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Premia and Its Implication for 
Option Smirks 
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Anderson School at UCLA 
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Tan Wang 
Sauder School of Business at UBC and CCFR 

This article studies the asset pricing implication of imprecise knowledge about rare 
events. Modeling rare events as jumps in the aggregate endowment, we explicitly 
solve the equilibrium asset prices in a pure-exchange economy with a representative 
agent who is averse not only to risk but also to model uncertainty with respect to rare 
events. The equilibrium equity premium has three components: the diffusive- and 
jump-risk premiums, both driven by risk aversion; and the "rare-event premium," 
driven exclusively by uncertainty aversion. To disentangle the rare-event premiums 
from the standard risk-based premiums, we examine the equilibrium prices of options 
across moneyness or, equivalently, across varying sensitivities to rare events. We find 
that uncertainty aversion toward rare events plays an important role in explaining the 
pricing differentials among options across moneyness, particularly the prevalent 
"smirk" patterns documented in the index options market. 

Sometimes, the strangest things happen and the least expected occurs. In 
financial markets, the mere possibility of extreme events, no matter how 
unlikely, could have a profound impact. One such example is the so-called 
"peso problem," often attributed to Milton Friedman for his comments 
about the Mexican peso market of the early 1970s.1 Existing literature 
acknowledges the importance of rare events by adding a new type of risk 
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1Since 1954, the exchange rate between the U.S. dollar and the Mexican peso has been fixed. At the same 
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people, but it was fully justified when in August 1976 the peso was allowed to float against the dollar and 
its value fell by 46%. See, for example, Sill (2000) for a more detailed description. 
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(event risk) to traditional models, while keeping the investor's preference 
intact.2 Implicitly, it is assumed that the existence of rare events affects the 
investor's portfolio of risks, but not their decision-making process. 

This article begins with a simple yet important question: Could it be 
that investors treat rare events somewhat differently from common, more 

frequent events? Models with the added feature of rare events are easy to 
build but much harder to estimate with adequate precision. After all, rare 
events are infrequent by definition. How could we then ask our investors 
to have full faith in the rare-event model we build for them? 

Indeed, some decisions we make just once or twice in a lifetime 

leaving little room to learn from experiences, while some we make every- 
day. Naturally, we treat the two differently. Likewise, in financial markets 
we see daily fluctuations and rare events of extreme magnitudes. In deal- 

ing with the first type of risks, one might have reasonable faith in the 
model built by financial economists. For the second type of risks, how- 
ever, one cannot help but feel a tremendous amount of uncertainty about 
the model. And if market participants are uncertainty averse in the sense 
of Knight (1921) and Ellsberg (1961), then the uncertainty about rare 
events will eventually find its way into financial prices in the form of a 

premium. 
To formally investigate this possibility of "rare-event premium," we 

adopt an equilibrium setting with one representative agent and one perish- 
able good. The stock in this economy is a claim to the aggregate endow- 
ment, which is affected by two types of random shocks. One is a standard 
diffusive component, and the other is pure jump, capturing rare events 
with low frequency and sudden occurrence. While the probability laws of 
both types of shocks can be estimated using existing data, the precision for 
rare events is much lower than that for normal shocks. As a result, in 
addition to balancing between risk and return according to the estimated 

probability law, the investor factors into his decision the possibility that 
the estimated law for the rare event may not be correct. As a result, his 
asset demand depends not only on the trade-off between risk and return, 
but also on the trade-off between uncertainty and return. 

In equilibrium, which is solved in closed form, these effects show up in 
the total equity premium as three components: the usual risk premiums 
for diffusive and jump risks, and the uncertainty premium for rare events. 
While the first two components are generated by the investor's risk 

2 For example, in an effort to explain the equity-premium puzzle, Rietz (1988) introduces a low probability 
crash state to the two-state Markov-chain model used by Mehra and Prescott (1985). Naik and Lee (1990) 
add a jump component to the aggregate endowment in a pure-exchange economy and investigate the 
equilibrium property. More recently, the effect of event risk on investor's portfolio allocation with or 
without derivatives are examined by Liu and Pan (2003), Liu, Longstaff, and Pan (2003) and Das and 
Uppal (2001). Dufresne and Hugonnier (2001) study the impact of event risk on pricing and hedging of 
contingent claims. 
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aversion, the last one is linked exclusively to his uncertainty aversion 
toward rare events. To test these predictions of our model, however, 
data on equity returns alone are not sufficient. Either aversion coefficient 
can be adjusted to match an observed total equity premium, making it 
impossible to differentiate the effect of uncertainty aversion from that of 
risk aversion. 

Our model becomes empirically more relevant as options are included 
in our analysis. Unlike equity, options are sensitive to rare and normal 
events in markedly different ways. For example, deep-out-of-the-money 
put options are extremely sensitive to market crashes. Options with 
varying degrees of moneyness therefore provide a wealth of information 
for us to examine the importance of uncertainty aversion to rare events. 
For options on the aggregate market (e.g., the S&P 500 index), two 
empirical facts are well documented: (1) options, including at-the-money 
(ATM) options, are typically priced with a premium [Jackwerth and 
Rubinstein (1996)]; (2) this premium is more pronounced for out-of-the- 
money (OTM) puts than for ATM options, generating a "smirk" pattern 
in the cross-sectional plot of option-implied volatility against the option's 
strike price [Rubinstein (1994)]. 

As a benchmark, we first examine the standard model without uncer- 
tainty aversion. Calibrating the model to the equity return data, we 
examine its prediction on options.3 We find that this model cannot pro- 
duce the level of premium that has been documented for at-the-money 
options. Moreover, in contrast to the pronounced "smirk" pattern docu- 
mented in the empirical literature, this model generates an almost flat 
pattern. In other words, with risk aversion as the only source of risk 
premium, this model cannot reconcile the premium observed in the equity 
market with that in ATM options, nor can it reconcile the premium 
implicit in ATM options with that in OTM put options. 

