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Abstract 
Over sixty years ago, the Swedish actuary F. Esscher suggested that the Edgeworth 
approximation (a refinement of the normal approximation) yields better results, if it is applied 
to a modification of the original distribution of aggregate claims. In this paper, this Esscher 
transform is defined more generally as a change of measure for a certain class of stochastic 
processes that model stock prices. According to the Fundamental Theorem of Asset Pricing, 
security prices are calculated as expected discounted values with respect to a (or the) 
equivalent martingale measure. If  the measure is unique, it is obtained by the method of 
Esscher transforms; if not, the risk-neutral Esscher measure provides a unique and transparent 
answer, which can be justified if there is a representative investor maximizing his expected 
utility. The price is unique whenever a self-financing replicating portfolio can be constructed. 
This is the case in the classical geometric Brownian motion model, but also in the geometric 
shifted Poisson process model. The latter is at the same time simpler (in view of its sample 
paths) and richer (the former can be retrieved as a limit). The Esscher method can be 
extended to pricing the derivative securities of multiple (possibly) dividend-paying stocks. 
We show that, in the case of a multidimensional geometric Brownian motion, the price of a 
European option does not depend on the interest rate, provided that the payoff is a function 
only of the stock prices and is homogeneous in one of them. Moreover, with the aid of 
Esscher transforms, a change of the numeraire can be discussed in a concise way. Finally, it 
is shown how certain American type options on two stocks (for example, the perpetual 
Margrabe option) can be priced. Applying the optional sampling theorem to certain 
martingales (which resemble the exponential martingale in ruin theory), we obtain several 
explicit results without having to deal with differential equations. 
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11 y  a soixante am, l’actuaire suedois F. Esscher a remarque que l’approximation d’Edgeworth 
donne de meilleurs resultats aprts une modification prtalable de la distribution du montant 
total des sinistres. Dans cet article, cette transformte d’Esscher est definie de faGon plus 
gCn&ale comme ttant un changement de mesure de probabilitt dune certaine classe de 
processus stochastiques servant a modeliser le prix dune action. Selon un theoreme 
fondamental, le prix dun titre est &gal a l’espkrance mathematique de la valeur escomptee des 
paiements, esperance calculte par rapport a la (ou une) mesure de martingale kquivalente. Si 
cette mesure est unique, elle est obtenue par la m&ode de la transformee d’Esscher; sinon, la 
mesure d’Esscher neutre vis-a-vis du risque foumit une reponse unique et transparente, qui 
peut se justifier par la presence dun investisseur representatif maximisant son utilite esperte. 
Le prix est unique d&s qu’il est possible de construire un portefeuille autofinance equivalent 
au titre. Cette situation se rencontre dans le cas classique du modele Brownien geometrique, 
mais aussi dans le cas du modkle de Poisson avec translation. Ce dernier est a la fois plus 
simple (notamment ses trajectoires) et plus riche, puisqu’il contient le modele classique 
comme cas limite. La mdthode d’Esscher peut etre g6nntralisCe pour calculer le prix de 
produits derives sur plusieurs actions versant des dividendes. 11 est montre que, dans le cas du 
mouvement Brownien geometrique multidimensionnel, le prix dune option Europeenne ne 
depend pas du taux d’intC&, a condition que le paiement soit une fonction des prix des 
actions qui est homogtne par rapport a un des prix. De plus, a l’aide de la transformee 
d’Esscher, l’analyse d’un changement de numeraire peut se faire dune faGon concise. 
Finalement, il est montre comment on peut obtenir le prix de certaines options Americaines 
sur deux actions (par exemple, l’option de Margrabe perpetuelle) en appliquant le theoreme 
d’arrgt optionnel a certaines martingales. Ceci permet d’obtenir plusieurs resultats explicites 
sans avoir a utiliser d’equations differcntielles. 
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1. Introduction 

Actuaries measure, model and manage risks. Risk associated with the 

investment function is a major uncertainty faced by many insurance 

companies. Actuaries should have knowledge of the asset side of the balance 

sheet of an insurance company and how it relates to the liability side. Such 

knowledge includes the operation of financial markets, the instruments 

available to the insurance companies, the options imbedded in these 

instruments, and the methods of pricing such options and derivative 

securities. 

In this paper we study the pricing of financial options and contingent 

claims. We show that two time-honored concepts in actuarial science - the 

Esscher transform and the adjustment coefficient - are efficient tools for 

pricing many options and derivative securities if the logarithms of the prices 

of the primary securities are certain stochastic processes with stationary and 

independent increments. An Esscher transform of such a security-price 

process induces an equivalent probability measure on the process. The 

Esscher parameter or parameter vector is determined so that the discounted 

price of each primary security is a martingale under the new probability 

measure. A derivative security is valued as the expectation, with respect to 

this equivalent martingale measure, of the discounted payoffs. 

We also study the pricing of American options on two stocks without 

expiration date and with payoff functions which are homogeneous with 
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respect to the two stock prices. An example of such options is the perpetual 

Margrabe option, whose payoff is the amount by which one stock 

outperforms the other. The method is based on the construction of two 

martingales with respect to the equivalent martingale measure, and applying 

the optional sampling theorem. The martingale construction is similar to the 

determination of the adjustment coefficient in collective risk theory. This 

approach does not involve differential equations and hence is quite different 

from the traditional approach in financial literature. 

2. The Escher Transform of a Random Variable 

Let Y be a given random variable and h a real number for which 

the expectation 

E[ehY] 

exists. The positive random variable 

(2.1) ehy 
E[ehY] 

can be used (as the Radon-Nikodym derivative) to define a new 

probability measure, which is equivalent to the old measure in the 

sense that they have the same null sets (sets of measure zero). For a 

measurable function w, the expectation of the random variable v(Y) 

with respect to the new measure is 

(2.2) JWy(Y); hl = 
E[yO%hYl 

E[ehY] 
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We call this new measure the Esscher measure of parameter h. The 

corresponding distribution is usually called the Esscher transform in 

the actuarial literature ([Es32], [Jegl]). In some statistical literature, 

the term exponential tilting is used to describe this change of measure. 

The method of Esscher transforms was developed to approximate 

the aggregate claim amount distribution around a point of interest, yo, 

by applying an analytic approximation (the first few terms of the 

Edgeworth series) to the transformed distribution with the parameter h 

= ho chosen such that the new mean is equal to yo. Let 

(2.3) c(h) = ln(E[ehY]) 

be the cumulant-generating function. Then 

(2.4) c’(h) = 
E[YehY] 

E[ehY] 
= E[Y; h] 

and 

(2.5) = Var[Y; h]. 

