
Electronic copy available at: http://ssrn.com/abstract=1150472

How Bad Will the Potential Economic Disasters Be?

Evidences From S&P 500 Index Options Data

June, 2008

Abstract

This paper proposes a new methodology of using the S&P 500 index option data

to gauge the magnitudes of the potential economic disasters in the U.S. with a setup

incorporating a small-probability consumption jump and habit formation. The es-

timated economic disasters strike once every 36-64 years in the form of 13.5-17.6%

consumption contractions, which induce 36-56% stock market crashes. These results

are much more in line with the empirical observations than those estimated with

Peso problem models in which habit formation is ignored. The setup also explains a

wide variety of the observed pricing features of both options and stocks.
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Introduction

Understanding the relation between �nancial markets and the real economy is one of the

key programs in �nance, since asset prices are ultimately driven by the real, macroeco-

nomic risks1. Perhaps the most extreme version of macroeconomic risks strikes in the form

of disastrous economic events, such as the Great Depression, during which the levels of ag-

gregate consumption and GDP decrease dramatically. While it is apparent that potential

economic disasters can have profound e¤ects on the �nancial markets2, empirically we lack

direct observations to calibrate their magnitudes since disasters are rare and usually yield

no more than a few observation points during a long period of time. Whereas disasters

that happened decades ago can shed some evidences about what will happen in the future,

they could be very di¤erent from the potential ones that investors are concerned about

today, which have not yet been realized in sample.

In the literature, potential economic disasters are originally used in peso problem mod-

els3 to resolve the equity premium puzzle (e.g., Rietz, 1988), hence a natural methodology

is to infer their magnitudes from the observed equity premium. In Rietz�s model, as in

other peso problem models in which disasters strike once every a few decades, generating

an average equity premium comparable to what is observed in the data under reasonable

risk aversion degree4 requires a potential 40-60% consumption or GDP contraction which

looks too dramatic. In a recent empirical paper, however, Barro (2006) reports evidences

of very large contractions in consumption and GDP up to 64% from the data of interna-

tional economic disasters that occurred during the twentieth century. While both Rietz

and Barro focus on the stock market, potential disasters may also have profound e¤ects

on the derivative markets. As widely acknowledged in the option pricing literature, poten-

1See Cochrane (2006) for a comment about the relation between macroeconomics and �nance.
2The phenomenon that infrequent but disastrous events (not necessarily economic events) can have

profound e¤ects on empirical observations is sometimes refered to as "Peso problem", often attributed
to Milton Friedman for his comments about the Mexican peso market in the early 1970s. Peso problem
situation provides a good explaination for a number of asset pricing anomalies including the equity premium
puzzle (e.g., Rietz (1988)), the failure of the expectation hypothesis (e.g., Cochrane, 2001), and the observed
pricing di¤erentials among options across moneyness (e.g., Rubinstein, 1994).

3In this paper, peso problem models refer to those modeling occasional extremely bad states in the
distribution of consumption or GDP in the otherwise standardard consumption-based asset pricing frame-
work.

4As commented in Cochrane (2001), a high degree of risk aversion in the standard consumption-based
model induces counterfactually high volatility of the risk-free rate which is empirically quite stable across
time.
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tial stock market crashes, which are induced by the potential economic disasters in peso

problem models, play an important role in explaining the observed pricing di¤erentials

among options across moneyness, paticularly the prevalent "smirk" pattern documented

in the index option market. It is thus natural to ask whether economic disasters of the size

required to justify the observed equity premium are consistent with the observed option

pricing di¤erentials.

In the upper Panel of Figure 1, I plot the average prices of S&P 500 index options with

30 days to expirations, quoted in terms of the implied Black-Scholes volatility (B/S-vol)5,

against the options�moneyness6, where the data are collected in the period from April 4,

1988 to June 30, 2005. As well documented in the literature (e.g., Rubinstein, 1994), out-

of-the-money (OTM) put options are more valuable than at-the-money (ATM) options,

generating a pronounced "smirk" pattern in the cross-sectional plot of the option-implied

volatility against moneyness, normally referred to as the "volatility smirk". I plot in the

same panel the volatility smirk implied implied from Barro (2006) in which he assumes

a potential 37% consumption contraction that strikes once every 60 years. While the

smirk premium, measured as the price di¤erence between 8% OTM put options (i.e., put

options with moneyness equal to .92) and ATM options, is about 10.4% from the data, it

is more than 18% in Barro (2006). It seems that the dramatic economic disaster required

to rationalize the high U.S. equity premium is too severe for the observed option pricing

di¤erentials. Indeed, cutting the jump size in half while keeping all the other parameter

values unchanged reduces the smirk premium implied from Barro (2006) to about 13%,

which is also plotted in the upper Panel of Figure 1.

[Figure 1 goes approximately here]

The generated counterfactually high smirk premium casts doubt on the methodology

of calibrating the potential economic disasters to the observed equity premium with peso

problem models. It is likely that peso problem models are misspeci�ed and have ignored

other important driving forces behind the observed asset pricing phenomena, such as habit

formation. Indeed, habit formation models were originaly raised to resolve the equity

premium puzzle as well (e.g., Constantinides, 1990). Later researches (e.g., Compbell and

5Option prices in this paper are all quoted in terms of the implied Black-Scholes volatility (B/S-vol).
6Moneyness is de�ned as the ratio of the strike price of the option contract to the underlying stock

price.
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Cochrane, 1999, henceforth CC; Menzly, Santos and Veronesi, 2005, henceforth MSV)

�nd that the idea of habit formation actually explains a wide variety of the observed

stock pricing phenomena. Like peso problem models, however, habit formation models

have not yet been applied to price options. In the lower Panel of Figure 1, I plot the

volatility smirk implied from the same data together with its two counterparts implied

from CC and MSV, where the model prices are computed at the parameter values reported

in these two papers. We observe an "inverted" smirk implied from CC7. Whereas MSV

generates the usual smirk pattern, the implied smirk premium is only 3.1%, which is

clearly o¤ compared to the observed 10.4% premium. In exercises that are not reported, I

tried di¤erent parameter values for both CC and MSV while keeping their matches of the

observed equity premium, but the generated smirk premia never exceed 6%. It seems that

while peso problem situation (i.e., the presence of potential economic disasters) and habit

formation are both important devices to boost the equity premium, the former is much

more e¤ective than the latter to generate the pricing di¤erentials among options across

moneyness.8

The key observation in this paper is that a model incorporating both peso problem

situation and habit formation paves a new way to gauge the magnitude of the potential

economic disasters. With habit formation pushing up the equity premium without af-

fecting the smirk premium much, I can use index option data to back out the implied

economic disasters priced in the form of the observed option pricing di¤erentials across

moneyness. Disasters thus estimated, together with the estimated habit formation, are

likely to replicate simultaneously the observed equity premium and the observed smirk

premium in option pricing.

The proposed methodology of calibrating the potential economic disasters to option

data is linked to the literature that examines the asset pricing implications of reduced-

form option pricing models in which the stock prices are subject to potential jumps (e.g.,

Bates, 2000; Pan, 2002; Eraker, 2004). While these papers also use option data to back

7The implied volatilities from CC are cut for small moneyness, because they do not exist for moneyness
less than 0.97. The option implied volatility is monotonically increasing in the option price, and theoret-
ically it can take negative values for a too low option price. We say that the implied volatility does not
exist if its theoretical value is negative.

8To give it an intuitive explanation, notice that the innovations of habit dynamics are assumed to
be perfectly negatively correlated with the consumption di¤usions in both CC and MSV, hence risks
associated habit formation still belong to di¤usion risks. As discussed in Liu, Pan and Wang (2005), OTM
put options, in particular the deep OTM put options, are much more sensitive to jumps than to di¤usions.
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out the potential disasters, they di¤er from my estimations in two important dimensions.

First and foremost, their estimations are based on reduced-form models starting with

exogenous speci�cations of the stock return processes. As a result, their methodology can

not be applied to gauge the magnitudes of the potential economic disasters in the form of

negative jumps in consumption or GDP. Second, option data through their models only

back out jumps under the risk neutral measure, which are not empirically relevant until

transformed into the physically-measured jumps with some exogenous speci�cations about

the risk premia. In contrast, my model establishes the direct links between the implied asset

prices and the potential disasters under the physical measure, hence the direct estimation

of the empirically relevant jumps from the option data.

Following Barro (2006), the growth of log consumption is modeled as a random walk

subject to a small-probability negative consumption jump with constant arrival intensity

and jump size. Analogously to both CC and MSV, I adopt the external habit formation

speci�cation in which the representative agent�s current utility depends not only on his

own current consumption, but also on the history of the aggregate consumption. For the

mathematical tractability, I use MSV habit formation speci�cation (in a slightly extended

version), which is the time-continuous analog of that in CC. Three models are considered

in this paper under the same speci�ed potential economic disasters and habit formation

but with di¤erent dividend processes. Closed-form stock prices are obtainable in all the

three models, which greatly facilitate the simulation of the model-implied option prices.

Both potential disasters and habit formation are priced in the �nancial markets through

the pricing kernel, hence I adopt an integrated approach of using the joint data of op-

tions and stocks to estimate the jump parameters simultaneously with the habit formation

parameters. S&P 500 index option data are collected from two datasets: CBOE from

04/04/1988 to 12/29/1995, and Ivy DB from 01/04/1996 to 06/30/2005; the other data

are from CRSP and St. Louis Fed. I �nd that the pricing di¤erentials between deep OTM

put options and ATM options provide particularly important information for the identi-

�cation of the potential disasters. Due to the fact that the trading of OTM put options

is low during the CBOE period, I use Ivy DB data only for the estimation. CBOE data

together with the out-of-the-sample Ivy DB data are used later to test the models�option

pricing implications.

I apply the method of simulated moments (MSM) to implement the estimation which

selects parameter values to best match the simulated asset pricing moments to their data
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counterparts. Only unconditional moments are used because the underlying economic

state, i.e., the surplus consumption ratio, is not observable. I choose to match the average

prices of nine options, all with 30 days to expiration. For the non-option pricing moments,

I choose to match the average values of dividend-price ratio, the equity premium and the

risk-free rate. I combine Chebyshev interpolation with Monte Carlo simulation to e¢ ciently

compute the unconditional option pricing moments implied from the model, and I use the

actual data to compute the optimal weighting matrices approximated by Newey-West. The

minimization problem is solved using the global optimization toolbox provided by Tomlab

which yields stable parameter estimates for di¤erent starting values.

Depending on the assumed dividend processes, potential economic disasters implied

from the option market strike once every 36-64 years in the form of a 13.5%-17.6% con-

sumption contraction, which induces an average 36-56% stock market crash. Empirically,

Barro (2006) documents two major economic downturns in the U.S. during the past 100

years: the Great Depression (1929-1933) and the aftermaths of WWII (1944-1947), during

which aggregate consumption contracts by as much as 9.9% per year. The estimated ar-

rival intensity seems consistent with the historical observations so far. While my estimated

consumption jump sizes still look dramatic relative to the annual consumption contractions

during the historical economic disasters, they are much more in line with the observed data

than those estimated with peso problem models in which a potential 40-60% consumption

contraction is usually demanded to match the observed average equity premium. In sum-

mary, my estimation implies that the U.S. investors are expecting another major economic

crisis that is more severe than the Great Depression within the next 50 years or so.

Economic disasters in my model induce the crashes in the stock market through two

channels: i) the usual channel due to the jumps in the dividends that are of the same

magnitudes as those of the consumption jumps, which induces jumps of the same sizes in

the stock market; ii) the extra channel due to the jumps in the agent�s instantaneous risk

aversion degree at the presence of habit formation, which causes excessive depressions in

the stock price relative to dividends. As a result, the induced stock market crashes are

much more dramatic than the estimated consumption jumps. In contrast, consumption

jumps induce stock market crashes only though the usual channel in peso problem models,

which imply the same jump sizes in the consumption and in the stock price. Empirical

evidences, however, seem to support the implication of excessive stock price adjustment.

For example, Liu et al (2003) report two major crashes in the U.S. stock market during the

6



past 100 years: one is from mid-October to mid-November in 1929, and the other is the

black Monday of October 19, 1987, when the Dow index fell by 44% and 23%, respectively.

While these falls are accumulated within only one month or even one day, they are already

much larger than the maximumm 9.9% annual consumption contraction during the Great

Depression.

The three estimated models, regardless of the di¤erent dividend processes, all match

well a wide variety of the observed pricing phenomena of both options and stocks. While

the parameters are only chosen to replicate the unconditional moments and only short

term options data are used for the estimation, the models perform well in many other

dimensions as well, such as the the volatility smirks conditional on particular economic

states, the term structure in option pricing, stock return predictability, and the historical

�uctuations in the smirk premia and the dividend-price ratios. To my best knowledge, the

matches of the term structure in option pricing and the historical smirk premia data have

never been attempted before. By comparsion, the other two consumption-based option

pricing models that I know, Liu et al (2005) and Benzoni et al (2005), both focus on the

match of the unconditional volatility smirk. In particular, neither paper can generate the

observed variations of volatility smirks across time or across di¤erent economic states9.

My models�asset pricing ability, besides being interesting of its own, suggests that the

model misspeci�cation is a relatively minor issue in a setup incorporating both potential

economic disasters and habit formation intended to replicate the joint pricing behaviors of

options and stocks, hence an important support to the proposed methodology.