Here, the key observation is that moving from equity to ATM options, 
and then to deep-OTM put options, these securities become increasingly 
more sensitive to rare events. Excluding the investor's uncertainty 
aversion to this specific component, and relying entirely on risk aversion, 
one cannot simultaneously explain the market-observed premiums 
implicit in these securities: fitting it to one security, the model misses out 
on the others. Conversely, if risk aversion were the only source for the pre- 
miums implicit in options, then one had to use a risk-aversion coefficient 

3 It should be noted that our model cannot resolve the issue of "excess volatility." That is, the observed 
volatility of the aggregate equity market is significantly higher than that of the aggregate consumption, 
while in our model they are the same. In calibrating the model with or without uncertainty aversion, we 
face the problem of which volatility to calibrate. Since the main objective of this calibration exercise is to 
explore the link between the equity market and the options market, we choose to calibrate the model 
using information from the equity market. That is, we examine the model's implication on the options 
market after fitting it to the equity market. 
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for the rare events and another for the diffusive risk to reconcile the 
premiums implicit in these securities simultaneously.4 

In comparison, the model incorporating uncertainty aversion toward 
rare events does a much better job in reconciling the premiums implicit in 
all these securities with varying degree of sensitivity to rare events. In 
particular, the models with uncertainty aversion can generate significant 
premiums for ATM options as well as pronounced "smirk" patterns for 
options with different degrees of moneyness.5 

Our approach to model uncertainty falls under the general literature 
that accounts for imprecise knowledge about the probability distribution 
with respect to the fundamental risks in the economy. Among others, 
recent studies include Gilboa and Schmeidler (1989), Epstein and Wang 
(1994), Anderson, Hansen, and Sargent (2000), Chen and Epstein (2002), 
Hansen and Sargent (2001), Epstein and Miao (2003), Routledge and Zin 
(2002), Maenhout (2001), and Uppal and Wang (2003). The literature on 
learning provides an alternative framework to examine the effect of 
imprecise knowledge about the fundamentals.6 Given that rare events 
are infrequent by nature, learning seems to be a less important issue in 
our setting. Furthermore, given that rare events are typically of high 
impact, thinking through worst-case scenarios seems to be a more natural 
reaction to uncertainty about rare events. 

The robust control framework adopted in this article closely follows 
that of Anderson, Hansen, and Sargent (2000). In this framework, the 
agent deals with model uncertainty as follows. First, to protect himself 
against the unreliable aspects of the reference model estimated using 
existing data, the agent evaluates the future prospects under alternative 
models. Second, acknowledging the fact that the reference model is indeed 
the best statistical characterization of the data, he penalizes the choice of 
the alternative model by how far it deviates from the reference model. Our 
approach, however, differs from that of Anderson, Hansen, and Sargent 
(2000) in one important dimension.7 Specifically, our investor is worried 

4 By introducing a crash aversion component to the standard power-utility framework, Bates (2001) 
recently proposes a model that can effectively provide a separate risk-aversion coefficient for jump 
risk, disentangling the market price of jump risk from that of diffusive risk. The economic source of 
such a crash aversion, however, remains to be explored. 

5 It is true that in such a model one can fit to one security using a particular risk-aversion coefficient and 
still have one more degree of freedom from the uncertainty-aversion coefficient to fit the other security. 
The empirical implication of our model, however, is not only about two securities. Instead, it applies to 
options across all degrees of moneyness. 

6 
Among others, David and Veronesi (2000) and Yan (2000) study the impact of learning on option prices, 
and Comon (2000) studies learning about rare events. For learning under model uncertainty, see Epstein 
and Schneider (2002) and Knox (2002). 

7 Another important difference is that we provide a more general version of the distance measure between 
the alternative and reference models. The "relative entropy" measure adopted by Anderson, Hansen, and 
Sargent (2000) is a special case of our proposed measure. This extended form of distance measure is 
important in handling uncertainty aversion toward the jump component. Specifically, under the "relative 
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about model misspecifications with respect to rare events, while feeling 
reasonably comfortable with the diffusive component of the model. This 
differential treatment with respect to the nature of the risk sets our 
approach apart from that of Anderson, Hansen, and Sargent (2000) in 
terms of methodology as well as empirical implications. 

Recently, there have been observations on the equivalence between a 
number of robust-control preferences and recursive utility [Maenhout 
(2001) and Skiadas (2003)]. A related issue is the economic implication 
of the normalization factor introduced to the robust-control framework 
by Maenhout (2001), which we adopt in this article. Although by introduc- 
ing rare events and focusing on uncertainty aversion only to rare events, 
our article is no longer under the framework considered in these articles, it 
is nevertheless important for us to understand the real economic driving 
force behind our result. Relating to the equivalence result involving recur- 
sive utility, we consider an economy that is identical to ours except that, 
instead of uncertainty aversion, the representative agent has a continuous- 
time Epstein and Zin (1989) recursive utility. We derive the equilibrium 
pricing kernel explicitly, and show that it prices the diffusive and jump 
shocks in the same way as the standard power utility. In particular, the 
rare-event premium component, which is linked directly to rare-event 
uncertainty in our setting, cannot be generated by the recursive utility.8 
Relating to the economic implication of the normalization factor, we 
consider an example involving a general form of normalization. We 
show that although the specific form of normalization affects the specific 
solution of the problem, the fact that our main result builds on uncertainty 
aversion toward rare events is not affected in any qualitative fashion by 
the choice of normalization. 

The rest of the article is organized as follows. Section 1 sets up the 
framework of robust control for rare events. Section 2 solves the optimal 
portfolio and consumption problem for an investor who exhibits 
aversions to both risk and uncertainty. Section 3 provides the equilibrium 
results. Section 4 examines the implication of rare-event uncertainty on 
option pricing. Section 5 concludes the article. Technical details, including 
proofs of all three propositions, are collected in the appendices. 

entropy" measure, the robust control problem is not well defined for the jump case. For pure-diffusion 
models, however, our extended distance measure is equivalent to the "relative entropy" measure. 

