

s.t. R(ηt) ≤ ϕq2
t

The solution of this equation gives the worst-case perturbation, η∗t , which is needed for asset

pricing. Note that in the ‘standard’ endowment economy framework, one can do pricing

by proceeding directly from the Euler equation. Here, the need to solve for η∗t and the

agent’s value function adds an extra layer of complexity.13 Another issue is that there is no

12This formulation already embeds the maximization of Ct which in equilibrium is given by the aggregate
consumption process.

13Many papers in related literature have focused on single-state variable or i.i.d environments, which lead
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guarantee that the worst-case dynamics associated with η∗t permit tractable asset pricing.14

In this paper, expressions for the worst-case model, value function, and asset prices are found

in closed-form.

4 Solution

I start by expanding the right side of (6) in terms of the perturbation parameters:

Eη
t [dJ ] = Eη

t

[
dJ c + Jt − Jt−

]
= Eη

t [dJ c] + Eη
t

[
J(Yt− + ξt · dNt)− J(Yt−)

]
where J ct is the continuous part of J and the second expectation is over the jumps. We can

rewrite the first term by applying Ito’s lemma and (2):

Eη
t [dJ c] = Et[dJ

c] + hTt ΣT
t JY dt = Et[dJ

c] + hT2,tΣ
T
2,tJY2dt

where JY is the gradient of J with respect to Y . The Lagrangian corresponding to the

minimization in (6) can now be written as:

f(Ct, Jt)dt+Et[dJ
c] + hT2,tΣ

T
2,tJY2dt+Eη

t

[
J(Yt− + ξtdNt)− J(Yt−)

]
− λt

(
ϕq2

t −R(ηt)
)

(7)

where λt is the lagrange multiplier on the (time-t) entropy constraint.

Solving for J proceeds as follows. Take first-order conditions with respect to the pertur-

bation parameters (ht, a,∆u, sσ, b, . . .) and λt. Then conjecture and verify a functional form

for J that solves the system of first-order conditions and the HJB equation. The solution for

J is now discussed while the first-order conditions and other details are left to Appendix D.

4.1 Equilibrium Value Function

Since the aggregator (5) is homogenous of degree γ in the level of consumption and the

transition dynamics are independent of the level of consumption, the value function J and

HJB equation (6) should also be homogenous of this degree in the level of consumption. This

to ODEs rather than difficult PDEs. For closed-form solutions, log-utility is often assumed
14In i.i.d environments this is not usually a problem because an i.i.d reference model normally leads to an

i.i.d worst-case model.
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implies the following functional form for the value function:

J(Yt) = exp
(
γg(Ỹt)

) Cγ
t

γ
=

exp
(
γg(Ỹt) + γ lnCt

)
γ

(8)

where g(Ỹt) is a function of Ỹt whose form is not yet specified. Appendix B gives the equa-

tion that results from substituting the conjecture into the HJB equation (6). In general,

there is no exact analytical solution to that equation. However, I find approximate analyt-

ical expressions by approximating a term in this equation. This approximation has been

used successfully in the portfolio choice literature (see Campbell, Chacko, Rodriguez, and

Viciera (2004)). The approximation log-linearizes the equilibrium consumption-wealth ratio

around its (endogenous) unconditional mean. In the case ψ = 1 (and any value of γ), the

approximation is exact, as is the analytical solution. Moreover, as argued in the portfolio

choice literature, the approximation is accurate for an interval of values around 1 that easily

includes empirical estimates of ψ and the values I use in the calibrations.

The term that is approximated is exp
(
−ρg(Ỹt)

)
. As shown in the Appendix, this is

just 1/δ times the equilibrium consumption-wealth ratio. Following Campbell, Chacko,

Rodriguez, and Viciera (2004), I log-linearize this term around the unconditional mean of

the equilibrium log consumption-wealth ratio

exp
(
−ρg(Ỹt)

)
≈ κ0 + κ1ρg(Ỹt) (9)

where κ0 and κ1 are linearization constants whose values are endogenous to the equilibrium

solution of the model. The following proposition now provides the solution to the HJB

equation.

Proposition 1 The solution to the HJB equation for ψ = 1, or for ψ 6= 1 when the log-linear

approximation in (9) is applied, is given by (8) and

g(Ỹt) = A0 + A′Ỹt (10)

where A0 is a scalar and A is a vector that gives the loadings on Ỹt.

The values of A0 and A are determined by a system of equations. Let Â = [1, A]′ so Â has

the same dimension as Yt and partition it into Â = [Â1, Â2]′ corresponding to the partition
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Y = [Y1, Y2]′. Then, A0, A, κ0, κ1, the parameters of the worst-case perturbation (i.e. a, ∆µ,

sσ, b, . . . ), and λ̃, a constant related to the lagrange multiplier λt of the entropy constraint,

solve the (n× 1) system of equations

0 =
δ

ρ
(κ0 + κ1ρA0 − 1) + ÂTµ

0 = Ỹ T
t Aδκ1 + Ỹ T

t K̃T Â−
1

λ̃

(
ÂT2HqÂ2

)
q2
t +

1

2
γÂTΣtΣ

T
t Â+

1

γ
lη1
′
(
ψη(γÂ)− 1

)
q2
t (11)

jointly with the equations giving κ0, κ1 and a system of equations, defined in Appendix D,

that arises from the first-order conditions for the perturbation parameters.

The proof of Proposition 1 is given in Appendix D. A solution of the system of equations

given in Proposition 1 and Appendix D verifies the conjecture for the value function. In

general, this system of equations must be solved numerically.

Proposition 1 shows that the equilibrium value function is exponential-affine with the

vector A giving the elasticities of the value function with respect to the state variables.

The sign of an A coefficient determines whether utility rises or falls in the level of the

corresponding state variable and the magnitude of the coefficient measures the impact of

that variable on utility. As Proposition 1 notes, the solution to the HJB equation also

involves solving for the worst-case model, which is now discussed.

4.2 Worst-Case Dynamics

Recall that under alternative models, the perturbation to the drift is Σtht = [0,Σ2,th2,t]
′.

Appendix D shows that under the worst-case model:

Σ2,th2,t = −1

λ̃
Σ2,tΣ

T
2,tA2 = −1

λ̃
HqA2q

2
t (12)

where λ̃ is a constant that comes out of the equilibrium solution and is closely related to λt

(the lagrange multiplier on the time-t entropy constraint). A number of observations can be

made. First, the worst-case drift perturbations are proportional to A2 but have the opposite

sign. This is because if A2(i) > 0 then utility rises with Y2,t(i), so the worst-case perturbation

should decrease the drift of Y2,t(i). In addition, the magnitude of the worst-case perturbation

in dY2,t(i) should depend on how important Y2,t(i) is to utility, which is captured by A2(i), in
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order to allocate entropy in the way that does the most harm to utility. Another observation

is that the size of the perturbations vary over time with q2
t , which controls variation in

uncertainty. Hence, when uncertainty is high, the perturbations are large, and vice versa.

Finally, λ̃ controls the mean size of the perturbations. It’s value depends inversely on ϕ,

the average level of uncertainty. A large value of λ̃ means the perturbations are small on

average.

Appendix D also derives the equations that determine the worst-case jump perturbations.

For jumps the determination of the worst-case perturbations follows the same principle as

for the drift: at the minimizing configuration, a given worst-case perturbation optimally

trades off the marginal amount of harm it does to utility against its marginal cost in terms

of entropy. Thus, the largest perturbations are assigned to aspects of the model where a

specification error harms utility in a way that is difficult to detect statistically. The sign of

the perturbation to a variable again depends on the sign of its A coefficient. For example, if

∆µ is the perturbation to the mean jump in Y2,t(i), and A2(i) < 0, then ∆µ < 0.

Finally, note that, though the reference model was formulated within the affine class,

there is no guarantee apriori that asset-pricing under the worst-case dynamics will remain

tractable. However, as (12) shows, the perturbation to the drift keeps the worst-case dy-

namics in the affine class. This is also the case for the jumps. Thus, the worst-case model

remains affine, which permits tractable asset pricing.

5 Asset Pricing

Since the representative agent evaluates expectations under the worst-case measure when

making his portfolio choice, the Euler equation holds under the worst-case measure. There-

fore, assets can be priced using the Euler equation under the worst-case measure. However,

we are interested in expected returns under the reference model. since it is supposed to be

the best estimate of the data generating process based on historical data. While the agent

believes that the reference model is the best description of the historical data, he behaves

cautiously by pricing assets under the worst-case probabilities. To obtain reference-measure

expected returns, expected returns calculated under the worst-case measure are adjusted

using (2) to account for the difference in expected dynamics.
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5.1 Pricing Kernel

Under the worst-case measure, the pricing kernel is the ‘standard’ Epstein-Zin kernel. Let

Mt denote the time-t pricing kernel. It is convenient to work with the log pricing kernel:

d lnMt = −θδdt− θ

ψ
d lnCt − (1− θ)d lnRc,t (13)

where θ = γ
ρ

and dRc,t = dPc,t+Ct
Pc,t

is the instantaneous return on the aggregate consumption

claim (aggregate wealth). As usual, when θ = 1, (13) reduces to the corresponding expression

for CRRA expected utility. To get the log pricing kernel in terms of primitives, we need

the return on the consumption claim. Appendix C shows that the consumption-wealth

ratio is simply δ exp(−ρg(Ỹ )). By market-clearing, the consumption-wealth ratio is also the

dividend-price ratio of the aggregate consumption claim. Using this equivalence, the solution

for g(Ỹt) in (10), and Itô’s lemma (with jumps), one obtains15:

d lnRc,t =
[
ρÂT + (1− ρ)δ′c

]
dYt + δ exp(−ρA0 − ρA′Ỹt)dt (14)

Note that dYt includes both the diffusive and jump shocks16. Substituting (14) and d lnCt

into (13) gives the Epstein-Zin (log) pricing kernel:

d lnMt = −
[
θδ + (1− θ)δ exp(−ρA0 − ρA′Ỹt)

]
dt− Λ′dYt (15)

where Λ =
(
θ
ψ
δc + (1− θ)

[
ρÂ+ (1− ρ)δc

])
. Λ is the vector of risk prices for the economy’s

shocks. When θ = 1, so that preferences reduce to power utility, Λ = (1− γ)δc, i.e the price

of risk on the immediate consumption shock is the agent’s RRA and all other risk prices are

0. In general, δ′cΛ = 1− γ, i.e. the price of risk for the immediate consumpton shock is the

agent’s RRA. Recall that (15) is the pricing kernel under the worst-case measure. Therefore,

the explicit uncertainty terms do not enter at this point.

15A useful notational simplification that I use here is: ρA′dỸt + d lnCt = ρÂT dYt + (1 − ρ)δ′cdYt, since
lnCt = δ′cYt. Rewriting the expression this way makes it possible to collect terms into the single term
multiplying dYt

16d lnRc,t = d lnRc
c,t + ∆ lnR where d lnRc

c,t is the continuous part and ∆ lnRc,t is the jump-related part.
Also, ∆ lnRc,t = ∆ lnPc,t where Pc,t = exp(− ln δ+ ρg(Ỹt)) exp(lnCt) is the price of the consumption claim.
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5.1.1 The Risk-free Rate

The risk-free rate, rf,t, equals Eη
t [−dMt

Mt
].Since rf,t is known at time t, it is identical under

the different measures and no measure adjustment is necessary. Substituting in gives:

rf,t =θδ + (1− θ)δ exp
(
−ρA0 − ρA′Ỹt

)
+ ΛT (µ(Yt) + Σtht) dt

− 1

2
ΛTΣtΣ

T
t Λdt− lηt

′(ψη (−Λ)− 1) (16)

Uncertainty affects the risk-free rate explicitly through the term ΛTΣtht and via the change

in the jump intensity and mgf (jump distribution). It also acts implicitly through the val-

ues of A0 and A. The perturbations decrease expected consumption growth and increase

expected variation, which increases the precautionary savings motive. Both effects lower the

equilibrium risk-free rate.