Since Var[Y; h] > 0 for a nondegenerate random variable Y, the 

function c’(h) is strictly increasing; thus the number ho for which 

yo = c’(hg) = E[Y; ho] 

is unique. In using the Esscher transform to calculate a stop-loss 

premium, the parameter ho is usually chosen such that the mean of the 

transformed distribution is the retention limit. 
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3. Discrete-Time Stock-Price Models 

A purpose of this paper is to show that the concept of Esscher 

measures is an effective tool for pricing stock options and other 

derivative securities. We need to extend the change of measure for a 

single random variable to that for a stochastic process. In this section 

we consider the simpler case of discrete-time stochastic processes. 

For j = 0, 1, 2, . . . , let S(i) denote the price of a stock a time j. 

Assume that there is a sequence of independent (but not necessarily 

identically distributed) random variables [ Yk) such that 

(3.1) S(i) = S(0) exp(YI + Y2 + *** + Yj), j = 1,2, 3, . . . 

Assume that the moment generating function for each Yi exists, and 

write 

(3.2) My.(h) = E[ehYi]. 
1 

For a sequence of real numbers ( hk} , define 

(3.3) zj = exP( c hkyk) / n MYk(hk). 
klj k<j 

Then {Zj) is a positive martingale which can be used to define a 

change of measure for the stock-price process. For a positive integer 

m, let v(m) be a random variable that is a function YI, . . . , Ym, 

(3.4) yf(m> = v(Yi, . . . , Yd. 

The expected value of v(m), with respect to the new measure, is 

(3.5) E[v(m) %I. 
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In (3.5) the random variable Zm can be replaced by Zj, j 2 m, because 

of the martingale property. 

We assume that the risk-free interest rate is constant through time 

and the stock pays no dividends. Let 6 denote the risk-free force of 

interest. The risk-neutral Esscher measure is the measure, defined by 

the sequence of numbers {hi], with respect to which 

(3.6) (e-Q(j); j = 0, 1,2, . . . ) 

is a martingale. This leads to 

(3.7) e6 = MY,U + h&K@& k = 1,2, 3, . . . 

As we pointed out at the end of the last section, the numbers {hi) are 

unique. 

Suppose that each Yk is a Bernoulli random variable, i.e., it takes 

on two distinct values, ak and bk, only. Then there is only one risk- 

neutral measure, given by 

(3.8) 

and 

(3.9) 

h-*(Yk = ak) = 
e6 - eak 

ebk - eak 

Pr*(Yk = bk) = 
e6 _ ebk 

eak _ ebk 

(6 is between ak and bk for each k.) 

If we assume that the random variables {Yk} are identically 

distributed in addition to being independent, then all hi are the same 
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number. This points to an approach to extend the change of measure 

to certain continuous-time models, as we shall see in Section 5. On 

the other hand, the risk-neutral Esscher measure can also be defined 

for dependent random variables { Yk) . In this more general situation, 

each hk is a function of Yl, Y2, . . . , Yk-1 and thus a random variable 

itself. 

4. Fundamental Theorem of Asset Pricing 

In this paper we assume that the market is frictionless and trading 

is continuous. There are no taxes, no transaction costs, and no 

restriction on borrowing or short sales. All securities are perfectly 

divisible. It is now understood that, in such a security market model, 

the absence of arbitrage is “essentially” equivalent to the existence of 

a risk-neutral measure or an equivalent martingale measure, with 

respect to which the price of a random payment is the expected 

discounted value. Dybvig and Ross [DR87] call this result the 

Fundamental Theorem of Asset Pricing. In general, there may be 

more than one equivalent martingale measure. The merit of the risk- 

neutral Esscher measure is that it provides a general, transparent and 

unambiguous solution. 
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That the condition of no arbitrage is intimately related to the 

existence of an equivalent martingale measure was first pointed out in 

Harrison and Kreps [HK79] and Harrison and Pliska [HPSl]. Their 

results are rooted in the idea of risk-neutral valuation of Cox and Ross 

[CR76]. In a finite discrete-time model, the absence of arbitrage 

opportunities is equivalent to the existence of an equivalent 

martingale measure ([CMW90], [Sc92a]). In a more general setting 

the characterization is delicate, and we have to replace the term 

“equivalent to” by “essentially equivalent to”. It is beyond the scope 

of the present paper to discuss the details. Some recent papers are 

[Ba91], [BP91], [CH89], [De92], [DS94a], [DS94b], [Mii89], 

[Sc92b], [Sc94], [Scw92] and [St93]. 

We note that the idea of changing the probability measure to 

obtain a consistent positive linear pricing rule had appeared in the 

actuarial literature in the context of equilibrium reinsurance markets 

([Bo60], [Bo90], [Bti80], [Bii84], [CM94], [Ge87], [Li86], [So91]). 

5. Continuous-Time Stock-Price Models 

In the rest of the paper we consider continuous-time stock-price 

models. For t 2 0, let S(t) denote the price at time t of a non-dividend- 
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paying stock. We assume that there is a stochastic process {X(t)] with 

independent and stationary increments such that 

(5.1) S(t) = S(0) eX(t), t 2 0. 

For a theoretical “justification” that stock prices should be modeled 

with such processes, see Samuelson [Sa65] or Parkinson [Pa77]. 

(Some authors call (X(t)) a L&y process.) 

We assume that the moment generating function of X(t), 

M(h, t) = E[ehx(t)], 

exists and that 

(5.2) M(h, t) = M(h, 1)‘. 

The process 

(5.3) { ehX(t) M(h, 1)-t} 

is a positive martingale and can be used to define a change of 

probability measure, i.e., it can be used to define the Radon-Nikodym 
dQ derivative dP’ where P is the original probability measure and Q is 

the Esscher measure of parameter h. The risk-neutral Esscher 

measure is the Esscher measure of parameter h = h* such that the 

process 

(5.4) 

is a martingale. 

Pt SW I 
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The condition 

E[eAt S(t); h*] = e-60 S(0) = S(0) 

yields 

$t = E[&+h*W) M(h*, 1)-t] 

= [M(l + h”, l)/M(h*, l)]t, 

Or 

(5.5) es = M(l + h*, l)/M(h*, l), 

which is analogous to (3.7) with {Yk) being identically distributed. 