8 This result also serves to strengthen our calibration exercises involving options. The recursive utility 
considered in our example has two free parameters: one for risk aversion and the other for elasticity of 
intertemporal substitution. Similarly, in our framework, the utility function also has two parameters: one 
for risk aversion and the other for uncertainty aversion. In this respect, we are comparing two utility 
functions on equal footing, although the economic motivations for the two utility functions are distinctly 
different. We show that the recursive utility cannot resolve the smile puzzle. The intuition is as follows. 
Although it has two free parameters, the standard recursive utility has one risk-aversion coefficient to 
price both the diffusive and rare-event risks, while the additional parameter associated with the inter- 
temporal substitution affects the risk-free rate. In effect, it does not have the additional coefficient to 
control the market price of rare events separately from the market price of diffusive shocks. 
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1. Robust Control for Rare Events 

Our setting is that of a pure exchange economy with one representative 
agent and one perishable consumption good [Lucas (1978)]. As usual, 
the economy is endowed with a stochastic flow of the consumption 
good. For the purpose of modeling rare events, we adopt a jump-diffusion 
model for the rate of endowment flow { Y, 0 < t < T}. Specifically, we fix 
a probability space (Q, F, P) and information filtration (.t), and 
assume that Y is a Markov process in R solving the stochastic differential 
equation 

dYt = Ytdt + aYtdBt + (ez- 1) Yt-dNt, (1) 

where Y0>0, B is a standard Brownian motion and N is a Poisson 
process. In the absence of the jump component, this endowment flow 
model is the standard geometric Brownian motion with constant mean 
growth rate , > 0 and constant volatility a > 0. Jump arrivals are dictated 
by the Poisson process N with intensity A > 0. Given jump arrival at time t, 
the jump amplitude is controlled by Zt, which is normally distributed with 
mean u/ and standard deviation o-j. Consequently, the mean percentage 
jump in the endowment flow is k =exp(pj + o2/2) - 1, given jump 
arrival. In the spirit of robust control over worse-case scenarios, we 
focus our attention on undesirable event risk. Specifically, we assume 
k < 0. At different jump times t : s, Zt and Zs are independent, and all 
three types of random shocks B, N, and Z are assumed to be independent. 
This specification of aggregate endowment follows from Naik and Lee 
(1990). It provides the most parsimonious framework for us to incorpo- 
rate both normal and rare events.9 

We deviate from the standard approach by considering a representative 
agent who, in addition to being risk averse, exhibits uncertainty aversion 
in the sense of Knight (1921) and Ellsberg (1961). The infrequent nature of 
the rare events in our setting provides a reasonable motivation for such a 
deviation. Given his limited ability to assess the likelihood or magnitude 
of such events, the representative agent considers alternative models to 
protect himself against possible model misspecifications. 

To focus on the effect of jump uncertainty, we restrict the representative 
agent to a prespecified set of alternative models that differ only in terms of 
the jump component. Letting P be the probability measure associated 
with the reference model [Equation (1)], the alternative model is 
defined by its probability measure P(s), where -T=dP(/)IdP is its 

9 One feature not incorporated in this model is stochastic volatility. Given that our objective is to evaluate 
the effect of imprecise information about rare events and contrast it with normal events, adding stochastic 
volatility is not expected to bring in any new insight. 
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Radon-Nikodym derivative with respect to P, 

d (t = 
(ea+bZ -bVJ-?b2? 

2 
_ 1) t- dNt - (e - 1)Atdt, (2) 

where a and b are predictable processes,10 and where 0o = 1. By construc- 
tion, the process {ft, 0 < t < T} is a martingale of mean 1. The measure 

P(5) thus defined is indeed a probability measure. 
Effectively, s changes the agent's probability assessment with respect to 

the jump component without altering his view about the diffusive compo- 
nent. 1 More specifically, under the alternative measure P(O) defined by e, 
the jump arrival intensity A6 and the mean jump size k~ change from their 
counterparts A and k in the reference measure P to 

AA = Ae, 1 + kE = (1 + k)ebJ. (3) 

A detailed derivation of Equation (3) can be found in Appendix A. 
The agent operates under the reference model by choosing a = 0 and 

b = 0, and ventures into other models by choosing some other a and b. Let 
P be the entire collection of such models defined by a and b. We are now 
ready to define our agent's utility when robust control over the set P is his 
concern. For ease of exposition, we start our specification in a discrete- 
time setting, leaving its continuous-time limit to the end of this section. 
Fixing the time period at A, we define his time-t utility recursively by 

Ut _- A t 
+ e-P inf P (Et(U+))Ef h ln ) + ((Ut+ A) 1-Y P(t) inf{ 

and UT = 0, (4) 

where ct is his time-t consumption, p > 0 is a constant discount rate, and 
i/(E((U,t+)) is a normalization factor introduced for analytical tractabil- 
ity [Maenhout (2001)]. To keep the penalty term positive, we let 

-(x) = (1 - y)x for the case of y :I 1 and r(x) = 1 for the log-utility case. 
The specification in Equation (4) implies that any chosen alternative 

model P(S) e P can affect the representative agent in two different ways. 
On the one hand, in an effort to protect himself against model uncertainty 
associated with the jump component, the agent evaluates his future pro- 
spect E( Ut+l ) under alternative measures P(O) e P. Naturally, he focuses 

10That is to say, at and bt are fixed just before time t. See, for example, Andersen, Borgan, Gill and Keiding 
(1992). 

It is also important to notice that while the agent is free to deviate his probability assessment about the 
jump component, he cannot change the state of nature. That is, an event with probability 0 in P remains 
so in P(f). In other words, our construction of 6 in Equation (2) ensures P and P(S) to be equivalent 
measures. 
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on other jump models that provide prospects worse than the reference 
models P, hence the infimum over P(c) e P in Equation (4). On the other 
hand, he knows that statistically P is the best representation of the existing 
data. With this in mind, he penalizes his choice of P(s) according to how 
much it deviates from the reference P. This discrepancy or distance 
measure is captured in this article by E[[h(ln(6,t+/1t))], where for some 

> 0 and any x eR, 

h(x) = x + P(ex- 1). (5) 

Intuitively, the further away the alternative model is from the reference 
model P, the larger the distance measure. Conversely, when the alternative 
model is the reference model, we have _ 1 with a distance measure of 0. 
Finally, to control this trade-off between "impact on future prospects" 
and "distance from the reference model," we introduce a constant para- 
meter 0 > 0 in Equation (4). With a higher 4, the agent puts less weight on 
how far away the alternative model is from the reference model and, 
effectively, more weight on how it would worsen his future prospect. In 
other words, an agent with higher 0 exhibits higher aversion to model 
uncertainty. 