5.2 Equity

I derive the return on a share in the stock market. Part of the derivation follows Eraker and

Shaliastovich (2008), who derive the market return for an Epstein-Zin representative agent

in an affine jump-diffusion setting.

A share of the stock market is modeled as a claim to the per-share dividend stream Dt.

Let vm,t denote the log price-dividend ratio of the market and let Rm,t denote the cumulative

return through time t on a strategy that holds the market portfolio and fully reinvests all

proceeds. Then d lnRm,t is the instantaneous log market return. Following Eraker and

Shaliastovich (2008), I log-linearize the market return around the unconditional mean of the

log price-dividend ratio:

d lnRm,t = κ0,mdt+ κ1,mdvm,t − (1− κ1,m)vm,tdt+ d lnDt (17)

where κ0,m and κ1,m are the log-linearization constants. This log-linearization is similar

to the one used earlier for the wealth-consumption ratio and represents a continuous-time

version of the log-linearization in Campbell and Shiller (1988).

20



I conjecture that vm,t takes the following functional form:

vm,t = A0,m + A′mYt (18)

Substituting for dvm,t in (17) gives the log market return in terms of primitives:

d lnRm,t = κ0,mdt− (1− κ1,m)(A0,m + A′mYt)dt+B′rdYt (19)

where Br = (κ1,mAm + δd) is the vector of loadings on shocks to the state vector. The return

on the market must satisfy the representative agent’s Euler equation. Substituting (19) and

(15) into the Euler equation and evaluating it under the worst-case measure leads to a system

of equations in the unknown coefficients A0,m and Am. The solution to this system gives the

equilibrium values for A0,m and Am and verifies the conjecture for vm,t. Further details are

given in Appendix E.

5.3 The Equity Premium

Given Am, one can find the equity premium. I first give the equity premium under the

worst-case measure and then adjust it to get an expression for the equity premium under

the reference measure. As usual, the conditional equity premium is given by the covariance

of the market return with the pricing kernel. Accounting for the jumps is the only part of

this calculation that is not ‘standard’. The instantaneous market return is dRm,t/Rm,t. The

Euler equation implies that Eη
t [d(MtRm,t)] = 0.17 Applying Ito’s lemma (with jumps) and

substituting in rf,t = −Eη
t [−dMt

Mt
] leads to the following expression:

Eη
t

[
dRm,t

Rm,t

]
− rf,t dt =− dM c

t

Mt

dRc
m,t

Rm,t

+ Eη
t [exp(∆ lnMt)− 1]

+ Eη
t [exp(∆ lnRm,t)− exp(∆ lnMt + ∆ lnRm,t)]

where as before a superscript ‘c’ refers to the continuous part and ∆ refers to the jump part.

Substituting into this expression gives:

Eη
t

[
dRm,t

Rm,t

]
− rf,t dt = B′rΣtΣ

T
t Λ + lηt

′ (ψη(Br)− ψη(−Λ +Br) + ψη(−Λ)− 1)

17This follows from the condition that MtRm,t is a η-martingale.
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The first term on the right-hand side is (negative one times) the continuous covariance of

the market return and pricing kernel. When there are no jumps, this term is the whole

equity premium. The remaining term deal with the jumps. This is the equity premium

under the worst-case measure. To obtain it under the reference measure, the adjustment

Et[dRm,t/Rm,t]− Eη
t [dRm,t/Rm,t] is added to both sides, giving:

Et

[
dRm,t

Rm,t

]
− rf,t dt =B′rΣtΣ

T
t Λ−B′rΣtht

+ lt
′ (ψ(Br)− 1)− (lηt · ψη(−Λ))′

(
ψη(−Λ +Br)

ψη(−Λ)
− 1

)
(20)

where the division in the last term is componentwise. As Appendix F shows, the terms

lηt · ψη(−Λ) and ψη(−Λ +Br)/ψ
η(−Λ) actually give the jump intensity vector and moment-

generating function vector under the risk-neutral measure. Hence, the second line of the

equation can be viewed as the jump-risk premium. The effect of uncertainty in (20) shows

up explicitly via the the ht term and in the perturbed jump intensity lηt and moment-

generating function ψη. Uncertainty amplifies the agent’s assessment of the frequency and

magnitude of jumps and also makes his assessment of their distribution more pessimistic,

thereby increasing the jump risk premia. Note that q2
t governs variation in several of the

terms in (20), making the level of uncertainty an important driver of the equity premium.

5.4 The Variance Premium and VIX

This section highlights the main reasons that the risk-neutral expectation of return vari-

ance (the squared VIX) contains an important uncertainty-related component and how the

variance premium is a good filter for this component. Numerical results illustrating these

points are provided in the calibration, while complete analytical expressions are derived in

Appendix F.

For notational convenience in what follows, let ∗ ∈ {P, η,Q} indicate the physical (P ),

worst-case (η), or risk-neutral (Q) probability measures. I take the reference model as the

description of the physical measure. Under the measure ∗ the expectation of integrated

return variance from time t to T is E∗t

[∫ T
t

(d lnRm,s)
2
]
, or taking the expectation inside

the integral,
∫ T
t
E∗t (d lnRm,s)

2. I want to highlight how this quantity differs across the

three measures. Consider E∗t (d lnRm,t)
2, the expectation of the squared return over the first
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instant. (19) implies that:

E∗t (d lnRm,t)
2 = B′rΣtΣ

′
tBr +B2

r
′ [
E∗(ξ2

t ) · l∗t
]

where l∗t = l∗1 q
2
t and l∗1 is the mean jump intensity under the ∗ measure (i.e. lP1 = l1,

lη1 = exp(a)lt, and lQ1 is derived in AppendixF). Note that the jump term depends on the

specific measure but the diffusion term does not. Under the worst-case model, the magnitude

and frequency of jumps is higher than under the reference model. Thus, EP (ξ2
t ) < Eη(ξ2

t )

and lP1 < lη1 , which implies that:

Eη
t (d lnRm,t)

2 − EP
t (d lnRm,t)

2 = B2
r
′ [
Eη(ξ2

t ) · l
η
1 − EP (ξ2

t ) · lP1
]
q2
t > 0 (21)

Therefore, over the first instant, expected variance is higher under η than P due to uncer-

tainty about the frequency and magnitude of jumps. Moreover, the difference is a multiple of

q2
t , so it varies directly with the level of uncertainty. In addition, we see that this component

has a greater weight in Eη
t (d lnRm,t)

2 than in EP
t (d lnRm,t)

2 and is therefore reflected more

strongly in the variation of worst-case expectations.

Recall that the agent does pricing, which determines risk-neutral probabilities, relative

to the worst-case measure. Relative to the worst-case measure, the risk-neutral measure tilts

probability mass towards states where marginal utility is high. In particular, states with

large, negative jump shocks have greater probability under Q than η, which implies that

Eη(ξ2
t ) < EQ(ξ2

t ) and lη1 < lQ1 . Combining this effect with (21) gives:

EQ
t (d lnRm,t)

2 − EP
t (d lnRm,t)

2 = B2
r
′
[
EQ(ξ2

t ) · l
Q
1 − EP (ξ2

t ) · lP1
]
q2
t > 0 (22)

To determine the differences in expected integrated variance across measures we also need to

know how the quantity E∗t (d lnRm,u)
2 evolves as u increases to some later time s. Consider

the difference in the ‘drift’ of this quantity between P and η. Part of the difference is due

to the drift perturbation (12) under the worst-case model. This perturbation increases the

drift of variables that are harmful to utility. These variables include q2
t and other variables

driving diffusion volatility, since increased volatility harms utility. As (12) shows, the size of

the drift perturbation is a multiple of q2
t and is therefore amplified by uncertainty. This means

E∗t (d lnRm,u)
2 has a higher drift under η than P and by an amount that varies positively

with uncertainty. Since we already showed that E∗t (d lnRm,u)
2 has a greater initial value
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under η, this implies that:∫ T

t

Eη
t (d lnRm,s)

2 >

∫ T

t

EP
t (d lnRm,s)

2

Moreover, variation in the difference between these two two quantities covaries with q2
t .

Moving to the risk-neutral measure further widens the difference in drifts. The combined

effect of the worst-case and risk-neutral measure transformations gives that:∫ T

t

EQ
t (d lnRm,s)

2 >

∫ T

t

Eη
t (d lnRm,s)

2 (23)

The one-month variance premium, vpt,t+1, is exactly the difference, for T = 1, between the

two expectations in (23). Thus, we have that vpt,t+1 > 0. A second point is that vpt,t+1

is a good filter for q2
t and the level of uncertainty. The reason is that, as (22) indicates,

differencing the expectations in (23) (largely) removes the influence of diffusion volatility on

vpt,t+1. This is an important point if the diffusion volatility is driven by variables other than

q2
t . This makes vpt,t+1 a good filter for q2

t , since it filters out most of the influence of these

other volatility drivers and so its variation mostly reflects variation in q2
t . Since vpt,t+1 is part

of the risk-neutral expectation of variance (the VIX) we also see that the VIX includes an

uncertainty component that is absent from physical expectations of return variance. Finally,

recall that the level of uncertainty is an important driver of variation in the equity premium.

This implies that equity returns should be predictable by vpt,t+1, and to a lesser extent by

the VIX.

6 Calibration

6.1 Reference Model Specification

I now specify the reference model for the calibration. The reference model is an expanded

version of the model in Bansal and Yaron (2004) (BY). As in BY, there is a small but

persistent component in consumption and dividend growth, which is denoted by xt. The
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cash flow processes are given by:

d lnCt =

(
µc + xt −

1

2
Φ2
cσ

2
t

)
dt+ σtΦcdZc,t

d lnDt =

(
µd + φxt −

1

2
Φ2
dσ

2
t

)
dt+ σtΦddZd,t

As in BY, φ represents the loading of dividend growth on xt and is greater than 1, reflecting

the fact that dividends are much more volatile than consumption.The (conditional) variance

of the consumption and dividend growth streams is driven by the stochastic process σ2
t , which

follows an autoregressive process. Hence, σ2
t governs the immediate level of risk in cash flow

growth rates. I assume there is no ambiguity about the structure of these immediate cash

flow growth rates and I let Y1,t = (lnCt, lnDt)
′. I also make q2

t follow an autoregressive

process and I let Y2,t = (σ2
t , xt, q

2
t ), so there is uncertainty about the dynamics of the three

persistent state variables.