The parameter h* is unique. There may be many other equivalent 

martingale measures. 

Because, fort 2 0, 

(5.6) ehX(t) M(h, 1)-t = ehxtt) = s (Oh 

E[ehx@] EIWhl ’ 

we have the following: Let g be a measurable function and h, k and t 

be real numbers, t 2 0; then 

(5.7) E[S(t)k g(S(t)); h] = E[S(t)k g(S(t)) ehx(t) M(h, 1)-t] 

= WWh+k g(W)1 
US @PI 

= W(t>h+kl EM)h+k g(W)1 
WWhl E[S(t)h+k] 

= E[S(t)k; h] E[g(S(t)); h + k]. 
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This factorization formula simplifies many calculations, and is a main 

reason why the method of Esscher measures is an efficient device for 

valuing certain derivative securities. For example, applying (5.7) with 

k = 1, h = h* and g(x) = 1(x > K) [where I(A) denotes the indicator 

random variable of an event A], we obtain 

(5.8) E[S(2) I(S(2) > K); h*] = E[S(z); h”] E[I(S(Q > K); h” + l] 

= E[S(z); h*] Pr[S(T) > K; h* + l] 

= S(O)e*T Pr[S(z) > K; h* + 11. 

The last equality holds because (5.4) is a martingale with respect to 

the risk-neutral Esscher measure. Thus we have a pricing formula for 

a European call option on a non-dividend-paying stock, 

(5.9) E[e-62 (S(z) - K),; h*] 

= E[e-“r(S(z) - K) I(S(2) > K); h*] 

= e-zr(E[S(z) I(S(z) > K); h*] - KE[I(S(z) > K); h*]} 

= S(O)Pr[S(z) > K; h* + l] - KedrPr[S(z) > K; h*]. 

For {X(t)} being a Wiener process, (5.9) is the celebrated Black- 

Scholes formula [BS73]; see also (9.20) below. 

6. Representative Investor with Power Utility Function 

When there is more than one equivalent martingale measure, why 

should the option price be the expectation, with respect to the risk- 
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neutral Esscher measure, of the discounted payoff? This particular 

choice may be justified within a utility function framework. Consider 

a simple economy with only a stock and a risk-free bond and their 

derivative securities. There is a representative investor who owns m 

shares of the stock and bases his decisions on a risk-averse utility 

function u(x). Consider a derivative security that provides a payment 

of z:(r) at time 2, z > 0; n;(z) is a function of the stock price process 

until time 2. What is the investor’s price for the derivative security, 

such that it is optimal for him not to buy or sell any fraction or 

multiple of it? Let V(0) denote this price. Then, mathematically, this 

is the condition that the function 

(6.1) @CM = EMmW + NW - eszW>l>l 

is maximal for TJ = 0. From 

c)‘(O) = 0 

we obtain 

(6.2) 
v(o) = e~z E[NW(mW~>>1 

WbS(~>)l 

(as a necessary and sufficient condition, since v’(q) < 0 if u”(x) < 0). 

In the particular case of a power utility function with parameter c > 0, 

(6.3) 

we have u’(x) = x-c, and 

if c#l 

if c=l 
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(6.4) 

Formula (6.4) must hold for all derivative securities. For n(z) = S(z) 

and therefore V(0) = S(O), (6.4) becomes 

S(O) = ,&E[s@)‘*l 
WW*l 

edz S (0) M( 1 - c, z) = 
W-c, 7) ’ 

or 

(6.5) es = W-c, 1) 
W-c, 1) ’ 

On comparing (6.5) with (5.5), we see that the value of the parameter 

c is -h*. Hence V(0) is indeed the discounted expectation of the 

payoff X(Z), calculated with respect to the Esscher measure of 

parameter h* = -c. 

By considering different points in time 2, we get a consistency 

requirement. This is satisfied if the investor has a power utility 

function. We conjecture that it is violated for any other risk-averse 

utility function, which implies that the pricing of an option by the 

risk-neutral Esscher measure is a consequence of the consistency 

requirement. Some related papers are Rubinstein [Ru76], Bick 
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([Bi87], [Bi90]), Constantinides [Co89], Naik and Lee [NL90], 

Stapleton and Subrahmanyam [SSu90], He and Leland [HL93], 

Heston [He931 and Wang [Wa93]. 

7. Logarithm of Stock Price as a Shifted Poisson Process 

Here we consider the so-called pure jump model. The assumption 

is 

(7.1) X(t) = kN(t) - ct, 

where (N(t)} is a Poisson process with parameter h, and k and c are 

constants. The price of the non-dividend-paying stock is modeled as 

(7.2) S(t) = S(0)em@) - et. 

There is only one equivalent martingale measure in this model. 

Since 

E[ezN(t)] = exp[ht(ez - l)], 

we have 

(7.3) M(z, t> = E[&(t)] 

= E(eZ[m(t) - Ctl) 

= exp([h(eZk - 1) - zc]t). 

Because 

E[eZX(t); h] = Mg(I: :) t, 
7 

= exp([hehk(ezk - 1) - zc]t), 
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we see that, under the Esscher measure of parameter h, the process 

{X(t)] remains a shifted Poisson process, but with modified Poisson 

parameter hehk. Formula (5.5) is the condition that 

(7.4) 6 = heh*k(ek - 1) - c. 

The equivalent martingale measure is the measure with respect to 

which {N(t)) becomes a Poisson process with parameter 

(7.5) h* = @*k. 

= (6+ c)/(ek - 1). 

We now show that, by a replicating portfolio argument, the price 

of a derivative security is indeed the expectation of its discounted 

payoff, with the expectation taken with respect to the equivalent 

martingale measure. Let V(S(t), t) be the price of the derivative 

security at time t. We can form a self-financing portfolio of the stock 

and risk-free bond replicating the price V(S(t), t) through time. Let 

(7.6) rl = wm t> 

be the amount invested in the stock at time t and therefore the 

difference V(S(t), t) - q is the amount invested in the risk-free bond at 

time t. The amount ?J is such that the derivative security price and the 

portfolio value have equal instantaneous change. By considering 

whether there will be an instantaneous jump in the stock price or not, 

we have the following two conditions: 
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(7.7) 

and 

(7.8) WC 0 

Formula (7.7) yields 

(7.9) 

Thus (7.8) becomes 

- 

V(Sek, t) - V(S, t) = qek - q, 

cW(S, 0 = -cq + S[V(S, t> - Tjl 

= SV(S, t) - @+c)q. 

rl = Wek, 0 - W, 0 
ek-1 ’ 

(7.10) Vt(S, t) - cSVs(S, t) = SV(S, t) - h*[V(Sek, t) - V(S, t)], 

where h* is given by (7.5). 