The agent's utility function in Equation (4) is similar to that in 
Anderson, Hansen, and Sargent (2000). Our approach, however, differs 
from theirs in two ways. First, we restrict the agent to a prespecified set P 
of alternative models that differ from the reference model only in their 
jump components. As a result, the uncertainty aversion exhibited by the 
agent only applies to the jump component of the model. This distinction 
becomes important as we later take the model to option pricing because 
options are sensitive to diffusive shocks and jumps in different ways. 

In fact, we can further apply this idea and modify the set P so the 
agent can express his uncertainty toward one specific part of the jump 
component. For example, by restricting b=0 in the definition of s in 
Equation (2), we build a subset Pa c P of alternative models that is 
different from the reference model only in terms of the likelihood of 
jump arrival. Applying this subset to the utility definition of Equation (4), 
we effectively assume that the agent has doubt about the jump-timing 
aspect of the model, while he is comfortable with the jump-magnitude 
part of the model. Similarly, by letting a = 0 in Equation (2), we build a 
class P7 of alternative models that is different from the reference model 
only in terms of jump size. An agent who searches over Pb instead of P 
finds the jump-magnitude aspect of the model unreliable, while having 
full faith in the jump-timing aspect of the model. Finally, by letting a = 0 
and b=0, we reduce the set P? to a singleton that contains only the 
reference model. Effectively, this is the standard case of a risk-averse 
investor. 

138 



An Equilibrium Model of Rare-Event Premiums 

Second, we extend the discrepancy (or distance) measure of Anderson, 
Hansen, and Sargent (2000) to a more general form. Specifically, our 
"extended entropy" measure is reduced to their "relative entropy" 
when f approaches to zero. Given that h(x) is convex and h(0)= 0, the 
result of Wang (2003) can be used to provide an axiomatic foundation for 
our specification (his Theorem 5.1, part a). As it will become clear later, 
this extended form of distance measure is important in handling uncer- 
tainty aversion toward the jump component. In particular, the minimiza- 
tion problem specified in Equation (4) does not have an interior global 
minimum for the "relative entropy" case.12 For pure diffusion models, 
however, it is easy to show that our extended distance measure is equiva- 
lent to the "relative entropy" case. 

Our utility specification also differs from Anderson, Hansen, and 
Sargent (2000) in the normalization factor qi, which we adopt from 
Maenhout (2001) for analytical tractability. A couple of issues have been 
raised in the literature regarding this normalization factor. One relates to 
its effect on the equivalence between a number of robust-control pre- 
ferences and recursive utility [see Maenhout (2001) and Skiadas (2003)]; 
the other relates to its effect on the link between the robust-control frame- 
work and that of Gilboa and Schmeidler (1989) [see Pathak (2000)]. In this 
respect, the utility function adopted in this article is not a multiperiod 
extension of Gilboa and Schmeidler (1989). It is, however, a utility func- 
tion motivated by uncertaintyaversion toward rare events.13 Applying this 
utility to the asset-pricing framework of this article, the most important 
issue for us to resolve is that the asset-pricing implication involving rare- 
event premiums is indeed driven by uncertainty aversion toward rare 
events and not by recursive utility or a particular form of the normal- 
ization factor. We clarify these issues by showing that (1) our main result 
regarding rare-event premiums cannot be generated by a continuous-time 
Epstein and Zin (1989) recursive utility (Appendix D); (2) the choice of 
normalization factor does not affect, in any qualitative fashion, the fact 
that our main result involving rare-event premiums builds on uncertainty 
aversion toward rare events (Appendix E). 

Finally, the continuous-time limit of our utility specification 
[Equation (4)] can be derived as 

Ut= -inf Ei e- q(Us)H(as, bs)+ 1y ds (6) 
a,b t -y 

12 Roughly speaking, the penalty function in Anderson, Hansen, and Sargent (2000) is not strong enough to 
counterbalance the "loss in future prospect" for an agent with risk-aversion coefficient y > 1. As a result, 
the investor's concern about a misspecification in the jump magnitude makes him go overboard to the 
case of total ruin. 

13 See Wang (2003) for an axiomatic foundation in a static setting. 
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where H is the component associated with the distance measure and can 
be calculated explicitly as14 

H(a,b) = A 1 a+( b22-i)ea + ( + (ea+b -2)ea) (7) 

Given this, the investor's objective is to optimize his time-0 utility 
function U0. 

2. The Optimal Consumption and Portfolio Choice 

As in the standard setting, there exists a market where shares of the 
aggregate endowment are traded as stocks. At any time t, the dividend 
payout rate of the stock is Yt, and the ex-dividend price of the stock is 
denoted by St. In addition, there is a risk-free bond market with instanta- 
neous interest rate rt. The investor starts with a positive initial wealth Wo, 
trades competitively in the securities market, and consumes the proceeds. 
At any time t, he invests a fraction Ot of his wealth in the stock market, 
1 - 6t in the risk-free bond, and consumes ct, satisfying the usual budget 
constraint. 

Having the equilibrium solution in mind, we consider stock prices of the 
form St = A(t) Yt and constant risk-free rate r, where A(t) is a deterministic 
function of t with A(T) 0. Under the reference measure P, the stock 
price follows, 

dSt = (I + A(t) Stdt + oStdBt + (ez - 1)St_dNt. (8) 

And the budget constraint of the investor becomes 

- ( 
I + 

A'(t)(h- rt(+>t ttdt dWt = r + Ot -r + A(t) Wtdt + Ot WtdB 
\W, ) /-,,(.~ +I:~;''') ???(9) 

+ Ot- Wt-(ez - 1)dNt - c,dt. 

Given this budget constraint, our investor's problem is to choose hiscon- 
sumption and investment plans {c, 0} so as to optimize his utility. Let Jt be 
the indirect utility function of the investor, 

J(t, W)= supUt, (10) 
{c,0} 

where Ut is the continuous-time limit of the utility function defined by 
Equation (4). The following proposition provides the Hamilton-Jacobi- 
Bellman (HJB) equation for J. 