The structure of the paper is as follows: Section I presents the setup and derives the

theoretical results for the baseline model treating consumption and dividend as a single

process; Section II describes the data; Section III discusses the details of the methodology;

Section IV reports the estimation results, in particular, the estimated potential disasters,

with the baseline model; Section V considers two alternative models with di¤erent dividend

processes and report their implied estimations; Section VI discusses the models�out-of-

the-sample asset pricing implications; and �nally Section VII concludes. All mathematical

proofs are in the Appendix.

9Liu et al (2005) do not model economic state, which implies that the prices of options with given
maturity and moneyness are constants. Whereas Benzoni et al (2005) model the economic state, x, as a
persistent stochastic growth variable in the consumption and dividend processes, they report that option
prices computed at values of x up to �3 standard deviations away from its steady state value �x still turn
out to be very similar to those computed at �x itself.
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I Setup

A. The preference

Time is continuous and in�nite and the representative agent in the economy maximizes

E

�Z 1

0

e��tu(Ct; Xt)dt

�
(1.1)

where

u(Ct; Xt) =

(
(Ct�Xt)1�

1� if  > 0;  6= 1
ln(Ct �Xt) if  = 1

)
; (1.2)

Xt > 0 and � denote respectively the habit level and the subjective time-discount factor10.

MSV assume a log habit formation setup by setting  = 1: Here I follow CC by allowing

any  > 0: As in both CC and MSV, I adopt the external habit formation speci�cation in

which the agent�s current utility depends not only on his own current consumption, but

also on the history of the aggregate consumption summarized by Xt.

To capture the relation between habit and the aggregate consumption, CC models the

surplus consumption ratio,

St �
Ct �Xt

Ct
< 1; (1.3)

which serves as the fundamental state variable in the habit formation models. Since habit

is external, the local curvature of the utility function, �t; which measures the agent�s

instantaneous risk aversion degree, is related to the surplus consumption ratio by

�t � �
Ctucc(Ct; Xt)

uc(Ct; Xt)
=


St
> : (1.4)

From (1.3) and (1.4), a decline of consumption toward its habit level drives up the agent�s

degree of risk aversion, which plays the key role in explaining the observed discrepancy

between the stock market jump size and the consumption jump size.

For the purpose of mathematical tractability, I follow MSV by imposing the stochastic

structure on a function of St; which is denoted by Gt,

10In this paper, all variables without the time subscripts are assumed to be constants.
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Gt � S�t =

�
Ct

Ct �Xt

�
(1.5)

Since  > 0; Gt moves one for one with St and hence can be used as the equivalent state

variable. Analogously to CC and MSV, I assume that Gt is mean-reverting with shocks

that are conditionally perfectly correlated with innovations in consumption growth,

dGt = k( �G�Gt)dt� �(Gt � �)(d ln(Ct)� Et[ln(Ct)])11; (1.6)

where �G is the long run average of Gt; k is the speed of mean reversion; � > 0 captures

the impact of unexpected consumption innovations on the evolution of Gt: a negative

consumption innovation, for example, drives consumption towards its habit level resulting

in an increase in Gt; or equivalently, a decrease in St; � is the lower bound for Gt and

hence ensures an upper bound for St, and I impose � � 1 so that St � 1.

B. Consumption and dividend

Analogously to Barro (2006), I assume that the growth of the log consumption evolves as

a random walk subject to a small-probability negative jump,

d ln(Ct) = ~�dt+ �dB1t � bdNt (1.7)

where B1t is a standard Brownian motion; Nt is a Poisson process with arrival intensity

� capturing the random arrival of a small-probability economic disaster;12 b > 0 captures

that the economic disaster strikes in the form of negative consumption jumps. By Ito�s

11Under the usual assumption that the habit Xt is the weighted average of the past consumptions,
the drift and the di¤usion terms in the Gt process are both nonlinear functions of Gt: The assumed Gt
process in (1.6) is mainly for the purpose of tractability. Under the assumption in (1.6), the habit Xt is
no longer the weighted average of past consumptions, but a more complicated nonlinear function of past
consumption shocks.
12Both Barro (2006) and in my model, disasters last for an instant of time. In the data, however,

economic crises usually perisist for varying number of years. As pointed out by Barro (2006), an alternative
procedure is to allow for two regimes, normal and crisis, with transition probabilities re�ecting the relative
length of the two regimes. While that procedure is more realistic, it is mathematically more di¢ cult to
handle since it admits a number of rich complications such as the distribution of jump sizes. To focus on
the �rst order e¤ects of potential disasters on asset prices and to keep the model tractable, I thus adopt the
simpler way, as Barro (2006) does, by modeling the potential disaster as a time invariant Poisson arrival
process.
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lemma,

dCt
Ct

= �dt+ �dB1t + (e
�b � 1)dNt (1.8)

where � � ~� + 1
2
�2; � and � denote respectively the mean and the standard deviation of

the consumption growth rate conditional on no economic disasters. Upon the occurrence of

an economic disaster, consumption contracts to e�b < 1 of its level right before the arrival

of the crisis, hence the consumption jump size is measured by e�b � 1:
The model is closed by assuming an aggregate dividend process. I �rst impose the

simplest yet the widely used way (e.g., CC; MSV; Liu et al, 2005; Barro, 2006) by treating

dividend and consumption as a single process, i.e., Dt = Ct, and I call the model thus closed

the "baseline model", which is used to explain the details of the proposed methodology. In

Section V, I will consider two alternative models with di¤erent and more realistic dividend

processes .

C. Stock pricing

Under the assumed external habit formation speci�cation, pricing kernel in the economy

is given by

�t = e
��tuc(Ct; Xt) = e

��tC�t Gt (1.9)

which incorporates the e¤ects of both the potential economic disasters and habit formation:

Denote by Pt the price of the aggregate stock at period t, and by de�nition,

Pt = Et

Z 1

t

�s
�t
Csds (1.10)

Closed-form stock pricing formulas obtain under the assumed preference and the consump-

tion processes; which are summarized in the following proposition:

Proposition 1 (a) Under the assumed utility in (1.1)-(1.2), the assumed habit formation
in (1.3)-(1.6), and the assumed consumption processes in (1.8), the price-dividend ratio

(which is equal to the price-consumption ratio in the baseline model) is given by:

Pt
Ct
= a1 + a2

1

Gt
(1.11)
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where the two constant coe¢ cients a1 and a2 are de�ned in (A.14) in the Appendix.

(b) The risk-free rate (rft), the equity premium (EPt) and the return volatility (volRt)
in the economy are given by:

rft = ���t � �J�t (1.12)

EPt = ��t�Pt � �J�tJPt (1.13)

volRt =
q
�2Pt + �J

2
Pt (1.14)

where JXt � X+
t

Xt
�1 (X = �; P ) denote respectively the jump sizes of the pricing kernel and

the stock price; ��t, ���t are the drift and the di¤usion terms in the process of d�t�t ; �Pt
is the di¤usion term in the process of dPt

Pt
: J�t; JPt; ��t; ��t; and �Pt are all closed-form

functions of the state Gt; and their formulas are given by (A.20)-(A.24) in the Appendix.

In habit formation models, a decrease in the surplus consumption ratio, or equivalently

an increase in Gt; drives up the curvature of the utility function according to (1.4) making

the agent more risk averse. As a result, the price is depressed relative to dividend, a higher

equity premium is demanded, and the return volatility becomes more volatile. These

predictions are veri�ed through an (unreported) numerical analysis of (1.11), (1.13), and

(1.14) using the parameter estimates reported in Table II. On the other hand, negative

consumption jumps according to (1.9) and (1.11) induce both positive jumps in �t and

negative jumps in Pt; i.e., J�t > 0 and JPt < 0: Hence from (1.12)-(1.13), the risk-free rate

goes down and the equity premium goes up. These are the �ndings in Rietz (1988) and

Barro (2006) that peso problem situation helps simultaneously resolve the equity premium

puzzle and the risk-free rate puzzle.

Unlike peso problem models which imply the same jump sizes in both consumption and

the stock price, negative consumption jumps in my setup induce the crashes in the stock

market through two channels: the usual channel due to the negative jumps in dividends,

which are of the same magnitudes as the consumption jumps; and the extra channel due

to the postive jumps in the agent�s instantaneous risk aversion degree as implied by the

positive jumps in Gt at the presence of habit formation, which causes excessive depressions

in the stock price relative to dividends. As a result, the induced stock market crashes are on

average much more severe than the consumption jumps, a phenomenon which is consistent

with empirical observation. In addition, the extra jumps in �t due to the risk-aversion

jumps imply even lower risk-free rates and even higher equity premia than predicted by
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the peso problem models according to (1.12)-(1.13). Intuitively, the agent has stronger

incentive to shift his investment from the stock to the risk-free saving when a stock market

crash is expected to occur at the same time when his risk aversion degree jumps upward.

These implications are due to the "magni�cation e¤ects" of habit formation in the peso

problem situations, which was not previously explored.

D. Option pricing

At period t the price of a put option written on the stock that matures at period t + �

with the strike price K is by de�nition,

Putt = Et

�
�t+�
�t

max(K � Pt+� ; 0)
�

(1.15)

From (1.15), potential economic disasters have direct impacts on the generated option

prices through the induced jumps in both the stock price and the pricing kernel. To show

explicitly the e¤ects of habit formation, I normalize Putt by the spot stock price as follows,

Ot �
Putt
Pt

= E

"
e���

�
Ct+�
Ct

��
Gt+�
Gt

max

 
Mt �

Ct+�
Ct

a1 + a2
1

Gt+�

a1 + a2
1
Gt

; 0

!
jGt

#
(1.16)

where the second equality uses (1.9) and (1.11); Mt � K
Pt
is the moneyness. Given the

starting value of Gt, the evolution of habit formation summarized by the assumed dynamics

of G; together with the assumed consumption process, drives the evolution of both the

pricing kernel and the stock price between t and t + � ; whose end-of-the-period values

determine the discounted end-of-the-period payment from the option. Option price by

de�nition is the expectation of the discounted end-of-the-period payments which can be

conveniently simulated thanks to the closed-form stock price:

Following convention, option prices are quoted in terms of the implied Black-Scholes

volatility (B/S-vol) computed as:

B/S-volt = BSC
�1(� ;Mt; rt;t+� ; dt;t+� ) (1.17)

where BSC�1 is the inverse of the Black-Scholes formula for the put option, inverted over

the argument �; rt;t+� and dt;t+� are the interest rate and the dividend-price ratio between
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t and t + � : In the following, I �x rt;t+� and dt;t+� at 1.4% and 2.3%, i.e., their average

values in my option sample period, for all t and � :

To illustrate the combined e¤ects of peso problem situation and habit formation on

the generated option prices, I plot in the upper Panel of Figure 2 the volatility smirks

from options with 30 days to expiration that are implied from MSV and my baseline

model, where the non-jump parameters are from Table 1 of MSV13; the potential disaster

is assumed to strike once every 100 years in the form of a 10% consumption contraction,

i.e., � = :01; e�b � 1 = �10%. Facing a small-probability economic disaster with only a
moderate jump size (relative to the usually calibrated 40-60% consumption contractions in

peso problemmodels), the generated smirk premium leaps from 3.1% in MSV to 4.3% in my

(baseline) model. I plot in the lower Panel of the same �gure the implied volatility smirks

from the model under another two jump scenarios with the arrival intensity and the jump

size doubled respectively. As expected, the generated smirk patterns become even more

pronounced with the smirk premia increased to about 5.5% in both scenarios. Intuitively,

deep OTM put options have the attractive feature to hedge against potential stock market

crashes, hence they are priced with signi�cant premia relative to ATM options, referred to

as the smirk premia, after factoring the potential disasters.

Whereas peso problem situation is important for generating the observed smirk pre-

mium which determines the size of the volatility smirk, habit formation is indispensable

for matching the observed prices of ATM options which determine the level of the volatil-

ity smirk. As documented in Barro (2006), potential consumption jumps, even the very

dramatic ones, turn out to be quantitatively insigni�cant for matching the observed return

volatility, a result which he calls "excess-volatility puzzle". Consequently, peso problem

models severely under-evaluate ATM options whose prices are tightly linked to the return

volatility, as illustrated in the upper Panel of Figure 1. In contrast, habit formation is

e¤ective at generating a high return volatility due to the implied high risk aversion degree

measured by �t as de�ned in (1.4).
14 For example, the average return volatility implied

from CC and MSV are 9% and 23%, respectively,15 which are much higher than the 2-3%

13In particular,  = 1 in MSV due to the log habit formation assumption.
14Unlike the standard consumption-based model, however, a high risk aversion degree in habit formation

models do not necessarily imply a high volatility of the risk-free rates. For example, both MSV and my
model are capable of matching the observed return volatility of the risk-free rates.
15CC report an average 15% return volatility. As pointed out by Watcher (2005), their numerical

solutions are not accurate and the average return volatility implied from their calibration is in fact around
9%, which I have con�rmed. Watcher (2005) also reports that a di¤erent calibration of CC�s model
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volatilities implied from the corresponding degenerated models without habit formation.

By incorporating MSV habit speci�cation with the peso problem situation, the generated

average ATM option prices stay above 16% under all the three jump scenarios, which is

close to the observed 18.7% average price in the data. My model is thus likely to simul-

taneously match both the size and the level of the volatility smirk. The point of this

paper is to take advantage of this setup�s pricing potentiality by formally estimating the

economic disasters implied from the observed option data, which is the focus of the next

three sections.