Now, let W(S(t), t) denote the value at time t of the expected 

discounted payoff of the derivative security; the expectation is taken 

with respect to the probability measure corresponding to the Poisson 

parameter h*. Let s be a very small positive number. By the Poisson 

process assumption, the probability that a jump in the stock price will 

occur in the time interval (t, t + s) is h*s + o(s). Thus, conditioning on 

whether there are stock-price jumps in the interval (t, t + s), we have 

(7.11) W(S, t) = 

edS[( 1 - h*s)W(Se-Cs, t+s) + h*sW(Sek-Cs, t+s)] + o(s), 

or 

(1 + Gs)W(S, t) - W(Se-es, t+s) = 

h*s[W(SekXs, t+s) - W(Se+, t+s)] + o(s). 
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Dividing the last equation by s and letting s tend to 0 yields 

(7.12) SW(S, t) + cSWs(S, t) - Wt(S, t) = h*[W(Sek, t) - W(S, t)], 

which is identical to (7.10). Consequently, the price of the derivative 

security, V(S(t), t), is calculated as the expected discounted payoffs 

according to the provisions of the contract; the expectation is taken 

with respect to the measure corresponding to the Poisson process with 

parameter h*. 

We note that, in constructing the replicating portfolio, we did not 

use the assumption that {N(t)} is a Poisson process. Thus N(t) in (7.1) 

and (7.2) may be assumed to come from a counting process; the 

equivalent martingale measure is the measure with respect to which 

[N(t)} becomes a Poisson process with parameter h* given by (7.5). 

A replicating portfolio can be constructed because at each point of 

time the stock price has only two possible movements, both with 

known magnitude. 

It is interesting to consider the limiting case where k + 0 

and c + 00 such that the variance per unit time of (X(t)) in the risk- 

neutral measure is constant: 

(7.13) h*@ = 6 + c @ = 02 
ek - 1 

This is the classical lognormal model. In the limit (7.9) becomes 

q = SVs(S, t>, 
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showing that the ratio, q(S(t), t)/S(t), is given by Vs(S(t), t), which is 

usually called delta in the option literature. Also, by means of the 

Taylor expansion, we have 

h*[V(Sek, t) - V(S, t)] 

= h*( (ek- l)SVs(S, t) + [(ek - 1)S]2Vss(S, t>/2 + O&3)) 

= (6 + c)SVs(S, t) + &2Vss(S, t)/2 + O(k). 

Thus in the limit (7.10) becomes 

(7.14) Vt(S, t) = 6V(S, t) - GSVs(S, t) - pss(s, t). 

This partial differential equation was first derived by Black and 

Scholes [BS73] with a replicating portfolio argument. 

8. Extension to Dividend-Paying Stocks 

The results in Section 5 can be extended to the case where the 

stock pays dividends continuously, at a rate proportional to its price. 

In other words, we assume that there is a nonnegative number (p such 

that the dividend paid between time t and t+dt is 

(8.1) cp S(t) dt. 

(The number cp may be called the dividend-yield rate.) If all dividends 

are reinvested in the stock, each share of the stock at time 0 grows to 

e’Pt shares at time t. The risk-neutral Esscher measure is the Esscher 

measure of parameter h = h* such that the process 
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(8.2) (e-@--‘P)%(t)) 

is a martingale. Condition (5.5) now becomes 

(8.3) e6-(P = M(l + h*, l)/M(h*, 1). 

Since 

(8.4) E[S(z); h*] = S(0) e@- (P)r, 

the European call option pricing fomnrla (5.9) is generalized as 

(8.5) E[e& (S(z) - K)+; h*] 

= S(0)e-V Pr[S(z) > K; h* + l] - Ke-zTPr[S(z) > K; h*]. 

Formula (8.5) may also be used to price currency exchange options, 

with S(z) denoting the spot exchange rate at time z, 6 the domestic 

force of interest and cp the foreign force of interest. For {S(t)) being a 

geometric Brownian motion, (8.5) is known as the Garman- 

Kohlhagen formula; see also (9.20) below. 

We can extend the model to more than one dividend-paying 

stock. For each j, j = 1, 2, . . . . n, let Sj(t) denote the price of stock j at 

time t, t 2 0, and we assume that there exists a nonnegative constant qj 

such that stock j pays dividends of amount 

between time t and t+dt. Write 

(8.6) xj(t> = ln[Sj(t)/Sj(O>l, 

and 

j = 1,2, . . . , n, 
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(8.7) X(t) = ow>, X2(0, *** 9 &(t>>‘. 

Let Rn denote the linear space of column vectors with n real entries, 

and 

(8.8) M(z, t) = E[eZ’x(t)], z E R”, 

be the moment generating function of X(t). We assume that 

(X(t)), 2 0 is a stochastic process with independent and stationary 

increments and that 

(8.9) M(z, t) = [M(z, l)]t, t 2 0. 

Let h = (hl, h2, . . . , h,)’ E Rn for which M(h, 1) exists. The 

positive martingale 

(8.10) (eh’X(t) M(h, l)-t}ta 

can be used to define a new measure, the Esscher measure of 

parameter vector h. The risk-neutral Esscher measure is the Esscher 

measure of parameter vector h = h* such that, for each j, j = 1,2, . . . . n 

(8.11) (e-4 - cpj)t Sj(t)} 

is a martingale. Condition (8.3) is generalized as n simultaneous 

conditions : 

(8.12) e6 - cpj = M(lj + h*, l)/M(h*, l), j=l , . . . , n. 

Here 

(8.13) lj = (0, . . . , 0, 1, 0, . . . , O)‘, 

where the 1 in the column vector lj is in the j-th position. 
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For k = (kl, . . . , kJ, write 

(8.14) s(gk = S,(t) 
kl 

. . . Sn(gkn. 