14 See the proof of Proposition 1 in Appendix for the derivation. 
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Proposition 1. The investor's indirect utility J, defined by Equation (10), 
has the terminal condition J(T, W) =0 and satisfies the following HJB 

equation, 

sup{u(c)-pJ(t, W)+ AJ(t, W) +inf Aea(EZ(b)[J(t, W( + (eZ -1)0))] 
c,O ab 

1I Ib 
-J(t,W)) + j(J)A 1l+ (a+ b2r-1)ea 

+,/3( + (el+( - 2)e) -0, (11) 

where EZ(b)(.) denotes the expectation with respect to Z under the alter- 
native measure associated with b. That is, for any function f 

EZ(b)(f(Z)) = E(ebZ-b~Lj -b2~ f (Z)) (12) 

The term A J(t,W) in the HJB equation [Equation (11)] is the usual 
infinitesimal generator for the diffusion component of the wealth dynamics, 

AJ=Jt+ r+ (-r+ 
' 

(A'(t) 
+ WJ w W2Jww (13) AJ r t 2 

/,( A(t) WJw - cJw +-- W2Jww, (13) 
- \ -r+ At) )- 2 

where Jt is the derivative of the indirect utility J with respect to t, and Jw and 
Jww are its first and second derivatives with respective to W. 

The intuition behind the HJB equation [Equation (9)] exactly parallels 
that of its discrete time counterpart, Equation (4). Specifically, compared 
with the standard HJB equation for jump diffusions, the HJB equation in 
Equation (11) has two important modifications. First, the risk associated 
with the jump component is evaluated at all possible alternative models 
indexed by (a, b), reflecting the investor's precaution against model uncer- 
tainty with respect to the jump component. Second, it incorporates an 
additional term in the last two lines of Equation (11), penalizing the choice 
of the alternative model by its distance from the reference model. The 
following proposition provides the solution to the HJB equation. 

Proposition 2. The solution to the HJB equation is given by 

wl -y 
J(t, W) W 1 - (t (14) 

wheref(t) is a time-dependent coefficient satisfying the ordinary differential 
Equation (B.4) in Appendix B with the terminal condition f(T) =0. The 
optimal consumption plan is given by ct = Wt /f (t), where W* is the optimal 
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wealth process. Finally, the optimal solutions 0*, a*, and b* satisfy 

(- r + A() ) y)- YO2 + AeaEZ(b)[( + (ez - 1)6)-(e - 1)] = 0, 

(15) 

l- (a+ b22 + 23(ea+b2 - 1)) + EZ()[( + (ez -1)0)'] - I = 0, 

(16) 

- b2(l + 23ea+b2a) + EZ(b)[(1 + (ez - 1)0)1-7) = 0, (17) ,3op 

where EZ(b) (.) defined in Equation (12) is the expectation with respect to Z 
under the alternative measure associated with b. 

3. Market Equilibrium 

In equilibrium, the representative agent invests all his wealth in the stock 
market t = 1 and consumes the aggregate endowment c = Yt at any time 
t T. The solution to market equilibrium and the pricing kernel are 
summarized by the following proposition. 

Proposition 3. In equilibrium, the total (cum-dividend) equity premium is 

Total equity premium = yco2 + Ak - A QkQ, (18) 

where k = exp(gjl + r-2/2) - 1 is the mean percentage jump size of the 
aggregate endowment, and AQ and kQ are defined by'5 

AQ = A exp -y/. + y o-J + a*-b - ), (19) 
2 =h e*p(yal+ 

I 

(19) 
ke (l + k)exp((b* - y)2) - 1, 

and a* and b* are the solution of the following nonlinear equations. 

a + b2a2 + 2/8(ea+b - 1) + 1 - ([(1 + k] e -1) 0 (20) 2 l y 

b(1 + 23a+b2o: ) + +[(1 + k)e(b-Y)}]1-~ 0. (21) 

15 As will become clear in the next section, A and kQ are the risk-neutral counterparts of A and k. 
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The equilibrium riskfree rate r is 

r = P + eyA - - (Y + 1)o + A*(l1 - (1 )+ k*e, (22) 

where A* = A exp(a*) and k* - (1 + k)exp(b*or2) - 1, and where 

2 ) -X*= 1-Y)tA 1+ a*+ b (b*)2o-22 1 eaa 

+/(1 + (e +(b)2- _ 2)ea) .(23) 

Finally, the equilibrium pricing kernel is given by 

d7rt = - rrTtdt - yaT-rtdBt + (ea +(b*-7)Z-b*'tJ-t(b*)2% - l)t_ dNt 

-A (ea'- ( J+b*)+2 - l)rtdt. (24) 

To understand how the investor's uncertainty aversion affects the equi- 
librium asset prices, let us first take away the feature of uncertainty 
aversion by setting a 0 and b 0, or 4 - 0. Our results in Equations 
(18) and (22) are then reduced to those of Naik and Lee (1990)-the 
standard case of a risk-averse investor with no uncertainty aversion. In this 
case, the total equity premium is attributed exclusively to risk aversion: 

Diffusive risk premium = o-2, 
(25) 

Jump-risk premium = Ak - Ak, 

where A and k are the counterparts of A and kQ when the uncertainty 
aversion 4 is set to zero: 

A + Aexp( -, +y2 , k = (1 +k)exp(-yT) -1. (26) 

Quite intuitively, both types of risk premiums approach zero when the 
risk-aversion coefficient y approaches zero and are positive for any risk- 
averse investors (y > 0). 

When the investor exhibits uncertainty aversion (o > 0), there is one 
additional component in the equity premium: 

Rare-event premium = Ak - AQkQ. (27) 

It is important to emphasize that while the magnitude of this part of the 
equity premium depends on the risk-aversion parameter of the investor, it 
is the uncertainty aversion of the investor that gives rise to this premium. 
Specifically, the rare-event premium remains positive even when we take 
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the limit y -- 0, while it becomes zero when the investor's model uncer- 
tainty aversion 4 approaches zero. The following two examples highlight 
this feature of the rare-event premium by considering the extreme case 
where the investor is risk neutral (y= 0). 

In the first case, the investor is worried about model misspecification 
with respect to the jump arrival intensity, that is, how frequently the jumps 
occur. He performs robust control by searching over the subset W7 defined 
by a E R and b 0. Setting b = 0 and y 0, Equation (20) reduces to 

a + 2,(ea- 1) + 4k 0. (28) 

For the case of adverse event risk (k < 0), we can see from Equation (28) 
that a* > 0 if and only if the investor exhibits uncertainty aversion (4 > 0). 
The rare-event premium in this case is 

Ak-QkQ = Ak( -ea), 

which is positive if and only if > > 0. 
In the second case, the investor is worried about model misspecification 

with respect to the jump size. This time, he performs robust control by 
searching over the subset pb defined by b E R and a - 0. Setting a = 0 and 
y = , Equation (21) reduces to 

(1 + k)e (29) 

1b - 
2eb2< (29) 

which indicates that b* < 0 when there is uncertainty aversion (4 > 0). The 
rare-event premium in this case is 

Ak - AkQ - k(1 + k)eb , 

which is again positive if and only if f > 0. 
These two cases are the simplest examples of our more general results. 