[Figure 2 goes approximately here]

II Data

A. Option data

I collect S&P 500 index option data from two datasets: CBOE from April 4, 1988 to

December 29, 1995 and Ivy DB from January 4, 1996 to June 30th, 2005, which combine

to cover a period of nearly 18 years. I exclude the six months following the 1987 market

crash and the pre-crash period because the pronounced volatility smirks emerged only after

the crash and have persisted ever since.16 CBOE data are no longer publicly available; I

instead use those from Eraker who independently computes the relevant option prices

(see Eraker, 2004, for the details of the computation). Ivy DB data are available from

OptionMetrics LLC, and option prices during the Ivy DB period are computed as the

closing bid-ask averages following the usual convention (e.g., Bakshi et al, 1997; Pan, 2002;

Buraschi et al, 2006)17

Several exclusion �lters are applied to the combined data. To focus on options which

seem to attract the greatest attention in the literature, options with maturities longer than

180 days, and with moneyness less than .9 and larger than 1.05 are dropped. Options with

maturities less than 15 days are also dropped because too short term options are subject to

liquidity related biases. I delete from the remaining data observations permitting obvious

produces an average return volatility of around 16%.
16Benzoni et al (2005) builds a model in a Bayesian setting which generates the regime shift from a

relatively �at smirk before the 1987 market crash to a pronounced smirk after the crash.
17Only closing bids and asks are available in the Ivy DB data which are collected at 4 pm EST. To

ensure synchronization, S&P 500 index used in this paper are also closing quotes collected at 4 pm EST.
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arbitrage, i.e., those whose prices violate Ct � max(0; St � K); where St and K are the

spot stock price and the strike price. Observations with prices less than 3/8 dollars are

also deleted because the discreteness of quotes has a large impact on these observations.

Finally, I use only OTM option data, which are known to be more liquid than ITM (in-

the-money) options. Similar �ltering policies are used in, for example, Bakshi et al (1997,

2000), Ait-Sahalia and Lo (1998), David and Veronesi (2002), and Eraker (2004).

Table I reports the summary statistics of the option data collected from both CBOE

and Ivy DB. Both the average B/S-vols and the number of options (in the parentheses)

are reported for di¤erent option categories according to their maturities and moneyness.

We observe a pronounced smirk pattern in both datasets and across all three maturity

categories. Take the short term options with 15-45 days to expiration for example: deep

OTM put options (with moneyness between .92-.94) are priced at the premia of 8-12%

relative to ATM options; the premia decrease with the maturity but always stay above

4.4%. An important fact is that there is much lower option trading in the earlier CBOE

period (with the total trading number of 26,465) than in the more recent Ivy DB period

(with the total trading number of 87,134), although the two periods are of similar lengths.

This is particularly true for deep OTM put options: the number of these options traded

during the CBOE period is about one order of magnitude smaller than that during the Ivy

DB period in two of the three maturity categories.

[Table I goes approximately here]

B. Other data

By convention, consumption and the risk-free rate are proxied by the sum of nondurables

and services and the 30 day T-bill rate, respectively. Monthly consumption, CPI and

population data are from the FRED database at the St. Louis Fed. Monthly 30 day T-bill

rates, S&P 500 index values, total market values of the S&P 500 �rms denoted by P SP500t ,

ex-dividend and cum-dividend S&P 500 returns, denoted respectively by Rdt and R
x
t , and

the daily S&P 500 index values are all from CRSP. The range of the monthly data is

from January 1959 to December 2005, and the range of the daily S&P 500 index coincides

with that of the combined option data. Equity premia are computed as the cum-dividend

returns of the S&P 500 index minus the 30 day T-bill rates. Monthly dividend-price ratios

for the S&P 500 �rm, Dt
Pt
; are computed out of the di¤erence between Rdt and R

x
t and

15



smoothed using 12 months trailing averages as discussed in Hansen, Heaton and Li (2004).

Monthly series of dividends are computed as the product of P SP500t and the smoothed Dt
Pt
;

which will be used for the estimation of the two alternative models in Section V. Finally

I use CPI and population data to convert nominal quantities into real quantities and real

quantities per capita, whenever necessary. Following the method used by Fama and French

for constructing the daily risk-free rates for their dataset, I compute the daily CPI, risk-

free rates and dividend-price ratios as their monthly counterparts divided by the number

of trading days in that month, which will be used, together with the daily option data, for

the model estimations.18

III Methodology

The model is estimated in two steps. In the �rst step, I use the monthly consumption

data to estimate the non-jump parameters in the consumption process, i.e., � and �;

which are jointly denoted by �1: Treating the �1 estimate as given, in the second step I

use the joint daily data of options, stocks and risk-free rates to estimate the remaining

parameters, i.e., those associated with the potential economic disasters and the assumed

preference (including the assumed habit speci�cation), which are jointly denoted by �2:

Any loss of e¢ ciency as a result of this approach is expected to be small because � and

� play a minor role in pricing options and stocks. In both steps, I apply the method of

simulated moments (MSM) to implement the estimation which selects parameter values to

best match the simulated moments, computed using a long simulated series obtained from

the assumed data generating mechanism, to their data counterparts. For the technical

details about MSM, see, for example, Du¢ e and Singleton (1993) and Gourieroux and

Monfort (1996).

A. Consumption

In the baseline model, parameters in �1 denote the mean and the standard deviation of the

consumption growth rate conditional on no economic disasters. The two U.S. economic

18Daily risk-free rates and CPI are not available. Although unsmoothed daily dividend-price ratios can
be computed out of the daily index returns; it is generally di¢ cult to get it smoothed. For example, I can
no longer apply the methodology in Hansen, Heaton and Li (2004) because of the days when none of the
S&P 500 �rms distribute dividends.
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downturns documented in Barro (2006) during the past 100 years both occured beyond

my consumption period, hence the estimation of �1 using the monthly consumption data:

Applying the Euler approximation to (1.8) without the jump term yields

Cs+� � Ct
Cs

= ��+ �
p
�W1 (3.1)

where � is the annualized time interval; W1 is a standard normal error. Since Ct in the

model denotes the consumption rate, the model-implied monthly consumption is approxi-

mated by:

C�1s ' � �
n�1X
j=0

Cs�j� (3.2)

where � = 1
12n
: I pick n = 5 and the increase of n has little e¤ect on the estimation results.

The simulated moments are computed out of {C�1s gts=0; which are then matched to their
data counterparts. The moments that I use are the unconditional mean of the consumption

growth rate and its square: With two moments to estimate the two unknowns in �1; I

achieve an exact match. When computing the standard errors, I need to account for the

serial correlation induced by the aggregation in (3.2). Working (1960) shows that a special

linear form of serial correlation can be derived in closed-form. Due to the nonlinearity in

the levels evolution for consumption, I�m compelled to make this adjustment numerically

using the Newey-West.

B. Preferences and the potential disasters

Treating the �1 estimates as given, in the second step I use the joint daily data of op-

tions, stocks and the risk-free rates to estimate the remaining parameters associated

with the potential disasters and the assumed preference, which are jointly denoted by

�2 � [; �; �G; k; �; �; �; b].

B.1. Model implied option prices

Applying Euler discretization after substituting (1.7) into (1.6) yields

Gs+� �Gs = k( �G�Gs)�� �(Gs � �)
h
�
p
�W1 � b(Js+� � �)

i
(3.3)
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Cs+� � Cs
Cs

= ��+ �
p
�W1 + (e

�b � 1)Js+� (3.4)

where � and W1 are de�ned the same way as in (3.1); Js+� = 1 with probability ��

indicating that a jump occurs between s and s + �, and Js+� = 0 otherwise. Given the

maturity � ; the moneyness Mt; and the starting value of G at Gt, I obtain the discounted

end-of-the-period payment from the option, whose formula is given by (1.16) (within the

expectation sign), for a monthly sample of
n�

Ct+s
Ct
; Gt+s

�o�
s=0

simulated according to the

data generating mechanism in (3.3)-(3.4). I repeat to obtain 10,000 independent random

draws of the discounted end-of-the-period payments, and I use their average as the model

price of the option contract with maturity � and moneyness Mt when the underlying

economic state is Gt; which is denoted by O(Gt; �2); where I suppress its dependence on

�1, � ; andMt. The biases due to the simulation are found to be negligible because a futher

decrease of � and/or a futher increase of the number of the random draws produce almost

identical model-implied option prices.

Option prices thus computed are dependent on the underlying economic state G. Since

G is not observable in the actual data, only unconditional average option prices, i.e.,

E[O(Gt; �2)]; where the expectation is with respect to Gt; can be used in the estima-

tion. The stationary distribution of Gt cannot be derived in closed-form at the presence

of potential disasters, and I obtain its numerical approximation using N simulated real-

izations of G in its stationary distribution region, i.e., {GigNi=1: I choose N = 4; 000; and

larger N produces almost identical numerical distributions: E[O(Gt; �2)] is thus approxi-

mated by 1
N

PN
i=1O(G

i; �2), where I need to compute O(Gi; �2) for each of the realized Gi

(i = 1; 2; :::N). If all O(Git; �2)s were computed using the Monte Carlo simulation as de-

scribed in last paragraph; it will take roughly one hour to compute just one approximated

E[O(Gt; �2)] for N = 4� 103 based on a 1.6 GHz CPU. As a result, the whole estimation
time is likely to be on the order of months!

To make the estimation feasible, I instead combine interpolation with simulation to

compute O(Gi; �2). I �rst compute {SigNi=1 implied out of the simulated {GigNi=1 according
to (1.5). Unlike Gt; the surplus consumption ratio is theoretically bounded both from

below and from above, and I use [Smin;Smax] to denote the range of the implied {SigNi=1.
I then choose K collocation nodes,19 S(k) (k = 1; 2; :::K); within [Smin;Smax], and I simu-

19The choice of collocation nodes depends on the functional family that is used for interpolation. Here
I use Chebyshev interpolation which works the best for most smooth functions. For detailed discussions
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late O(S(k); �2) for each S(k). O(Gi; �2) = O(Si; �2) is interpolated out of the simulated

{O(S(k); �2)gKk=1 for each i = 1; 2; :::N: The extra biases introduced by interpolation are

small because option prices are smooth functions of the state S in the model. For example,

the di¤erences between the simulated and the interpolated prices divided by the simulated

prices are generally below 0.2% with K = 8. With the introduction of interpolation, It

only requires K << N simulations plus N interpolations to compute one approximated

E[O(Gt; �2)], which is much faster than running N simulations. As a result, the estimation

time is reduced from several months to a mere several hours.

B.2. Moment choices and the optimization problem

From (1.9), both peso problem situation and habit formation are directly priced through

the pricing kernel. I therefore adopt an integrated approach of using the joint data of

options, stocks and the risk-free rates to simultaneously estimate all the parameters in �2.

For non-option pricing moments, I choose to match the (unconditional) averages of the

dividend-price ratio, the risk-free rate and the equity premium. Option pricing moments

used in the estimation are only from the short term option contracts with 30 days to

expiration, which are known to generate the most pronounced volatility smirk in the data

(e.g., Liu et al, 2004; Benzoni et al, 2005). Both OTM put options and ATM options are

used for the estimation, and I exclude OTM call options because their prices are close to

those of ATM options. In particular, I choose to match the average prices of short term

options in nine moneyness categories: �M � [0:92; 0:93; 0:94; 0:95; 0:96; 0:97; 0:98; 0:99; 1]:

In summary, I have a total of twelve asset pricing moments to estimate eight unknown

parameters in �2:

Daily option data for the estimation are selected according to the following policy.

Among all available options on the nth trading day, I �rst select those with maturities

closest to 30 days. From the pool of options thus chosen, I then select the one with

moneyness closest to each of the elements in �M: Due to the low trading of deep OTM

put options (with moneyness between 0.92-0.94) during the CBOE period, most "deep

OTM put options" thus selected from the CBOE data have the actual moneyness well

above 0.94, which is likely to introduce large biases to the data prices. One possible

solution is to exclude the data of deep OTM put options, which I tried in an unreported

about interpolation, see Miranda and Fackler (2002).
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exercise. Estimation in this way; however, yields jump estimates with very large standard

errors and an average smirk premium only half of its data counterpart, suggesting that

the observed pricing di¤erentials between deep OTM put options and ATM options might

provide important information for the identi�cation of the potential disasters. I thus use

Ivy DB data only for the estimation. CBOE data together with the out-of-the-sample Ivy

DB data will be used later to test the model�s asset pricing implications.

Figure 3 plots the time series of the maturity and a subset of the moneyness for the

options thus selected during the Ivy DB period. Both maturity and moneyness vary across

time around their targeted values with only moderate derivations: maturities generally

stay within 20-40 days, and moneyness varies mainly between M � :005 and M + :005,

where M is the targeted moneyness. In addition, we observe roughly the same amount of

positive and negative derivations, hence biases due to the varying contract variables are

likely to be averaged out for the unconditional option pricing moments.

[Figure 3 goes approximately here]

Assume �2 live in a compact space, whose values are selected to minimize the distance

between the sample moments and the simulated moments using the e¢ cient GMMmetrics:

�̂2 = argmin
�2
gT (�2)

0
WTgT (�2) (3.5)

where

gT (�2) � 1
T

PT
t=1 P

data
t � 1

=(T )
P=(T )

t=1 P
�2
t ; (3.6)

T and =(T ) are the sample sizes of the actual data and the simulated data, respectively;
WT is the optimal weighting matrix; P datat and P �2t denote the twelve asset pricing moments

computed from the actual data and the simulated data, respectively.

I set =(T )
T
to 5. As shown by Gourieroux and Monfort (1996), even a small =(T )

T
ratio

can achieve practically su¢ cient level of e¢ ciency. To save the computation time, WT is

estimated using the actual data instead of the simulated data. MSM thus applied is a

special case of the general moment method (GMM) developed by Hansen (1982), but the

estimated �2 are still consistent and asymptotically e¢ cient (e.g., Du¢ e and Singleton,

1996). I use the global optimizer, OQNLP, provided by Tomlab20 to solve the optimization

20Tomlab is a platform for solving applied optimization problems in Matlab. Among the global min-
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problem in (3.5)-(3.6), which yields stable estimations for various starting values of �2.