To summarize, the state vector Yt and transition matrix K are given by:

Yt =


lnCt

lnDt

σ2
t

xt

q2
t

 K =


0 0 −1

2
Φ2
c 1 0

0 0 −1
2
Φ2
d φ 0

0 0 ρσ 0 0

0 0 0 ρx 0

0 0 0 0 ρq


In addition, let E(d lnCt) = µc, E(d lnDt) = µd, E(xt) = 0, E(σ2

t ) = 1 and E(q2
t ) = 1.18

These values fix the value of the vector µ in the diffusion. Setting E(q2
t ) = 1 and E(σ2

t ) = 1

is a convenient normalization that is without loss of generality. The diffusion covariance

matrix is:

Σ(Yt)Σ(Yt)
′ =

[
Hσσ

2
t 0

0 Hqq
2
t

]
where Hσ = diag (Φ2

c , Φ2
d) and Hq = diag

(
Φ2
σ, Φ2

x, Φ2
q

)
. Hence, the diffusions are uncorre-

lated. Finally, the jump intensity is specified by l1 = (0, 0, 0, l1,x, l1,q)
′ and the jump sizes are

ξt = (0, 0, 0, ξx,t, ξq,t)
′. The jumps in xt have a zero-mean normal distribution: ξx ∼ N(0, σ2

x).

The jump sizes in q2
t have a gamma distribution: ξq ∼ Γ(νq,

µq
νq

). Specifying a gamma jump

size guarantees that the q2
t process remains positive. This parametrization of the gamma

18The normalization E(q2t ) = 1 was already imposed in Section 3.3.
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distribution is convenient since it implies that E[ξq] = µq. The parameter νq is called the

‘shape’ parameter of the gamma distribution, while the other parameter is the ‘scale’ pa-

rameter. When νq = 1, which is the value used in the calibration, the gamma distribution

reduces to the exponential distribution.

Several factors motivate the introduction of two volatility processes and the choice of

partition of Yt. First, I wish to separate pure stochastic cash flow volatility from time-

varying model uncertainty. The majority of return volatility in structural pricing models

comes from cash flow volatility, as is also the case below. However, it need not be the case

that uncertainty moves in lock-step with cash flow (or return) volatility and creating separate

volatility processes enables the model to capture this potential separation. In terms of the

partition of Yt, it is reasonable that model uncertainty should be much less important for

immediate cash flows than for the dynamics of the state variables. The immediate cash flow

growth rates are comparatively easy to observe and measure, and they have low persistence.

On the other hand, the state variable dynamics are hard to measure and are potentially quite

persistent. The persistence means that relatively small, difficult-to-detect perturbations to

the state variable dynamics may have large cumulative effects. Model uncertainty is then

particularly relevant for the dynamics of these variables. Moreover, since shocks to these

persistent variables can have large effects, it is reasonable that the level of uncertainty and

the risk of these shocks move together. In Section (6.4.1) I also present results for a model

where the level of uncertainty is independent of all cash flow risks in order to illustrate in a

stark way the pure effects of time-varying uncertainty.

6.2 Parameter Values

In calibrating the model I use the following guidelines. I aim to find parameter values for

the model specification such that (i) once they are time-averaged to an annual level, the

model’s consumption and dividend growth statistics are consistent with salient features of

the consumption and dividend data (ii) the model generates unconditional moments of asset

prices, such as the equity premium and the risk-free rate that match those in the data (iii) the

model matches moments of market return volatility, the VIX, and the variance premium, as

well as the projections of stock returns on the variance premium. Finally, the calibration also

compares the model-generated implied-volatility curves for 1,3, and 12 month maturities with

their empirical counterparts. For the model calibration, I normalize the parameter values to
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a monthly interval, i.e. ∆t = 1 is one month. Table III provides the parameter values for

the calibration, which are now discussed.

The monthly normalization makes it easy to compare the parameter values to those in

Bansal and Yaron (2004). The cash flow parameters are similar to those in Bansal and

Yaron (2004), though xt here is somewhat less persistent. In comparing the parameter

values to those of a discrete-time model, it is important to remember that ρx in this model’s

continuous-time formulation maps to exp(ρx) in a discrete-time setup. Hence, the value of ρx

in Table III indeed implies that xt has high persistence and represents a long-run component

in consumption and dividend growth. As in BY, φ represents the sensitivity of dividend

growth to the long-run component, which is greater than that of consumption growth. The

volatility and uncertainty processes, σ2
t and q2

t , are also persistent, though significantly less

so than the volatility process in BY.

Table III also includes the jump parameters. Jumps in xt have a standard deviation that

is 2.25 times the average volatility of the xt diffusion, and occur at an average rate of 1 jump

per year. In contrast to the rare-disasters literature, these jumps are infrequent, but not

‘rare’, and are (potentially) large compared to the diffusion, but not ‘disastrous’. The Table

also shows that jumps in q2
t occur at an average rate of 0.75 jumps per year with a mean jump

size of 1.5. These jumps generate spikes in the level of uncertainty, which is instrumental in

capturing the high variance premium (and high price of options). Note that the frequency

of these jumps is comparable to what has been found in studies on the empirical properties

of returns and in empirical option-pricing literature (see e.g. Singleton (2006)).

Finally, the table shows the preference parameters. Relative risk aversion is set to 5,

which is right in the middle of the range considered by Mehra and Prescott (1985), and is

far lower than the levels of risk aversion typically needed to match the equity premium. The

agent’s aversion to model uncertainty is an important part of the reason that this low risk

aversion is able to match the equity premium. The IES is set 2, which corresponds to the

estimate from Bansal, Kiku, and Yaron (2007) and dampens the level and volatility of the

risk-free rate.

Finally, the mean level of uncertainty is set by the value of ϕ. This parameter’s value

is not interpretable directly. Rather, it is mapped to the detection-error probability for the

worst-case model. Detection-error probabilities are a useful tool for calibrating model uncer-

tainty that is due to Anderson, Hansen, and Sargent (2003). Suppose the worst-case model
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is the true data-generating process. The detection-error probability is the probability that a

likelihood ratio test will mistakenly reject the worst-case model in favor of the reference model

based on a sample of data of some finite length. It is given by the probability that, under the

worst-case model, the log-likelihood ratio of the worst-case and reference models is negative.

The parameter ϕ and the degree of uncertainty are deemed reasonable if the correspond-

ing worst-case model is sufficiently similar to the reference model that the detection-error

probability is sufficiently high. If the detection-error probability is sufficiently high, then

this means it is difficult to reject the worst-case model and the parameter ϕ is deemed rea-

sonable. Appendix G explains how to calculate exact detection-error probabilities using the

Radon-Nikodym derivative of the worst-case model. For simple i.i.d environments there is

an analytical formula. For the calibrated model, this calculation requires solving a set of

ODEs for the characteristic function of the Radon-Nikodym derivative and then calculating

a Fourier inversion numerically.19 The detection-error probability depends on the length

of the data history the agent considers for inference regarding the data-generating process.

This history is limited by both the availability of data records and also by any structural

breaks that may have occurred within the sample. Anderson, Hansen, and Sargent (2003)

consider 10% as a reasonable bound on the detection-error probability. I calibrate ϕ to

correspond to an 11% detection-error probability for the post-war sample. Note that two

indistinguishable models correspond to a maximum 50% (not 100%) detection-error proba-

bility. Naturally, if the useful sample is shorter then the detection-error probability is higher.

For comparison, the same ϕ implies detection-error probabilities of 16.4%, 26.0%, and 47.5%

for sample lengths of 40 years, 20 years, and 1 year respectively. These are non-trivial chances

of detection-error, so concerns about incorrectly rejecting the worst-case model seem quite

reasonable. It is interesting to note that infrequent jumps can lead to higher detection-error

probabilities. This is clear if one thinks of the extreme case of rare-events or ‘peso problems’,

where detection-errors are likely even with very long samples of data.

6.3 Results

Table IV provides the empirical moments and the corresponding statistics for the calibrated

model. In order to assess the model fit to the data, I provide model-based finite sample

statistics. Specifically, I present the model based 5%, 50% and 95% percentiles for the

19To my knowledge this is the first paper that reports exact detection-error probabilities for a jump-
diffusion setting. Maenhout (2006) is the first to describe how this can be done using Fourier methods.
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statistics of interest generated from 250 simulations, each based on the same sample length

as its data counterpart. The time increment used in the simulations is one month. For the

consumption and dividend dynamics I utilize the longest sample available, (1930:2006), so

the the simulations are based on 924 monthly observations which are time-averaged to an

annual sample of length 77, as in the data. I provide similar statistics for the the mean

and volatility of the market return, risk free rate, and price-dividend ratio. For the variance

premium-related statistics the data is monthly and available only for the latter part of the

sample (1990.1-2007.3). Thus, the model’s variance premium-related statistics are based on

the last 207 monthly observations in each of the 250 simulations. It is important to note that

the reference model’s dynamics are the ones being simulated. These are the right dynamics

to use for reporting simulation moments under the view that the calibration’s reference

model is the one used by agents and that it provides a good fit to the historical data (or in

fact generated it). Under this view, the data point estimates should be within the 5%-95%

percentile intervals generated by the model simulations. For completeness, I also provide

HAC robust standard errors for the data statistics.

The top panel in Table IV shows that the reference model captures quite well several

key moments of annualized consumption and dividend growth. The data-based mean and

volatility of dividends and consumption growth are in fact close to the median estimates

from the model and fall well within the 90% confidence interval. It is important to note

that even with the presence of jumps, the distribution of model moments is very reasonable.

The autocorrelations in the cash flow processes are also close to their model counterparts.

Hence, the calibrated reference model does a good job matching the cash flow data and is a

quite reasonable specification for agents to use as their reference model.

The second panel of Table IV presents some of the model’s asset pricing implications. This

panel shows annual data on the market, risk free rate and price-divided ratio. As mentioned

earlier, the corresponding model statistics are time averaged annual figures. The panel

shows that the model does a good job in capturing the equity premium and the volatility

of excess returns. The model is able to match the equity premium even with a relative

risk aversion of only 5. This reinforces the conclusion of other equilibrium models that have

included robustness concerns, for example Maenhout (2004) and Liu, Pan, and Wang (2005).

However, unlike the models in these two papers, the model here matches the equity premium

while also matching the properties of the consumption and dividend processes. Moreover,

the model here is able to simultaneously account for the volatility of the market return. The
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table further shows that the model captures the low mean and volatility of the risk free

rate. The rows labeled ‘skew’ and ‘kurt’ give the skewness and kurtosis of monthly excess

returns for the sample (1930:2006). The point of including these moments is to show that

the dynamics of the model, particulary the jumps, do not cause the return distribution to

be excessively heavy-tailed. Moreover, they show that the model does capture the negative

skewness and high kurtosis observed in the data.20 The one moment where the model falls

somewhat short is in generating the large volatility of the price-dividend ratio.

The bottom panel in Table IV provides a number of statistics pertaining to integrated

variance and the variance premium, all at the monthly horizon. The impact of time-varying

model uncertainty shows up very strongly here. Note first that the model is able to generate a

large average variance premium (E[V P ]), so that the model-based risk-neutral expectations

of variance are substantially larger on average than true expectations. Furthermore, the

model’s conditional variance premium is also volatile, as in the data. Both results reflect

the substantial impact of time-varying uncertainty concerns, as as discussed in Section 5.4.

The table further shows that the model’s median skewness and kurtosis for the variance

premium are right in line with the large values in the data, which is a result of periodic

spikes in the level of uncertainty. The first two lines of the panel also show that the model

almost exactly matches the volatility of expected integrated variance under the two measures

[σ(varPt (rm)) and σ(varQt (rm))], and that the risk-neutral expectation of integrated variance

varies substantially more than the physical expectation, as in the data. Finally, the model’s

median autocorrelation for the P and Q expectations of integrated variance are close to

the data and are easily within the 90% confidence interval. This shows that (monthly)

conditional return volatility inside the model is persistent, but not extremely so, as in the

data.