Then 

EW (Ok&S (0); hl 
E[S (gkg(S (t)) ehlx”)] 

= h’X(t) 
We 1 

= El3 ttlkg(S (0) S (OhI 

E[S (Qhl 

= E[S (9k+hl E[g(S (t)> S (Qk+hl 

US (OhI E[S (t)k+h] 

(8.15) = WWk; hl E[g(SW; k + hl, 

which generalizes the factorization formula (5.7). An immediate 

consequence of formula (8.15) and that (8.11) is a martingale under 

the risk-neutral Esscher measure is 

(8.16) E[eAtSj(t)g(S(t)); h*] = E[eAtSj(t); h*] E[g(S(t)); h” + lj] 

= Sj(0) e-WE[g(S(t)); h” + lj]. 

The Murgrube option [Ma781 is the option to exchange one stock 

for another at the end of a stated period, say time z, z > 0. The payoff 

of this European option is 

(8.17) [Sl(@ - S2(7)1+. 
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Its value at time 0, calculated with respect to the risk-neutral Esscher 

measure, is 

(8.18) We-%W) - S2(2)1+;h*). 

Since 

bl - s2)+ = SlI(Sl > s2) - S2Wl > s2), 

it follows from (8.16) that 

(8.19) W-%W> - S2(@1+; h*) 

= Sl(O)e-TIT E(I[Sl(z) > S2(2)]; h* + 11) 

- $(O)e-W E(I[Sl(r) > So]; h* + 12) 

= Sl(O)e-‘PIT Pr[Sl(z) > S2(2); h* + 111 

- Q(O)e-W Pr[Sl(z) > S2(2); h* + 121. 

A special case of (8.19) is (8.5). 

9. Change of Numbraire, Homogeneous Payoff Function and 

Wiener Process 

Consider a European option or derivative security with exercise 

date z and payoff 

(9.1) l-wl<~>, *** 9 Sld~)). 

For example, the Margrabe option has the payoff function 

(9.2) l-h s2) = (Sl - s2)+. 
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Let Et[.] denote the expectation conditional on all information up to 

time t. For 0 I t I z, let V(t) denote the price of the security at time t, 

calculated with respect to the risk-neutral Esscher measure, 

V(t) = Et[e-@T-t) n(Sl(Q, . . . , S,(z)); h*] 

= Et[e4@-t) Sj(Z) n(S l(2), . . . , Sn(T))/Sj(T); h”] 

= Et[eA@-t) Sj(Z); h”] Et[n(S I(Z), .,. , S,(Z))/Sj(T); h* + lj] 

= e-Oht) Sj(t) Et[n(Sl(T>, . . . , Sn(~>)/Sj(~); h* + lj]. 

Thus 

(9.3) V(t) 

eW Sj(t) 
= Ed e’pj* ‘sj(z) lI<Sl<~>, . . . , Sri(z)); h* + ljI, 

from which it follows that, with respect to the Esscher measure of 

parameter vector h* + lj, the process 

(9.4 
I 

V(t) ;Oltlz I 
eW Sj(t) I 

is a martingale. In particular, with respect to this measure, the 

processes 

(9.5) 

and 

(9.6) 

est 

I I eW Sj(t) 

\evt Sk@) \ 

\ eQt Sj(t> ( 

are martingales. To explain the denominator eWSj(t), we consider 

stock j as a standard of value or a nume’raire. In other words, there is a 
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mutual fund consisting of stock j only and all dividends are 

reinvested; all other securities are measured in terms of the value of 

this mutual fund. See also [GER94]. 

Now, we assume that the payoff function fl is homogeneous of 

degree one with respect to the j-th variable, 

(9.7) n(Sl, . . . , Sn) = Sj lT(Sl/Sj, . . . , Sj-l/Sj, 1, Sj+l/Sj, . . . , Sn/Sj), 

which is a condition satisfied by (9.2) with both j = 1 and j = 2. Then 

(9.3) b ecomes 

(9.8) 
V(t) 

eW Sj(t> 
= &[n( ‘l(‘) sn(z) ); h” + lj]. 

eW Sj(T) ’ “’ ’ eW Sj(T) 

The right-hand side is a conditional expectation, with respect to the 

Esscher measure of parameter vector h* + lj, of a function of the (n- 

1)-dimensional random vector 

(9.9) 

(Xl(z) -Xj(2)9 a.9 Xj-l(~>-Xj(~),Xj+l(~)-Xj(~), +a*, K-I(~) -Xj(z>>‘. 

Consider the special case that [X(t)) is an n-dimensional Wiener 

process, with JL. = (l~l, ~2, . . . , lo,,)’ and V = (Oij) denoting the mean 

vector and the covariance matrix of X(l), respectively. It is assumed 

that V is nonsingular. Because 

(9.10) M(z, t) = exp[t(z’& + 1/2z’Vz)], ZE R”, 

we have, for h E Rn, 
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(9.11) E[eZ’X(t); h] = M(z + h, t)/M(h, t) 

= exp{ t[z’(B + Vh) + 1/2z’Vz]}, z E Rn, 

showing that, under the Esscher measure of parameter vector h, 

{X(t)] remains an n-dimensional Wiener process with modified mean 

vector per unit time 

y+Vh 

and unchanged covariance matrix per unit time V. It follows from 

(8.12) that, fork = 1,2, . . . , n, 

(9.12) 6- ‘Pk = lk’@ + Vh*) + ‘/‘&Vlk. 

Thus 

(9.13) b* = E[X(l); h*] 

(9.14) = y+Vh* 

(9.15) = 61 - (Cpl + ‘/2~11, ‘p2 + ‘/PJ22, ..., vn + 1/2%d’~ 

where 

(9.16) 1 = (1, 1, 1, . . . , 1)‘. 

Also, 

(9.17) E[X(l); h* + lk] = J&+ V(h* + lk) = b* + Vlk 

= 61 - (ol- elk + ‘/2011, ‘p2 - 02k+ l/2022, . . . . (Pn- onk + ‘/2%>‘. 

For {X(t)} being an n-dimensional Wiener process, (9.9) is a 

normal random vector under the Esscher measure of parameter vector 

h* + lj, and it follows from (9.17) that its mean does not involve the 
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force of interest 6, and of course its (n - 1)-dimensional covariance 

matrix, which is the same for all h, does not depend on 6. Thus V(t), 

the price of a derivative security with a payoff function which is 

homogeneous with respect to one of its arguments, does not depend 

on 6. 

