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Abstract

This paper assesses the empirical performance of an intertemporal option pricing model with
latent variables which generalizes the Black–Scholes and the stochastic volatility formulas. We
derive a closed-form formula for an equilibrium model with recursive preferences where the
fundamentals follow a Markov switching process. In a simulation experiment based on the model,
we show that option prices are more informative about preference parameters than stock returns.
When we estimate the preference parameters implicit in S&P 500 call option prices given our
model, we 8nd quite reasonable values for the coe9cient of relative risk aversion and the
intertemporal elasticity of substitution.
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1. Introduction

The empirical option pricing literature has revealed a considerable divergence be-
tween the risk-neutral distributions estimated from option prices after the 1987 crash
and conditional distributions estimated from time series of returns on the underly-
ing index. Three facts come out clearly. First, the implied volatility extracted from
at-the-money options di>ers substantially from the realized volatility over the lifetime
of the option. Second, risk-neutral distributions feature a substantial negative skewness
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which is revealed by the asymmetric implied volatility curves when plotted against
moneyness. Third, the shape of these volatility curves changes over time, in other
words the skewness is time varying. 1

One possible explanation for the divergence between the objective and the risk-neutral
distributions is the existence of time-varying risk premia. Pan (2002) estimates a
jump-di>usion model proposed by Bates (2000) and investigates how volatility and
jump risks are priced in S&P 500 index options. Based on a joint time series of the
spot price and of one at-the-money option, Pan (2002) shows that the addition of both
volatility and jump risk premia allows to 8t well the joint time series of spot and option
price data. The model can explain well the changing shapes of the implied volatility
curves over time and the skewed patterns are largely due to investors’ aversion to
jump risks. However, it is not clear how this non-arbitrage continuous-time model re-
lates to the preferences of a representative agent since in this approach investors may
have di>erent risk attitudes towards the di>usive return shocks, volatility shocks and
jump risks. In a non-parametric framework, AIJt-Sahalia and Lo (2000) and Jackwerth
(2000) uncover the risk-aversion function implied by the comparison between the ob-
jective and the risk-neutral distributions, while Rosenberg and Engle (1999) investigate
the empirical characteristics of investor risk aversion by estimating a daily semipara-
metric pricing kernel. Jackwerth (2000) 8nds that the preferences are oddly shaped,
with marginal utilities increasing for some wealth levels. However, the implied-tree and
the kernel methodologies used to recover the risk-neutral and the subjective probabili-
ties are not likely to separate neatly the preferences from the probabilities, especially
if the stochastic discount factor depends on state variables. These results underline the
potential importance of investors’ preferences for option prices but leave the ques-
tion of knowing if option prices are compatible with reasonable preferences largely
unanswered.
In this paper, we propose a utility-based option pricing model with stochastic volatil-

ity and jump features to better understand the relationships between the preferences
embedded in risk premia and the aforementioned empirical facts. The model is cast
within the recursive utility framework of Epstein and Zin (1989) in which the respec-
tive roles of discounting, risk aversion and intertemporal substitution are disentangled.
This separation might be important for option pricing since an option contract will nat-
urally be a>ected by the value of time as well as the price of risk associated with the
underlying asset. We derive an option pricing formula which generalizes the Black and
Scholes (1973) and the Hull and White (1987) and Heston (1993) stochastic volatility
formulas, hereafter referred to as BS and SV formulas. 2

An essential feature of this generalized option pricing formula is that it is not in
general preference free. In so-called preference free formulas of which BS and SV
are examples, it happens that these parameters are eliminated from the option pric-
ing formula through the observation of the bond price and the stock price. In other

1 These facts come out of a string of studies by Bakshi et al. (1997), Bates (1996, 2000), Chernov and
Ghysels (2000), and Pan (2002), among others.

2 Our formula can be seen as a discrete-time Heston-type formula. However, in contrast with Heston, the
risk premia are explicitly linked to the preference parameters of a representative agent.
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words, preference parameters are hidden in the observed stock and bond prices. In
our case, the bond pricing formula and the stock pricing formula provide two dy-
namic restrictions relating the characteristics of the stochastic discount factor of the
model (which include the preferences) to the bond and stock price processes. The
key assumption underlying this result is the presence of an unobserved state variable
driving the fundamentals (consumption and dividends) of the economy as in Cecchetti
et al. (1990, 1993) and Bonomo and Garcia (1994a, b, 1996). This state variable cap-
tures the states of the economy which are typically represented by a low consumption
growth associated with a high volatility of dividend growth or by a high consumption
growth together with a low volatility of dividend growth. A contemporaneous correla-
tion between the state variable and the fundamentals makes the preference parameters
play an additional role over and above their impact on stock and bond prices. Therefore,
it appears natural to investigate the informativeness of option prices about preference
parameters and to con8rm the dependence of option prices on preference parameters.
First, based on simulations, we show that option prices are more informative than

stock returns about the structural parameters of the asset pricing model. More precisely,
we show that a set moment conditions based on the mean, variance and autocovari-
ance of order one of stock returns does not provide good estimates of the preference
parameters in 8nite samples. Therefore, one can possibly question the empirical tests
of intertemporal asset pricing models that have been based mostly on bond and stock
returns. On the other hand, similar moment conditions with option prices recover with
great accuracy the preference parameters. Part of the explanation lies probably in the
better spanning of the stochastic discount factor (or the underlying risk neutral prob-
ability distribution) by a panel of option prices. The non-linear nature of the option
payo>s could also help given the non-linearity in parameters of the model.
We further show that a simple method of moments with a panel of simulated option

prices provides good estimates of all the parameters of the model, that is, parameters
associated with the fundamentals in the economy along with the preference parameters.
This lays the ground for an empirical assessment of the model with S&P 500 option
prices in terms of out-of-sample pricing errors and a comparison with usual stochastic
volatility and expected utility models which appear as particular cases of our general
framework. Our results indicate clearly that the explicit incorporation of preferences
improves the performance of the option pricing model and that time non-separable pref-
erences improve the results further. Preference parameter estimates appear reasonable
and stable over a 5-year period (1991–1995).
Apart from the economic interest of recovering preference parameters from this new

option pricing formula, there is always the question of its practical use say for fore-
casting the price of other options. Taking options of all moneyness and all maturities
at once, we con8rm that the absolute and relative errors of the non-expected utility
model are lower than the errors produced by the expected utility model and a stochastic
volatility model. However, the magnitude of the errors remains very large with respect
to the errors associated with practitioners’ ad hoc approaches such as plugging in the
BS formula implied volatilities of the day or the week before. To put the model on a
level playing 8eld with ad hoc approaches, we separate the options according to matu-
rity for estimation, we reduce the period over which empirical moments are computed
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to the last 5 days and 8nally we introduce conditioning information in the estimation.
The volatility of the dividend growth is made a function of the implied volatility of
the same class of moneyness the day before. This has the e>ect of reducing the errors
to levels more in line with the practitioners’ ad hoc approaches, but given the complex
structure of our model, it does not appear as a practical substitute to the simple prac-
titioners’ Black–Scholes. Moreover, this shorter-term calibration blurs the distinctions
between the expected utility and the non-expected utility models since they perform
quite similarly in terms of predictive ability.
The interplay between preferences and latent factors that a>ect the stochastic discount

factor has been explored to a certain extent in the literature. Amin and Ng (1993) pro-
vide an extension of the equilibrium model of Rubinstein (1976) and Brennan (1979)
with a systematic stochastic volatility in stock returns. Garcia et al. (2001) show that
the option pricing model we estimate in this paper can reproduce the various patterns
observed in implied volatility curves as well as changing skewness over time. David
and Veronesi (1999) show that option prices are a>ected by investors’ beliefs about the
drift of a 8rm’s fundamentals. In particular, they emphasize how investors’ beliefs and
their degree of risk aversion a>ect stock returns and hence option prices. Guidolin and
Timmermann (1999) explain the empirical biases of the Black–Scholes option pricing
model by Bayesian learning e>ects. The importance of preference parameters in ex-
plaining Nuctuations in equity prices has also been explored by Mehra and Sah (1998)
who show that small changes in investors’ subjective discount factors and attitudes
towards risk can induce volatility in equity prices. The main thesis of the paper is that
some instantaneous causality e>ects between state variables and asset prices can cap-
ture the stylized facts of interest without having to introduce any Nuctuation in beliefs
or preferences or learning.
The rest of the paper is organized as follows. Section 2 develops a generalized option

pricing formula with latent variables based on a recursive utility consumption-based
asset pricing model. Section 3 explores, in a simulation experiment, the information
about preference parameters contained in option prices compared with that in stock
returns. Preference parameters are also estimated using S&P 500 option and stock
prices. Section 4 calibrates the model for practical option pricing. Section 5 concludes.