There are two main ways that uncertainty helps to produce a large and volatile variance

premium. As discussed in Section 5.4, several of the perturbations in the worst-case model

cause an increase in variance. Both the jump intensities and magnitudes are increased

under the worst-case model. For the calibrated model, approximately 57% of the entropy is

‘allocated’ to the jump perturbations. In addition, shocks to the drift perturbation, which

scales with the level of uncertainty, also increase expected variation. Time-variation in

20The kurtosis estimate may appear high relative to some other estimates. This is due to starting the
sample in 1930. By comparison, the (1950:2006) estimate for the kurtosis of monthly excess returns is 6.00
(1.74) and skewness is -0.78 (0.35).
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uncertainty also leads to a large variance premium because it causes shocks to q2
t to carry

a large, negative price of risk. This further increases risk-neutral expectations of integrated

variance. One reason q2
t shocks carry a high risk price is that q2

t drives variation in the level

of uncertainty and increases in uncertainty adversely affect the agent’s utility. In addition,

the drift perturbation in q2
t under the worst-case model causes its autocorrelation to increase

relative to the reference model, which increases the perceived impact of of any shocks to q2
t .

Therefore, the agent wants to hedge increases in q2
t and is willing to pay a high premium for

assets, such as options, that have a high payoff when uncertainty spikes up. Section 6.4.1

further analyzes the impact of time variation in uncertainty.

An increase in uncertainty and loss of confidence in the reference model increases the

distance between the worst-case and reference models. The agent then perceives that growth

prospects are worse (through the perturbations to xt) and that jump risks are higher. Both

affects cause prices to decrease and increase expected returns. High levels of uncertainty

are therefore associated with high expected equity returns and the level of uncertainty has

predictive power for stock returns. Since the variance premium acts as a filter for the

level of uncertainty, it should be a predictor of excess stock returns. Section 2 highlighted

the predictive ability of the variance premium in the data. As the bottom panel of Table

IV shows, the model captures this predictability. The bottom of the panel presents the

projection coefficients in the data and in the model for predictive regressions of excess returns

on the variance premium for horizons of one, three and six months. As the table shows, the

projection coefficients have the right sign and the median values are roughly in line with

the data estimates. As in the data, the model-based R2s are quite large for these short

horizons. The model median R2 for the one-month ahead projection is close to 2% and the

90% finite sample distribution of R2 clearly includes the 1.5% R2 from the data. For the 3

and 6-month ahead projections, the median R2 increases to 3.9% and 5.3% inside the model,

which, though high, is similar to the 5.9% and 4.0% values in the data. Overall, the results

of Table IV indicate that the model can capture quite well the cash flow, asset pricing and

variance-related moments in the data.

6.3.1 Variance under P and Q and Predictability

There is a long literature in empirical asset pricing that has looked at whether the conditional

variance of stock returns predicts expected excess stock returns. This literature has come to
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mixed conclusions, with some early studies finding predictive power while others have not.

The recent work in Ghysels, Santa-Clara, and Valkanov (2005) claims to find this relation by

more precisely measuring conditional volatility. Bollerslev and Zhou (2007) first pointed out

that the variance premium appears to be a stronger predictor of excess stock returns than

conditional variance. The model in this paper makes predictions that are consistent with

this finding. Within the model, both σ2
t and q2

t drive variation in the conditional variance

of returns. However, the majority of the variation in the equity risk premium comes from

variation in q2
t . As pointed out in Section 5.4, the variance premium is a essentially a filter

for q2
t , and should therefore be a better predictor of excess returns than just the conditional

variance.

This point can be seen in Table V, which provides a more in-depth look at the properties of

expected integrated variance under the P and Q measures. The top panel displays properties

of P -measure expected integrated variance, which corresponds closely to conditional one-

month variance. The bottom panel looks at the Q-measure expectation, which replicates

the (squared) VIX inside the model. Comparing the P -measure variance’s predictive R2 for

excess stock returns to the predictive power of the variance premium in Table IV, we see that

inside the model the variance premium has stronger predictive power than the conditional

variance. At the median values for both the 1 and 3 month horizons, the predictive power

of the variance premium is over 50% greater than for the P -measure expected variance.

The bottom panel shows that the predictive power of Q-measure expected variance (i.e the

VIX2) falls in between that of conditional variance and the variance premium, for the two

maturities both in the data and the model. As explained earlier, this results from the fact

that the risk-neutral expectations more strongly reflect the level of q2
t , which is an important

driver of the conditional equity premium. This is further indicated by the skewness and

kurtosis statistics of both the model and data, which reflect the fact that variation in q2
t

has the greatest influence on the variance premium and the smallest influence on P -measure

expectations of variance. Note that the model matches the empirical skewness and kurtosis

moments very well. Along the same lines, the table also shows that the median correlation

in the model between the variance premium and Q-measure expected variance is higher

than the correlation between the variance premium and P -measure conditional variance.

This is consistent with the data. The model also does a very good job matching the actual

correlation values and the fact that the correlation between any two of the three series is

quite high.
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6.3.2 Option Prices and the Volatility Surface

Although the variance premium is a statistic that captures the premia embedded in option

prices, one may also be be interested in the whole volatility surface implied by the model. To

that end, I determine option prices for the calibrated model and calculate their Black-Scholes

implied-volatilities. I calculate the option prices by using Fourier-transform techniques. I

first solve a system of ODEs for the characteristic function of the state vector as in Duffie,

Pan, and Singleton (2000) and then calculate and invert the option transform based on the

method of Madan and Carr (1999). Figure 1 contains two plots that show the model-based

and empirical implied volatility curves at maturities of 1, 3 and 12 months for strikes ranging

in moneyness (Strike/Spot Price) from 0.75 to 1.25. This represents a very wide range of

strikes for short-maturity options. The curves in the top plot are the average daily implied

volatilities for options on the S&P 500 index traded in the over-the-counter market. The

data is obtained from Citigroup and covers October 1999 to June 2008. The range of strikes

available in the otc market for index options is often much broader than for exchange-traded

options. See Foresi and Wu (2005) for more details on the otc market. The model-based

option prices are computed by setting the state vector Yt equal to its unconditional mean.

Figure 1 shows the the model does quite a good job matching both the overall shape and

actual values of the implied volatility curves. In particular, it captures the vol skew, the

steep slope in implied vols for out-of-the-money put prices (low moneyness). This feature

exists at all three maturities, but is particularly pronounced for the 1-month maturity. The

model also does a very nice job replicating the decay in the skew as the horizon increases. It

further matches the shallow positive slope in the vol surface for at-the-money vols, whereby

the 1-year at-the-money vol is the highest and the 1-month vol the lowest.

Figure 2 provides a closer look at the one and three month implied vol curves. The top

plot shows the 1-month curves. Note that in addition to doing a good job in matching the

very steep slope in the curve at low moneyness strikes, the model also replicates the smirk,

the slight increase in implied volatility at high moneyness strikes. However, it is apparent

that the model-based curve does not ‘dip’ as low as the empirical one. The same thing

happens for the 3-month curves in the bottom plot. The model fit is very good for low

moneyness strikes but not as good for high-moneyness.
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6.4 The Impact of Uncertainty

Table VI conducts a two-part comparative statistics exercise on the model of Table III by

shutting off uncertainty with respect to parts of the model’s dynamics. The first panel,

labeled Model 1-A, is for a model that shuts off uncertainty with regards to only the jump

shocks in the model, leaving on uncertainty regarding the diffusive parts of the dynamics.

Thus, the jump parameters do not change in moving from the reference to the worst-case

model. The second panel, Model 1-B, turns off all model uncertainty, so the agent has full

confidence in the reference model. This exercise is intended to assess the impact of model

ambiguity on the asset prices. The table shows only the asset price data, since the reference

model cash flow dynamics are unaffected.

The top panel, Model 1-A, shows that eliminating ambiguity with respect to the jump

shocks reduces the median equity premium, though the equity premium remains nontrivial.

The other moments in the top panel are not greatly affected. Return volatility is reduced

a little and the kurtosis of the monthly returns decreases somewhat. Note that for model

1-A the ‘distance’ to the worst-case model is the same as before (i.e. the relative entropy of

the worst-case model is the same). For Model 1-B, where entropy is zero and the worst-case

model is reduced to the reference model, the median equity premium becomes quite small.

The bottom panel shows the impact of uncertainty on the variance premium. The re-

sults for Model 1-A show that eliminating uncertainty regarding the jump components of

the model greatly reduces the size and volatility of the variance premium. The average

variance premium is reduced by almost an order of magnitude and the 90th percentile of

the simulations is nowhere near the data estimates. Eliminating all ambiguity in Model 1-B

reduces the average variance premium even further, so that it is essentially zero. Finally, the

predictive R2 of the variance premium is reduced successively in the two models. As pointed

out by Drechsler and Yaron (2008), the variance premium’s predictive power comes largely

from the fact that it reveals the probability (intensity) of jump shocks. When the jump

intensity is not directly amplified under the worst-case model, as in Model 1-A, the jumps’

importance decreases along with the predictive power of the variance premium. Without any

model uncertainty, as in Model 1-B, the influence of q2
t on risk premia is greatly diminished,

as is its predictive power. This is apparent in the diminished median R2s shown in the table.

Lastly, as the variance premium becomes very small, the predictive regression coefficients

become very unstable. If the variance premium was this small empirically, it would likely be
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obscured by estimation noise.

Finally, the results from the table are reinforced by Figures 3 and 4, which plot the

implied-volatility curves for Model 1-B. The figures show that the model generated implied-

volatility curves are very flat and that the model does not capture the steep skew in implied-

volatility. This is particularly at apparent the 1-month maturity, though it is just as much

a problem at maturities of 3 and 12 months.

6.4.1 Illustrating the Impact of Time-Variation

To focus on the mechanism by which time-variation in uncertainty contributes to the level

and variation of the variance premium, I consider a modified version of the main model from

the calibration. Starting with the main model, I set xt to be homoscedastic and I turn off

jump shocks in xt. Thus, the gaussian volatility of xt is Φx rather than Φx × qt and l1,x = 0

(no jumps). The rest of the reference model dynamics are unchanged. Notably, I leave in

jump shocks in q2
t . I restrict uncertainty solely to xt, so that the only perturbation under

the worst-case model is in the drift of xt. This drift perturbation takes the same form as in

(2) and is given by the scalar − 1
λ̃
Φ2
xA(x)q2

t , where A(x) is the loading of the value function

on xt (the xt component of the vector A, see Proposition 1). Since utility loads positively

on xt, A(x) > 0, the perturbation decreases the drift in xt under the worst-case model. This

is intuitive as the agent fears lower consumption growth rates. As before, the perturbation

scales with q2
t so that increases in uncertainty result in a more negative assessment of the

drift in growth rates.21

Unlike the main calibration model, where the uncertainty process co-moves with the

conditional volatility in xt, here xt is homoscedastic and q2
t is independent of the rest of the

processes. Although assuming that q2
t is orthogonal to the other processes seems extreme, it

allows me to starkly illustrate some mechanisms inherent in the main model. I illustrate that

time-variation in uncertainty helps substantially to generate: (1) the level of the variance

premium (2) variation in the variance premium and the VIX (3) return predictability by the

option-related measures. As is the case for the main model, the inclusion of sharp increases

in uncertainty (jumps) has a big impact on the magnitudes of these effects. To see how

21To maintain the affine structure for the perturbation I change the structure of the entropy constraint
to R(ηt) ≤ ϕ(q2t )2. This effects calculation of the detection-error probabilities. As this model is used for
illustration, I do not discuss the exact calculation of the detection-error probabilities.
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time-variation in uncertainty contributes to the variance premium in this model, consider

the effect of an upward spike in uncertainty. The result is a shock downward in the agent’s

worst-case assessment of the drift in the long-run growth rate. Since the agent perceives

lower future growth rates, the equity return in such states tends to be large and negative.