For example, consider the European Margrabe option. Here n = 

2. Let 

(9.18) v2 = Var[Xt( 1) - X2(1)] 

= Wl - 2012 + (322, 

(9.19) 

and CD denote the standardized normal distribution function. Then 

(8.19) becomes 

(9.20) E(e4r[Sl(z) - S2(2)]+; h*) 

= e-Q2S l(O)@([(z) + 1/2vllz) - e-WS2(O)tD(~(z) - V2vd2), 

which does not depend on 6. For non-dividend-paying stocks (cpl = ‘p2 

= 0), formula (9.20) has been given by Margrabe [Ma78]. Fischer 

[Fi78] has also derived (9.20) with cp1 = 0 as a European call option 

formula; for him, S2(2) is the stochastic exercise price at time z. 

Remarks. In the model of n stocks, the risk-neutral Esscher measure 

is the Esscher measure corresponding to the n-dimensional vector h* 
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such that, for j = 1, 2, . . . . n, (8.11) is a martingale. Let us now 

consider modeling only a subset of the n stocks, say stock 1 to stock 

k, k < n. Then the risk-neutral Esscher measure is the Esscher 

measure corresponding to the k-dimensional vector h* such that, for j 

= 1, 2, . . . , k, (8.11) is a martingale. To avoid confusion, we write the 

second h* as h;. One may wonder how h* and h; are related. An 

explicit answer can be given when [X(t)} is a Wiener process. Let P 

denote the projection matrix from Rn onto its first k coordinates, 

(9.21) P = (I O), 

where I is the k-by-k identity matrix and 0 is the k-by-(n-k) zero 

matrix. (The dimension of P is k by n.) Then the k-by-k matrix PVP 

is the covariance matrix of the random vector 

(xl(l), x2(1), .e. 3 Xk(l))‘. 

It now follows from (9.14) that 

(9.22) PVh” = PVP’h;, 

or 

(9.23) h; = (PVP’)-1PVh”. 

There is another way to express the relationship between h* and 

h;. Let V 1 denote the covariance matrix PVP’. Similarly, let V2 

denote the covariance matrix of the (n-k)-dimensional random vector 



ACTUARIAL APPROACH TO OPTION PRICING 71 

Consider the model consisting only of stock k+l to stock n; let h; 

denote the (n-k)-dimensional vector determining the risk-neutral 

measure in the model. Then 

(9.24) 

10. Probability of Ruin 

The idea of replacing the original probability measure by an 

Esscher measure with an appropriately chosen parameter has an 

elegant application in classical actuarial risk theory. Let {U(t)} be the 

surplus process, 

(10.1) U(t) = u + X(t), 

where u 2 0 is the initial surplus, and X(t) the aggregate gains 

(premiums minus claims) up to time t. We suppose that the process 

{X(t)] has independent and stationary increments, satisfies (5.2), and 

has a positive drift, 

(10.2) E[X(l)] > 0. 

Let 

(10.3) T = inf{t [U(t) CO} 

be the time of ruin. The probability of ruin before time m, m > 0, is 

(10.4) ~(u, m) = Pr(Tcm) = E[I(T<m)]. 
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Let ar\b denote of the minimum of a and b. By a change of measure, 

(10.5) v6.b m> = E[I(T < m) e-hX(TAm) M(h, l)T*m; h] 

= E[I(T c m) e-hX(T) M(h, l)T; h], 

which can be simplified if h is chosen as the nontrivial solution of the 

equation 

(10.6) M(h, 1) = 1. 

For simplicity we write 

M(h) = M(h, 1). 

It follows from 

M”(h) = E[X(1)2 ehX(l)] > 0 

that M(h) is a convex function. Thus equation (10.6) has at most one 

other solution besides h = 0. Because 

M’(0) = E[X(l)] > 0, 

the nontrivial solution for (10.6) is a negative h. Following the usual 

notation in risk theory, we write this solution of (10.6) as -R. (R is 

called the au’ju~tment coejkient.) With h = -R, (10.5) becomes 

(10.7) ~(u, m) = E[I(T < m) eRx(T); -RI. 

The probability of ruin over an infinite horizon is 

(10.8) = E[I(T < =J) eRX(T); -RI. 
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Now, 

E[X( 1); -R] = E[X(l) e-RX(l)] 

= M’(-R) 

because M is a convex function. An aggregate gains process with a 

negative drift means that ruin is certain. Thus, under the Esscher 

measure of parameter-R, 

I(T cm) = 1 

almost surely, and (10.8) simplifies as 

v(u) = E[eRx(T); -R] 

(10.9) = E[eRUT); -R]e-Ru. 

This approach to the ruin problem can found in Chapter XII of 

Asmussen’s book [As871 and he has attributed the idea to von Bahr 

[vB74] and Siegmund [Si75]. Formula (10.9) should be compared 

with (12.3.4) on page 352 of Actuarial Mathematics [BGHJN86], 

v(u) = 
e-RU 

E[e-RUfl) 1 T<=] ’ 

where the conditional expectation in the denominator is taken with 

respect to the original probability measure. 
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11. Perpetual American Options on Two Stocks 

The actuarial concept of the adjustment coefficient turns out to be 

the right tool for pricing certain American options without expiration 

date. In this section we consider two stocks with positive dividend- 

yield rates. For k = (kl, k2)’ E R2, we write 

kl k2 
wk = sp S,(t) 

[the same notation as (8.14)]. The condition on k so that the process 

(11.1) k+tW)klt20 

becomes a martingale under the risk-neutral Esscher measure is: 

(11.2) &E[ek'WO; h*] = 1. 

Actually, we are only interested in k of the form 

(11.3) (cl, 1 - (3)‘. 

With the definition 

(11.4) f(e) = e-sE(exp[BX1(l) + (1 - @X2(1)]; h*), 

condition (11.2) becomes 

(11.5) f(e) = 1, 

which is analogous to (10.6). Because 

f(0) = e-6E[eXz(l)] = e-w < 1, 

f(1) = edE[eXdl)] = e-9 < 1 

and 

f”(e) = edE([Xl(l) -x2(1)12 exp[BXl(l) + (I- e)x2(i)]; h*) > 0, 
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we gather that equation (11.5) has, under fairly mild regularity 

conditions, exactly two solutions, 80 < 0 and 81 > 1. [Equation (10.6) 

also has two solutions, 0 an -R.] Thus, for i = 0, 1, the process 

(11.6) {e-%?(t)($$; t20) 

is a martingale with respect to the risk-neutral Esscher measure. 