2. An intertemporal option pricing model with latent variables

We adopt the recursive utility framework proposed by Epstein and Zin (1989). Many
identical in8nitely lived agents maximize their lifetime utility and receive each period
an endowment of a single non-storable good. Their recursive utility function is of the
form

Vt =W (Ct; �t); (2.1)

where W is an aggregator function that combines current consumption Ct with �t =
�(Ṽ t+1 | Jt), a certainty equivalent of random future utility Ṽ t+1, given Jt the infor-
mation available to the agents at time t, to obtain the current-period lifetime utility
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Vt . Following Kreps and Porteus (1978), Epstein and Zin (1989) propose the CES
function as the aggregator function, i.e.,

Vt = [C�
t + 	��t ]

1
� : (2.2)

The way the agents form the certainty equivalent of random future utility is based
on their risk preferences, which are assumed to be isoelastic, i.e., ��t = E[Ṽ �

t+1 | Jt],
where �6 1 is the risk aversion parameter (1-� is the Arrow–Pratt measure of relative
risk aversion). Given these preferences, the following Euler condition must be valid
for any asset j if an agent maximizes his lifetime utility (see Epstein and Zin, 1989):

E

[
	

(
Ct+1

Ct

)
(�−1)

M
−1
t+1 Rj; t+1|Jt

]
= 1; (2.3)

where Mt+1 represents the return on the market portfolio, Rj; t+1 the return on any asset
j, and 
= �=�. The parameter � is associated with intertemporal substitution, since the
elasticity of intertemporal substitution is 1=(1−�). The position of � with respect to �
determines whether the agent has a preference towards early resolution of uncertainty
(�¡�) or late resolution of uncertainty (�¿�).
Since the market portfolio price, say PMt at time t, is determined in equilibrium, it

should also verify the 8rst-order condition:

E

[
	

(
Ct+1

Ct

)
(�−1)

M

t+1|Jt

]
= 1: (2.4)

In this model, the payo> of the market portfolio at time t is the total endowment of
the economy Ct . Therefore the return on the market portfolio Mt+1 can be written as
follows:

Mt+1 =
PMt+1 + Ct+1

PMt
:

Replacing Mt+1 by this expression, we obtain

�
t = E
[
	

(
Ct+1

Ct

)
�
(�t+1 + 1)
|Jt

]
; (2.5)

where �t = PMt =Ct . Under some regularity and stationarity assumptions, there exists a
unique solution �t to (2.5) of the form �t = �(Jt) with �(·) solution of

�(J )
 = E
[
	

(
Ct+1

Ct

)
�
(�(Jt+1) + 1)
|Jt = J

]
: (2.6)

Similarly, we will be looking for a solution ’t = ’(Jt) = St=Dt to the stock pricing
equation:

’(J ) = E

[
	

(
Ct+1

Ct

)
�−1(�t+1 + 1
�t

)
−1

(’(Jt+1) + 1)
Dt+1

Dt

∣∣∣∣ Jt = J

]
: (2.7)
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It is then possible, for given � and ’ functions, to compute the market portfolio
price and the stock price as PMt = �(Jt)Ct and St =’(Jt)Dt . The dynamic behavior of
these prices, or equivalently of the associated rates of return:

logMt+1 = log
�(Jt+1) + 1

�(Jt)
+ log

Ct+1

Ct
(2.8)

and

logRt+1 = log
St+1 + Dt+1

St
= log

’(It+1) + 1
’(It)

+ log
Dt+1

Dt
(2.9)

is determined by the joint probability distribution of the stochastic process (Xt; Yt ; Jt)
where Xt = logCt=Ct−1 and Yt = logDt=Dt−1.

2.1. A pricing model conditional on latent state variables

We shall de8ne these dynamics through a stationary vector process of state variables
Ut such that

Jt =
∨
�6t

[X�; Y�; U�]: (2.10)

We want these state variables to be exogenous and stationary and to subsume all
temporal links between the variables of interest (Xt; Yt). This framework has already
been used in asset pricing models (see Cecchetti et al., 1990, 1993; Bonomo and
Garcia, 1994a, b, 1996; Amin and Ng, 1993). We achieve this through Assumptions
1, 2 and 3 below:

Assumption 1. The pairs (Xt; Yt)16t6T ; t = 1; : : : ; T , are mutually independent given
UT

1 = (Ut)16t6T .

Assumption 2. The fundamentals (X; Y ) do not cause the state variables U in the
Granger sense or equivalently, given Assumption 1, the conditional probability dis-
tribution of (Xt; Yt) given UT

1 = (Ut)16t6T coincides, for any t = 1; : : : ; T , with the
conditional probability distribution given Ut

1 = (U�)16�6t .

Assumption 3. The conditional probability distribution of (Xt+1; Yt+1; Ut+1) given Ut
1

only depends upon Ut .

Under Assumptions 1–3 we have

PMt = �(Ut)Ct; St = ’(Ut)Dt;

where �(Ut) and ’(Ut) are, respectively, de8ned by

�(Ut)
 = E
[
	

(
Ct+1

Ct

)
�
(�(Ut+1) + 1)
|Ut

]
and

’(Ut) = E

[
	

(
Ct+1

Ct

)
�−1(�(Ut+1) + 1
�(Ut)

)
−1

(’(Ut+1) + 1)
Dt+1

Dt
|Ut

]
: (2.11)
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In this setting, a contraction mapping argument may be applied as in Lucas (1978)
to ensure existence and unicity of the functions �(·) and ’(·). 3 Using the de8nitions
of returns on the market portfolio and asset St , we can write

logMt+1 = log
�(Ut+1) + 1

�(Ut)
+ Xt+1 (2.12)

and

logRt+1 = log
’(Ut+1) + 1

’(Ut)
+ Yt+1:

Hence, the return processes (Mt+1; Rt+1) are stationary as U; X and Y , but, contrary
to the stochastic setting in the Lucas (1978) economy, are not Markovian due to the
presence of unobservable state variables U .
Given this intertemporal model with latent variables, we will show how standard

asset pricing models will appear as particular cases under some speci8c con8gurations
of the stochastic framework. In particular, we will analyze the pricing of bonds, stocks
and options and show under which conditions the usual models, such as the CAPM
or the Black–Scholes model, are obtained. To achieve this, we introduce an additional
assumption on the probability distribution of the fundamentals X and Y given the state
variables U .

Assumption 4.(
Xt+1

Yt+1

)
|Ut+1

t ∼ ℵ
[(

mXt+1

mYt+1

)
;

[
�2Xt+1 �XYt+1

�XYt+1 �2Yt+1

]]
;

where mXt+1 = mX (Ut+1
1 ); mYt+1 = mY (Ut+1

1 ); �2Xt+1 = �2X (U
t+1
1 ); �XYt+1 = �XY (Ut+1

1 );
�2Yt+1 = �2X (U

t+1
1 ). In other words, these means and variance–covariance functions are

time-invariant and measurable functions with respect to Ut+1
t , which includes both Ut

and Ut+1.

This conditional normality assumption allows for skewness and excess kurtosis in
unconditional returns. 4 It is also useful for recovering as a particular case the Black–
Scholes formula. 5

2.2. Pricing formulas for bonds, stocks and options

In all three following subsections we will price the respective assets using the Euler
conditions and use our Assumptions 1–4 to derive a pricing formula. In each case, we

3 It should be emphasized that this framework is more general than the Lucas one because the state
variables Ut are given by a general multivariate Markovian process (while a Markovian dividend process is
the only state variable in Lucas, 1978).

4 Actually, it even allows for skewness and excess kurtosis in conditional returns, given the information
available to the agents at the beginning of the period.

5 It can also be argued that, if one considers that the discrete-time interval is somewhat arbitrary and
can be in8nitely split, log-normality (conditional on state variables U ) is obtained as a consequence of a
standard central limit argument given the independence between consecutive (X; Y ) conditional on U .
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will emphasize the prominent role of the latent variable in pricing the assets. We will
insist especially on its contemporaneous correlation with the asset returns.

2.2.1. The pricing of bonds
Given the Euler condition (2.3) and Assumptions 1–3, the time t price of a bond

delivering one unit of the good at time T; B(t; T ), is given by the following formula:

B(t; T ) = Et

[
	
(T−t)

(
CT
Ct

)�−1 T−1∏
�=t

[
(1 + �(U�+1

1 )
�(U�

1 )

]
−1]
;

which can be written as

B(t; T ) = Et[B̃(t; T )]; (2.13)

with

B̃(t; T ) = 	
(T−t)aTt (
)exp

(
(�− 1)

T−1∑
�=t

mX�+1 +
1
2
(�− 1)2

T−1∑
�=t

�2X�+1

)
;

where aTt (
) =
∏T−1

�=t [(1 + �(U�+1
1 )=�(U�

1 )]

−1.

This formula shows how the interest rate risk is compensated in equilibrium, and
in particular how the term premium is related to preference parameters. Given the
expression for B̃(t; T ) above, it can be seen that for von-Neuman preferences (
 = 1)
the term premium is proportional to the square of the coe9cient of relative risk aversion
(up to a conditional stochastic volatility e>ect). Another important observation is that
even without any risk aversion (�=1), preferences still a>ect the term premium through
the non-indi>erence to the timing of uncertainty resolution (
 �= 1).

There is however an important sub-case where the term premium will be prefer-
ence free because the stochastic discount factor B̃(t; T ) coincides with the observed
rolling-over discount factor (the product of short-term future bond prices, B(�; � + 1),
� = t; : : : ; T − 1). Noticing that B̃(t; T ) =

∏T−1
�=t B̃(�; � + 1), this will occur as soon as

B̃(�; � + 1) = B(�; � + 1), that is, when B̃(�; � + 1) is known at time �. From the ex-
pression of B̃(t; T ) above, it is easy to see that this last property holds if and only
if the mean and variance parameters mX�+1 and �X�+1 depend on U�+1

� only through
U�. In this case, the conditional distribution of Xt given the whole past and future
path of U is equal to the conditional distribution of X given only the past of U , that
is ‘(Xt |UT

1 ) = ‘(Xt |Ut−1
1 ). It is this property which ensures that short-term stochastic

discount factors are predetermined, so the bond pricing formula becomes preference
free:

B(t; T ) = Et
T−1∏
�=t

B(�; �+ 1):

Of course, this does not necessarily cancel the term premia but it makes them preference
free in the sense that the role of preference parameters is fully hidden in short-term
bond prices. Moreover, when there is no interest rate risk because the consumption
growth rates Xt are i.i.d., it is straightforward to check that constant mXt+1 and �2Xt+1

imply constant �(·) and in turn B̃(t; T ) = B(t; T ), with zero term premia.
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2.2.2. The pricing of stocks
By a recursive argument on the Euler condition (2.11), the stock price formula can

be written as follows:

Et

[
	
(T−t)aTt (
)b

T
t

(
CT
Ct

)�−1 DT

Dt

]
= 1; (2.14)

with bTt =
∏T−1

�=t (1+’(U�+1
1 ))=’(U�

1 ). Using the conditional log-normality Assumption
3, we obtain

Et

[
B̃(t; T )bTt exp

(
T∑

�=t+1

mY� +
1
2

T∑
�=t+1

�2Y� + (�− 1)
T∑

�=t+1

�XY�

)]
= 1: (2.15)

With the de8nitional equation:

E
[
ST
St

|UT
1

]
=
’(UT

1 )
’(Ut

1)
exp

(
T∑

�=t+1

mY� +
1
2

T∑
�=t+1

�2Y�

)
; (2.16)

a useful way of writing the stock pricing formula is:

Et[QXY (t; T )] = 1; (2.17)

where

QXY (t; T ) = B̃(t; T )bTt
’(Ut

1)
’(UT

1 )
exp

(
(�− 1)

T∑
�=t+1

�XY�

)
E
[
ST
St

|UT
1

]
: (2.18)

To understand the role of the factor QXY (t; T ), it is useful to notice that it can be
factorized as

QXY (t; T ) =
T−1∏
�=t

QXY (�; �+ 1);

and that there is an important particular case where QXY (�; �+ 1) is known at time �
and therefore equal to one by (2.17). This is when ‘(Xt; Yt |UT

1 ) = ‘(Xt; Yt |Ut−1
1 ). This

means that neither the conditional means and variances of Xt or Yt at time t nor the
covariance �XYt depend on Ut . In this case, we have QXY (t; T )=1. Since we also have
B̃(�; �+ 1) = B(�; �+ 1), we can express the conditional expected stock return as

E
[
ST
St

|UT
1

]
=

1∏T−1
�=t B(�; �+ 1)

1
bTt

’(UT
1 )

’(Ut
1)

exp

(
(1− �)

T∑
�=t+1

�XY�

)
:

For pricing over one period (t to t + 1), this formula provides the agent’s expectation
of the next period return (since in this case the only relevant information is Ut

1):

E
[
St+1

St

1 + ’(Ut+1
1 )

’(Ut+1
1 )

|Ut
1

]
=

1
B(t; t + 1)

exp[(1− �)�XYt+1];

that is

E
[
St+1 + Dt+1

St
|Ut

1

]
=

1
B(t; t + 1)

exp[(1− �)�XYt+1]: (2.19)
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This is a particularly interesting result since it is very close to a standard conditional
CAPM equation (and unconditional in an i.i.d. world), which remains true for any
value of the preference parameters � and �. While Epstein and Zin (1991) emphasize
that the CAPM obtains for � = 0 (logarithmic utility) or � = 1 (in8nite elasticity of
intertemporal substitution), we emphasize here that this relationship is obtained under
a particular stochastic setting for any values of � and �. As we will see in the next
section, the stochastic setting which produces this CAPM relationship will also produce
most standard option pricing models (for example Black and Scholes, 1973; Hull and
White, 1987), which are of course preference free. 6

2.2.3. A generalized option pricing formula
The Euler condition for the price of a European option is given by

%t = Et

[
	
(T−t)

(
CT
Ct

)�−1 T−1∏
�=t

[
(1 + �(U�+1

1 )
�(U�

1 )

]
−1

max[0; ST − K]

]
: (2.20)

Under Assumptions 1–4, we arrive at a generalized Black–Scholes (GBS) formula
(see proof in the appendix):

%t
St

= Et

{
QXY (t; T )'(d1)− KB̃(t; T )

St
'(d2)

}
; (2.21)

where

d1 =
log[StQXY (t; T )=KB̃(t; T )]

(
∑T

�=t+1 �
2
Y�)1=2

+
1
2

(
T∑

�=t+1

�2Y�

)1=2

and

d2 = d1 −
(

T∑
�=t+1

�2Y�

)1=2
:

It should be noticed that if QXY (t; T ) = 1 and B̃(t; T ) =
∏T−1

�=t B(�; �+ 1), the option
price (2.21) is nothing but the conditional expectation of the Black–Scholes price, 7

where the expectation is computed with respect to the joint probability distribution of

6 A similar parallel is drawn in an unconditional two-period framework in Breeden and Litzenberger
(1978).

7 We refer here to a BS option pricing formula where dividend Nows arrive during the lifetime of the
option and are accounted for in the de8nition of the risk neutral probability, while the option payo> does
not include dividends. In other words, the BS option price is given by

%BSt = e−r(T−t)Et [max(0; ST − K)] (2.22)

= e−*(T−t)St'(d1)− Ke−r(T−t)'(d2); (2.23)

since in the risk neutral world:

log
ST
St
 N((r − *)(T − t); �2(T − t)); (2.24)

where * is the intensity of the dividend Now.
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the rolling-over interest rate Urt;T =−∑T−1
�=t logB(�; �+1) and the cumulated volatility

U�t;T =
√∑T

�=t+1 �
2
Y�. This framework nests three well-known models. First, the most

basic ones, the Black and Scholes (1973) and Merton (1973) formulas, when inter-
est rates and volatility are deterministic. Second, the Hull and White (1987) stochas-
tic volatility extension, since U�2t;T = Var[log (ST =St)|UT

1 ] corresponds to the cumulated

volatility
∫ T
t �2u du in the Hull–White continuous-time setting. Third, the formula al-

lows for stochastic interest rates as in Turnbull and Milne (1991) and Amin and
Jarrow (1992). However, the usefulness of our general formula (2.21) comes above
all from the fact that it o>ers an explicit characterization of instances where the
preference-free paradigm cannot be maintained. Usually, preference-free option pric-
ing is underpinned by the absence of arbitrage in a complete market setting. How-
ever, our equilibrium-based option pricing formula does not preclude incompleteness
and points out in which cases this incompleteness will invalidate the preference-free
paradigm, i.e., when the conditions QXY (t; T ) = 1 and B̃(t; T ) =

∏T−1
�=t B(�; � + 1) are

not ful8lled. In this case, preference parameters appear explicitly in the option pricing
formula through B̃(t; T ) and QXY (t; T ). Amin and Ng (1993), who provide a similar
framework by modeling directly stock returns and consumption growth, associate the
preference-free property of the option pricing formula to the predictability of their re-
spective mean, variance and covariance processes. In other words, these processes are
known at the beginning of the period.
It is worth noting that our results of equivalence between preference-free option

pricing and no instantaneous causality between state variables and asset returns are
consistent with another strand of the option pricing literature, namely GARCH option
pricing. Duan (1995) derived it 8rst in an equilibrium framework, but Kallsen and
Taqqu (1998) have shown that it could be obtained with an arbitrage argument. Their
idea is to complete the markets by inserting the discrete-time model into a continuous
time one, where conditional variance is constant between two integer dates. They show
that such a continuous-time embedding makes possible arbitrage pricing which is per
se preference free. It is then clear that preference-free option pricing is incompatible
with the presence of an instantaneous causality e>ect, since it is such an e>ect that
prevents the embedding used by Kallsen and Taqqu (1998). 8

3. Estimation of the option pricing model

In this empirical section, we want to assess to what extent one can recover prefer-
ence parameters from option prices and to establish if the parameters recovered from
actual option price data are reasonable. Recent evidence brought forward by Jackwerth
(2000) in a non-parametric framework tends to extract preferences that are not in ac-
cordance with theoretical properties such as decreasing marginal utility. Our theoretical
equilibrium model suggests that, in general, option prices are not preference free in
the sense that the information about preference parameters is not solely contained in

8 Heston and Nandi (2000) point out that the GARCH option pricing model of Duan (1995) is valid if
and only if BS is valid over one period.
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bond and stock prices. Therefore, option prices might allow us to obtain more precise
estimates of preference parameters in 8nite samples. We verify this point in a simula-
tion experiment by comparing the preference estimates obtained with a simple method
of moments applied 8rst to stock returns and then to option prices while assuming
that the other parameters of the model are known. We further devise an estimation
framework that allows us to recover jointly all the parameters of the model, that is,
the parameters characterizing the stochastic process of the state variables as well as the
parameters of the mean, variance and covariance functions of the fundamentals of the
economy, along with the price–consumption and price–dividend ratios and the prefer-
ence parameters. We apply this estimation method 8rst to simulated data to verify if
parameters are well estimated and then to S&P 500 call option prices.

3.1. A Markov-chain process for the state variables

Until now, we have not made any speci8c assumption about the nature of the stochas-
tic process governing the state variables Ut apart from its stationarity and its Marko-
vianity. In order to estimate the model, we adopt a Markov-chain setup for these state
variables as in Cecchetti et al. (1990, 1993) and Bonomo and Garcia (1994a, b, 1996),
based on the regime-switching model introduced by Hamilton (1989). The process de-
scribing the joint evolution of Xt and Yt is parameterized as follows:

Xt = mX (Ut) + �X (Ut),Xt ; (3.1)

Yt = mY (Ut) + �Y (Ut),Yt : (3.2)

The time-varying means and variances are assumed to be a function of the state variable
process {Ut}, which is assumed to be a two-state discrete 8rst-order Markov chain. The
transition probabilities between the two states are given by pij=Pr(Ut=j|Ut−1= i) for
i; j= 1; 2. The unconditional probability of being in state 1 is denoted %1 and is equal
to (1 − p22)=(2 − p11−p22) and %2 = 1 − %1. We further assume that the dependence
of the consumption mean and dividend variance parameters on the state can be written
in a linear form, without loss of generality:

mX (Ut) = mX1 + mX2Ut;

�Y (Ut) = �Y1 + �Y2Ut: (3.3)

Moreover, for simplicity sake and based on empirical evidence, we consider that the
consumption variance and dividend mean parameters are constant between regimes.
In order for Assumptions 1–3 to hold, the (,Xt ; ,Yt) are supposed to be serially

independent, identically distributed and independent of the state variable process Ut . In
accordance with Assumption 4, the vector (,Xt ; ,Yt)′ follows a standard bivariate normal
distribution with correlation coe9cient �XY .

3.2. Informational content of option prices about preference parameters

Our 8rst goal is to compare the informational content of stock returns and option
prices with respect to the preference parameters. That is, we wish to see from which
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series can one better infer the values of the preference parameters of the structural
model. From a comparison of the option pricing formula (2.21) and the stock return in
(2.12), we can see intuitively why option prices might be more informative than stock
prices about the preference parameters. In (2.12) the preference parameters only appear
indirectly through the stock price–earnings ratios, which in equilibrium are determined
as solutions of the Euler conditions in (2.11). On the other hand, these ratios also
appear in the option price through the term QXY (t; T ). This term in (2.21) along with
B̃(t; T ) depend directly on the preference parameters in addition to the price–earnings
ratios for the stock and the market portfolio.