IV Estimation results

The estimation results are reported in Table II. Panel A reports the estimated non-jump

parameters; Panel B reports the derived values about habit formation; Panel C reports

the estimated potential disasters; and Panel D reports the goodness-of-�t tests. I also list

for certain variables in Panel B and C their corresponding values in Barro (2006), CC and

MSV for the purpose of comparsion. Standard errors are reported in the parentheses.

A. non-jump parameters

Consistent with many previous �ndings, the average and the standard deviation of the

consumption growth rate are both around 2%. The  estimate implies that the estimated

preference is not statistically di¤erent from the log habit formation setup assumed in MSV.

The 1.21% annual subjective time-discount rate is well within the range of their usually

assumed values in the macroeconomics literature. Of the four habit formation parameters,

asset prices are much more sensitive to k and � than to �G and �: As a result, k and � are

estimated with much higher precisions.

To compare my estimated habit formation with those in the previous models, I report

in Panel B Smax and mean(�t); denoting respectively the maximum value of the surplus

consumption ratio and the average local curvature of the utility function, that are implied

from my model as well as from CC and MSV in which the representative agent faces no

potential economic disasters. While my Smax lies between the values of its two counterparts,

the implied average utility curvature from my model is much lower than those from both

CC and MSV. Intuitively, habit formation pushes up equity premium by increasing the

e¤ective risk aversion degree measured by �t: Due to the potential economic disasters

which help boost the demanded equity premium as well, a relatively low degree of risk

aversion in my model is su¢ cient to resolve the equity premium puzzle.

imizers provided by Tomlab, OQNLP yields the smallest objective value for my problem within a given
period of time.
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B. Economic downturns

The estimated potential disasters are reported in Panel C of Table II. The standard errors

of the two jump estimates, � and b; are relatively large, which is consistent with the

previous estimations with the reduced-form option pricing models that jump parameters

are relatively hard to be accurately identi�ed (e.g., Bates, 2000; Pan, 2002; Eraker, 2004). I

report in the last two columns the implied consumption jump size, e�b�1; and the induced
average jump size in the stock market, mean(JP ): For comparsion, I also list in the last

row of Panel C the corresponding values from Barro (2006). S&P 500 index option data

through my baseline model imply a potential economic disaster that strikes once every 50

years in the form of a 17.6% consumption contraction, which induces an average 56% stock

market crash. Whereas the estimated arrival intensity is close to that in Barro (2006), the

estimated consumption jump size is less than half of his estimation. In contrast, my model

generates an average equity premium of 6%, close to what is observed in the data, which

is much higher than the 3.5% equity premium implied from Barro (2006). Intuitively,

with habit formation pushing up the equity premium, it is possible to resolve the equity

premium puzzle with a potential economic downturn much less dramatic than the usually

demanded 40-60% consumption jumps in peso problem models.

Of the economic disasters documented in Barro (2006), those with more than 40%

contractions in consumption or GDP (in terms of real per capita, accumulated over the

entire crisis) all occurred outside of the U.S. The two U.S. economic disasters that Barro

(2006) documents during the past 100 years are the Great Depression (1929-1933) and

the aftermaths of WWII (1944-1947), with accumulated contractions of 31% and 28%

in GDP, respectively. In a model where all parameters are annualized, it seems reason-

able (e.g., Longsta¤ and Piazzesi, 2006) to interprete the estimated consumption jump

size as the average or the maximum annual consumption contraction.21 The maximum

annual consumption contraction during the Great Depression is 9.9%, and the average an-

nual consumption contractions during the two documented U.S. economic downturns are

both around 8%. My estimated consumption jump size (17.6%), while still look dramatic

compared with the two annualized numbers, are much more line with those during the

historically documented economic disasters than those implied from peso problem models.

21Instead, Barro (2006) advocates the calibration of consumption jump size using the accumulated falls
during the entire crisis.
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C. Stock market crashes

In my model, as in peso problem models, stock market crashes are induced by the economic

disasters, hence they also strike once every 50 years22. Unlike peso problem models, eco-

nomic disasters in my model induce the crashes in the stock market through two channels:

the usual channel due to the negative jumps in the dividends with the same magnitudes

as the consumption jumps, which induces jumps of the same size in the stock market; the

extra channel due to the positive jumps in the agent�s instantaneous risk aversion degree at

the presence of habit formation, as discussed in Section I.C, which causes excessive depres-

sions in the stock price relative to dividends. As a result, the stock price jump sizes are on

average around -56%, which is much larger (in absolute values) than the estimated 17.6%

consumption contractions. In contrast, without modeling habit formation, peso problem

models imply the same jump sizes in both consumption and in the stock price. Empirical

evidences, however, seem to support the prediction of excessive stock price adjustment.

For example, Liu et al (2003) report that there are two major crashes in the U.S. stock

market during the past 100 years: one is from mid-October to mid-November in 1929, and

the other is the black Monday of October 19, 1987, when the Dow index fell by 44% and

23%, respectively. While these falls are accumulated within only one month or even one

day, they are already much more dramatic than the maximum 9.9% annual consumption

contractions during the Great Depression.

In the literature, stock price jumps are usually directy estimated out of the option

pricing data with some reduced-form models (e.g., Bakshi et al, 1997; Bates, 2000; Pan,

2002). In those estimations, potential stock market crashes strike far more frequently from

once every half of a year to once every four years, but with much smaller jumps sizes

between -0.3% and -5.4%. The di¤erences are not unexpected given the di¤erent setups

with which the estimations are implemented. In addition, previous estimations are usually

based on the data of ATM and near ATM options, partly because OTM put options are

thinly traded during the earlier CBOE period. In contrast, OTM put options, in particular,

the deep OTM put options, are found to play an important role for the identi�cation of

the potential jumps in my estimation.

22Following the convention of consumption-based asset pricing models, my model traces the dynamics
in the stock market, including the potential stock market crashes, back to the dynamics of the underlying
economic variables such as consumption. In the real world, however, consumption jumps and stock price
jumps do not always happen at the same time, a phenomenon whose explanation is beyond the scope of
this paper.
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D. Goodness-of-�t tests

Panel D of Table II reports goodness-of-�t tests including four individual tests and the

JT test evaluating the overall �t of the model. For the individual tests, I report the

di¤erences between the values simulated from the model and their data counterparts for

the average prices of 8% OTM put options (OjM=:8), the average price of ATM options

(OjM=1), the smirk premium (SP ) and the equity premium (EP ), with standard errors

reported in the parentheses. The model matches well the observed smirk premium and

equity premium both economically and statistically. For example, the model-implied equity

premium (6.04%) is only 0.62% below its data counterpart, and the standard error of

the di¤erence is 5.78. However, the model signi�cantly underprices options across all

moneyness including the reported 8% OTM put options and ATM options, which leads

to its rejection at the 1% signi�cance level. An important reason is that the estimation

period covered by the Ivy DB data experiences unusually high return volatilities driven by

the dot com bubble from the late 1990s to the early 2000s. Since prices of ATM options

are tightly linked to the return volatility, the average prices computed using the Ivy DB

data are likely to overestimate their true values in the long run.

It is worth mentioning that the implied unconditional volatility smirk from my model

is quantitatively close to those implied from many previous models, including Pan (2002),

who studies a reduced-form option pricing model with potential stock price jumps; Liu,

Pan and Wang (2005), who model the uncertainty aversion towards the potential crashes

in the aggregate endowment; and Benzoni, Collin-Dufresne and Goldstein (2005), who

combines the Epstein-Zin preference with the consumption and dividend process driven

by a persistent stochastic growth variable that may jump. In these three models, average

prices of 8% OTM put options and ATM options are 21-24% and 13.5-15%, respectively,

as compared to corresponding prices of 23.5% and 14.5% that are implied from my model.

In addition, Pan (2002) reports the failure to reject that the volatility smirk implied from

her model statistically matches the observed volatility smirk implied from the CBOE data.

[Table II goes approximately here]
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V Alternative models

So far I�ve treated dividend and consumption as a single process. In the U.S., however,

aggregate dividend only accounts for a small proportion of the aggregate consumption, and

the two variables are only weakly correlated across time. I address this issue in this section

by considering two alternative models with di¤erent and seemingly more realistic dividend

processes. The two alternative models are then estimated using the similar methodology

as discussed in Section III to check the robustness of the estimation results reported in

Section IV.

A. Models

The simplest way to deviate from treating consumption and dividend as a single process

is to assume a separate i.i.d. dividend process as follows:

dDt

Dt

= �Ddt+ �DdB2t + (e
�b � 1)dNt (5.1)

where B2t is another standard Brownian whose correlation with B1t is denoted by �1: As in

the baseline model, I assume that dividend jumps simultaneously with consumption by the

same jump size of e�b� 1. The discrete-time analog of the above dividend process without
the potential jumps has been studied by CC to check the robustness of their model�s stock

pricing implications to di¤erent dividend speci�cations.

All the other assumptions remain the same as in the baseline model, and I call the new

model thus generated "alternative 1". The following proposition summarizes its closed-

form asset pricing implications.

Proposition 2 Under the assumed utility in (1.1)-(1.2), the assumed dynamics of habit
formation in (1.3)-(1.6), the assumed consumption processes in (1.8), and the assumed

dividend process in (5.1)

(a) The price-dividend ratio is given by

Pt
Dt

= a1 + a2
1

Gt
(5.2)

where the ceo¢ cients ai (i = 1; 2) are given by (A.35) in the Appendix.
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(b) The risk-free rate (rft), the equity premium (EPt) and the return volatility (volRt)
are given by:

rft = ���t � �J�t (5.3)

EPt = ��t (�Pt)1 + �1��t (�Pt)2 � �J�tJPt (5.4)

volRt =

q
(�Pt)

2
1 + (�Pt)

2
2 + 2�1 (�Pt)1 (�Pt)2 + �J

2
Pt (5.5)

where JXt � X+
t

Xt
� 1 (X = �; P ) denote respectively the jump sizes of the pricing kernel

and the stock price; ��t, ���t are the drift and the di¤usion terms in the process of d�t�t ;
(�Pt)i is the di¤usion term associated with Bit (i = 1; 2) in the process of

dPt
Pt
: J�t; JPt; ��t;

��t; and (�Pt)i (i = 1; 2) are all closed-form functions of the state Gt; and their formulas

are given by (A.39)-(A.44) in the Appendix.

I also consider a cointegrated model in which the dividend-consumption ratio, Ft � Dt
Ct
;

is persistent. In particular, I assume Ft is mean-reverting as follows:

dFt = �( �F � Ft)dt+ Ft�FdB2t; (5.6)

where B2t is again another standard Brownian: The standard deviation of the growth rate

of Ft; dFtFt ; is assumed to be a constant �F ; similarly to what is assumed for the consumption

process: Still denote by �1 the correlation between B2t and B1t; and combining (5.6) with

(1.8) yields the dividend process:

dDt

Dt

= (�
�F � Ft
Ft

+ �+ �1��F )dt+ �dB1t + �FdB2t + (e
�b � 1)dNt: (5.7)

The implied dividend again jump simultaneously with the consumption by the same jump

size of e�b � 1. All the other assumptions remain the same as in the baseline model,
and I call the new model thus generated "alternative 2", whose closed-form asset pricing

implications are summarized in the following proposition:

Proposition 3 Under the assumed utility in (1.1)-(1.2), the assumed dynamics of habit
formation in (1.3)-(1.6), the assumed consumption processes in (1.8), and the assumed

dividend-consumption ratio process in (5.6),
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(a) The price-dividend ratio is given by

Pt
Dt

= a1 + a2
1

Gt
+ a3

1

Ft
+ a4

1

Ft �Gt
(5.8)

where the coe¢ cients ai (i = 1; 2; 3; 4) are given by (A.36) in the Appendix.

(b) The risk-free rate (rft), the equity premium (EPt) and the return volatility (volRt)
are of the same formulas as those given by (5.3)-(5.5) for alternative 1, where the ex-

pressions for J�t; JPt; ��t; ��t; and (�Pt)i (i = 1; 2) are given by (A.39)-(A.41) and

(A.45)-(A.47) in the Appendix.

In both alternative models, the di¤erences between the consumption and the dividend

are interpreted as the labor income. As in the baseline model, the model-implied op-

tion prices have to be simulated based on the repeated random draws of the discounted

end-of-the-period payment from the options. In particular, I need to simulate the joint

distribution of Gt and Ft for computing the unconditional option pricing moments implied

from alternative 2 due to the assumed persistent dividend-consumption ratios.23

B. Estimations

Both alternative models are estimated using the MSM in the similar way as decribed in

Section III. I �rst estimate the non-jump dividend and consumption parameters, jointly

denoted by �1; using the monthly consumption and dividend data. Given the estimated

�1, I then use the joint daily data of options, stocks and the risk-free rates to estimate

all the remaining parameters jointly denoted by �2. I use the same asset pricing mo-

ments as those with the baseline model for the estimation of �2. Due to the di¤erent

dividend processes, I use the averages of [�ct;�c2t ;�ct�dt;�dt;�d
2
t ] to estimate �1 =

f�; �; �1; �D; �Dg in alternative 1, and the averages of [�ct;�c2t ;�ct�Ft; FtFt�1; Ft;�Ft]
to estimate �1 = f�; �; �1; �; �F ; �Fg in alternative 2, where �ct � Ct

Ct�1
�1; �dt � divt

divt�1
�1;

�Ft � Ft
Ft�1

�1 denoting respectively the growth rates of the consumption, the growth rate
of the dividend, and the growth rate of the dividend-consumption ratio.