For the rest of this paper we assume that (X(t)) is a two- 

dimensional Wiener process, so that there is only one equivalent 

martingale measure, and (Sl(t)} and (&(t)] have continuous sample 

paths. With M* given by (9.13) (n = 2), we have 

(11.7) E[ek’Wl); h*] = exp(k’y* + 1/2k’Vk). 

Hence (11.4) becomes 

f(e) = exp[-V2v20(l -e) - cple - (~~(1 - e)], 

where ~2 is defined by (9.18). Equation (11.5) is now equivalent to 

the quadratic equation: 

(11.8) V2v2e(i - e) + cpl 8 + (~~(1 - e) = 0. 

Again it is clear that one root is less than zero and the other greater 

than one. The roots are 

(11.9) 8()=0-A 

and 

(11.10) e1 = 0 + A, 

where 
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(11.11) 

and 

(11.12) 

o,;+‘p’ -(p2 
v2 v2 

Note that A is symmetric with respect to the parameters of the two 

stocks, but CO is not. The roots 80 and 81 do not depend on the force of 

interest 6. Also, 80 + 81 = 1 if and only if cpI = (~2. 

We are interested in the pricing of a perpetual American option 

whose payoff is n(Sl(t), Sz(t)) if it is exercised at time t. Its price is 

the supremum, taken over all stopping times T, of 

WeAT ll<s l(T), S2V)); h*l. 

We assume that the payoff function n(sI, ~2) is nonnegative and 

homogeneous of degree 1. Thus 

l-h, s2) = s27e $1, 

where 

(11.13) Nx> = lxx, 1). 

Examples are 

l-h, s2) = (Sl - s2)+, 

which is the payoff function for the Margrabe option, 
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l-h ~2) = Maxh ~21, 

the payoff function for the maximum option, and 

I-h, s2) = 1 Sl - s2l > 

the payoff function for the symmetric Margrabe option. 

Because of the homogeneity assumption it suffices to consider 

stopping strategies where the decision to exercise the option or not at 

any time t depends only on the ratio of Sl(t) to Sz(t). Then, under 

some fairly general conditions, we can restrict ourselves to stopping 

times of the form 

(11.14) Tb,e = inf( t 1 s = borS10)=c, 
Sz(t) 

1 

0 c b < Sl(O)&(O) c c. For simplicity we write S1 = Sl(0) and S2 = 

S2(0). The value of the option-exercise strategy is 

(11.15) VGl, $2; b, c> = E[e-6Tbvc n<sl(Tb,d, s2(Tb,d); h*l. 
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cs 
2 

With the definitions 

(11.16) 

PCSl, s2; b, C> = E(e4Tblc S2(Tb,c) I[S l(TbJ = bSz(T&]; h*) 

and 

(11.17) 

W 1, s2; b, c> = E(eATb.c $(Tb,d I[S l(Tb,d = cS2(T&]; h*>, 

equation ( 11.15) becomes 

(11.18) V(S1, S2; b, c) = x(b)p(Sl, S2; b, c) + x(c)y(Sl, ST; b, c). 
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To determine the expectations p = p(S 1, S2; b, c) and y = r(Sl, S2; b, 

c), we stop the two martingales (11.6) at time Tb,c and apply the 

optional sampling theorem. This leads to the equations 

S2(S1& +)‘J = p be0 + y coo 

and 

S2(S& )01 = p be1 + y &. 

Their solution is 

(11.19) 

The optimal option-exercise ratios b = g and c = ‘d are obtained 

from the first order conditions 

(11.20) vb(sl, s2; 6, c) = 0 

and 

(11.21) V,(Sl, s2; 6, C) = 0, 

where the subscripts denote partial differentiation. Here we assume 

that b > 0 and c c 00. We shall see that g and C depend on neither S1 

nor S2. Since matrix notation facilitates the further discussion of 

(11.20) and (11.21), we define the vector-valued functions: 

(11.22) Wl, S2; b, c> = (P61, S2; b, c>, y(Sl, S2; b, cl>‘, 

(11.23) g(x) = (#a, ~01)’ 

and 

(11.24) h(xl, ~2) = xzg( 2’. 
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With these definitions, we can rewrite (11.19) as 

(11.25) f(Sl> S2; b, c> = (g(b) gW)-lWl, S2), 

and (11.18) as 

(11.26) WL S2; b, c> = 00) W)f(Sl, S2; b, cl. 

Hence 

(11.27) V(h S2; b, 4 = 00) NdXg(b) g(c))-‘Wl, S2). 

To find the partial derivatives of V with respect to b and c, we 

need the partial derivatives of the inverse of the matrix (g(b) g(c)). Let 

A be an invertible matrix with elements that are functions of a 

parameter. If we differentiate the identity 

A-IA = I 

with respect to the parameter, we get 

(A-1)‘A + A-IA’ = 0, 

or 

(A-1)’ = -A-lA’A-1. 

(Note that ’ denotes differentiation, while ’ denotes matrix 

transposition.) Thus, differentiating (11.25) with respect to b yields 

(11.28) fbh s2; b, c> 

= -(g(b) g(c))-‘(g’(b) O)(g@) sW)-lW 1, S2) 

= -(g(b) g(c))-‘(g’(b) O)f(S 1, S2; b, c> 

= -P<Sl, S2; b, c)@(b) g(c))-‘g’(b). 
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It now follows from (11.26) that 

vb(sl, s2; b, c> 

= W’(b) o>f + (n(b) dc))fb 

(11.29) = PC%, S2; b, c)[n’(b) - (0) W)(g(b) g(d)-‘g’W1. 

Similarly, 

(11.30) V,(Sl, S2; b, c) = 

Y(SL S2; b, c>[n’(c> - (n(b) NcN(g@) gkW1g’(dl. 

Because p > 0 and y > 0, the first order conditions (11.20) and (11.21) 

are equivalent to the matrix equation 

(11.31) (d-3 m)(g6 g(W(g’6) S’GN = w6 Jf 63). 