3.2.1. A Monte Carlo experiment
In this section we compare the empirical performances of the estimates based on

option prices and on stock returns in the framework of a simulation experiment.
We simulate asset prices in the economy described by our model. The experiment
was carried out as follows. For given values (	; 
; �) characterizing preferences and
(p11; p22; mX 1; mX 2; �X 1; �X 2; mY1; mY2; �Y1; �Y2; �XY ) describing the endowment and state
variable processes, we 8rst obtain the equilibrium values of the price–dividend ratios
(�1; �2; ’1; ’2) by numerically solving the following set of simultaneous equations:

�
i =
2∑
j=1

pij

[
	
 exp

{
�mXj +

1
2
(��Xj)2

}
(�j + 1)


]
;

’i =
2∑
j=1

pij

[
	
Aj

(
�1 + 1
�1

)
−1

(’′
j + 1)

]
;

where

Aj = exp{(�− 1)mXj + mYj + 1
2((�− 1)2�2Xj + �2Yj + 2(�− 1)�XY �Xj�Yj)}:

The stock returns {rt ; t = 1; : : : ; N} are obtained as

rt = log
’t + 1
’t−1

+ Yt; (3.4)

with Yt = logDt=Dt−1 given by (3.2). Given the Markov chain process assumed for
Ut , we generate paths of the state variable from time 1 through T , which we set
at 100. For each path of the state variable Ut , we generate normalized option prices
Ct(Ut = i; 1; �) = %t=K , 9 where %t is the price of a European call option as given by
the generalized Black–Scholes pricing formula (2.21) when state i is operative at time
t and the option’s moneyness is equal to 1= St=K and time to maturity is �= (T − t).
We therefore obtain series of stock returns and normalized option prices. We repeat
the simulation 1000 times.

9 Given the non-stationarity of St , option prices will also be non-stationary since St enters as an argument
in the option pricing formula. However, the variable St=K will be stationary as strike prices are set at issuing
time to bracket the underlying asset price. This suggests using Ct(Ut = i; 1; �) to estimate the parameters of
interest instead of %t .
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3.2.2. Estimating preference parameters with simulated prices
To start the estimation in the simplest way, we apply an exact method of moments to

recover jointly the three preference parameters 	, � and � while assuming that the other
parameters of the model are known. In this 8rst estimation, we focus our attention on
preference parameters but later on, we will estimate all parameters at once to prepare
the ground for estimation with actual data.
The moments for the stock returns that we consider are

E[rt] =
2∑
i=1

2∑
j=1

%ipij

(
log

’j + 1
’i

+ mYj

)
; (3.5)

Var[rt] =
2∑
i=1

2∑
j=1

%ipij

[(
log

’j + 1
’i

)2
+ 2mYj

(
log

’j + 1
’i

)

+m2
Yj + �2Yj

]− E[rt]2 (3.6)

and

Cov[rt ; rt−1]

=
2∑
i=1

2∑
j=1

2∑
k=1

%ipijpjk

[(
log

’j + 1
’i

)2
+ m2

Yj

]

[(
log

’k + 1
’j

)2
+ m2

Yk

]
− E[rt]2: (3.7)

For the moments of option prices, it should be noticed that option prices allow for
more Nexibility than stock returns in the sense that we observe more than one option
at each date, but only one price for the underlying stock. We can for example apply
the method of moments to option prices of di>erent moneynesses and maturities as
follows:

E
[%t
K

]
=

2∑
i=1

%iCt(Ut = i; 1; �): (3.8)

It should be noticed that for a given set of values of the moneyness (possible values
of St=K), option prices are deterministic functions of the current state variable. In our
two-state setting, there are two values of the normalized option price, one for each
state, as there are two price–dividend ratios. 10 Estimating parameters on the basis of
this simulated series would have resulted in a perfect 8t as the generalized option
pricing model has more parameters that there are sources of randomness driving the
transformed option price series. Therefore, we added noise to the ratio log(St=K) as
log(St=K) + �Y (Ut),t where ,t is an i.i.d. N(0; 1) process. Note that the added error
term is proportional to the state-contingent standard error of the dividend process. The

10 The division of the option prices by their strike price results in a binary process in the sense that for
given values of 1 and � the transformed option prices take one of two values depending on which state is
operative at time t.
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Table 1
Descriptive statistics for the method-of-moments estimator of preference parameters based on simulated
option prices

Options prices � � 	
(time series)

Mean −10:1585 −4:6162 0.9445
Median −10:2131 −4:7979 0:9445
Std err 1.0524 1.8975 0.0093
RMSE 1.0638 1.9350 0.0108

Options prices
(across moneyness)
Mean −10:1421 −4:6770 0.9504
Median −10:2171 −4:7927 0.9500
Std err 1.0117 1.2921 0.0159
RMSE 1.0212 1.3312 0.0159

Note: The moments used in the estimation in Tables 1, 2 and 3 are the mean, the variance and the
autocovariance of the respective series. For options in Table 1, we also used the means of three options
with di>erent moneyness. The true values are � = −10; � = −5 and 	 = 0:95 for the preferences and
p11 = 0:9; p22 = 0:6; mX 1 = 0:0015, mX 2 = −0:0009, �X 1 = �X 2 = 0:003, mY1 = mY2 = 0, �Y1 = 0:02,
�Y2 = 0:12 and �XY = 0:6 for the state variable and consumption and dividend processes. The results are
reported for options with maturity of one period. The results are based on 1000 replications of the experiment.

additional error term makes for a fair comparison of the informational content of stock
returns vis-Va-vis option prices.
Another possibility to construct moment conditions is to choose a particular option,

say at the money, and compute the moments based on the mean, variance and co-
variance of a time series of prices for this particular option (always normalized by
a given moneyness for stationarity). We will pursue both avenues to infer preference
parameters from option prices.

3.2.3. Simulation results about estimated preference parameters
We investigate the properties of the estimators for the preference parameters while

holding the other parameters of the model 8xed at their true values. 11 In Tables 1–3,
we report the results of this simulation experiment in terms of mean, median, standard
error and root mean square error (RMSE) for the three parameters. We report the results
for the method-of-moments estimators based on option prices (from a time series and an
across-moneyness perspective), stock returns, and price–dividend ratios, 12 respectively.
First, we notice that the estimators based on stock returns are more biased than the
estimators based on moment conditions for options. It is the case even if we use
comparable moments computed on the time series of one particular option. The bias is

11 The values of the endowment process are similar to those estimated from actual data by Bonomo
and Garcia (1996). Other values, such as the ones used in David and Veronesi (1999), yielded the same
conclusions.
12 The informational content of price–dividend ratios was suggested by Bansal and Lundblad (1999).
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Table 2
Descriptive statistics for the method-of-moments estimator of preference parameters based on simulated stock
returns

Stock returns � � 	

Mean −11:0711 −2:4557 0.9950
Median −10:9812 −1:8966 0.9955
Std err 1.0457 1.6153 0.0035
RMSE 1.4965 3.0134 0.0451

Table 3
Descriptive statistic for the method-of-moments estimator of preference parameters based on simulated price-
dividend ratios

Price–dividend ratio � � 	

Mean −10:5537 −3:5051 0.9501
Median −10:0003 −4:9861 0.9497
Std err 1.2742 2.1530 0.0017
RMSE 1.3887 2.6202 0.0017

more pronounced for the parameters � and � than for the subjective discount factor 	.
A possible reason for this 8nite sample bias could be the non-linearity in parameters
present in the model. 13 It is possible that the non-linear nature of the option payo>s
helps in this regard. Improvements in terms of RMSE can be obtained in two directions,
one for options, the other for the stock.
First, by using a set of three options with di>erent moneyness, we can see that

the RMSE is reduced at least for � and �. The main di>erence in the information
base of the sets of estimators is that in one case we use a time series of a unique
asset, while in the other we use a panel of option prices. 14 To estimate well the
preference parameters, it is necessary to recover well the stochastic discount factor
or the underlying risk neutral probability distribution. This is easier with a panel of
option prices than with a time series on the underlying asset or one particular option.
The second direction of improvement is to use moments on the price–dividend ratio
of the stock instead of stock returns to estimate the parameters. The RMSE is reduced
for the three parameters compared to the estimates obtained with the stock returns. It
should be emphasized that in the true model used to simulate the prices, the price–
dividend ratio takes two values, one for each state, as it is the case for option prices.
We therefore added noise to log(’(Ut) as log(’(Ut)) + �Y (Ut)vt where vt is an i.i.d.

13 This is not a numerical issue. In fact, we gave an advantage to the stock returns conditions in the sense
that we started the optimization at the true parameter values, while for the options the initial values were
taken in a random neighborhood of the true values.
14 On the one hand, we use more information by having three price series, on the other hand we do not

use this information as e9ciently since we limit ourselves to 8rst moments in the estimation to obtain the
three moment conditions needed to estimate 	, � and �.
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N(0; 1) process, in the same way we did for normalized option prices. However the
RMSEs remain higher than the RMSEs obtained with option prices.
Several conclusions can be drawn from the simulation results. First, it seems fair to

state that stock return data provide poor estimates of the preference parameters. While
price–dividend ratios produce better estimates, the standard errors for � and � are higher
than for stock returns. Moreover, the distribution of � is dramatically skewed to the
right, producing a marked underestimation in average of the risk aversion coe9cient
1−�. The superior inference produced by option prices is all the more remarkable that
we have used not the Euler equations but the generalized Black–Scholes formula, which
already incorporates the information conveyed by observed bond and stock prices, for
estimating the preference parameters. In other words, in such an exercise, option pricing
formulas that are close to Hull and White preference-free formula would have led
to option price data without any informational content about preference parameters.
What we have captured in our estimation with moments on options is the marginal
information provided by option prices in excess of the information provided by bond
and stock prices.