In addition to providing some important intuition behind our results, they 
also deliver a quite important point. That is, the aversion toward model 
uncertainty is independent of that toward risk, and the effect of uncer- 
tainty aversion becomes most prominent with respect to rare events. 
Indeed, the fact that our model allows such separation of total equity 
premium into risk and rare-event components is crucial for our analysis. 
As emphasized in the introduction, our contention is that investors treat 
rare events differently from more common events and such differential 
treatment will be reflected in asset prices. The decomposition of the equity 
premium characterized in Proposition 3 allows us to study the effect on 
prices and can potentially lead to empirically testable implications with 
respect to the different components of the equity premium. 

To elaborate on the last point and set the stage for the next section, we 
note that if there is no model uncertainty, or if the investor is uncertainty 
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neutral (4 = 0), then according to Equations (25) and (26), both diffusive 
and jump-risk premiums are linked by just one risk-aversion coefficient y. 
This constraint can, in fact, be tested using equity and equity options, 
which have different sensitivities to the diffusive and jump risks. In such 
an equilibrium, the pricing kernel that links the equity to the equity 
options is controlled by just one risk-aversion coefficient y. On the other 
hand, empirical studies [e.g., Pan (2002) and Jackwerth (2000)] using time- 
series data from both markets (the S&P 500 index and option) indicate 
that the pricing kernel linking the two markets cannot be supported by 
such an equilibrium.16 In particular, the "data-implied y" for the jump 
risk is considerably larger than that for the diffusive risk. 

We close this section by discussing the asset-pricing implication of the 
normalization factor i in more detail. For this, we focus on the equili- 
brium pricing kernel derived in Equation (24), which can be rewritten as 

= e- Pe- Xf Yt , (30) 

where X* is a constant defined in Equation (3) and where 5* is the Randon- 
Nikodym derivative that defines the optimal alternative measure P(5*). 
The shocks to the pricing kernel consist of two parts: Yt-7 generates the 
diffusive- and jump-risk premiums; and 6* generates the rare-event pre- 
mium. It is easy to see that the presence of a nontrivial s* in the pricing 
kernel derives from the investor's consideration over alternative measures 
regarding rare events. In other words, in our specific setting, rare-event 
premiums can be traced to the investor's uncertainty aversion toward 
rare events. 

To understand the extent to which different normalization factors affect 
this link, in Appendix E we consider an example with a more general form 
of the normalization factor. We show that the particular form of normal- 
ization affects (1) the risk-free rate through its direct impact on intertem- 
poral substitution; (2) the optimal solution of s*. For the more general 
cases, the optimal s* cannot be solved in closed form, although the 
uncertainty aversion aspect of the utility will lead s* toward measures 
giving worse prospects than the reference measure. 

More importantly, we show that, regardless of the specific choice of 
normalization, the shocks to the pricing kernel still consist of Yt-Y and st 
as in Equatin (30). Similar to our earlier discussion, the presence of a 
nontrivial 6* in the pricing kernel can be traced back to the investor's 
consideration over alternative measures regarding rare events. Thus, while 

16 This relies on our specification of the aggregate consumption process. If one is willing to relax this 
specification, then one can always find an equilibrium to support any given pricing kernel, including the 
empirical pricing kernel that links the equity and equity options markets. For example, for a power utility 
with risk-aversion coefficient y, one can back out a consumption process by equating marginal utility to 
the empirical pricing kernel. 
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a more general normalization factor might provide a more complicated ,*, 
the important link between rare-event premia and uncertainty aversion 
toward rare events still survives.17 

4. The Rare-Event Premiums in Options 

To further disentangle the rare-event premiums from the standard risk 
premiums, we turn our attention to the options market. Using the equili- 
brium pricing kernel Tr (Proposition 3), we can readily price any derivative 
securities in this economy. Specifically, let Q be the risk-neutral measure 
defined by the equilibrium pricing kernel Tr such that erTTr/Tl0r = dQldP. It 
can be shown that the risk-neutral dynamics of the ex-dividend stock price 
follows: 

dSt -(r- q)Stdt + aStdB? + (eZ - 1)St_dNt -AQkQdt, (31) 

where r is the risk-free rate and q is the dividend payout rate,18 and where 
under Q, BQ is a standard Brownian motion and Nt is a Poisson process 
with intensity AQ. Given jump arrival at time t, the percentage jump 
amplitude is lognormally distributed with the risk-neutral mean kQ. Both 
risk-neutral parameters AQ and kQ are defined earlier in Equation (19). 
European-style option pricing for this model is a modification of the 
Black and Scholes (1973) formula, and has been established in Merton 

(1976). For completeness of the article, the pricing formula is provided in 

Appendix C. 
What makes the option market valuable for our analysis is that, unlike 

equity, options have different sensitivities to diffusions and jumps. For 

example, a deep OTM put option is extremely sensitive to negative price 
jumps but exhibits little sensitivity to diffusive price movements. This 
nonlinear feature inherent in the option market enables us to disentangle 
the three components of the total equity premium (Proposition 3) that 
are otherwise impossible to separate using equity returns alone. This 
"observational equivalence" with respect to equity returns is further 
illustrated in Table 1. 

17 Unless, of course, one considers a normalization factor that effectively prevents the investor from 
choosing alternative measures, resulting in a trivial optimal solution of = 1. 