Moreover, such uncertainty shocks represent bad states of the world and therefore carry high

state-prices. The combination of potentially large return moves and high state-prices implies

a high risk-neutral conditional variance and a substantial variance premium.

To illustrate this quantitatively, I simulate the model as well as a variant of it that

fixes the level of uncertainty and compare their resulting statistics. The caption in Table

VII gives the parameters used in the simulation. The major difference relative to the main

model calibration is that I amplify the intensity and size of the jumps in q2
t . This is done

for illustrative purposes, as the model is missing several sources of risk relative to the main

calibration. For the variant with constant uncertainty, I turn off all variation in q2
t and raise

risk aversion to get the same equity premium. Table VII shows the simulation outputs. The

left side of the table gives the results with time-varying uncertainty and the right side is

for constant uncertainty. Notice that the model with time-varying uncertainty produces a

modest but non-trivial variance premium level and volatility. In contrast, the right side shows

that shutting off time-variation in uncertainty drops the variance premium to essentially 0.

Similarly, with time-varying uncertainty, the predictive power of the variance premium for

one and three month returns is sizeable at around 1.5% and 3.0% but is close to 0 when

time-varying uncertainty is shut off. In addition, with time-varying uncertainty the predictive

power of the variance premium is substantially larger than that of the conditional variance,

with the VIX’s falling in between. This result, which was discussed for the main model

calibration, arises because the variance premium acts like a filter for q2
t , so that variation

in q2
t is reflected more strongly in the variance premium than in the conditional variance.

The contrast in predictive power is more stark here than for the main model since here q2
t is

unrelated to volatility. On the right side, by construction, the predictive power of all three

quantities is identical, since there is only one driver of variation (i.e. σ2
t ). Similarly, the

left side shows that the conditional variance and VIX are more volatile when uncertainty is

time-varying. This is not surprising as variation in uncertainty represents a second channel

causing changes in the conditional variance.
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6.5 Forecast Dispersion and the VIX

Figure 5 provides further support for the link between the VIX and (model) uncertainty. To

measure uncertainty I use the dispersion in forecasts of next quarter’s real GDP growth from

the Philadelphia Fed’s Survey of Professional Forecasters (SPF). The dispersion is measured

simply as the standard deviation in the growth forecasts. Since the forecasters have access

to the same public information, the dispersion in their forecasts should capture differences in

their models.22 If we take the set of models they use as the representative agent’s alternative

set of models, then the dispersion should capture the size of the alternative set. This approach

to measuring uncertainty is closely related to the empirical approach in Anderson, Ghysels,

and Juergens (2007).

The figure plots the quarterly dispersion measure along with the value of the VIX at the

end of the previous quarter. The two series appear to be strongly related. Their correlation

is 0.48, with a standard error of 0.11. Moreover, the two series tend to spike at the same

time, particularly in 1987-88, 1990-91, and 2001-2002. The economic turmoil of 2008 has

also caused both to spike. One notable exception to their strong comovement is the financial

crisis of 1998, which caused a sharp spike in the VIX without a corresponding strong increase

in forecast dispersion. Perhaps this exception can be attributed to the fact that the 1998

episode was quite short-lived and also did not appear to be directly related to economic

events in the US. For completeness, I also calculate the correlation between the level of q2
t

and the model-implied VIX for the main calibration. For the calibrated model simulations,

the 5, 50, and 95 percentiles of this correlation are 52%, 78%, and 94% respectively. The

high correlation confirms that the model-generated VIX strongly reflects uncertainty, though

it is also clear that the correlation is not perfect.

7 Conclusion

An important aspect of studying asset prices in equilibrium models is that fundamental risk

prices arise endogenously from the solution of the model and depend jointly on dynamics and

preferences. This can make it difficult to match empirically observed risk premia, such as the

large variance premium embedded in option prices. Time-varying model uncertainty presents

22The Philadelphia Fed makes a point of sending with their questionnaire the data from the BEA’s advance
report and other recent reports of economic data.
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an intuitively appealing and promising direction for explaining these high risk premia. To

explore this avenue quantitatively requires building models with a structure rich enough

to enable uncertainty concerns to have their full implications. Tractability is an obstacle

to solving for equilibrium in these models and imposes an additional layer of complexity

in solving for asset prices. This paper builds a flexible equilibrium framework with time-

varying model uncertainty concerns and solves for the ‘worst-case’ model and equilibrium

asset prices.

The paper conducts a quantitative calibration of a model where there is time-varying

uncertainty regarding the diffusive and jump shock shocks to the mean and volatility of long-

run cash-flow growth rates. Jump shocks and persistent growth dynamics present important

model specification concerns since perturbations to them are potentially harmful to utility

and are also statistically difficult to detect. The calibrated model is able to generate the

large variance premium in options and the high vol skew while simultaneously matching

the moments of cash-flows, the equity premium and risk-free rate. It demonstrates that

uncertainty and its time-variation are central to capturing the variance premium and the

ability of option-related quantities to predict equity returns. It also predicts, consistent with

the data, that these option-implied measures should have greater predictive power for returns

than statistical variance measures, since they reflect the level of uncertainty more strongly.
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Appendix

A Measure Change and Entropy for Jumps

A.1 Derivation of Measure Changes

Recall that ηt = ηdZt ηJt . I derive expressions for ηdZt and ηJt corresponding to the alternative
model dynamics discussed in the main text.

ηdZt solves the SDE
dηdZt
ηdZt

= hTt dZt. An application of Ito’s lemma shows that its solution

is:

ηdZt = exp

(∫ t

0

hTs dZs −
1

2

∫ t

0

hTs hsds

)
Note that ηdZt is a martingale and that ηdZ0 = 1. Let P (η) be the measure that results
from application of η to the reference measure P . Girsanov’s theorem then implies that
Zη
t = Zt−

∫
htdt is a Brownian motion under P (η). Writing the dynamics (1) in terms of Zη

t

alters the drift by adding to it the term Σ(Yt)ht, as in (2). This accounts for the perturbation
to the drift under P (η).

Since the Poisson process arrivals are (conditionally) independent and the jump sizes are
i.i.d, the expression for ηJt can be written as ηJ1

t η
J2
t . . . where ηJit changes the probability

law for the i-th jump component. I construct such terms to change the distribution of
gamma-distributed jumps and normally distributed jumps.

Consider first gamma-distributed jumps, ξi ∼ Γ(k, θ), where k and θ are the shape and
scale parameters respectively. I want to construct the corresponding term ηJit in the Radon-
Nikodym derivative so that under P (η) the jump distribution is given by ξηi ∼ Γ

(
k, θ

1−θb

)
,

where b is the parameter that changes the gamma distribution’s scale. I further specify the
measure change so that the corresponding jump intensity changes from lt,i to lηt,i = exp(a)lt,i,

i.e. it is scaled by the term exp(a) where a is a perturbation parameter. The desired ηJit
solves the following SDE:

dηJit = (exp [a+ bξi − lnψi(b)]− 1) ηJit−dNt − (exp(a)− 1) lt,iη
Ji
t dt

where ψi(b) is the moment-generating function of ξi evaluated at b. An application of Ito’s
lemma shows that ηJit is given by:

ηJit = exp

(∫ t

0

(a+ bξi,s − lnψi(b)) dNs −
∫ t

0

ls,i (exp(a)− 1) ds

)
Note that the process ηJit is a martingale and ηJi0 = 1. Girsanov’s theorem for jump processes
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then implies that under P (η), the jump intensity is scaled by exp(a), as desired. Furthermore,
under P (η) the moment-generating function of ξi is given by:

ψηi (u) =
ψηi (b+ u)

ψi(b)

Straightforward substitution of the mgf for a gamma distribution shows that ψηi (u) is the
mgf of a Γ

(
k, θ

1−θb

)
, as desired.

Finally, I consider normally-distributed jumps, ξk ∼ N (µ, σ2). I want to construct the
corresponding term ηJkt in the Radon-Nikodym derivative so that under P (η) the jump
distribution is given by ξηk ∼ N (µ+ ∆µ, σ2sσ), where ∆µ shifts the mean and sσ scales the
variance of the distribution. I further specify the measure change so that the corresponding
jump intensity changes to lηt,k = exp(a)lt,k. The desired ηJkt is given by:

ηJkt = exp

(∫ t

0

(
a+ b2ξ

2
k + b1ξk −

1

2

[
(µ+ ∆µ)2

sσσ2
− µ

σ2
+ ln sσ

])
dNs −

∫ t

0

lt,k (exp(a)− 1) ds

)
where b1 = µ(1−sσ)+∆µ

sσσ2 and b2 = 1
2

1
σ2

(
1− 1

sσ

)
. By construction, the process ηJkt is a martin-

gale and ηJkt = 1.

Finally, since the the terms composing ηt are all martingales and have zero cross-variation
(they are conditionally independent) ηt is a martingale with η0 = 1 and therefore the measure
P (η) is indeed a probability measure.

A.2 Derivation of Relative Entropy Growth for Jumps

As discussed in the main text, the relative entropy growth rate is defined as R(ηt) =
d
ds |s=0

Eη
t [ln ηt+s]. Since ηt = ηdZt ηJt , we can compute the relative entropy growth rate of

the diffusion and jump parts separately and then add them. Furthermore, we can determine
R(ηJT ) by adding the the relative entropy growth rates of the component jumps.

To determine R(ηdZt ), write ln ηdZt in terms of Zη
t rather than Zt. We then have that

ln ηdZt+s = 1
2

∫ t+s
t

hTuhudu+
∫ t+s
t

hTudZ
η
u . Since the second term is a martingale under P (η), its

time-t expectation is 0. It is then clear that

R(ηdZt ) =
1

2
hTt ht

Now consider R(ηJi), where ηJi is the term in ηt that changes the probability law for
the gamma-distributed jumps (from Appendix A.1). To find R(ηJi), I recall two facts: (1)
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lηt = exp(a)lt (2) Eη
t [ξi] = kθ

1−θb . Using these facts, a straightforward calculation shows that:

R(ηJi) = exp(a)lt

(
a+ b

kθ

1− θb
+ k ln(1− θb)− 1

)
+ lt

Finally, consider R(ηJk), where ηJk is the term in ηt that changes the probability law
for the normally-distributed jumps (from Appendix A.1). Straightforward calculations and
algebraic simplification show that:

R(ηJk) = exp(a)lt

(
a+

1

2

∆µ2

σ2
+

1

2
sσ −

1

2
ln sσ −

3

2

)
+ lt

B HJB Equation Derivation

Substituting (8) into the aggregator (5) gives:

f(Ct, Jt) = δ exp
(
γg(Ỹt) + γ lnCt

)exp
(
−ρg(Ỹt)

)
− 1

ρ


Using Ito’s lemma, we have that:

Et[dJ
c] = JTY µ(Yt)dt+

1

2
tr
[
JY Y Σ(YT )Σ(Yt)

T
]
dt

where tr denotes the trace operator. For notational convenience, let G(Yt) = g(Ỹt) + lnCt,
so that we can write J(Yt) = exp(γG(Yt))/γ. Furthermore, let GY (Yt) and GY Y (Yt) denote
the gradient and Hessian matrix of G(Yt). Then JY = exp(γG(Yt))GY (Yt) and JY Y =
exp(γG(Yt))