3.2.4. Estimating all model parameters with simulated prices
In reality, we cannot consider that we know any of the parameters of the model.

In order to estimate simultaneously all the structural parameters of our model we
combine moment conditions from the stock returns and option price series. It should
be emphasized that the only observables are the stock and option price data, and the
dividend series (to construct the stock returns including dividends). The consumption
series does not need to be observed. The estimation method will allow us to infer
values for the means and variance of consumption growth from 8nancial market data
as it was done by Bonomo and Garcia (1996) using a maximum likelihood approach.
We also need to compute from Euler equations, given values for the other model
parameters, the price–consumption ratios �1 and �2 for the market portfolio and the
price–dividend ratios ’1 and ’2 for the stock.
In Table 4, we proceed to estimate jointly all the parameters of the model, again

with an exact method of moments applied to the simulated asset prices as above. We
use enough moment conditions from option prices and stock returns to estimate the
12 parameters of interest. We get 9 moment conditions on options by considering 3
di>erent moneynesses (1.1, 1 and 0.9) and times to maturity (1, 2 and 3 periods)
and three moment conditions from the stock returns (mean, variance and covariance).
At each stage of the estimation, given the current set of values for the model para-
meters, the � and the ’ parameters are computed by solving the Euler equations.
The results indicate that the preference parameters, the transition probabilities and the
consumption–dividend correlation parameter are estimated without bias and rather pre-
cisely. It is not the case for the means and variance of the consumption process, which
are biased. The variance parameters of the dividend process are slightly biased up-
ward. 15 Acknowledging these potential problems in recovering some parameters, we

15 However, it should be noted that the median bias of the estimators for the consumption and dividend
parameters is acceptable.
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Table 4
Descriptive statistics for the joint estimation of the structural parameters by an exact method-of-moments
based on simulated asset prices

	 � � p11 p22 �XY

Mean 0.9164 −10:0517 −4:9728 0.8983 0.5916 0.5954
Median 0.9504 −9:9903 −5:0177 0.9010 0.5983 0.5997
Std err 0.1119 1.4381 1.3672 0.0507 0.0749 0.0980
RMSE 0.1168 1.4383 1.3667 0.0507 0.0753 0.0981

mX 1 mX 2 �X mY �Y1 �Y2

Mean 0.0520 0.0500 0.0068 −0:0780 0.0462 0.1849
Median 0.0013 −0:0052 0.0031 −0:0088 0.0193 0.1249
Std err 1.0176 0.8822 0.0267 0.5529 0.3704 0.2028
RMSE 1.0183 0.8832 0.0269 0.5581 0.3711 0.2128

Note: The true values are � =−10; � =−5 and 	 = 0:95 for the preferences and p11 = 0:9; p22 = 0:6,
mX 1 = 0:0015, mX 2 =−0:0009, �X 1 = �X 2 = 0:003, mY1 = mY2 = 0; �Y1 = 0:02, �Y2 = 0:12 and �XY = 0:6
for the state variable and consumption and dividend processes. The results are based on 1000 replications
of the experiment.

will nevertheless proceed with this method for estimating the parameters of the model
with actual data since it allows to recover well the preference parameters which are
the main focus of our analysis.

3.3. Is there evidence of preference parameters in S&P 500 option prices?

The simulation experiments of the last section lay the ground for a general estimation
of the model with option price and stock return data. To estimate the parameters
and assess the out-of-sample pricing performance of the various models, we use daily
price data for S&P 500 Index call European options obtained from the Chicago Board
Options Exchange for the period January 1991 to December 1995. 16 The S&P 500
index option market is extremely liquid and it is one of the most active options markets
in the United States. This market is the closest to the theoretical setting of the Black–
Scholes model and the extensions proposed in this paper. We also used daily return
data for the S&P 500 Index.

3.3.1. Estimation of the parameters
We used the following method of estimation. At time t, the GBS model is estimated

by the method of moments using the moments de8ned in the simulation study. By
estimating parameters for options of di>erent maturities and moneyness we take the
model to the letter. The same preferences should apply to the pricing of all assets.
Therefore, we include options of all maturities and moneyness. Also, the same pre-
ference parameters will apply to the risk premia associated with the state variable

16 Rosenberg and Engle (2002) use the same 1991–1995 period for estimating empirical pricing kernels,
allowing for comparisons.
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that makes the mean of the consumption process or the volatility of the dividend
jump. In that sense our approach distinguishes itself from arbitrage-based methods as
developed in Pan (2002), where risk premia are estimated as if investors had di>erent
risk attitudes towards the various types of risk. To compute the empirical moments, we
use a 3-month window prior to the time of estimation. This last feature also pushes in
the direction of estimating the structural parameters of the model. Often option pricing
models are estimated with a window as short as a day making the process more like a
calibrating exercise than an estimation one. We will pursue further such a calibration
exercise in the next section.
More precisely, the parameters are estimated based on matching the following mo-

ments for the options:

f
(
St
K
; (T − t); 6

)
= E

[
GBS

(
Ut;

St
K
; (T − t)

)]
− 1

MSt=K

t∑
�=t−h

%�

(
St
K
; (T − t)

)
;

(3.9)

where the expectation is with respect to Ut , h equals 3 months, and 6 regroups all
the parameters. The notation %�(St=K; (T − t)) denotes a call option on the underlying
stock at time �, with a moneyness equal to St=K and a maturity equal to (T − t). The
quantity MSt=K represents the number of options over the period h with a moneyness
equal to St=K . We proceeded by partitioning the options into moneyness categories
based on St=K and maturity categories based on (T − t). It should be noted that we
take an unconditional expectation of the GBS formula to build unconditional moments.
We then minimized∑∑

f
(
St
K
; (T − t); 6

)2
; (3.10)

where the 8rst summation is over moneyness categories and the second over the matu-
rity categories. We also included some moment conditions based on the stock returns
and conditions based on the Euler equations for the identi8cation of � and ’, in order
to obtain as many moment conditions as there were parameters to estimate.
For the estimation, we start each trading day with a set of initial values and use 8rst

a simplex algorithm to obtain initial estimates followed by a DFP routine. 17 The same
strategy is also applied to the expected utility model where 
 is constrained to a value
of 1. We conduct this experiment for 5 years, from 1991 to 1995. Table 5 reports the
average values of the preference parameters that we obtained in each of the 5 years and
over the 5-year period. Looking 8rst at the GBS model, we can say that the estimates
of the risk aversion and intertemporal substitution parameters appear reasonable. Over
the 5-year period, the coe9cient of relative risk aversion is equal to 0.6838 on average
and the elasticity of intertemporal substitution has a mean value of 0.8532. This is a
result that conforms with intuition since one generally expects that the inverse of the
elasticity of substitution should be greater than the coe9cient of relative risk aversion,
as emphasized in Weil (1989). As the yearly means and standard errors indicate, the

17 To make sure that we explore well the parameter space in the optimization, and especially the preference
parameters, we also used a grid of initial values for the preference parameters. The 8nal results were similar.
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Table 5
Yearly means and standard errors of daily estimated preference parameters from S&P 500 option and stock
price data

GBS model

� 
 	 CRRA (1− �) EIS

1991 −0:2048 (0:0904) −1:6637 (0:9144) 0:9397 (0:0372) 0:6885 (0:0987) 0:8342 (0:0564)
1992 −0:0936 (0:0400) −1:9975 (0:4171) 0:9783 (0:0180) 0:8201 (0:0646) 0:9156 (0:0321)
1993 −0:2007 (0:0737) −2:4294 (1:1218) 0:9413 (0:0380) 0:5509 (0:1269) 0:8358 (0:0494)
1994 −0:2110 (0:1211) −1:7369 (0:6011) 0:9142 (0:0437) 0:6706 (0:1366) 0:8334 (0:0778)
1995 −0:1963 (0:1504) −1:8744 (0:7700) 0:9029 (0:0377) 0:6884 (0:1559) 0:8466 (0:0870)
1991–1995 −0:1812 (0:1114) −1:9406 (0:8458) 0:9353 (0:0444) 0:6838 (0:1478) 0:8532 (0:0710)

Expected utility model
� 	 CRRA (1− �)

1991 −8:7505 (1:7685) 0:9513 (0:0229) 9:7505 (1:7685)
1992 −6:2337 (3:7156) 0:8401 (0:1259) 7:2337 (3:7156)
1993 −4:9742 (1:8897) 0:9710 (0:0275) 5:9742 (1:8897)
1994 −5:1044 (7:0187) 0:8321 (0:1026) 6:1044 (7:0187)
1995 −5:7259 (6:1479) 0:8172 (0:1230) 6:7259 (6:1479)
1991–1995 −6:1590 (4:8260) 0:8824 (0:1130) 7:1590 (4:8260)

Note: The estimation is based on the same exact method of moments used in Table 4. CRRA denotes the
coe9cient of relative risk aversion, EIS the elasticity of intertemporal substitution.

values obtained are remarkably stable over time, a reassuring fact for a structural model
with a representative investor. It is interesting to compare these estimates with the
values obtained when we constrain the parameter 
 to be equal to 1. Similarly to what
was obtained with stock returns series in various studies aimed at solving the equity
premium puzzle, we obtain a high average value of 7.16 for the coe9cient of relative
risk aversion, with a standard deviation of 4.83. It is interesting to note that over the
same 1991–1995 period, Rosenberg and Engle (2002) 8nd an empirical risk aversion
of 7.36 with a power utility function de8ned over wealth (measured by the S&P 500
index), based on S&P 500 option price data. Bakshi et al. (2003) also estimate by
GMM the coe9cient of relative risk aversion in a power utility setting based on a
relation between the risk-neutral skewness of index returns and conditional moments
of the physical index distribution. Depending on the set of instruments, estimates are
in the range 1.76–11.39. 18 Therefore, relaxing the constraint 
= 1 allows for a more
reasonable value for the elasticity of intertemporal substitution. The value found for 	
in the expected utility case is somewhat low (0.88 on average), while it appears more
reasonable (0.94 average) when 
 is not constrained to be equal to one.
Another way to assess the reasonableness of the model estimates for the pricing of

the assets is to look at the estimates obtained for the other parameters of the model,