18 For the rest of our analysis, we will set the risk-free rate at r= 5% and the dividend yield at q = 3%. In 
other words, we are not using the equilibrium interest rate and the dividend yield. This is without much 
loss of generality. Specifically, the parameter p can be used to match the desired level of r. The dividend 
payout ratio q is slightly more complicated, since it is in fact time varying in our setting. For an 
equilibrium horizon T that is sufficiently large compared with the maturity of the options to be 
considered, we can use the result for the infinite horizon case, and take q= l/a, where a, given by 
Equation (B.6), can be calibrated by the free parameter u. Finally, as our analysis focuses on comparing 
the prices of options with different moneyness, the effect of r and q will be minor as long as the same r and 
q are used to price all options. 
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Table 1. 
The three components of the equity premium, jump case 1 

Aversion Premium (%) 

Jump parameters <4 y Diffusive risk Jump risk Rare event Total premium 

A 1/3 0 3.47 7.80 0.20 0 
10 3.15 7.09 0.19 0.72 8% 

j =-l1% 20 2.62 5.91 0.15 1.94 

Table 1 details a simple calibration exercise with parameters for the 
reference model P set as follows. For the diffusive component, the vola- 
tility is set at o-= 15%. For the jump component,19 the arrival intensity is 
A = 1/3, and the random jump amplitude is normal with mean ,j= - 1% 
and standard deviation o-j= 4%. It should be noted that our model cannot 
resolve the issue of "excess volatility." 

As a result, we face the problem of which set of data the model should 
be calibrated to: the aggregate equity market or the aggregate consump- 
tion. For example, if we were to fit the model directly to the data on 

aggregate consumption, the equity volatility would be around 2%, and the 

equity options would be severely underpriced simply because of this low 
volatility level. Given that the main objective of this calibration exercise is 
to explore the link between the equity market and the options market, 
calibrating the model to the aggregate equity market seems to be a more 
reasonable choice. For this reason, the set of model parameters are chosen 
to fit the data on the S&P 500 index market. 

Given this reference model, three different scenarios are considered for 
the representative agent's risk aversion y and uncertainty aversion (. As 
shown in Table 1, each scenario corresponds to an economy with a distinct 
level of uncertainty aversion ( and yields a distinct composition of the 
diffusive-risk premium, the jump-risk premium, and the rare-event pre- 
mium. For example, the rare-event premium is zero when the representa- 
tive agent exhibits no aversion to model uncertainty, and increases to 
1.94% per year when the uncertainty aversion coefficient becomes 
( = 20. These predictions of our model, however, cannot be tested if we 
focus only on the equity return data. As shown in Table 1, for a fixed level 
of uncertainty aversion (, one can always adjust the level of risk aversion 
y so that the total equity premium is fixed at 8% per year, although the 
economic sources of the respective equity premiums differ significantly 
from one scenario to another. To be able to decompose the total equity 

'9 The jump parameters are close to those reported by Pan (2000) for the S&P 500 index. Alternative jump 
parameters will be considered in later examples. 
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Figure 1 
The equilibrium "smile" curves 

premium into its three components, we need to take our model one step 
further to the options data. 

To examine the option pricing implication of our model, we start with 
the same reference model and the same set of scenarios of uncertainty 
aversion as those considered in Table 1. For each scenario, we use our 
equilibrium model to price one-month European-style options, both calls 
and puts, with the ratio of strike to spot prices varying from 0.9 to 1.1. As 
it is standard in the literature, we quote the option prices in terms of the 
Black-Scholes implied volatility (BS-vol) and plot them against the respec- 
tive ratios of strike to spot prices. The first panel of Figure 1 reports the 
"smile" curves generated by the three equilibrium models with varying 
degrees of uncertainty aversion. We can see that although all three scenar- 
ios are observationally equivalent with respect to the equity market, their 
implications on the options market are notably different. 

4.1 The case of only risk aversion 
Let us first consider the case of zero uncertainty aversion, where risk 
aversion is the only source of premiums in both equity and options. 
Calibrating the risk-aversion coefficient y to match the equity premium, 
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let us first examine the model's implication for the ATM option (puts and 
calls with a strike-to-spot ratio of 1). From the first panel of Figure 1, we 
see that the model prices such options at a BS-vol of 15.2%, which is very 
close in magnitude to the total market volatility /o2 + A(p2 + o-2) 
15.2%. The market-observed BS-vols for such ATM options, however, 
are known to be higher than the volatility of the underlying index returns. 

In other words, there is a premium implicit in such ATM options that is 
not captured by this model with only risk aversion. 

Next, we examine this model's implication for options across money- 
ness. Moving the strike-to-spot ratio from 1 to 0.9, we arrive at a 10% 
OTM put option, which is priced by the model at 15.6% BS-vol. That is, 
moving 10% out of the money, the BS-vol increases from 15.2 to 15.6%. 
The market-observed "smile" curves, however, are much steeper than 
what is captured by this model. 

In other words, the market views the OTM put options to be more 
valuable than what this model predicts. There is an additional component 
implicit in such OTM put options that is not captured by this model with 
only risk aversion. 

Moving from equity to ATM options and to OTM put options, we are 
looking at a sequence of securities that are increasingly sensitive to rare 
events. At the same time, the model with only risk aversion misprices this 
sequence of securities with increasing proportion. As we can see from our 
next example, one plausible explanation is that the rare-event component 
is not priced properly in this model with only risk aversion. 

4.2 The case of uncertainty aversion toward rare events 
Let us now consider the two cases that incorporate the representative 
agent's uncertainty aversion. As shown in Table 1, in both cases the 
total equity premium has three components, two of which are driven by 
the representative agent's risk aversion y and one driven by his uncer- 
tainty aversion (. Comparing the case of =20 with the previously 
discussed case of 4 =0, our first observation is that, even for ATM 
options, the two models generate different equilibrium prices. Specifically, 
for the case of zero uncertainty aversion, the BS-vol implied by an ATM 
option is 15.2%, but for the case of uncertainty aversion 0 = 20, the BS-vol 
implied by an ATM option is 15.5%. This implies that, while both cases 
are observationally equivalent when viewed using equity prices, the model 
incorporating uncertainty aversion (4 = 20) predicts a premium of about 
2% for one-month ATM options. This result is indeed consistent with the 
empirical fact that options, even those that are at the money, are priced 
with a premium.20 

20 See, for example, Jackwerth and Rubinstein (1996) and Pan (2002). 
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This additional premium, which is linked exclusively to the investor's 
uncertainty aversion toward rare events, becomes even more pronounced 
as we move to OTM puts, which, compared with ATM options, have 
more sensitivity to adverse rare events. The first panel in Figure 1 shows 
that a 10% OTM put option is priced at 17.2% BS-vol, compared with 
15.6% BS-vol in the case of 4 = 0. That is, for every dollar invested in a 
one-month 10% OTM put option, typically used as a protection against 
rare events, the investor is willing to pay 10 cents more because of his 
uncertainty aversion toward the adverse rare events. 