[
γGYG

T
Y +GY Y

]
. The HJB equation (6) can then be rewritten as:

0 = min
P (ηt)

δ

ρ
exp(γG(Yt))

[
exp

(
−ρg(Ỹt)

)
− 1
]

+ exp(γG(Yt))G
T
Y µ(Ỹt) + exp(γG(Yt))G

T
Y2

Σ2,th2,t

+
1

2
exp(γG(Yt))tr

[
γGT

Y ΣtΣ
T
t GY +GY Y ΣtΣ

T
t

]
+ Eη

t

[
exp

(
γG(Yt− + ξt · dNt)

)
− exp

(
γG(Yt−)

)]
s.t. R(ηt) ≤ ϕq2

t (B.1)

where the arguments of the derivatives have been omitted to reduce clutter. Note that the
term Σ2,th2,t is due to the drift perturbation under P (η) and that GY2 just denotes the
derivative of G(Y ) with respect to Y2,t.
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C Equilibrium Consumption-Wealth Ratio

In equilibrium, markets clear so that the representative agent must hold all of his wealth
in the aggregate consumption claim. To derive the equilibrium consumption-wealth ratio,
consider the consumption and portfolio problem of the representative agent in this endow-
ment setting. Under the reference measure, the price of the aggregate consumption claim Pc
follows an Itô process of the form:

dPc,t = (Pc,tuc,t − Ct)dt+ Pc,tσ
T
c,tdZt + Pc,t−(exp(∆ lnPc,t)− 1)

There is also a risk-free money market account in zero-net supply, paying an endogenously
determined rate rf,t. The agent chooses the proportion αt of his wealth, Wt, to invest in the
consumption claim. His budget constraint is then:

dWt = Wt [αt(uc,t − rf,t) + rf,t] dt+ αtWtσ
T
c,tdZt + αt(exp(∆ lnPc,t)− 1)− Ctdt

The lifetime utility of the agent J(Wt, Ỹt) is a function of Wt and the state variables for the
dynamics, Ỹt. The agent’s HJB equation is:

0 = min
P (ηt)

sup
{αt,Ct}

f(Ct, Jt) + Eη
t [dJ ]

subject to the restriction on R(ηt). We are interested in the agent’s first-order condition
with respect to Ct. Writing out the Lagrangian and taking the derivative with respect to
Ct, the FOC is:

fC(C, J) = JW

Homogeneity of the preferences in wealth and linearity of the budget constraint imply that
the value function must take the form J(W, Ỹ ) = H(Ỹ )W

γ

γ
for some function H. Substituting

in for f(C, J) and JW their functional forms, simplifying, and rearranging, one obtains:

C

W
= H(Ỹ )

1−ψ
γ δψ (C.1)

We want to obtain the consumption-wealth ratio in terms of the function g(Ỹ ). In equilib-
rium, the market clears and the agent consumes exactly the aggregate consumption stream,
so lifetime utility is given by the equilibrium value of J in (8). Equating the two expressions
for J and dividing through by W γ gives:

H(Ỹ ) = exp
(
γg(Ỹ )

)( C
W

)γ

42



Substituting this in for H(Ỹ ) in (C.1) and solving for C
W

gives the result:

Ct
Wt

= exp
(
−ρg(Ỹt)

)
δ (C.2)

D Proof of Proposition 1

The first step is to substitute the conjecture g(Ỹt) = A0 + A′Ỹt into the expanded HJB
equation (B.1) derived in Appendix B. To facilitate this, let Â denote the vector obtained
by augmenting A with a component equal to 1, so that δ′cÂ = 1. Then we can concisely
write G(Yt) = A0 + Â′Yt. Moreover, we see that GY = Â and GY Y = 0. In addition, let
Â == [Â1, Â2]′ be partitioned in the same way as Y = [Y1, Y2]′. Then we can write GY2 = Â2.
We can substitute in for the diffusion terms in (B.1). For the jump terms, we have:

Eη
t

[
exp

(
G(Yt− + ξt · dNt)

)
− exp

(
G(Yt−)

)]
=

exp (γG(Yt))

γ
Eη
t

[
exp

(
γÂ′ (ξt · dNt)

)
− 1
]

=
exp (γG(Yt))

γ
lηt
′
(
ψη(γÂ)− 1

)
where, as before, ψη(γÂ) denotes the stacked vector of P (η)-measure moment-generating

functions evaluated componentwise at the vector γÂ. I write out the functional form of
these moment-generating functions for the two types of jumps considered, normal jumps and
gamma jumps. Let ξi and ξk be the gamma and normally-distributed jumps, respectively. As
shown in Appendix A.1, under P (η) we have: ξi ∼ Γ

(
k, θ

1−θb

)
and ξk ∼ N (µ+ ∆µ, σ2sσ).

Therefore, ψηi (γÂi) =
(

1− θγÂi
1−θb

)−k
and ψηk(γÂk) = exp

(
γÂk (µ+ ∆µ) + 1

2
γ2Â2

kσ
2sσ

)
.

Substituting the derived expressions into (B.1) and factoring out the term exp(γG(Yt))
gives the following:

0 = min
P (ηt)

exp(γG(Yt))×
{
δ

ρ

[
exp

(
−ρg(Ỹt)

)
− 1
]

+ Â′µ(Ỹt) + Â′2Σ2,th2,t (D.1)

+
1

2
γÂ′ΣtΣ

T
t Â+

1

γ
lηt
′
(
ψη(γÂ)− 1

)}
s.t. R(ηt) ≤ ϕq2

t

We can now proceed with the minimization. Let λt be the lagrange multiplier on the con-
straint R(ηt) ≤ ϕq2

t . The functional form of R(ηt) in terms of the worst-case parameters is
given by the sum of the expressions in Appendix A.2. The first-order conditions for the min-
imization are taken with respect to the the worst-case model parameters (h2,t, a,∆u, sσ, b).
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They are:

FOC(h2,t) : exp(γG(Yt))Σ
′
2,tÂ2 + λth2,t = 0

FOC(∆µ) : exp(γG(Yt))
1

γ
lηt,k

∂

∂∆µ
ψη(γAk) + λt

∂

∂∆µ
R(ηJkt ) = 0

FOC(b) : exp(γG(Yt))
1

γ
lηt,k

∂

∂sσ
ψη(γAk) + λt

∂

∂sσ
R(ηJkt ) = 0

FOC(sσ) : exp(γG(Yt))
1

γ
lηt,i

∂

∂b
ψη(γAi) + λt

∂

∂b
R(ηJit ) = 0

FOC(a) : exp(γG(Yt))
1

γ
exp(a)lt

′
(
ψη(γÂ)− 1

)
+ λt

∂

∂a
R(ηt) = 0

Moreover, the entropy constraint binds, which adds the equation: R(ηt) = ϕq2
t . For a given

value of the vector A, these equations fix the values of the worst-case parameters. To solve
the system, I make the following conjecture: λt = λ̃ exp(γG(Yt)) where λ̃ > 0 is a constant
that defines the part of the lagrange multiplier that is state-independent. By substituting
this conjecture into the above system, I can divide through by exp(γG(Yt)) in each of the
equations and cancel the state-dependent terms exp(γG(Yt)) and λt, leaving the constant λ̃.

Solving the first equation, we obtain: h2,t = − 1
λ̃
Σ′2,tÂ2. This implies that the perturbation

in the model drift is Σ2,th2,t = − 1
λ̃
HqA2q

2
t and the contribution of ht to R(ηt) is 1

2
h′tht =

1
2

1
λ̃2A

′
2HqA2q

2
t . Thus, the drift perturbation is proportional to q2

t and the perturbation’s cost

in terms of entropy is also proportional to q2
t . This expression for the drift’s entropy cost

can now be substituted into the entropy constraint and we can eliminate the FOC for h2,t

from the above system.

The remaining issue for solving this system is the dependence of a number of terms on
the level of q2

t . As just shown, the term 1
2
h′tht in the entropy constraint is proportional to

q2
t . Furthermore, the jump intensity lt, which is proportional to q2

t , appears in the other
FOC’s. It appears both explicitly on the left side of each equation and implicitly in the
partial derivatives of R (the expression for R is in Appendix A.2). This means that all of
the remaining equations are in fact proportional to q2

t and so q2
t can be canceled out from

all of them. The resulting equation system is now completely state-independent and has as
its solution the constant vector of worst-case parameters (a,∆u, sσ, b) and λ̃.

The remaining step is to find the equations determining the value of the vector A
and in the process verify the conjectured solution for g(Ỹt). To that end, I approximate
the term exp(−ρg(Ỹt)) in (D.1) via a log-linearization. As (C.2) shows, exp(−ρg(Ỹt)) is
just 1

δ
times the equilibrium consumption-wealth ratio. I follow Campbell, Chacko, Ro-

driguez, and Viciera (2004) and log-linearize it around the unconditional mean of the equi-
librium log consumption-wealth ratio as follows: exp(−ρg(Ỹt)) ≈ κ0 + κ1ρg(Ỹt) where
κ1 = − exp(−ρE[g(Ỹt)]) and κ0 = −κ1(1 + ρE[g(Ỹt)]) = −κ1(1 − ln(−κ1)). Note that
the values of κ0, κ1 are endogenous to the equilibrium solution of the model. As Campbell,

44



Chacko, Rodriguez, and Viciera (2004) point out, this property of the approximation is im-
portant in obtaining accuracy over a range of values for ψ and γ. Furthermore, L’Hospital’s

rule gives that: limρ→0
exp(−ρg(Ỹt))−1

ρ
= −g(Ỹt) = limρ→0

κ0+κ1ρg(Ỹt)−1
ρ

so the approximation

to the PDE becomes exact as ρ → 0 (ψ → 1). Substituting in this approximation and the

functional form of g(Ỹt), the first term in (D.1) becomes δ
(
κ0−1
ρ

+ κ1A0

)
+ δκ1A

′Ỹt.

Given the worst-case model parameters, (D.1) must hold for all values of Ỹt. The solution
to this equation determines the values of A and A0 and verifies the conjectured solution for
g(Ỹt). As Ỹt is (n− 1)-dimensional, the system of equations is n-dimensional, one equation
for each of the (n− 1) elements in Ỹt and one for the constant terms. Expanding out (D.1)
(and using the log-linearization), we get the following system:

0 =
δ

ρ
(κ0 + κ1ρA0 − 1) + ÂTµ

0 = Ỹ T
t Aδκ1 + Ỹ T

t K̃T Â−
1

λ̃

(
ÂT2HqÂ2

)
q2
t +

1

2
γÂTΣtΣ

T
t Â+

1

γ
lη1
′
(
ψη(γÂ)− 1

)
q2
t (D.2)

Combining these equations with the FOC’s above and the equations defining κ0 and κ1 gives
the system of equations that defines the equilibrium solution. The solution can be found
numerically and verifies the conjectured functional form for the value function.