18 However, most of the estimated values are in the neighborhood of 2. This is obtained for short- and
medium-term options. It is close to the average value of 2.35 that we obtain with short-term options in
Section 4.
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Table 6
Yearly means and standard errors of daily estimated parameters for the state variable and consumption and
dividend processes from S&P 500 option price data over the period 1991–1995

�1 �2 ’1 ’2 p11 p22 �XY

8.1182 10.6924 12.5700 18.8356 0.9758 0.8078 −0:3178
(0.6675) (0.8453) (0.7349) (1.5631) (0.0243) (0.1266) (0.5120)

mX 1 mX 2 �X mY �Y1 �Y2

−0:3216 0.0623 0.0202 −0:0688 0.0365 0.1139
(0.1654) (0.2270) (0.0427) (0.0076) (0.0176) (0.0802)

Note: The estimation is based on the same exact method of moments used in Table 4.

both the fundamental processes and the state variable. The averages over the 1991–
1995 period are given in Table 6. As we saw in the theoretical formulas in Section
2, the price–consumption (�) and the price–dividend (’) ratios play a fundamental
role in the pricing of the assets. We found averages of around 8 and 11 for the price–
consumption ratio and 13 and 19 for the price–dividend ratio with little variability over
the 5-year period (standard deviations of 0.67 and 0.85 respectively). These values also
appear reasonable.
In terms of the state variable we 8nd average values of 0.9758 and 0.8078 for the

transition probabilities in states 1 and 2, respectively, implying values of 0.89 and 0.11,
respectively, for the unconditional probabilities. State 1 is, in fact, a crash-like state with
a very negative mean for consumption growth (−0:32 on average), but one should not
forget however that the state variable also controls the volatility of dividends. So state
1 is in fact a low volatility of dividends and low-consumption state. Given the negative
mean value of dividends, it appears that the representative investor attributes an unrea-
sonably high probability to the bad state, while as we just saw the inferred preference
parameters are reasonable. This is in contrast with the results obtained by Jackwerth
(2000) with a non-parametric methodology. In a parametric framework, Rosenberg and
Engle (2002) 8nd results that di>er from Jackwerth (2000), in particular they do not
8nd negative risk aversions when they use a power pricing kernel. Rosenberg and
Engle (2002) 8nd results similar to Jackwerth’s results when they use an orthogonal
polynomial pricing kernel. In particular, they 8nd that there is a region of negative
risk aversion over the range from −4% to 2% for returns. Our estimates of the model
parameters suggest that the potential mispricing comes from a very pessimistic assess-
ment of the fundamentals of the economy and not from unreasonable preferences. 19 In
any case, this exercise illustrates the di9culty of disentangling the subjective probabil-
ity assessments of the states from the preferences. In the non-parametric framework of
Jackwerth (2000), the risk aversion function is recovered by treating as given both the
option prices and the stock index prices to estimate non-parametrically the risk-neutral

19 The unreasonable parameters for the fundamentals process may also result from a misspeci8cation of
the growth rate equations. We could increase the number of states as in Bonomo and Garcia (1996) where
a three-state bivariate Markov switching model is estimated on an annual frequency over the last century or
so. It should also be noted that our state variable captures both the jump and the stochastic volatility e>ects.
A way to disentangle the two would be to introduce a GARCH speci8cation in the volatility of dividends.
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and subjective probabilities respectively and by taking their ratios. If prices were
generated from our economy with state variables it is possible that one could recover
a bimodal graph for preferences as Jackwerth (2000) does even though preferences are
here constant. The values extracted for the probabilities, say from an implied binomial
tree, are pseudo-true values (since the tree is likely to be misspeci8ed) and will depend
on all the parameters of the economy, including preference parameters. Therefore, the
separation between probabilities and preferences is not as obvious as it seems. Finally,
the values estimated for the volatility parameters, both consumption and dividends,
appear quite reasonable.

3.3.2. Pricing errors
In this section, we will assess the pricing errors associated with our generalized

non-expected utility option pricing formula and compare them with the errors obtained
with the expected utility model and a preference-free stochastic volatility model. Using
the estimates obtained each trading day following the estimation method described in
the previous section, 20 we forecast the prices for all the options of the following
day separated in long (more than 180 days), medium (between 180 and 60 days)
and short (less than 60 days) maturities irrespective of moneyness. We average the
daily forecast errors over each year for the corresponding categories and compare the
performance with the absolute and the relative errors for various maturity categories
for all three models. Christo>ersen and Jacobs (2001) have recently emphasized that
the loss function used in parameter estimation and model evaluation should be the
same. We use an absolute dollar measure which is consistent with the mean square
criterion used in estimation, but we add also a relative measure to give an idea of
the magnitude of the error. The results are shown in Table 7. The absolute errors
appear to be roughly uniform across maturities, but the relative loss is much smaller
for the expensive long-term options than for the cheap short-term options. However,
the ranking of the models is the same for both measures.
We compare three models: the most general option model for the non-separable

recursive utility model given by formula (2.21), the expected utility model obtained
by setting 
 equal to one in (2.21) to judge the importance of non-separabilities,
and 8nally the preference-free stochastic volatility model which results from (2.21)
when QXY (t; T )=1 to gauge the importance of preferences for option prices. It should
be emphasized that the objective of this forecasting exercise is to assess the relative
performance of the three models. One cannot hope to obtain errors of small magnitude
by using only unconditional moments in the estimation and a rather long window in
the past. Conditional information needs to be incorporated in some way to achieve
more sensible pricing performances. This can be done in a structural way by using
the option pricing formula as a function of the unobserved state and by 8ltering the
current value of the latent state variable. We will take a simpler approach in the next
section by incorporating conditioning information such as BS implied volatilities in an
ad hoc way in the model.

20 The parameters for the stochastic volatility model are estimated with the same moment conditions as the
two preference models but we impose the constraint that QXY (t; T ) is equal to one.
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Table 7
Yearly means of absolute and relative pricing errors for short, medium and long-term call options averaged
over moneyness

Short term GBS EU SV

Relative errors
1991 (3132) 0.8588 1.4995 1.5798
1992 (2928) 1.3303 1.8417 1.9287
1993 (2921) 1.7720 1.7636 1.7769
1994 (3365) 1.4821 1.9350 2.3282
1995 (4022) 1.4664 1.3508 2.1910
1991–1995 average 1.3800 1.6800 1.9600

Absolute errors
1991 (3132) 3.1444 4.4779 4.8473
1992 (2928) 3.6726 4.2741 5.2431
1993 (2921) 4.2028 3.8674 4.2968
1994 (3365) 3.1141 3.8733 4.4483
1995 (4022) 4.0907 4.2658 5.6873
1991–1995 average 3.6400 4.1500 4.9000

Relative errors Absolute errors

Medium term GBS EU SV Medium term GBS EU SV

1991 (2187) 0.3436 0.7731 0.7669 1991 (2187) 2.8921 3.9251 4.4258
1992 (2379) 0.7215 1.1348 1.2831 1992 (2379) 3.3759 4.6117 5.4437
1993 (2163) 1.2042 1.3287 1.3471 1993 (2163) 4.4210 4.4138 4.9754
1994 (2897) 1.2097 1.5967 1.9032 1994 (2897) 3.6488 4.4388 4.9771
1995 (2991) 0.8658 0.9799 1.4150 1995 (2991) 4.5432 5.2378 6.4743
1991–1995 average 0.8700 1.1600 1.3400 1991–1995 average 3.7800 4.5300 5.2600

Relative errors Absolute errors

Long term GBS EU SV Long term GBS EU SV

1991 (694) 0.0036 0.1946 0.2374 1991 (694) 2.5882 3.0367 3.4266
1992 (538) −0:0170 0.2246 0.2128 1992 (538) 3.0306 3.9870 3.3401
1993 (492) 0.2138 0.2969 0.2278 1993 (492) 2.5911 2.9982 2.8856
1994 (910) −0:0006 0.0864 0.2543 1994 (910) 3.5838 4.4165 3.5591
1995 (1053) 0.1212 0.2417 0.5201 1995 (1053) 3.3501 4.4264 4.4793
1991–1995 average 0.0600 0.2100 0.2900 1991–1995 average 3.0300 3.7700 3.5400

Note: GBS refers to the generalized Black–Scholes formula in (2.21); EU to the same formula special
case where the parameter 
 is equal to 1; SV to the stochastic volatility formula (special case of (2.21) with
QXY (t; T ) = 1). The numbers in parentheses besides the years indicate the number of options considered.

The results are clear. For all maturities, GBS does better that the speci8cation where

 is equal to one which in turn is better than the SV speci8cation. 21 Compared to

21 We do not carry a formal statistical test of the equality of errors between the models as most papers in
the literature, but tests of predictive accuracy (as in Diebold and Mariano, 1995 or West, 1996) could be
applied (see Dumas et al., 1998).
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the stochastic volatility model, the relative error for GBS is reduced by up to 50% for
short- and medium-term options. This shows that preferences are important in pricing
options on the index. Moreover, the data seem to indicate that preferences are of the
non-separable type since the restricted value of 
 generally increases the relative error.
Of course, as we advance in maturity, the relative error falls for all models since the
volatility smile Nattens and pricing tends to approach Black–Scholes. However, for
long-term options, the GBS model performs signi8cantly better than the other two.
These results parallel the simulation results reported in Garcia et al. (2001) about the
smile e>ect. First, it was shown that a non-preference free framework was able to
reproduce the various asymmetries observed in the implied volatility curve inferred
from option price data. Second, the parameter 
 was seen to be more important than
the risk aversion parameter � in calibrating the smile.
To conclude this section, it seems fair to say that we have obtained reasonable values

of the preference parameters based on price data of all options, irrespective of their
moneyness and maturity, but that the pricing errors are very large. In the next section,
we take some liberty with the model and show that by incorporating conditioning
information, focussing on short-term options speci8cally and reducing the estimation
window, the pricing errors are reduced considerably.