The estimation results are reported in Table III with standard errors in the parentheses.

Panel A and B report the non-jump parameters; Panel C reports the estimated potential

23In both the model and the data, the dividend-consumption ratio, Ft; varies within a narrow band of
range and plays a minor role in the pricing of options.
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disasters; and Panel D reports the goodness-of-�t tests. From Panel A, the estimated

consumption and dividend with alternative 1 grow at the same speed, which justi�es the

cointegrated dividend-consumption ratio assumed in alternative 2. However, dividend is

much more volatile than consumption, constitutes a small proportion of the aggregate

consumption, and is only weakly correlated with consumption. Of the six preference pa-

rameters reported in Panel B, ; � and � take similar values across all the three models.

As in the baseline model, k and � are again identi�ed with much higher precisions than �G

and �:

Potential economic disasters estimated with alternative 1 strike once every 64 years in

the form of a 13.5% consumption contraction, which induces an average 36% stock market

crash, roughly the average jump size of the two major stock market crashes documented

in 1929 and 1987. Both the arrival intensity and the jump sizes are lower than those esti-

mated with the baseline model, but the estimated consumption jumps still look dramatic

compared to the no more than 10% annual consumption contractions observed during the

Great Depression. Potential disasters estimated with alternative 2 strike more frequently

at about once every 36 years and more severely in the form of a 15% consumption contrac-

tion, which induces a 51% stock market crash. Both numbers are close to those estimated

with the baseline model, which is in fact a special case of alternative 2 by trivially �xing

the dividend-consumption ratio at one.24 Di¤erent dividend processes thus do not change

the big picture of the estimated disasters when we use the identical speci�cations of peso

problem situation and habit formation: potential economic disasters strike once every a

few decades in the form of 15% or so consumption contractions, which induces even more

dramatic crashes in the stock market; the implied consumption jumps and stock price

jumps are both much more in line with the historical observations than those implied from

peso problem models.

The Goodness-of-�t tests consist of the same four individual tests and the JT test as

those for the baseline model. All three models match well the average equity premium. The

smirk premium implied from alternative 1 is about 2% lower than those from the other two

but it is still not statistically di¤erent from what is observed in the data. Like the baseline

model, both alternative models signi�cantly underprice options across all moneyness due to

24To see it in a quick way, notice that Ft � 1 implies Ct = Dt; hence from (5.8), PtCt = (a1 + a3) + (a2 +
a4)

1
Gt
; which is the price-dividend ratio implied from the baseline model given by (1.11) with a3 and a4

set to zeros.
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the over-evaluation of the average option prices using the data during the Ivy DB period,

hence the rejections in the JT tests. Rejections of option pricing models, however, are

not uncommon in the literature even for the reduced-form ones. For example, Bakshi et al

(2000) apply MSM to estimate four reduced-form option pricing models that are commonly

used in the option pricing literature using the daily option data from September 1, 1993

to August 31, 1994, and they �nd that all these models are rejected at the 1% signi�cance

level.

[Table III goes approximately here]

VI Asset pricing implications

This section explores the issue of model misspeci�cation by examining my models�out-

of-the-sample asset pricing implications. While the parameters are only chosen to match

the unconditional moments and only short term options are used for the estimation, the

three estimated models all perform well in matching many other asset pricing features,

including volatilitiy smirks conditional on particular economic states implied from options

with various maturities, term structure in option pricing, stock return predictability, and

the historical �uctuations of smirk premia and dividend-price ratios. To my best knowl-

edge, the matches of the term structure in option pricing and the historical smirk premia

data have never been attempted before. These matches suggest that misspeci�cation is a

relatively minor issue for a setup incorporating both potential economic disasters and MSV

habit speci�cation intended to capture the joint pricing behaviors of stocks and options,

hence an important support to the proposed methodology.

In the following, I use the baseline model to illustrate the out-of-the-sample matches,

which I similarly �nd in the two alternative models. CC report that modeling a separate

i.i.d. dividend process yields almost identical stock pricing implications as in the simplest

case treating consumption and dividend as a single process. Whereas CC do not try a

cointegrated model with a persistent dividend-consumption ratio, they comment: "any

such model is likely to make the consumption and dividend claims more alike that in the

simplest case, since it increases the correlation between dividends and consumption at long

horizons". My �ndings extend their analysis by showing that in a setup with MSV habit

speci�cation, di¤erent dividend processes do not have signi�cants e¤ects on the implied
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option pricing implications as well.

A. Volatility smirks conditional on economic states

I �rst study volatility smirks conditional on the underlying economic states. Given the

estimated structural parameters �̂ �
�
�̂1; �̂2

�
, I �rst back out the daily surplus consumption

ratio on each of the trading days within my option sample period using the short term (with

maturites between 20 and 40 days) option data on the same day. Let Nt be the number

of option prices on day t, and On(t; �n;Mn) and Ôn(t; �n;Mn; �̂;St) (n = 1; 2; :::Nt) be

respectively the observed and the model price of the nth option, I next identify day t�s

state, Ĝt; by minimizing the sum of the squared in-the-sample pricing errors as follows:

min
St

NtX
n=1

h
On(t; �n;Mn)� Ôn(t; �n;Mn; �̂;Gt)

i2
: (6.1)

With the identi�ed {Ĝtg as the inputs, I then compute the daily return volatility, {vôlRtg
by applying (1.14). volR moves one for one with G within the range of the identi�ed {Ĝtg;
hence in the following I use return volatility as the equivalent state variable, which is often

exogenously assumed in the reduced-form option pricing models. (e.g., Bakshi et al, 1997;

Pan, 2002).

Based on the computed {vôlRtg, I sort a total of 4,347 trading days within my option
sample period into ten volatility deciles with days in the higher deciles experiencing higher

return volatilities. To compute the average prices of options with moneyness M and

maturity � (in terms of days) conditional on a particular decile, I collect all available

option contracts from days of that decile with moneyness and maturities falling into the

ranges of [M � :005;M + :005] and [� � 10; � + 10]. The data prices are computed as
the average prices of all the option contracts thus collected, and di¤erent choices of the

ranges are found to induce little variations in the average prices. In the following analysis,

I focus on the sixth, the ninth, and the second deciles representing days of medium, high

and low return volatilities, whose volatility ranges are reported in Panel A of Table IV.

The corresponding model prices are simulated with the underlying state starting from the

mid-point value of its range for each of the volatility deciles.25

Figure 4 plots together volatility smirks implied from both the (baseline) model and

25The computed model prices are similar whether we use G or the return volatility as the state variable.
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the data during the three volatility deciles for options with maturities of 30 days, 60 days,

90 days and 120 days. The matches are generally good in terms of both the price levels of

ATM options and the smirk premia, and the matches become even better with the increase

of the return volatility. Take options with 90 days to expiration, for example. The smirk

premium and the average price of ATM options are 4.9% and 14.0% in the model, and

6.2% and 15.3% in the data during the low volatility days. These numbers change to

6.05% and 26.1% in the model, and 6.22% and 26.6% in the data during the high volatility

days, an apparently improved match. This is an attractive model feature to practitioners

since options are usually more actively traded during periods of high return volatilities. In

addition, the model-implied smirk premia decrease with the maturity during all the three

volatility deciles, which is also consistent with the data as illustrated in Figure 4.

[Figure 4 goes approximately here]

B. Term structure of option pricing

While option pricing di¤erentials across moneyness have been extensively studied in the

literature, relatively little attention is paid to their pricing di¤erentials across maturities,

i.e., the term structure in option pricing. In the upper Panel of Figure 5, I plot model-

implied option prices against their maturities under three moneyness scenarios during the

medium volatility days. The observed term structure in option pricing is mostly decreas-

ing for deep OTM put options with moneyness of .92; it becomes mostly increasing for

lesser OTM put options with moneyness of .96; and the increasing pattern is even more

pronounced for ATM options. To gauge this e¤ect quantitatively, I de�ne "term premium"

as the price di¤erence between options with 150 days to expiration and options with 30

days to expiration with the same degrees of moneyness. The data-implied term premia

increase from -0.5% for deep OTM put options to 2.5% for lesser OTM put options, and

even higher to 4.1% for ATM options.

My model captures this feature qualitatively, as plotted in dotted lines in the lower

Panel of Figure 5. To illustrate the e¤ects of the potential jumps, I plot in the same panel

the model-implied term structures under another two jump scenarios with the two jump

parameters, � and b; taking values one standard error above, i.e., (�̂+ std(�̂); b̂+ std(b̂));

and one standard error below, i.e., (�̂� std(�̂); b̂� std(b̂)); their estimates of (�̂; b̂). Under
the scenario with more dramatic potential jumps, the generated term structure variations
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become quantitatively comparable to those observed in the data: the term premium starts

at -1.6% for deep OTM put options; it increases to 1.2% for lesser OTM put options, and

to 2.2% for ATM options. In contrast, the implied term structure is always decreasing

and near �at under the other scenario with less dramatic potential jumps. I thus conclude

that peso problem situation is important for generating the observed cross-sectional option

pricing di¤erentials not only along the dimension of moneyness but also along the dimension

of maturity, an implication that was not explored before in the literature.

[Figure 5 goes approximately here]

C. Chi-square tests

This subsection statistically tests the matches of out-of-the-sample option prices. I �rst

categorize options falling into each of the three volatility deciles into 8 classes according

to their moneyness and maturities, hence a total of 24 option classes. I exclude short

term options with maturities around 30 days, hence all options considered here are out-

of-the-sample. Let Il, Ol(vôli; � i;Mi) and Ôl(vôli; � i;Mi; �̂) be respectively the number of

option contracts in class l, the observed and the model price of the ith option in class l

(l = 1; 2; :::; 24), where the model price is simulated with the underlying return volatility

starting from vôli; the realized volatility on the day when the corresponding data price is

drawn, and is computed with the MSM parameter estimates, �̂ = f�̂1; �̂2g; as the inputs.
The chi-square test statistics are computed as

cl =

"
1

Il

IlX
i=1

"l

�
Ŝi; � i;Mi; �̂

�#0
� 
�1l

"
1

Il

IlX
i=1

"l

�
Ŝi; � i;Mi; �̂

�#
(6.2)

where

"l

�
Ŝi; � i;Mi; �̂

�
�
Ôl

�
Ŝi; � i;Mi; �̂

�
Ol

�
Ŝi; � i;Mi

� � 1 (6.3)

is the pricing error, and the variance-covariance matrix 
l is estimated using 20 lags of

the Newey-West. If the model is correct, the law of large numbers implies that the sample

average of "l converges to zero. Hence for out-of-the-sample data, cl is asymptotically
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distributed according to �2(1) for each of the 24 classes26. Panel B of Table IV reports

the p-values of the cl statistics together with the number of options (in parentheses) in

each option class. The hypotheses that the model-implied option prices are equal to their

data counterparts are not rejected with p-values all much larger than the usual signi�cance

levels. In addition, these tests formally verify the intuitive observations in Figure 4 that

the matches improve with the increase of the return volatility.

[Table IV goes approximately here]

D. Historical smirk premia

In consumption-based asset pricing models, variations in asset prices are ultimately driven

by consumption shocks. I test this implication applied to smirk premia in this subsection,

which according to my knowledge was never tried before. I �rst obtain the Brownian

innovations, {�Bmt+1g; from the historical monthly consumption data during my option

sample period from April 1988 to June 2005: Next I use {�Bmt+1g and the parameter
estimates as the inputs to compute {Gmt g; the time series of the equivalent economic states
driven by the historical consumption shocks. The observed monthly option prices are

collected in the middle of each month, and their model counterparts are simulated with

the underlying state starting from the backed-out {Gmt g with the same moneyness and
maturites as those in the observed data.

I consider three di¤erent measures of the smirk premium. Besides the usual measure as

the price di¤erentials between 8% OTM put options and ATM options, I also consider the

premium demanded by 4% OTM put options and 4% OTM call options (with moneyness

1.04) relative to ATM options,8><>:
SP1 = B/S-vol(M = :92)� B/S-vol(M = 1)

SP2 = B/S-vol(M = :96)� B/S-vol(M = 1)

SP3 = B/S-vol(M = 1:04)� B/S-vol(M = 1)

9>=>; (6.4)

For each of the three measures, denote by {SP datai;t g and {SPmi;tg (i = 1; 2; 3) the monthly
series of the smirk premia implied from the data and from the model, respectively. To see

26Similar tests are conducted by David and Veronesi (2002), and Buraschi and Jiltsov (2006). I also
tried the tests with pricing errors measured as the absolute di¤erences between the model prices and the
observed prices, and the results are similar.
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how well {SPmi;tg capture the �uctuations in the observed {SP datai;t g; I run the following
regressions:

SP datai;t = �1 + �2SP
m
i;t + �i;t; i = 1; 2; 3 (6.5)

In particular, I run each of the regressions for three di¤erent periods covered respectively

by i) the combined data, ii) the CBOE data from April 1988 to December 1995, and iii)

the Ivy DB data from January 1996 to June 2005. The regression results together with

the correlations between {SP datai;t g and {SPmi;tg are reported in Table V. The �2 coe¢ cients
are all economically signi�cant with values between 20.5% and 88.1%. All but two of the

coe¢ cients are statistically signi�cant as well. The correlations are all of impressive values

and most R2 measures are also sizable. It is acknowledged that the moneyness variations

during the CBOE period are large due to the low trading of OTM put options, which

can generate spurious matches to some extent. However, variations in both maturity and

moneyness are moderate during the Ivy DB period and they all look random, as illustrated

in Figure 3. Although for this reason the matches during the Ivy DB period are not as

good as those during the CBOE period, they still indicate that a signi�cant amount of

�uctuations in the historical smirk premia are captured by the historical consumption

shocks through the model.