E Equity Return

I follow the approach of Eraker and Shaliastovich (2008). Let lnVt+s = lnMt+s − lnMt +∫ t+s
t

d lnRm,u. The Euler equation implies that Vt is a martingale under the worst-case
measure:

Eη
t [d lnV c

t +
1

2
(d lnVt)

2 + exp(∆ lnVt)− 1] = 0 (E.1)

where d lnVt = d lnMt + d lnRm,t. Log-linearizing d lnRm,t around the unconditional mean
of vm,t implies (17). Further substituting in the conjecture (18) for vm,t gives (19), which
expresses d lnRm,t in terms of A0,m, Am and the state variables. Substituting the expression
for d lnRm,t into d lnVt along with the expression for d lnMt (15) gives:

d lnVt = −θδdt−(1−θ)δ exp
(
−ρA0 − ρA′Ỹt

)
dt+κ0,mdt−(1−κ1,m)(A0,m+A′mYt)dt+χ

′
mdYt

where χm = (−Λ + κ1,mAm + δd). I now employ the exact same log-linearization (9) to
exp(−ρA0 + −ρA′Ỹt) and replace it with κ0 + κ1ρA0 + κ1ρA

′Ỹt. Then substituting d lnVt
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into (E.1) and evaluating the expectation results in the following equation:

0 = −θδdt− (1− θ) [δκ0 + δκ1ρA0] dt+ κ0,mdt− (1− κ1,m)A0,mdt+ χ′mE
η
t [dY c

t ]

+
[
(θ − 1)δκ1ρ(Â− δc) + (κ1,m − 1)Am

]′
Ytdt+

1

2
χTmΣtΣ

T
t χm + lηt

′ (ψη(χm)− 1) (E.2)

We can now use the method of undetermined coefficients. This equation must hold for any
value of Yt, which implies that for each component in Yt the sum of the terms multiplying
it must be 0. Furthermore, the sum of the constant terms must be 0. Thus, the equation
implies a system of n + 1 equations whose solution is the n × 1 vector Am and the scalar
A0,m. The solution can be found numerically and verifies the conjectured functional form
(18) for vm,t.

F Integrated Variance

For convenience, let ∗ ∈ {P, η,Q} refer to either the reference, worst-case, or risk-neutral
measure, respectively. Equation (19) implies thatE∗t (d lnRm,t)

2 = B′rΣtΣ
′
tBr+B

2
r
′
[E∗(ξ2

t ) · l∗t ],
where B2

r denotes the vector obtained by squaring the components of Br. We want to

calculate the expectation of integrated variance: E∗t [
∫ T
t

(d lnRm,s)
2] =

∫ T
t
E∗t (d lnRm,s)

2.
To that end, it is useful to write E∗t (d lnRm,t)

2 = α∗0 + α∗′Yt where α0 is a scalar and
α is a vector of loadings on the state Yt. The law of iterated expectations implies that:∫ T
t
E∗t (d lnRm,s)

2 =
∫ T
t

(α∗0 + α∗TE∗t (Yt)) A straightforward expansion of the expression for
E∗t (d lnRm,t)

2 shows that:

α∗0 = B′rhBr

α∗′ = B′rHBr +B2
r
′
diag(E∗(ξ2

t ))l
∗
1

where B′rHBr denotes a row vector where the i-th component is B′rHiBr. From this we see
that only α∗ differs across the measures.

In order to calculate expectations of future values of Yt, which is required to calculate the
integral, it is easiest to express the dynamics of Yt in terms of demeaned jump shocks (i.e.
using the ‘compensated’ Poisson processes). The general form of compensated dynamics is:

dYt = µ∗ + K̂∗Yt + ΣtdZ
∗
t + ξ∗t · dN∗t − E∗t (ξ∗t · dN∗t )

where K̂∗ is the resulting transition matrix which incorporates the uncompensated transition
matrix, K∗, and the compensation to the jump terms. A standard calculation then gives
that:

E∗t (Yt+∆t) = exp(K̂∗∆t)Yt + K̂∗
−1
(

exp(K̂∗∆t)− I
)
µ∗

where I is the identity matrix. A straightforward calculation of the integral in
∫ T
t

(α∗0 +
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α∗TE∗t (Yt)) results in the following expression for expected integrated variance:

E∗t

[∫ t+∆t

t

(d lnRm,s)
2

]
= α∗0∆t+ α∗′

[
ΘYt + K̂∗

−1
[Θ− I ·∆t]µ∗

]
(F.1)

where Θ = K̂∗
−1

(exp(K̂∗∆t)− I).

Finally, I derive the parameters of the compensated dynamics under the three measures.
Recall that ψ∗(u) denotes the stacked vector of moment-generating functions evaluated at
the vector u. Then we have that E∗t (ξ

∗
t · dN∗t ) = diag(ψ∗(1)(0))l∗1q

2
t where ψ∗(1)(0) is the first

derivative of ψ∗(u) evaluated at 0. Let δq be the selector vector for q2
t , i.e. δ′qYt = q2

t . Then
denote by [l∗1]q a matrix such that [l∗1]qδq = l∗1. The transition matrix for the compensated

dynamics under P is then given by: K̂P = K + diag(ψ(1)(0))[l1]q and µP = µ. Under the

worst-case model: K̂η = K+ [Σtht/q
2
t ]q + diag(ψη(1)(0))[lη1 ]q and µη = µ. The difference from

P comes from the drift perturbation and the change in the jump intensity and moment-
generating function. Finally, under the risk-neutral measure, KQ = K + [Σtht/q

2
t ]q −HΛ +

diag(ψQ
(1)

(0))[lQ1 ]q and µQ = µ− hΛ, where HΛ denotes an n× n matrix with k-th column
equal to HkΛ.

The risk-neutral moment-generating function and jump intensity are determined by the
worst-case moment-generating function and jump intensity and the price of risk vector Λ.
The moment-generating functions are given by ψQ(u) = ψη(−Λ + u)/ψη(−Λ), where the
division is componentwise. The jump intensity vector is lQq = ψη(−Λ) · lηt . For a proof see
Proposition 5 in Duffie, Pan, and Singleton (2000). The risk-neutral expressions show that
in going from η to Q, the change in jump intensities and distributions depends on the prices
of risk Λ. Risk-neutralization tilts probabilities towards ‘high-price’ states of the world. The
direction and amount of the ‘tilt’ depends on the magnitude of Λ. For example, note that if
Λ = 0 the worst-case and risk-neutral quantities are identical.

G Detection-Error Probabilities

Detection-error probabilities are a useful tool for calibrating model uncertainty that is due to
Anderson, Hansen, and Sargent (2003). The detection-error probability gives the probability
that, using a likelihood-ratio test, a decision maker will incorrectly reject the worst-case
model in favor of the reference model based on a data sample of a given length T . This is
an important statistic because the agent is exactly worried about the possibility that the
data has led him to favor the reference model although the true data-generating process is
the worst-case model. I now explain how the detection-error probability can be calculated
in terms of the Radon-Nikodym process ηt.

The likelihood ratio of the worst-case model to the reference model is exactly given
by the Radon-Nikodym derivative ηt. Therefore, the probability at time zero of making a
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detection-error based on a sample of length T is Probη(ln ηT < 0|F0, η0 = 1). Note that
the probability is evaluated under the worst-case measure. For illustration, I derive the
detection-error probability for an i.i.d pure diffusion reference model and then discuss how
it can be calculated for the framework in this paper.

As Appendix A.1 shows, in a pure diffusion setting ηT = exp(
∫ T

0
hTt dZt− 1

2

∫ T
0
hTt htdt), so

that ln ηT =
∫ T

0
hTt dZt − 1

2

∫ T
0
hTt htdt. Substituting in dZt = dZη

t + htdt gives an expression
that is more convenient for evaluation under the worst-case measure:

ln ηT =

∫ T

0

hTt dZ
η
t +

1

2

∫ T

0

hTt htdt

Now consider the distribution of ηT under the worst-case measure. Taking expectations gives

Eη
0 [ln ηT ] =

1

2

∫ T

0

Eη
0

[
hTt htdt

]
=

1

2

∫ T

0

2ϕ = ϕT

When the reference and worst-case models are i.i.d, ht is constant. It then follows that ln ηT
has a normal distribution with variance T × hTh = 2ϕT , i.e. ln ηT

η∼ N (ϕT, 2ϕT ). The
detection error probability is then:

Probη(ln ηT < 0|F0, η0 = 1) = Prob

(
N (0, 1) <

−ϕT√
2ϕT

)
= Prob

(
N (0, 1) <

−1√
2

√
ϕT

)
Therefore, in this simple case, the detection error probability is Φ(−1√

2

√
ϕT ), where Φ is the

cdf of the standard normal distribution.

In general, a closed-form expression for the detection error probability is not available
since the distribution of ln ηT is not known in closed-form. However, for a general class of
specifications that includes the affine setting of this paper, the detection error probability
can be calculated numerically via Fourier inversion. As Maenhout (2006) shows, using the
expression for ηT from Appendix A.1, one can find the (conditional) characteristic function of
ηT in closed-form (up to a system of ODEs). The exact detection-error probability can then
be calculated numerically via a Fourier inversion. This methodology is similar to the one
used to calculate option prices in affine settings, as developed in Duffie, Pan, and Singleton
(2000). Maenhout (2006) contains a detailed derivation. In calculating the detection-error
probabilities for the calibrated model, I set the time-0 value of the state vector equal to
its unconditional mean. Except for short samples, the detection-probabilities are relatively
insensitive to the time-0 value of the state vector.
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Table I

Summary Statistics

VIX2 Fut2 VP

Mean 33.30 22.17 11.27

Median 25.14 14.19 8.92

Std.-Dev. 24.13 22.44 7.61

Maximum 163.4 142.4 59.2

Minimum 9.05 2.66 3.27

Skewness 2.00 2.62 2.39

Kurtosis 8.89 11.10 12.03

AC(1) 0.79 0.65 0.65

Table I presents summary statistics for the integrated variance and variance premium measures. The sample
is monthly and covers 1990m1 to 2007m3. VIX2 is the value of the CBOE’s VIX index squared and divided
by 12 to convert it into a monthly quantity. Fut2 is the series of monthly realized variances, measured as
the sum over a month of squared 5-minute (log) returns on the S&P 500 futures. VP is the measure of the
one-month variance premium, constructed as the difference between VIX2 and a forecast of next month’s
realized variance.
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Table II

Return Predictability by the Variance Premium

Dependent Regressors OLS Robust Reg.