4. Calibrating the model for practical option pricing

In the last section, the goal was to obtain estimates of the structural parameters of
the model. In this section, we aim at minimizing the out-of-sample pricing errors in the
spirit of Bakshi et al. (1997). In this type of exercise one typically makes concessions
with the structural model. The window for estimating the parameters is generally very
short (from a day to a week) and conditioning information is included in an ad hoc
way, usually inconsistent with the model. The best example of this ad hoc approach is
to use the BS formula to extract implied volatility on a given day for a certain maturity
and moneyness and to use this volatility to price options the next day with the same
maturity and moneyness. In so doing, practitioners completely ignore the fact that the
assumption of constant volatility underlying the BS model is obviously violated since
the implied volatility may vary widely from one day to the next. Yet they use the
formula as a tool and the performance of this rather crude method is di9cult to beat
by more sophisticated models unless one is ready to recognize that the parameters of
the model are unstable and their estimates need to be updated. 22

In what follows, we have decided to adapt our model in an ad hoc way in order to
improve its out-of-sample pricing performance. First, we reduce the window over which

22 Heston and Nandi (2000) claim that their closed-form GARCH option pricing formula outperform the ad
hoc BS model of Dumas et al. (1998) even without updating but a closer look at the results (Table 7) shows
that this is not true for short-term options. Even with updating the GARCH model does not outperform the
ad hoc BS approach for close-to-the-money short-term options. Moreover, a more precise procedure, using a
model estimated with the same criterion as in the out-of-sample performance evaluation, produces a smaller
error for the practitioner Black–Scholes methodology, as pointed out by Christo>ersen and Jacobs (2001).



R. Garcia et al. / Journal of Econometrics 116 (2003) 49–83 73

we estimate the parameters to 5 days instead of 3 months. Second, we incorporate the
option’s implied volatility �∗t into the dividend volatility process as 23

�Y (Ut = j) = *0j + *1j�∗t
√
(T − t); (4.1)

for j = 1; 2.
Parameter estimates were then based on a modi8cation of the estimation method

where, for a given maturity (T − t), we minimized

1
MSt=K

t∑
�=t−h

[
E
[
GBS

(
Ut;

St
K
; (T − t); �∗t

)]
− %�

(
St
K
; (T − t)

)]2
: (4.2)

Note that we maintain the use of unconditional moments. 24 Therefore, there is a
di>erent set of parameter estimates for each maturity category. (This relaxes the implicit
constraints of the form p(2)

ik =p(1)
ij p

(1)
jk , where p

(s)
·· are s-period transition probabilities).

Also, we now leave aside the moment conditions based on stock returns and use only
the moment conditions associated with the options.
In addition, we impose the following constraints:

Et[QXY (t; T )] = 1; (4.3)

Et[B̃(t; T )] = exp(−r(T − t)); (4.4)

where r is the observed interest rate. These constraints were implicitly embodied in
the original estimation method in Section 3 through the Euler equations for � and ’.
With the modi8ed method, it is no longer (numerically) feasible to enter the Euler
equations into the estimation problem since ’ depends on �Y , which now depends on
�∗t . Therefore, � and ’ are treated as free parameters to be explicitly estimated along
with the other model parameters; hence the 8rst constraint. The second constraint serves
to incorporate information on the interest rate.
Let us start with pricing errors since the goal of the calibration exercise is to improve

the out-of-sample performance. We now use estimates obtained every day to forecast
the prices for all the short maturity (less than 60 days) options of the next day irrespec-
tive of moneyness. We average the daily forecast errors over each year and compare
the performance of the previous three models (non-expected utility, expected-utility and
preference-free stochastic volatility) to which we added a practitioner BS model in the
spirit of Dumas et al. (1998). 25 Table 8A reports the absolute and relative pricing
errors for each year in the 1991–1995 period. First, note that the relative errors associ-
ated with the preference-based GBS or EU formulas have fallen considerably and vary
between 1% and 9%. It is interesting to note that the two preference-based models

23 The
√
T − t in the formula below refers to the exact maturity of each option used to extract the

corresponding implied volatility.
24 We could have probably improve further the out-of-sample pricing performance by 8ltering the state

probability at time t and use this information to compute the expectation of the GBS formula.
25 Note that we do not estimate a volatility function as in Dumas et al. (1998). We simply group options

by moneyness categories and forecast the volatility of an option one day ahead by the implied volatility
of the moneyness category the day before. The procedure of Christo>ersen and Jacobs (2001) might have
produced a lower error for the practitioners’ BS model.
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Table 8
Yearly means of absolute and relative errors for short-term call options averaged over moneyness with
conditional pricing based on implied volatility

(a) One-day ahead forecast
Relative errors
Short term GBS EU SV PBS

1991 (3132) 0.0068 0.0078 0.0573 −0:0065
1992 (2928) 0.0212 0.0214 0.0728 0.0022
1993 (2921) 0.0221 0.0216 0.0775 −0:0034
1994 (3365) 0.0886 0.0888 0.1914 0.0473
1995 (4022) 0.0626 0.0611 0.1619 0.0092
1991–1995 average 0.0400 0.2007 0.1100 0.0100

Absolute errors

Short term GBS EU SV PBS

1991 (3132) 0.9223 0.9214 1.0630 0.8019
1992 (2928) 0.7828 0.7829 0.8834 0.6899
1993 (2921) 0.7441 0.7456 0.8540 0.6616
1994 (3365) 0.6991 0.6987 0.8763 0.5959
1995 (4022) 0.9637 0.9656 1.2545 0.6802
1991–1995 average 0.8200 0.8200 0.9900 0.6900

(b) Five-day ahead forecast

Relative errors Absolute errors

Short term GBS PBS Short term GBS PBS

1991 (3085) 0.032 0.015 1991 (3085) 1.0432 0.9335
1992 (2861) 0.017 0.002 1992 (2861) 0.8226 0.7438
1993 (2871) 0.017 0.009 1993 (2871) 0.8151 0.7259
1994 (3329) 0.087 0.044 1994 (3329) 0.8642 0.7370
1995 (3969) 0.068 0.0085 1995 (3969) 1.1004 0.7635
1991–1995 average 0.040 0.020 1991–1995 average 0.9300 0.7800

Note: GBS refers to the generalized Black–Scholes formula in (2.21); EU to the same formula special
case where the parameter 
 is equal to 1; SV to the stochastic volatility formula (special case of (2.21) with
QXY (t; T ) = 1); PBS refers to the practitioners’ BS model. The numbers in parentheses besides the years
indicate the number of options considered.

produce now very similar errors. However, the relative errors of the BS ad hoc model
remain smaller. We also report in Table 8B out-of-sample pricing errors at a horizon
of 5 days for the GBS and PBS models. The gap between the two models is mostly
maintained, except in the beginning of the sample where the BS absolute error tends
to increase faster than the GBS one. 26

26 As expected, this trend is even more accentuated for longer horizons such as t + 10 and t + 15. The
results are not reported here for space considerations.
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The reduction in pricing errors with respect to Section 3 can come from three sources.
We assess the contribution of each source for the year 1991. First, in this calibration
exercise, we focus the estimation on short-term options, compared with all options in
Section 3. Reestimating the same GBS model only for short options reduces by half
the absolute error for the year 1991 (from 3.14 to 1.52 for the absolute error and
from 0.859 to 0.285 for the relative error). The second source of error reduction is the
reduced span of the data to carry out the estimation, from 3 months to 5 days. This
brings down the absolute error to 1.41 and the relative error to 0.0935, but these are still
higher than the highest errors of Table 8A for the SV model. Indeed, the introduction
of the implied volatility information reduces substantially the errors, bringing down the
absolute error to 0.92 and the relative error to 0.0068 as reported in Table 8A.
The errors of the SV model are de8nitely higher than the ones of the PBS model

yet they both use implied volatility. The main di>erence comes from the fact that
the PBS method uses the implied volatility of the day before while the SV method
smoothes the implied volatility of the last 8ve days. This underlines the penalty imposed
by the averaging over the past values for out-of-sample forecasting. The risk aversion
parameter appears therefore of prime importance since it reduces the error considerably
despite the averaging e>ect over 8ve days for the implied volatility.
A reassuring result is that the preference parameter estimates obtained for the GBS

model, although much more variable than before both within and between the years,
are close to the estimates we obtained with the 3-month window estimation, as il-
lustrated in Table 9. Both the relative risk aversion coe9cient and the elasticity of
intertemporal substitution are slightly lower on average (0.42 and 0.66, respectively).
The risk aversion parameter in the expected utility model is now estimated at a lower
more reasonable value of 2.35. Notice also that the estimates of 	 in the expected
utility model are much more reasonable than with the previous method both for the
EU and the GBS models. While the parameters are di9cult to interpret in this less
structural model, it is worth noting that we obtained more reasonable parameters for
the consumption mean parameters (1% and −17% in states 1 and 2, where state 1
is also the low dividend volatility parameter, and where p11 and p22 are 0.80 and
0.22, respectively. Therefore, the good state (high level of consumption growth and
low volatility of dividends 27 ) appears to be more frequent as one should expect.