[Table V goes approximately here]

E. Stock pricing

I list the matches of the observed stock pricing phenomena in Table VI, which repeat

the well-known success of habit formation models. Panel A reports the matches of the

average return volatility, the standard deviation of the risk-free rate, the average dividend-

price ratio, the average risk-free rate, and the average equity premium, where their data

counterparts are computed using the data during the Ivy DB period. The �rst two moments

are out-of-the-sample, and the last three are in-the-sample, which are included to give us

a complete picture of the matches of the stock pricing moments. The model captures the

average values of the dividend-price ratio and the equity premium reasonably well; it avoids

excess interest rate volatility sometimes present in internal habit formation models; and it

somewhat under-evaluates the average values of the risk-free rate and the return volatility.
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Panel B reports the model�s implications about the excess stock return predictability by

running the long-horizon regressions of log excess stock returns onto the log price-dividend

ratio in the simulated data. We observe the classic pattern of stock return predictability

�rstly documented by Fama and French (1988): the coe¢ cients are negative and signi�cant

both statistically and economically; they increase linearly at �rst and then less quickly; R2

starts relatively low but then rises to impressive values.

Panel C reports the results of the test that variations in the historical dividend-price

ratios are driven by the historical consumption shocks. I feed the model with historical

monthly consumption data in the same way as described in Section VI.D, and then run

the regression from the observed series, fDP datat g onto the model-implied series, fDPmt g;
for the period between Februray 1959 and December 2005. The regression coe¢ cient is

signi�cant both economically and statisticaly with a sizableR2; and the correlation between

fDP datat g and fDPmt g is close to those reported by CC (0.32) and MSV (0.55), which are
computed using the annual and the quarterly consumption shocks, respectively.

[Table VI goes approximately here]

VII Conclusions

Potential economic disasters, such as what happened during the Great Depression, can

have profound e¤ects on the empirical observations in the �nancial markets. However,

empirically we lack direct observations to calibrate their magnitudes. Because disasters

are rare, we usually have no more than one or two of such observations over a long period

of time. In addition, while historically documented disasters can shed some evidence

about what will happen in the future, they could be very di¤erent from the potential

ones that investors are currently concerned about. Using the "peso problem" argument

that potential economic disasters are likely to be factored into the observed asset prices, an

alternative way is to back out their magnitudes implied from the �nancial data with models

that link the dynamics of the real economy to those of the �nancial markets. The usual

methodology is to add a small-probability consumption jump into the otherwise standard

consumption-based asset pricing model, referred to as peso problem model in this paper,

which is then calibrated to the observed equity premium. Potential jumps thus estimated,

however, imply counterfactually high option pricing di¤erentials between deep OTM put
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options and ATM options (known as the "smirk premium"), suggesting that the economic

disasters required to rationalize the observed equity premium is too severe for the observed

option prices.

In this paper, I propose a new methodology of using the S&P 500 index option data to

gauge the magnitudes of the potential economic diasters, which are priced in the option

markets through the induced potential stock market crashes in the form of the pricing

di¤erentials among index options across moneyness. The key point is to implement the

estimation with a setup incorporating both the potential economic disasters in the form

of negative consumption jumps and an external habit speci�cation. Whereas both model

elements are important devices to boost the equity premium, the former proves to be much

more e¤ective than the latter for generating the observed smirk premia. Hence, with habit

formation pushing up the equity premium without a¤ecting the smirk premium much, I

can use the index option data to back out the implied economic disasters factored into the

observed option pricing di¤erentials across moneyness. Disasters thus estimated, combined

with the estimated habit formation, tend to be simultaneously consistent with the observed

equity premium and the observed smirk premium.

The estimated consumption jumps, with the jump sizes between 13.5% and 17.6%

depending on the assumed dividend processes, are much more in line with the the histor-

ically documented no more than 10% annual consumption contraction during the Great

Depression than those estimated with peso problem models in which 40-60% potential

consumption contractions are usually demanded to match the observed equity premium.

In addition, consumption jumps in my model induce the stock market crashes through

an extra channel due the positive jumps in the agent�s instantaneous risk aversion degree

at the presence of habit formation, which causes excessive depressions in the stock price

relative to dividends. As a result, unlike peso problem models which imply identical jump

sizes in the consumption and in the stock price, the induced stock market crashes from

my setup are much more dramatic than the estimated consumption jumps, which is also

consistent with the empirical observations.

The paper contributes to the literature of asset pricing as well. The proposed method-

ology is based on the interesting new �ndings that peso problem models generate too

pronounced volatility smirks whereas habit formation models generate too �at volatility

smirks in option pricing. Combining peso problem situation with habit formation proves

successful at generating a wide variety of the observed option pricing phenomena including
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the average volatility smirks, volatility smirks conditional on di¤erent economic states, the

term structure in option pricing, and the historical �uctuations of smirk premia, as well as

many stock pricing phenonema. To my best knowledge, the matches of term structure in

option pricing and the historical �uctuations of smirk premia have never been attempted

before in the literature. My setup signi�cantly improves on the pricing abilities of the

two previous consumption-based option pricing models, Liu et al (2005) and Benzoni et

al (2005), which are silent about the observed option pricing variations across time and

across di¤erent economic states. Whereas many of the matches can also be achieved using

reduced-form models, it seems worthwhile to devise a setup with comparable pricing capa-

bilities that links the dynamics of �nancial markets directly to those of the real economy,

which according to Cochrane (2006) is "the trunk of �nance". The asset pricing matches,

besides being interesting of their own, relieves the concern about model misspeci�cations,

which lends an important support to the proposed methodology

Appendix
I �rst prove the following lemma:

Lemma 1 Consider a jump-di¤usion process:

dZt = (A0 + A1Zt)dt+ �(t; Zt)dBt + A2Zt(dNt � �dt) (A.1)

where Zt; A0; A1; �(t; Zt); dBt; and A2 are n by 1, n by 1, n by n, n by m, m by 1
and n by n; respectively; Bt and Nt are respectively an m-dimensional standard Brownian
and a Poisson process with arrival intensity �; A2Zt denotes the jump size of dZt: Under
the process of (A.1) and assume certain technical conditions are satis�ed27, the following
conditional expectations can be derived in closed-form,

EtZt+� = 	�Zt +

Z �

0

	��sA0ds; � � 0 (A.2)

where 	� = U exp(!�)U�1; exp(!�) � diag[e!1 ; :::; e!n ]28; U and ! � [!1; :::; !n]
0 are

eigenvectors and eigenvalues of A1, i.e., A1 = Udiag(!)U�1

27The technical conditions required are similar to (i)-(iii) assumed in Page 1351 of Du¢ e et al (2000).
28diag([x1; :::xn]) denotes an n by n diagonal matrix with x1; :::xn on the principal diagonals and all

o¤-diagonal elements set to zeros.
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In particular, if A0 = 0n�n;
EtZt+� = 	�Zt (A.3)

Proof. Integrating on both sides of (A.1) yields:

Zu = Zt +

Z u

t

(A0 + A1Zs)ds+

Z u

t

�(s; Zs)dBs + A2Jt for u � t (A.4)

where Jt �
P

t<� i�u
(Z� i � Z� i�)� �

R u
t
Zsds

Using the same technique as that for the proof of lemma 1 in Du¢ e et al (2000), we
can show that EtJt = 0:29 Assume technical conditions for ensuring Et

R u
t
�(s; Zs)dBs = 0

are satis�ed, and de�ne Ẑu � EtZu for u � t: Taking conditional expectation on both sides
of (A.4) yields:

Ẑu = Ẑt +

Z u

t

(A0 + A1Ẑs)ds (A.5)

Next take derivatives with respect to u on both sides of (A.5) to yield

dẐu
du

= A0 + A1Ẑu; with Ẑuju=t = Ẑt (A.6)

(A.6) is a �rst order ordinary di¤erential equation (ODE) in vector form, whose solution
is given by

Ẑu = 	u�tẐt +

Z u

t

	u�sA0ds; u � t (A.7)

To verify it, take derivatives with respect to u on both sides of (A.7) with the notice that
exp(!(u� t)) is an n by n diagonal matrix,

dẐu
du

= U exp (!(u� t))!U�1Ẑt + A0 +
Z u

t

U exp(!(u� s))!U�1A0ds

= A0 + U!U
�1
�
U exp(!(u� t))!U�1Ẑt +

Z u

t

U exp(!(u� s))!U�1A0ds
�

= A0 + A1Ẑu

where I�ve used the de�nition of 	 for �rst equality, and the de�nition of U and ! for
the third equality. Finally substituting Ẑu � EtZu into (A.7) and manipulating the time
sub-indices yields (A.2).

29Du¢ e et al (2000) considers a more complex case when the arrival intensity is stochastic and the jump
size follows some general form of distribution, which includes my setup (constant arrival intensity, jump
size proportional to the state variable) as a special case. Wheraas they only consider a scalar case, the
extenstion to the vector case is straightforward.
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Proof of Proposition 1. De�ne

yt =
�
y1t; y2t;

�0 � �C1�t Gt; C
1�
t

�0
Applying Ito�s lemma with jumps (e.g., Appendix F of Du¢ e, 2001) to yt yields:

dy1t
y1t

=

�
�2 + k

�G�Gt
Gt

� �b�Gt � �
Gt

� (1� )��2Gt � �
Gt

�
dt

+

�
1�  � �Gt � �

Gt

�
�dB1t +

�
e�b(1�)

�
1 + �b

Gt � �
Gt

�
� 1
�
dNt

dy2t
y2t

= �2dt+ (1� )�dB1t +
�
e�b(1�) � 1

�
dNt

or in vector form:
dyt = A1y1t + �(t; y1t)dB1t + A2y1t(dNt � �t)

where B2t � [B1t; B2t]
0; A1 and A2 are both 2 by 2 matrices with the non-zero elements

given by
A1;11 = �2 � k � �b�� (1� )��2 + �A2;11
A1;12 = k �G+ ��b�+ (1� )���2 + �A2;12
A1;22 = �2 + �A2;22

(A.8)

and
A2;11 = e

�b(1�)(1 + �b)� 1
A2;12 = ���be�b(1�); A2;22 = e�b(1�) � 1;

(A.9)

where
�2 � (1� )��

1

2
(1� )�2 (A.10)

Decompose A1 = U!U�1; where ! � diag[!1; !2] is a 2 by 2 diagonal matrix. For
notational simplicity, in the following I use f(!) to denote a 2 by 2 diagonal matrix
diag[f(!1); f(!2)] for any functional form f(:).
From lemma 1:

Etys = Ue
!(s�t)U�1 for s � t (A.11)
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Hence,

Pt = Et(

Z 1

t

�s
�t
Csds)

= Ct G
�1
t Et

Z 1

t

e��(s�t)C1�s Gsds

= Ct G
�1
t

Z 1

t

Et[e
��(s�t)y1s ]ds

= Ct G
�1
t

Z 1

t

e01Et[e
��(s�t)ys]ds

= Ct G
�1
t

�Z 1

t

e01Ue
(!��)(s�t)U�1ds

�
y1t

= Ct G
�1
t

�
e01U

1

�� !U
�1
�
y1t

= Ct G
�1
t

2X
i=1

aiy
i
t = a1Ct + a2

Ct
Gt

(A.12)

where ai � e01U 1
��!U

�1ei; and ei is a 2 by 1 vector with 1 in the ith (i = 1; 2) entry and
zero in the other; I�ve used the Fubini theorem for the third equality, (A.11) for the �fth
equality, and the de�nitions of yit (i = 1; 2) for the last equality.
(A.12) gives the closed-form stock price in (1.10). To derive the expressions for ai

(i = 1; 2), notice that I�� A1 = U(�� !)U�1 implies

U
1

�� !U
�1 = (I�� A1)�1

which means that ai � e01U 1
��!U

�1ei is just the (1; i)th element in (I�� A1)�1. Hence,

2X
i=1

ai(I�� A1)(i;:) = [1; 0] (A.13)

where (I�� A1)(i;:) represents the ith row of I�� A1 (i = 1; 2). (A.13) is equivalent to

a1(�� A1;11) = 1
�a1A1;12 + a2(�� A1;22) = 0

hence,
a1 =

1
��A1;11

a2 =
A1;12

(��A1;22)(��A1;11)
(A.14)
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where A1;11; A1;12 and A1;22 are de�ned in (A.8)-(A.10). This completes the proof of part
a) in Proposition 1.
To prove part b), notice that at the presence of jumps,

d�t
�t

=
d��t
�t

+ J�tdNt = ��tdt� ��tdB1t + J�tdNt (A.15)

dPt
Pt

=
dP �t
Pt

+ JPtdN = �Ptdt+ �PtdB1t + JPtdNt (A.16)

where dX�
t

Xt
denotes the drift and the di¤usion components in the dynamics of dXt

Xt
; JXt �

X+
t

Xt
�1 denotes the jump sizes ofXt; whereX = �; P: Following the asset pricing convention,

the di¤usion component in d�t
�t
is written as ���tdB1t where ��t is interpreted as the price

of the di¤usion risks.
Given the assumption that jumps are independent of the Brownian, the stock return

volatility is by de�nition:

(volRt)
2 � dt = (�P1tdB1t)2 + (JPt)2 �dt (A.17)

which yields (1.13). Similarly, the risk-free rate is by de�nition (e.g., Chapter 2 of Cochrane
(2001)),

rftdt = �Et
�
d�t
�t

�
= ���tdt� J�t�dt (A.18)

which yields (1.11). At the presence of potential jumps, the formula for the equity premium
is derived by (A.14) in Longsta¤ and Piazzesi (2004),

EPtdt � �Et
�
dP �t
Pt

d��t
�t

�
� �JPJ�dt

= �Pt��tdt� �JPJ�dt (A.19)

which yields (1.12). Finally, applying Ito�s lemma with jumps to the expressions of �t and
Pt in (1.8) and (1.10) yields the formulas for ��t; ��t; J�t; �Pt and JPt

��t = ��+ �1 + k
�G�Gt
Gt

� �b�Gt � �
Gt

+ ��2
Gt � �
Gt

(A.20)

��t = �

�
 + �

Gt � �
Gt

�
(A.21)

J�t � eb
�
1 + �b

Gt � �
Gt

�
� 1 (A.22)
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�Pt = �

�
a1
Ct
Pt
+ a2

�
1 + �

Gt � �
Gt

�
1

Gt

Ct
Pt

�
(A.23)

JPt = a1
Ct
Pt
(e�b � 1) + a2

1

Gt

Ct
Pt

 
e�b

1 + �bGt��
Gt

� 1
!