X1 X2 β1 β2 R2(%) β1 β2 R2(%)

rt+1 V Pt 0.76 1.46 1.12 3.20
(t-stat) (2.18) (2.77)

rt+1 V Pt−1 1.26 4.07 1.21 3.75
(t-stat) (3.90) (2.97)

rt+3 V Pt 0.86 5.92 0.87 6.09
(t-stat) (3.19) (4.12)

rt+1 V Pt log (P/E)t 1.39 -48.67 8.30 1.81 -50.52 10.77
(t-stat) (3.00) (-3.04) (4.33) (-4.36)

rt+1 V Pt−1 log (P/E)t 2.09 -58.12 13.43 1.98 -57.30 12.61
(t-stat) (4.82) (-3.50) (4.68) (-4.85)

Table II presents return predictability regressions. The sample is monthly and covers 1990m1 to 2007m3.
Reported t-statistics are Newey-West (HAC) corrected. P/E is the price-earnings ratio for the S&P 500.
The dependent variable is the log excess return (annualized and in percent) on the S&P 500 Index over the
following one and three months, as indicated. The three month returns series is overlapping. OLS denotes
estimates from an ordinary least-squares regression. Robust Reg. denotes estimates from robust regressions
utilizing a bisquare weighting function. The reported robust regression R2s are calculated as the ratio of the
variance of the implied regression forecast to the variance of the dependent variable.
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Table III

Calibration – Model Parameters

Preferences δ RRA ψ ϕ

− ln 0.999 5 2.0 0.0048

∆ct+1 E[∆c] Φc

0.0016 0.0066

xt+1 ρx Φx l1(x) σx

-0.025 0.042× Φc 1.0/12 2.25× Φx

∆dt+1 E[∆d] φ Φd

0.0016 3 6.0× Φc

σ2
t+1 ρσ Φσ

-0.1 0.30

q2
t+1 ρq Φq l1(q) µq νq

-0.2238 0.25 0.75/12 1.5 1

Table III presents the parameters for the reference model used in the model calibration. The calibration
results are presented in Table IV and Table V. Parameter values are normalized for a monthly interval, i.e
∆t = 1 is one month.
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Table IV

Model Calibration Results

Statistic Data Model
5% 50% 95%

Cashflow Dynamics

E[∆c] 1.88 (0.32) 0.94 1.95 2.82

σ(∆c) 2.21 (0.52) 2.02 2.45 3.00

AC1(∆c) 0.43 (0.12) 0.27 0.46 0.63

E[∆d] 1.54 (1.53) -1.77 1.45 5.31

σ(∆d) 13.69 (1.91) 10.62 12.39 14.65

AC1(∆d) 0.14 (0.14) 0.10 0.31 0.48

corr(∆c,∆d) 0.59 (0.11) 0.01 0.23 0.44

Returns

E[rm − rf ] 5.41 (2.09) 3.05 6.00 9.50

E[rf ] 0.82 (0.35) 1.07 1.52 1.96

σ(rm − rf ) 19.48 (2.35) 15.65 18.08 21.19

σ(rf ) 1.89 (0.17) 0.63 0.87 1.27

E[p− d] 3.15 (0.07) 2.76 2.83 2.90

σ(p− d) 0.31 (0.02) 0.13 0.16 0.21

skew(rm − rf ) (M) -0.43 (0.54) -0.86 -0.27 0.11

kurt(rm − rf ) (M) 9.93 (1.26) 3.95 5.75 11.55

Variance Premium

σ(varPt (rm)) 17.18 (2.21) 9.01 15.57 30.82

σ(varQt (rm)) 24.07 (3.15) 11.95 22.47 45.94

AC1(varPt (rm)) 0.81 (0.04) 0.76 0.85 0.92

AC1(varQt (rm)) 0.79 (0.05) 0.74 0.84 0.92

E[V P ] 11.27 (0.93) 5.81 8.23 13.34

σ(V P ) 7.61 (1.08) 3.47 7.75 17.76

skew(V P ) 2.39 (0.59) 1.32 2.68 4.25

kurt(V P ) 12.03 (3.30) 4.82 11.24 25.02

β(1) 0.76 (0.35) -0.02 1.13 2.84

R2(1) 1.46 (1.52) 0.03 1.86 8.32

β(3) 0.86 (0.27) -0.10 0.88 2.39

R2(3) 5.92 (4.67) 0.04 3.91 18.50

β(6) 0.49 (0.24) -0.15 0.75 1.87

R2(6) 3.97 (4.74) 0.04 5.32 27.84

Table IV presents (a) consumption and dividend dynamics (b) equity premium and risk-free rate moments
(c) moments pertaining to the variance premium. For each statistic the table reports its data and model
corresponding values. The data for consumption, dividends, the market return, risk free rate, and price-
dividend ratio correspond to the period from 1930 to 2006. The data pertaining to the variance premium
is based on monthly data from 1990.1-2007.3. For the model I report finite sample statistics based on 250
simulations each with the corresponding sample size the same as its data counterpart. For the annual data
the statistics are based on time-averaged data. The parameters for calibrating the model are given in Table
III. Standard errors are calculated using the Newey-West variance-covariance estimator with 4 lags.



Table V

Model Calibration Results: Physical and Risk Neutral Variance

Statistic Data Model
5% 50% 95%

Integrated Variance P
σ(varPt (rm)) 17.18 (2.21) 9.01 15.57 30.82

AC1(varPt (rm)) 0.81 (0.04) 0.76 0.85 0.92

R2(1) 0.72 (1.28) 0.01 1.17 6.40

R2(3) 1.87 (3.49) 0.13 2.59 14.09

skew(varPt (rm)) 1.90 (0.38) 0.55 1.73 3.32

kurt(varPt (rm)) 7.61 (1.60) 3.09 6.87 17.19

corr(varPt (rm), V P ) 0.86 (0.05) 0.57 0.84 0.96

Integrated Variance Q

σ(varQt (rm)) 24.07 (3.15) 11.95 22.47 45.94

AC1(varQt (rm)) 0.79 (0.05) 0.74 0.84 0.92

R2(1) 0.98 (1.40) 0.01 1.54 7.05

R2(3) 3.05 (4.21) 0.10 3.26 16.38

skew(varQt (rm)) 2.00 (0.49) 0.86 2.16 3.57

kurt(varQt (rm)) 8.89 (2.26) 3.74 8.70 20.06

corr(varQt (rm), V P ) 0.93 (0.03) 0.77 0.93 0.98

Table V presents moments pertaining to physical expectations of integrated variance, varP
t (rm), and risk-

neutral expectations, varQ
t (rm). Physical-measure expectations represent conditional variance. The risk-

neutral expectations represent the VIX. For each statistic the table reports its data and model corresponding
values. The data is monthly 1990.1-2007.3. For the model, I report finite sample statistics based on 250
simulations each with the same sample size as the data. The parameters for calibrating the model are given
in Table III. Standard errors are calculated using the Newey-West variance-covariance estimator with 4 lags.



Table VI

Comparative Statics Results

Statistic Data Model 1-A Model 1-B
5% 50% 95% 5% 50% 95%

Returns

E[rm − rf ] 5.41 (2.09) 0.68 3.63 7.22 -2.55 0.50 4.04

E[rf ] 0.82 (0.35) 1.25 1.68 2.12 1.30 1.73 2.17

σ(rm − rf ) 19.48 (2.35) 15.55 17.90 20.51 15.84 18.13 20.58

σ(rf ) 1.89 (0.17) 0.60 0.81 1.12 0.59 0.80 1.11

skew(rm − rf ) (M) -0.43 (0.54) -0.39 -0.05 0.22 -0.22 0.05 0.35

kurt(rm − rf ) (M) 9.93 (1.26) 3.56 4.69 7.71 3.50 4.30 5.84

Variance Premium

σ(vart(rm)) 17.18 (2.21) 8.55 14.01 27.60 8.44 13.46 26.34

σ(varQt (rm)) 24.07 (3.15) 8.81 14.65 28.99 8.45 13.55 26.54

AC1(vart(rm)) 0.81 (0.04) 0.76 0.86 0.92 0.77 0.86 0.92

AC1(varQt (rm)) 0.79 (0.05) 0.76 0.86 0.92 0.77 0.86 0.92

E[V P ] 11.27 (0.93) 0.59 0.84 1.36 0.08 0.12 0.19

σ(V P ) 7.61 (1.08) 0.35 0.79 1.81 0.05 0.11 0.26

β(1) 0.76 (0.35) -4.82 7.43 23.59 -70.80 18.03 126.8

R2(1) 1.46 (1.52) 0.01 1.04 6.79 0.01 0.45 4.37

β(3) 0.86 (0.27) -4.01 5.79 20.15 -61.5 14.60 110.50

R2(3) 5.92 (4.67) 0.02 2.24 14.71 0.01 1.27 10.45

Table VI presents a comparative statics exercise for the model given in Table III. The two panels alter the
model in Table III by successively turning off uncertainty towards aspects of the model. Model 1-A eliminates
uncertainty with regards to the jump components of the model, but leaves uncertainty with respect to the
diffusion dynamics. Model 1-B turns off all model uncertainty (ϕ = 0), so the agent has full confidence in
the reference model.
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Table VII

An Illustration of the Impact of Time-Varying Uncertainty

Statistic Varying Uncertainty Constant Uncertainty
5% 50% 95% 5% 50% 95%

Returns

E[rm − rf ] 1.00 4.10 7.46 1.18 4.35 7.43

E[rf ] 1.30 1.70 2.04 1.21 1.54 1.87

σ(rm − rf ) 14.96 17.02 19.72 14.10 16.03 18.24

σ(rf ) 0.54 0.70 0.86 0.54 0.68 0.89

Variance

σ(varP
t (rm)) 7.66 11.81 19.71 6.57 9.28 14.87

σ(varQ
t (rm)) 8.04 13.42 24.95 6.58 9.28 14.88

E[V P ] 1.00 1.73 3.49 0.01 0.01 0.02

σ(V P ) 0.711 2.51 6.42 0.01 0.01 0.01

R2(1) 0.05 1.45 5.76 0.00 0.28 2.77

R2(3) 0.10 3.05 12.9 0.00 0.67 6.98

Table VII presents simulation results for the illustration model of Section 6.4.1, which focuses on the impact of
time-variation in uncertainty. The left-hand panel shows simulation results for the model where uncertainty
is time-varying. The right-hand panel fixes the level of uncertainty at its unconditional mean and raises
risk aversion to get the same equity premium. The results are based on 250 simulations. The simulation
parameters are the same as those in Table III except for the following: l1(q) = 1.0/12, µq = 2.2, ρq = −0.313,
l1(x) = 0, ϕ = 0.0056. For the right-hand simulations the level of uncertainty is set constant: Φq = 0,
l1(q) = 0, and risk aversion is 9.
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Figure 1: Implied Volatilities: Model and Data
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The figure plots implied volatilities from empirical option prices and for option prices
calculated for the model of Table III. The plots show implied-volatility curves for ma-
turities of 1, 3, and 12 months. Strikes are expressed in moneyness (Strike Price/Spot
price). The top plot shows the mean of daily implied volatilities for S&P 500 index
options for the period 1999.10-2008.6, as quoted in the over-the-counter market. The
bottom plot shows the model-based implied volatilities for option prices obtained when
the model’s state vector is set equal to its unconditional mean.



Figure 2: 1 and 3 month Implied-Volatilities: Model and Data
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The figure plots comparisons of empirical and model-based implied volatilities for 1
and 3 month maturities for the model of Table III. Strikes are expressed in moneyness
(Strike Price/Spot price). The empirical curves are means of daily implied volatilities
for S&P 500 index options for the period 1999.10-2008.6, quoted in the over-the-counter
market. The model-based curves are calculated for option prices obtained when the
model’s state vector is set equal to its unconditional mean.



Figure 3: Implied Volatilities: No-Uncertainty Model and Data
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The figure plots the implied volatilities from empirical option prices and for option
prices calculated for Model 1-B, which was used in the comparative statics exercise
in Table VI. The plot shows curves for maturities of 1, 3, and 12 months. Strikes
are expressed in moneyness (Strike Price/Spot price). The top plot shows the mean
of daily implied volatilities for S&P 500 index options for the period 1999.10-2008.6,
quoted in the over-the-counter market. The bottom plot shows the model-based implied
volatilities for option prices obtained when the model’s state vector is set equal to its
unconditional mean.



Figure 4: 1 and 3 month Implied-Volatilities: No-Uncertainty Model and Data
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The figure plots comparisons of empirical and model-based implied volatilities for 1
and 3 month maturities for Model 1-B used for the comparative statics exercise in
Table III. Strikes are expressed in moneyness (Strike Price/Spot price). The empirical
curves are means of daily implied volatilities for S&P 500 index options for the period
1999.10-2008.6, quoted in the over-the-counter market. The model-based curves are
calculated for option prices obtained when the model’s state vector is set equal to its
unconditional mean.
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