With (11.3 1) we can determine the optimal option-exercise ratios b 

and E, which depend on neither S1 nor S2. The price of the perpetual 

option is 

(11.32) 

w1,s2;m 

ws19 S2) 

where V is given by (11.27). 

kSl/S2 5: 

otherwise ’ 

12. High Contact or Smooth Pasting Condition 

The first order conditions (11.20) and (11.21) are closely related 

to the high contact condition in the finance literature [Sa65] and the 
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smooth pasting condition in the optimal stopping literature ([Sh78], 

[SS93]). Also see Dixit [Di93]. In the present context, it means that 

the gradients of the option-price function V(. , . ; g, E) and the payoff 

function n(. , . ) coincide on the optimal option-exercise boundaries 

S1 = 6s~ and S1 = CS2, i.e., for SI > 0, S2 > 0, 

(12.1) VS16S2, s2; 6 3 = rIs,6s2, S2), 

(12.2) vs*m2, s2; 6 3 = rIsz6s2, S2), 

(12.3) vsp2, s2; 6 3 = lls,GS2, S2) 

and 

(12.4) vs@32, s2; $9 3 = n&32, S2). 

To see this, let v denote the row vector 

(12.5) (Nb m>Mi;) gm’7 

which depends on neither S 1 nor S2. Then 

(12.6) WL $5 6 :) = vMS1, S2), 

and (11.31) becomes 

(12.7) v(g’(iT) g’(E)) = (7c’(ig If(C)). 

Because 

and 

r-us 1, S2) = s27@ l/S21 

we have 

Wl, S2) = S2gWS2)v 
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and 

l-Is,ch S2) = ww2) 

hs@l, S2) = tt’WS2)~ 

Now (12.1) and (12.3) follow from (12.6) and (12.7). 

Similarly, (12.2) and (12.4) can be obtained from (12.6), (12.7), 

rIs,h $2) = 7t’(Sl/S2) - (S lls2w(slls2>, 

hs,@ 1, S2) = sWS2) - WS2kYS 1/S2) 

and 

Remark. We note that the common gradient, along the line S1 = k2, 

is the constant vector 

(7c’(i;>, 7L(b> - &c’(ii))‘, 

and, on the line St = ES2, is the constant vector 

(7L’(E), 7c(C) - cny’d))‘. 

13. Perpetual Margrabe Option 

An interesting limiting case of (11.32) is the pricing formula for 

the perpetual American Margrabe option. Here, 6 = 0 and 

(13.1) 01 ‘d=- 
81-l * 

The current price of the option is 
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(13.2) w(w,) = 
{ 

v(s,,s,;w) if S/S2 c Z: 
s _ s 

1 2 if S/S, 2 5: 

S s2 if’<---- 
% 8, - 1 

S s2 if’>- 
0, 8, - 1 

We remark that special cases of the Margrabe option are the call 

and put options. Also, {X(t)} need not be a Wiener process for the 

pricing formula (13.2) to be valid: let (X(t)} be a process with 

stationary and independent increments, satisfying (8.9); if {Xl(t) - 

X2(t)) is a skip-free (jump-free) upward process, then (13.2) is a 

pricing formula for the perpetual American Margrabe option. 

14. Forward and Futures Price of the Perpetual Margrabe Option 

We conclude this paper by deriving the forward price and futures 

price of the perpetual Margrabe option. Because of the constant 

interest rate assumption, these two prices are the same. The current 

price of the perpetual Margrabe option is given by (13.2), 

(14.1) e1 W(Sl, S2) = OS, s, l- %(S& I C) + (Sl - $)I(? < S&?), 

where S1 and S2 are the current stock prices and 
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(14.2) 

81 
81 

The m-year forward/futures price of the perpetual option is 

JWW l(m), W-0 h*l 

= OE[Sl(m)%2 (m)l meI I(Sl(m)&(m) I c); h*] 

(14.3) + ENS lb-4 - S2b-N IG < Wn-MMmN; h*l. 

Applying the factorization formula (8.15) and that : 

(e--%r(t)%2(t)l - @I) is a martingale under the risk-neutral measure, 

we have 

E[Sl(m)%, (m)’ - e1 I(S l(m)&?(m) I c); h*] 

= E[Sl(m)eS2(m)1-e l; h*] E[I(Sl(m)&(m) I C); h* + (01, 1 - @)‘I 

(14.4) = e~mS?S: - ” Pr[Sl(m)/Q(m) < c; h* + (01, 1 - &)‘I. 

Similarly, 

(14.5) WWm) - S2b-O) It? < Wm)&(mN h*l 

= E[Sl(m); h*] E[IG < Sl(m)&(m)); h* + (1, O)‘] 

- USAm); h*l ELI@ < WWSdm)); h* + (0, VI 

= e@ - (Pl)mS lPr[c < Sl(m)/$(m); h* + (1, O)‘] 

- e@ - %)mS2Pr[c c Sl(m)&(m); h* + (0, l)‘]. 

Let us illustrate (14.3), (14.4) and (14.5) with a perpetual put 

option on a non-dividend-paying stock with a constant exercise price 

K. Thus we consider 
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Sl(t) = K, ~1 = 0, cp1 = 6, 

S2(t) = S(t), 02 = 0, q2 = 0. 

[Recall that S(t) = S(O)eX(t), where {X(t)) is a Wiener process with 

variance per unit time 02.] Equation (11.8) simplifies as 

(14.6) Q&3(1 - cl) + 68 = 0, 

yielding 

(14.7) 81=1+B 
02’ 

By (13.1) 

(14.8) c = CJ2+2Z 
26 * 

With the definition 

(14.9) 

equation (14.5) becomes 

E[(K - S(m)) I(C < K/S(m)); h*] 

= KPr[X(m) c K; h*] - e8mS(0)Pr[X(m) < K; h* + l] 

(14.10) 

2 2 

= K@( 
K-@-$rn 

> - esmS(0)Q( 
K- (6+F)m 

06 d= 1, 

where 0 is the standardized normal distribution. 

The probability term in (14.4) is 

(14.11) Pr[X(m) 2 K; h* + 1 - eI] = Pr[X(m) 2 K; h* - 3 

=1-q 
K-(-F-$)m 

cwiii 
> 
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-r-@+$)m 
= O( mii 1. 

Also, 

(14.12) @KQlS(O)’ -01 

= 021C exp(26@). 
o2 + 26 

It follows from (14.3), (14.4), (14.11), (14.12) and (14.10) that them- 

year futures/ forward price of the perpetual Margrabe option is: 

(14.13) CF2K 
-Ic-(6+$)m 

o2 + 26 
exp[&m + &)]a( 

o2 wiii > 

2 2 

+ KQ( 
K-(8-$rn K-(6+F)m 

d= 
) - S(0)e6ma( 

d= 1. 

Another derivation of (14.13) can be found in Gerber and Shiu 

[GS93]. 
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