(A.24)

where I�ve used the assumed dynamics of Gt and Ct given in (1.5) and (1.7).

Proof of Proposition 2 and 3. The proof procedures of the these two propositions are
similar to that of Proposition 1 but take more maths. De�ne

yt =
�
y1t; y2t;

�0 � �C�t GtDt; C
�
t Dt;

�0
for alternative 1; and

yt =
�
y1t; y2t; y1t; y4t

�0 � � C1�t GtFt; C
1�
t Ft; C

1�
t Gt; C

1�
t

�0
for alternative 2. Applying Ito�s lemma with jumps to yt yields in alternative 1,

dy1t
y1t

=

�
�1 + k

�G�Gt
Gt

� �b�Gt � �
Gt

+ �D + ��
2Gt � �
Gt

�
dt

�
�
�1��D � ��1��D

Gt � �
Gt

�
dt�

�
 + �

Gt � �
Gt

�
�dB1t

+�DdB2t +

�
e(b�1)

�
1 + �b

Gt � �
Gt

�
� 1
�
dNt

dy2t
y2t

= (�1 + �D � �1��D)dt� �dB1t + �DdB2t + (e(b�1) � 1)dNt

or in vector form
dyt = A1yt + �(t; yt)dBt + A2yt(dNt � �dt)

where Bt � [B1t; B2t]0; and the non-zero elements in A1 and A2 are given by

A1;11 = �1 � k � �b�+ �D + ��2 � (�+ )�1��D + �A2;11
A1;12 = k �G+ �b�� � ���2 + ���1��D + �A2;12
A1;22 = �1 + �D � �1��D + �A2;22

(A.25)

and
A2;11 = e

(b�1)(1 + �b)� 1
A2;12 = ���be(b�1); A12;22 = e(b�1) � 1;

(A.26)

where
�1 � ��+

1

2
( + 1)�2 (A.27)

42



Similarly in alternative 2,

dy1t
y1t

=

�
�2 + k

�G�Gt
Gt

� �b�Gt � �
Gt

+ �
�F � Ft
Ft

� (1� )��2Gt � �
Gt

�
dt�

(1� )�1��F � ��1��F
Gt � �
Gt

�
dt+

�
1�  � �Gt � �

Gt

�
�dB1t

+�FdB2t +

�
e�b(1�)

�
1 + �b

Gt � �
Gt

�
� 1
�
dNt

dy2t
y2t

=

"
�2 + �

F̂ � Ft
Ft

+ (1� )�1��F

#
dt

+(1� )�dB1t + �FdB2t +
�
e�b(1�) � 1

�
dNt

dy3t
y3t

=

�
�2 + k

�G�Gt
Gt

� �b�Gt � �
Gt

� (1� )��2Gt � �
Gt

�
dt

+

�
1�  � �Gt � �

Gt

�
�dB1tB

1
t +

�
e�b(1�)

�
1 + �b

Gt � �
Gt

�
� 1
�
dNt

dy4t
y4t

= �2dt+ (1� )�dB1t +
�
e�b(1�) � 1

�
dNt

or in vector form:
dyt = A1yt + �(t; yt)dBt + A2yt(dNt � �t)

where Bt � [B1t; B2t]0; and the non-zero elements in A1 and A2 are given by

A1;11 = �2 � k � �b�� �� (1� )��2
+(1� )�1��F � ��1��F + �A2;11
A1;12 = k �G+ �b�� + (1� )���2
+���1��F + �A2;12; A1;13 = A1;24 = � �F ;
A1;22 = �2 � �+ (1� )�1��F ++�A2;22
A1;33 = �2 � k � �b�� (1� )��2 + �A2;33
A1;34 = k �G+ �b�� + (1� )���2 + �A2;34
A1;44 = �2 + �A2;44

(A.28)

and
A2;11 = e

�b(1�)(1 + �b)� 1
A2;12 = ���be�b(1�); A12;22 = e�b(1�) � 1;
A2;33 = e

�b(1�)(1 + �b)� 1; A2;34 = ���be�b(1�);
A2;44 = e

�b(1�) � 1;

(A.29)
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where
�2 � (1� )��

1

2
(1� )�2 (A.30)

Decompose A1 = U!U�1; where ! � diag[!1; :::; !n], with n = 2 in alternative 1 and n = 4
in alternative 2. From lemma 1,

Etys = Ue
!(s�t)U�1 for s � t (A.31)

hence,

Pt = Et(

Z 1

t

�s
�t
Dsds)

=

�
Ct G

�1
t Et[

R1
t
e��(s�t)C�s GsDsds] in Proposition 2

Ct G
�1
t Et

R1
t
e��(s�t)C1�s GsFsds in Proposition 3

�
= Ct G

�1
t

Z 1

t

Et[e
��(s�t)y1s ]ds

= Ct G
�1
t

Z 1

t

e01Et[e
��(s�t)ys]ds

= Ct G
�1
t

�Z 1

t

e01Ue
(!��)(s�t)U�1ds

�
y1t

= Ct G
�1
t

�
e01U

1

�� !U
�1
�
y1t

= Ct G
�1
t

nX
i=1

aiy
i
t

=

�
a1Dt + a2

Dt
Gt
in Proposition 2

a1Dt + a2
Dt
Gt
+ a3Ct + a4

Ct
Gt
in Proposition 3

�
(A.32)

where ai � e01U
1

��!U
�1ei; ei (i = 1; :::n) is an n by 1 vector with 1 in the ith entry and

zeros in all the other entries; and I�ve used respectively the Fubini theorem, (A.31), and
the de�nitions of yit for the third, the �fth and the last equality in (A.32).
(A.32) gives the closed-form formula for the stock price in both alternative 1 and

alternative 2. Using the similar argument as that in the proof of Propostion 1,

2X
i=1

ai(I�� A1)(i;:) = [1; 0] (A.33)
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in alternative 1, where (I�� A1)(i;:) represents the ith row of I�� A1 (i = 1; 2); and

4X
i=1

ai(I�� A1)(i;:) = [1; 0; 0; 0] (A.34)

in alternative 2, where (I��A1)(i;:) represents the ith row of I��A1 (i = 1; 2; 3; 4). Solving
(A.33) and (A.34) yields:

a1 =
1

��A1;11
a2 =

A1;12
(��A1;22)(��A1;11)

(A.35)

for alternative 1, where A1;11; A1;12 and A1;22 are given by (A.25)-(A.27); and

a1 =
1

��A1;11
a2 =

A1;12
(��A1;22)(��A1;11)

a3 =
�F̂

(��A1;33)(��A1;11)

a4 =
�F̂

(��A1;44)(��A1;11)(
A1;12
��A1;22 +

A1;34
��A1;33 )

(A.36)

for alternative 2, where A1;11; A1;12; A1;22; A1;33; A1;34 and A1;44 are given by (A.28)-(A.30).
This �nishes the proofs of parts a) in Proposition 2 and 3.
To prove parts b), again notice that at the presence of jumps,

d�t
�t

=
d��t
�t

+ J�tdNt = ��tdt� ��tdB1t + J�tdNt (A.37)

dPt
Pt

=
dP �t
Pt

+ JPtdN = �Ptdt+ (�Pt)1 dB1t + (�Pt)2 dB2t + JPtdNt (A.38)

where dX�
t

Xt
denotes the drift and the di¤usion components in the dynamics of dXt

Xt
; JXt �

X+
t

Xt
�1 denotes the jump size of Xt; where X = �; P: Unlike that in the baseline model, the

implied stock return processes, dPt
Pt
; in both alternative models are driven by two Brownians,

B1t and B2t; with the correlation of �1; hence

(volRt)
2 � dt = (�Pt)1 dB1t + (�Pt)2 dB

2
2t + (JPt)

2 �dt

= (�Pt)
2
1 + (�Pt)

2
2 + 2�1 (�Pt)1 (�Pt)2 + �J

2
Pt

and

EPtdt � �Et
�
dP �t
Pt

d��t
�t

�
� JPJ��dt = ��t [(�Pt)1 + �1 (�Pt)2] dt� JPJ��dt

45



which yields expressions in (5.4)-(5.5) for both alternative 1 and alternative 2. The di¤er-
ently assumed dividend processes do not a¤ect the pricing kernel, hence the risk-free rate
is still given by

rftdt = �Et
�
d�t
�t

�
= ���tdt� J�t�dt

for both alternative models. as well as for the baseline model.
To obtain the formulas of ��; ��; J�; �Pi (i = 1; 2) and JP in alternative 1, I apply

Ito�s lemma with jumps to the expressions of �t and Pt in (1.8) and (5.2),

��t = ��+ �1 + k
�G�Gt
Gt

� �b�Gt � �
Gt

+ ��2
Gt � �
Gt

(A.39)

��t = �

�
 + �

Gt � �
Gt

�
(A.40)

J�t � eb
�
1 + �b

Gt � �
Gt

�
� 1 (A.41)

(�Pt)1 = �a2�
Dt

Pt

Gt � �
G2t

; (A.42)

(�Pt)2 = �D (A.43)

JPt =
a2

a1Gt + a2

 
1

1 + �bGt��
Gt

� 1
!

(A.44)

where I�ve used the assumed processes of Gt; Ct and Dt in (1.5), (1.7) and (5.1). Similarly,
applying Ito�s lemma with jumps to the expressions of Pt in (5.8) yields

(�Pt)1 = �

�
a1
Dt

Pt
+ a3

Ct
Pt
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�
1 + �
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��
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(A.45)

(�Pt)2 = �F
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1

Gt
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Dt

Pt
(A.46)
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(e�b � 1) + a2

1
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� 1
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(A.47)

for alternative 2, where I�ve used the assumed processes of Gt; Ct and Ft in (1.5), (1.7) and
(5.6). Note that the formulas of ��; �� and J� in alternative 2 remain the same as those
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in alternative 1, which are given in (A.39)-(A.41), because the di¤erent dividend processes
do not a¤ect the evolution of the pricing kernel.
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Figure 1. Volatility smirks implied from the data, the Peso problem model and
the habit formation models. Figure 1 plots the average prices of options with 30 days
to expiration, quoted in terms of the implied Black-Scholes volatility (B/S-vol), against
the options�moneyness, i.e., the average volatility smirks. The upper panel plots together
the observed volatility smirk computed using the S&P 500 index option data in the period
from April 4, 1988 to June 30, 2005, and its counterpart implied from Barro (2006) in
which a potential 37% consumption contraction striking once every 60 years is assumed.
I also plot in the same Panel the implied volatility smirk from Barro�s model with the
consumption jump size cut in half and all other parameter values remaining unchanged.
The lower Panel plots the volatility smirk implied from the same data together with its
counterparts implied from two habit formation models: Campbell and Cochrane (1999,
CC), and Menzly, Santos and Veronesi (2004, MSV), where the model prices are computed
at the parameter values reported in these two papers.
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Figure 2. The combined e¤ects of Peso problem situation and habit formation
on option pricing. Figure 2 plots the average prices of options with 30 days to expiration,
quoted in terms of the implied Black-Scholes volatility (B/S-vol), against the options�
moneyness, i.e., the unconditional volatility smirks. The upper Panel plots together the
volatility smirk implied from the habit formation model by Menzly, Santos and Veronesi
(2005, MSV) and my baseline model incorporating both potential economic disasters and
MSV habit speci�cation, where the non-jump parameters are from Table 1 of MSV, and the
assumed potential disaster strikes once every 100 years in the form of a 10% consumption
contraction, i.e., � = :01; e�b � 1 = �10%. The lower Panel plots the volatility smirks
implied from my baseline model under another two jump scenarios: i) � = :02; e�b � 1 =
�10%; and ii) � = :01; e�b � 1 = �20%:
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Figure 3. Time Series of the maturity and moneyness of options used in the
estimations. Figure 3 plots the time series of the maturity and selected degrees of
moneyness of options that are used for the model estimations in the period from January
4, 1996 to June 30, 2005. Options are all short term ones with 30 days to expiration, and
their moneyness is between 0.92 and 1. I use the following policy to select the option data:
among all available options on the nth trading day, I �rst select those with maturities
closest to 30 days. From the pool of options thus chosen, I then select the one with
moneyness closest to each of the elements in �M � [.92, .93, .94, .95, .96, .97, .98, .99, 1]�.