5. Conclusion

In this paper, we contribute to the empirical asset pricing literature by estimating a
recursive utility model with option prices. Not only do we show that preferences matter
for option pricing but also that option prices help distinguish between the expected

27 This is in line with usual empirical evidence. It is hard to say what explains the changes in parameters
estimates with respect to the unintuitive results obtained in Section 3.3.1 where options of all maturities and
moneyness were considered all together.
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Table 9
Yearly means and standard errors of daily estimated preference parameters from S&P 500 option price data

GBS model
� 
 	 CRRA(1− �) EIS

1991 −0:9010 (0:3821) −0:8324 (0:3887) 0:9150 (0:0135) 0:3864 (0:07534) 0:5500 (0:1207)
1992 −0:9522 (0:5600) −0:4948 (0:4557) 0:8704 (0:0512) 0:7000 (0:1617) 0:5617 (0:1736)
1993 −0:3631 (0:2426) −2:9782 (1:2942) 0:9448 (0:0082) 0:1849 (0:0312) 0:7518 (0:1043)
1994 −0:6221 (0:4469) −1:8325 (0:8712) 0:9471 (1:0620) 0:2068 (0:0088) 0:6541 (0:1393)
1995 −0:3040 (0:0941) −1:2201 (0:3075) 0:9526 (0:0086) 0:6396 (0:1101) 0:7706 (0:0512)
1991–1995 −0:6290 (0:4656) −1:4707 (1:1597) 0:9259 (0:0395) 0:4238 (0:2340) 0:6575 (0:1549)

Expected utility model
� 	 CRRA (1− �)

1991 −1:5242 (2:5058) 0:9804 (0:0198) 2:5242 (2:5107)
1992 0.1664 (1.3060) 0.9620 (1.5749) 0.8336 (1.3085)
1993 −1:1387 (1:1143) 0.9458 (0.0140) 2.1387 (1.1166)
1994 −2:0040 (1:3927) 0:9871 (0:0066) 3.0040 (1.3955)
1995 −2:2802 (1:7051) 0.9681 (0.0008) 3.2802 (1.7085)
1991–1995 −1:3537 (1:8847) 0.9687 (0.020) 2.3537 (1.8847)

Note: The parameters are estimated with an exact method-of-moments applied to short-term S&P 500
call option prices and a dividend process incorporating implied volatility information. CRRA denotes the
coe9cient of relative risk aversion, EIS the elasticity of intertemporal substitution.

and the non-expected utility models. The informativeness of option price data about
preference parameters is con8rmed in a simulation experiment. The estimates we obtain
for the preference parameters are quite reasonable. This is in contrast with recent
results of Jackwerth (2000) who infers risk-aversion functions that are at odds with
usual theoretical assumptions. It should be emphasized that in our method preference
parameters enter consistently in the equilibrium pricing of all assets.
Of course, given the simplicity of the practitioners’ Black–Scholes approach and its

good predictive performance, our structural model faces a tough challenge as a com-
petitor. However, we consider that both our simulation experiments and the estimation
performed with S&P 500 option price data strongly support the claim that preference
parameters are important in option pricing. To better understand the structure of index
option prices, one can think of several possible extensions in terms of preference spec-
i8cations or distributions for the state variables. One potential weakness of our model
for fundamentals is the modeling of volatility. Our speci8cation captures only sudden
changes in volatility in dividends. The model will gain by adding some GARCH e>ects
to the switching regimes governing the dividend process.
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Appendix.

The proof of the option pricing formula is based on the following lemma.

Lemma. If
(
Z1
Z2

)
is a bivariate Gaussian vector with

E

(
Z1

Z2

)
=

(
m1

m2

)
; Var

(
Z1

Z2

)
=

(
!2

1 �!1!2

�!1!2 !2
2

)
;

then E[exp(Z1)1[Z2¿0]] = exp(m1 + !2
1=2)'(m2=!2 + �!1), where ' is the cumulative

normal distribution function.

Proof. Let us denote by Q the probability measure corresponding to the above-speci8ed
Gaussian distribution of (Z1; Z2) and de8ne the probability Q̃ by

dQ̃
dQ

(Z) = exp
[
(Z − m1)− !2

1

2

]
:

Then, with obvious notation:

E[(exp Z1)(1[Z2¿0])] = exp
(
m1 +

!2
1

2

)
Q̃[Z2¿ 0]

But by Girsanov’s theorem, we know that under Q̃, Z2 is a Gaussian variable with
mean m2 + �!1!2 and variance !2

2. Therefore,

Q̃[Z2¿ 0] = 1− '
[−m2 − �!1!2

!2

]
= '

[
m2

!2
+ �!1

]
:
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Proof of option pricing formula: From the Euler equation, we have that the price
of an option on the dividend-paying stock is

%t
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= Et

[
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1 )
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−1 such that %t=St = Gt=St − Ht=St .

In order to arrive at the generalized Black–Scholes formula, we will prove that
Gt

St
= Et[QXY (t; T )'(d1)]

and
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]
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First, given that

log
CT
Ct

=
T∑

�=t+1

X�;

and

log
ST + DT

St
= log

’(UT
1 ) + 1

’(Ut
1)

+
T∑

�=t+1

Y�;

Gt and Ht can be rewritten as

Gt

St
=Et

{
	
(T−t)aTt (
)

’(UT
1 ) + 1

’(Ut
1)

exp

[
(�− 1)

T∑
�=t+1

X� +
T∑

�=t+1

Y�

]

1[∑T
�=t+1 Y�¿log (K=St)’(Ut

1)=’(U
T
1 )+1]

}

Ht = Et

{
	
(T−t)aTt (
)exp

[
(�− 1)

T∑
�=t+1

X�

]
1[∑T

�=t+1 Y�¿log K=St’(Ut
1)=’(U

T
1 )+1]

}

By the law of iterated expectations:

Et(·) = Et[Et(·|UT
1 )];

we are led to compute some expectations of the form E[exp(Z1)1[Z2¿0]]; where (Z1; Z2)′

is a bivariate Gaussian vector.
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(a) Proof of 7rst part of the formula Gt=St = Et[QXY (t; T )'(d1)]: We apply the
above lemma with

Z1 = (�− 1)
T∑

�=t+1

X� +
T∑

�=t+1

Y�;

Z2 =
T∑

�=t+1

Y� − log
K
St

’(Ut
1)

’(UT
1 ) + 1

: (A.1)

We know that, given UT
1 ; (Z1; Z2)

′ is a bivariate Gaussian vector with the following
moments:

m1 = (�− 1)
T∑

�=t+1

mX� +
T∑

�=t+1

mY� ;

m2 =
T∑

�=t+1

mY� − log
K
St

’(Ut
1)

’(UT
1 ) + 1

;

!2
1 = (�− 1)2

T∑
�=t+1

�2X� +
T∑

�=t+1

�2Y� + 2(�− 1)
T∑

�=t+1

�XY�;

!2
2 =

T∑
�=t+1

�2Y�;

�!1!2 = (�− 1)
T∑

�=t+1

�XY� +
T∑

�=t+1

�2Y�:

Therefore, by application of the lemma:

E

[
exp

[
(�− 1)

T∑
�=t+1

X� +
T∑

�=t+1

Y�

]
1[∑T

�=t+1 Y�¿log(K=St)’(Ut
1)=’(U

T
1 )+1]|UT

1

]

=exp

[
(�− 1)

T∑
�=t+1

mX� +
T∑

�=t+1

mY�

+
1
2
(�− 1)2

T∑
�=t+1

�2X� +
1
2

T∑
�=t+1

�2Y� + (�− 1)
T∑

�=t+1

�XY�)

]

×'
[

1

(
∑T

�=t+1 �
2
Y�)1=2

[
At +

T∑
�=t+1

�2Y�

]]

with At =
∑T

�=t+1 mY� − log(K=St)’(Ut
1)=(’(U

T
1 ) + 1) + (�− 1)

∑T
�=t+1 �XY�.
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It is worth noticing at this stage that

Et

[
ST + DT

St
|UT

1

]
=
’(UT

1 ) + 1
’(Ut

1)
exp

[
T∑

�=t+1

mY� +
1
2

T∑
�=t+1

�2Y�

]

and in turn

At = log E
[
ST + DT

St
|UT

1

]
− log

St
K

+ (�− 1)
T∑

�=t+1

�XY� − 1
2

T∑
�=t+1

�2Y�

= log
StQXY (t; T )

KB̃(t; T )
− 1

2

T∑
�=t+1

�2Y� − log bTt + log
’(UT

1 ) + 1
’(Ut

1)
:

The last two terms cancel when one takes out the intermediate dividends (all except
T ) which do not accrue to the option holder. Therefore,

At = log
StQXY (t; T )

KB̃(t; T )
− 1

2

T∑
�=t+1

�2Y�: (A.2)

Therefore, the above application of the lemma proves that

Gt

St
=Et

{
	
(T−t)aTt (
) exp

[
(�− 1)

T∑
�=t+1

mX�

+
1
2
(�− 1)2

T∑
�=t+1

�2X� + (�− 1)
T∑

�=t+1

�XY�

]
E
[
ST + DT

St
|UT

1

]
'(d1)

}
;

where

d1 =
1

(
∑T

�=t+1 �
2
Y�)1=2

[
log

StQXY (t; T )

KB̃(t; T )
+

1
2

T∑
�=t+1

�2Y�

]
:

In other words, again by realizing that without intermediate dividends bTt =’(UT
1 )+

1=’(Ut
1); we have proven that

Gt

St
= Et[QXY (t; T )'(d1)]

which is the required result.
(b) Proof of second part of the formula Ht = KEt[B̃(t; T )'(d2)]: We apply the

lemma with:

Z1 = (�− 1)
T∑

�=t+1

X�;

Z2 =
T∑

�=t+1

Y� − log
K
St

’(Ut
1)

’(UT
1 )
:
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Therefore, (m2; !2
2) are unchanged with respect to (a) above, but now:

m1 = (�− 1)
T∑

�=t+1

mX� ;

!2
1 = (�− 1)2

T∑
�=t+1

�2X�;

�!1!2 = (�− 1)
T∑

�=t+1

�XY�:

Therefore, by application of the lemma:

E

[
exp

[
(�− 1)

T∑
�=t+1

X�

]
1[∑T

�=t+1 Y�¿log(K=St)’(Ut
1)=’(U

T
1 )+1]|UT

1

]

=exp

[
(�− 1)

T∑
�=t+1

mX� +
1
2
(�− 1)2

T∑
�=t+1

�2X�

]
'

[
1

(
∑T

�=t+1 �
2
Y�)1=2

At

]
:

By the same argument as above, we then obtain

Ht

K
= Et

{
	
(T−t)aTt (
) exp

[
(�− 1)

T∑
�=t+1

mX� +
1
2
(�− 1)2

T∑
�=t+1

�2X�

]
'(d2)

}

with

d2 = d1 −
(
∑T

�=t+1 �
2
Y�)

1=2

2
:

This provides the required result:

Ht = KEt[B̃(t; T )'(d2)]:
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