54



a: Low volatility days

b: Medium volatility days
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c: High volatility days

Figure 4. Conditional volatility smirks. Figure 4 plots together volatility smirks
implied from both the (baseline) model and the data during the three volatility deciles for
options with maturities of 30 days, 60 days, 90 days and 120 days. I �rst back out the daily
return volatility during my option sample period using the short term option data on the
same day with the parameter estimates as the inputs. I then sort the total of 4,347 trading
days into ten deciles according to the backed-out daily return volatilities, where days in
the higher deciles experience higher volatilities. The data prices are computed as the
average prices of options selected from days falling into a particular volatility decile whose
moneyness and maturities fall into the ranges of [M � :005;M + :005] and [� � 10; � +10],
where M and � are the target values of moneyness and maturity, respectively. The model
prices in each decile are simulated with the underlying state starting from the mid-point
value of the corresponding volatility ranges. The analysis focuses on the sixth, the ninth,
and the second deciles representing respectively medium volatility days, high volatility
days, and low volatility days.
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Figure 5. Term structure in option pricing. Figure 5 plots option prices against
their maturities, i.e., the term structure in option pricing, during the medium volatility
days under three moneyness scenarios: deep OTM put options with moneyness of 0.92,
lesser OTM put options with moneyness of 0.96, and ATM options with moneyness of 1.
The three upper panels plot the variations of term structure in option pricing implied from
the data. The three lower panels plot their counterparts implied from the baseline model
under three jump scenarios: i) the estimated jumps at (�̂; b̂), ii) jumps one standard error
above their estimates at (�̂ + std(�̂); b̂ + std(b̂)); and iii) jumps one standard error below
their estimates at (�̂� std(�̂); b̂� std(b̂)): All other parameters remain at their estimated
values
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Table I.
Summary statistics of the option data

Table I reports the summary statistics of the option data collected from two datasets,
CBOE and Ivy DB, under various maturity and moneyness categories. CBOE data cover
the period from April 4, 1988 to December 29, 1995, and Ivy DB data cover the period
from January 4, 1996 to June 30th, 2005. Both the average option prices, quoted in term
of Black-Scholes implied volatilities (B/S-vols), and the number of option contracts (in
parentheses) are reported for each of the option categories.

Panel A: CBOE data
Moneyness Days-to-Expiration

15-45 45-90 90-150 subtotal
.92-.94 0.284 (869) 0.267 (415) 0.271 (246) (1530)
.94-.96 0.242 (1493) 0.239 (713) 0.251 (351) (2557)
.96-.99 0.196 (3856) 0.201 (2169) 0.222 (816) (6841)
.99-1.01 0.164 (3133) 0.171 (2805) 0.196 (1110) (7048)
1.01-1.04 0.147 (3905) 0.156 (3161) 0.189 (1423) (8489)
subtotal (13256) (9263) (3946) (26465)

Panel B: Ivy DB data
Moneyness Days-to-Expiration

15-45 45-90 90-150 subtotal
.92-.94 0.279 (5046) 0.272 (4679) 0.269 (2263) (11988)
.94-.96 0.253 (5696) 0.255 (5061) 0.254 (2314) (13071)
.96-.99 0.225 (10151) 0.234 (8927) 0.239 (3534) (22612)
.99-1.01 0.203 (7296) 0.215 (6725) 0.225 (2466) (16487)
1.01-1.04 0.187 (10242) 0.200 (9167) 0.213 (3567) (22976)
subtotal (38431) (34559) (14144) (87134)
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Table II.
Estimation results with the baseline model

Table II reports the estimation results with the baseline model treating consumption and
dividend as a single process. The estimation is implemented using the method of simulated
moments (MSM) in two steps. In the �rst step, I use the monthly consumption data
to estimate the two non-jump parameters associated with the consumption process, i.e.,
�; �: Given the estimated �1; in the second step I use the joint daily data of options,
stocks and risk-free rates to simultaneously estimate the remaining parameters associated
with the potential disasters, {�; bg; and the assumed preference, {; �; �G; k; �; �g: Panel
A reports the estimated non-jump parameters; Panel B reports the derived Smax and
mean(�t); denoting respectively the maximum value of the simualted surplus consumption
ratio and the average local curvature of the utility function; Panel C reports the estimated
potential disasters, where �; e�b�1 and mean(JP ) denote respectively the arrival intensity
of the economic disaster, the consumption jump size and the average jump size in the stock
price; Panel D reports the goodness-of-�t tests including four individual tests evaluating
the di¤erences between the model values and their data counterparts for the average prices
of 8% OTM put options (OjM=:92) and ATM options (OjM=1), the smirk premium (SP )
measured as the average price di¤erential between 8% OTM puts and ATMs, and the
average equity premium (EP ), together with the JT statistics evaluating the overal �t of
the model. All standard errors are in the parenthese.

Panel A: non-jump parameters
� �  � �G k � �
.0205 .0182 1.21 0.0147 32.8 0.339 26.3 55.3
(.0025) (.0009) (0.172) (0.0032) (57.8) (0.128) (46.9) (5.11)

Panel B: derived habit formation
Smax mean(�t)

my model 0.0671 21.7
CC 0.097 40.8
MSV 0.048 35

Panel C: potential disasters
� b e�b � 1 mean(JP )

my model 0.0198 0.194 -0.176 -0.56
(0.0139) (0.0997)

Barro (2006) 0.017 -0.37 -0.37
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Panel D: goodness-of-�t tests
OjM=:92 (%) OjM=1 (%) SP (%) EP (%) JT stat [p-value]
-7.02 -6.88 -0.15 -0.62 469 [<.01]
(0.23) (0.23) (2.05) (5.78)
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Table III.
Estimation results with the two alternative models

Table III reports the estimation results with two alternative models with di¤erent dividend
processes. As in the baseline model, I apply the method of simulated moments (MSM) to
implement the estimation in two steps. In the �rst step, I use the monthly consumption
and dividend data to estimate the non-jump parameters associated with the consumption
and the dividend processes and the results are reported in Panel A. Given the �rst step
estimates, in the second step I use the same asset pricing moments as those for the baseline
model to estimate the remaining parameters associated preferences (reported in Panel B)
and the potential disasters (reported in Panel C), where �; e�b � 1 and mean(JP ) denote
the arrival intensity of the economic disaster, the consumption jump size, and the average
jump size in the stock price, respectively. Panel D reports the goodness-of-�t tests including
four individual tests evaluating the di¤erences between the model values and their data
counterparts for the average prices of 8% OTM put options (OjM=:92) and ATM options
(OjM=1), the smirk premium (SP ) measured as the average price di¤erential between
8% OTM puts and ATMs, and the average equity premium (EP ), together with the JT
statistics evaluating the overal �t of the model. All standard errors are in the parenthese.

Panel A: non-jump parameters associated with the consumption and dividend processes
� � �1 �D �D � �F �F

alternative 1 0.0204 0.0183 0.07 0.0204 0.0664
(0.0025) (0.0009) (0.042) (0.0089) (0.01)

alternative 2 0.0205 0.0183 -0.219 0.179 0.0254 0.0675
(0.0025) (0.0009) (0.057) (0.064) (0.0004) (0.01)

Panel B: parameters associated with preference
 � �G k � �

alternative 1 0.931 0.0095 27.2 0.0087 5.79 40.3
(0.25) (0.0058) (195) (0.0108) (170) (2.22)

alternative 2 1.42 0.0123 97.1 0.302 76.0 51.1
(0.898) (0.0123) (144) (0.268) (110) (17.3)

Panel C: potential disasters
� b e�b � 1 mean(JP )

alternative 1 0.0156 0.146 -0.135 -0.36
(0.0126) (0.116)

alternative 2 0.0277 0.162 -0.15 -0.51
(0.0059) (0.0368)
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Panel D: goodness-of-�t tests
OjM=:92 (%) OjM=1 (%) SP (%) EP (%) JT stat [p-value]

alternative 1 -6.5 -4.28 -2.22 -.62 912 [<.01]
(0.24) (0.25) (2.33) (5.61)

alternative 2 -7.20 -7.31 -0.23 -0.52 474 [<.01]
(0.18) (0.20) (1.78) (5.77)
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Table IV.
Tests of the price matches for the out-of-the-sample options

Table IV reports the results of the tests that the model prices are equal to their data
counterparts for the out-of-the-sample option data. I �rst sort a total of 4347 trading days
into ten deciles according to the backed-out return volatilities using the short term option
data, where days in the higher deciles experience higher volatilities. I select the sixth,
the ninth, and the second deciles representing medium, high, and low volatility days,
respectively, and the corresponding volatility ranges are reported in Panel A. I further
divide options falling into each of the volatility days into eight classes according to their
moneyness and maturities, hence a total of 24 option classes. I report in Panel B for
each of the option classes the p-values of the �2 statistics computed as cl = [ 1Il

PIl
i=1 "l]

0 �

�1[ 1

Il

PIl
i=1 "l], where "l denotes the deviation of the model price from its data counterpart

divided by the data price; 
l is computed using 20 lags�Newey-West for all l = 1; 2::::; 24:
Under the null hypothesis of zero pricing errors, cl is asymptotically distributed according
to �2(1) for each l: The numbers of option data in each of the classes are reported in the
parentheses

Panel A: range of the return volatilities (%)
medium volatility high volatility low volatility

range 20.2-21.3 24.2-26.4 15.7-16.6

Panel B: Chi-square tests of the matches for the out-of-the-sample options
Maturity Moneyness
(days) :92 � :94 :94 � :98 :98 � 1 1 � 1:04

low 45 � 75 0.694 (247) 0.702 (711) 0.708 (672) 0.970 (1384)
volatility 75 � 150 0.694 (254) 0.699 (674) 0.698 (474) 0.705 (1054)
medium 45 � 75 0.715 (430) 0.734 (1094) 0.738 (696) 0.822 (1228)
volatility 75 � 150 0.735 (419) 0.733 (942) 0.715 (559) 0.725 (1117)
high 45 � 75 0.792 (374) 0.785 (924) 0.839 (578) 0.943 (1114)
volatility 75 � 150 0.892 (486) 0.866 (968) 0.830 (586) 0.784 (1265)
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Table V.
Matches of the historical smirk premia

Table V reports the tests that �uctuations of historical smirk premia are driven by the
historical consumption shocks. I feed the baseline model with the historical consumption
shocks to back out the implied monthly series of {Gmt g; where G is the equivalent state
variable de�ned in (1.5). The observed option prices are collected in the middle of each
month, and their model counterparts are simulated with the underlying state starting
from the mid-point value of the corresponding volatility ranges: Denote by {smirkdatai;t g
and {smirkmi;tg the series of the smirk premia observed in the data and simulated from
the model, respectively, where I consider three measures of the smirk premia demanded
by 8% OTM put options (the usual measure), 4% OTM put options, and 4% OTM call
options (with moneyness=1.04) relative to the prices of ATM options. Results in columns
2-4 are based on the regressions, smirkdatai;t = �1+�2smirk

m
i;t+ �i;t; where i = 1; 2; 3 denote

the three di¤erent measures of the smirk premia. I run the regressions for three di¤erent
sample periods covered by: i) the combined data from April 1988 to June 2005, ii) the
CBOE data from April 1988 to December 1995, and iii) the Ivy DB data from January
1996 to June 2005. The last column reports the correlations between {smirkdatai;t g and
{smirkmi;tg:

the period covered by �2 t(�2) R2 correlation
Measure 1, i = 1
the combined data 0.592 5.05 0.240 0.490
the CBOE data 0.881 3.78 0.444 0.666
the Ivy DB data 0.406 2.24 0.156 0.396
Measure 2, i = 2
the combined data 0.343 3.39 0.121 0.348
the CBOE data 0.368 2.88 0.184 0.429
the Ivy DB data 0.205 1.64 0.059 0.243
Measure 3, i = 3
the combined data 0.617 3.07 0.091 0.302
the CBOE data 0.673 3.62 0.171 0.413
the Ivy DB data 0.550 1.28 0.043 0.209
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Table VI
Matches of of stock pricing phenomena

Table VI reports the matches of the observed stock pricing phenomena. Panel A reports the
average return volatility, the standard deviation of the risk-free rate, the average dividend-
price ratio, the average risk-free rate and the average equity premium implied from both
the (baseline) model and the data of the period from January 1996 to June 2005. Panel
B reports the model�s implications about the excess stock return predictability by running
the long-horizon regressions of log excess stock returns onto the log price-dividend ratio
in the simulated data. Panel C reports the test that the �uctuations in the historical
dividend-price ratios are driven by the historical consumption shocks. I regress the histor-
ical dividend-price ratios series from January 1959 to December 2005, fDP datat g onto their
model counterparts, fDPmt g; simulated with the underlying state starting from {Gmt g; the
backed-out series of states from the historical consumption shocks, and the results are re-
ported in the �rst three columns of Panel C. I report in the last column the correlation
between fDP datat g and fDPmt g.

Panel A: stock pricing moments (%)
mean(volR) std(rf) mean(CP ) mean(rf) mean(EP )

model 16.3 4.27 1.74 -0.58 6.04
data 19.7 2.79 1.60 1.09 6.17

Panel B: return predictability
horizon (year) �2 t(�2) R2

1 -0.369 -7.69 0.141
2 -0.607 -11.7 0.274
4 -0.798 -15.1 0.387
7 -0.86 -15.9 0.423

Panel C: historical dividend price ratio
regression coef. t-stat. R2 correlation
0.357 5.52 0.132 0.363
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