As shown in Pan (2002), both empirical facts -ATM options priced 
with a premium and OTM put options priced with an even higher pre- 
mium, resulting in a pronounced "smirk" pattern -are indeed closely 
connected. If only risk aversion is used to explain these empirical facts, 
one direct implication is that the "data-implied y" for the jump risk has to 
be considerably larger than that for the diffusive risk. By incorporating 
uncertainty aversion in this article, however, we are able to explain 
these empirical facts without having to incorporate an exaggerated risk- 
aversion coefficient for the jump risk. By doing so, we offer a simple 
explanation for the significant premium implicit in options, especially 
those put options that are deep out of the money. That is, when it comes 
to rare events, the investors simply do not have a reliable model. They 
react by assigning rare-event premiums to each financial security that is 
sensitive to rare events. Options with varying moneyness are sensitive to 
the rare events in a variety of ways, bearing different levels of rare-event 
premiums. Our analysis shows that a significant portion of the pro- 
nounced "smirk" pattern can be attributed to this varying degree of rare- 
event premiums implicit in options. 

Finally, to show the robustness of our results, we modify the two key 
jump parameters, A and ,uJ, in the reference model considered in Table 1. 
In Table 2, we consider jumps that happen once every 25 years, with a 
mean magnitude of -10%, capturing the magnitude of major market 
corrections. In Table 3, jumps happen once every 100 years with a magni- 
tude of -20%, capturing the magnitude of an event as rare as the 1987 
crash. The option pricing implications of these models are reported in the 

Table 2. 
The three components of the equity premium, jump case 2 

Aversion Premiums (%) 

Jump parameters P y Diffusive risk Jump risk Rare event Total premium 

A =1/25 0 3.47 7.81 0.19 0 
10 2.88 6.47 0.15 1.38 80/ 

J.= -10%/o 20 1.61 3.62 0.08 4.30 
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Table 3. 
The three components of the equity premium, jump case 3 

Aversion Premiums (%) 

Jump parameters 4) y Diffusive risk Jump risk Rare event Total premium 

A =1/100 3.47 7.81 0.19 0 
10 2.36 5.31 0.12 2.58 8% 

Cj=--.20% 20 0.68 1.54 0.03 6.43 

lower two panels in Figure 1. As we can see, although all three reference 
models incorporate rare events that are very different in intensity 
and magnitude, the impact of uncertainty aversion remains qualitatively 
similar. 

4.3 Implications of alternative utility specifications 
4.3.1 The case of recursive utility. Our specification involves two free 
parameters (in addition to the time discount coefficient p): the risk-aver- 
sion coefficient y and the uncertainty-aversion coefficient 4. Compared 
with the standard power utility, we have one more free parameter. One 
may argue that with one more free parameter, it is no surprise that the 
"smirk" patterns can be generated. To compare our model against alter- 
native utility functions at equal footing, we consider the case of contin- 
uous-time Epstein and Zin (1989) recursive utility, which also has two free 
parameters: the risk-aversion coefficient y and the coefficient for the 
intertemporal substitution S. This comparison is also of interest because 
of the equivalence result documented in the literature for diffusion models 
[Maenhout (2001) and Skiadas (2003)]. 

In Appendix D we show that the recursive utility results in a more 
complex risk-free rate, but for the purpose of pricing risks it has the 
same implication as a standard power utility. This result is quite intuitive 
given that the recursive utility is designed to separate intertemporal sub- 
stitution from risk aversion. If our interest lies in how the diffusive risk is 
priced relative to the rare events, we need look no further than the special 
case of power utility, which indeed captures the risk aversion component 
of the recursive utility. Other than their differential implications for risk- 
free rates, the option-pricing implication of a recursive utility is very much 
the same as that of a power utility. In Appendix D, the risk-neutral jump 
parameters A Q and kQ, which are important for option pricing, are derived 
explicitly and are shown to be identical to those of a power utility case. 

In addition to serving as a robust check against alternative utility 
functions, this example also helps clarify, for our setting, the issue of 
equivalence between the robust-control framework and recursive utility. 
Specifically, we show with an explicit example, that the robust-control 
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framework in our setting is not equivalent to the continuous-time Epstein 
and Zin (1989) recursive utility. This, however, does not contradict the 

equivalence results established by Maenhout (2001) and Skiadas (2003), 
since we add a new dimension to the problem: rare events and uncertainty 
aversion only toward rare events. 

4.3.2 The case of habit formation. An alternative preference of interest is 
the external habit formation model of Campbell and Cochrane (1999), 
which is shown to generate rich dynamics for asset prices from consump- 
tion data. This utility specification is of particular interest because it is 

capable of resolving the "excess volatility" and equity-premium puzzle, 
which our model does not explain. It is therefore important for us to 
understand if such habit-formation models can explain the option-smirk 
puzzle. To some extent, this analysis also serves to clarify the key differ- 
ence between the equity-premium puzzle and the option-smirk puzzle. 

At the heart of the option-smirk puzzle is the differential pricing of 

options with varying sensitivities to rare-event risk. For a preference to 

generate the observed level of option smirk, the associated equilibrium 
pricing kernel should have the ability to price rare-event risk separately 
from the diffusive risk.21 Standard formations of the habit model such as 
that in Campbell and Cochrane, in contrast, assume that the shock to 
habit is perfectly correlated with the shock to consumption (the endow- 

ment). As such, the habit-model-implied pricing kernel, though following 
a richer dynamic process than in the standard CRRA model, effectively 
does not price the diffusive and jump components of the endowment 

process differently.22 We therefore conjecture that, as formulated and 
calibrated in recent studies, the habit model will not generate the observed 
smile in option prices. Indeed, as preliminary evidence in support of our 

conjecture, we took the model-implied option prices computed by Bansal, 
Gallant and Tauchen (2002) from their calibrated habit model and 

21 This is best illustrated by comparing our model against a model with constant relative risk aversion 
(CRRA) preference with no uncertainty aversion toward rare events. As shown in Equation (30), the 
equilibrium pricing kernel of our model is proportional to 4t Y t-, while that of the CRRA preference is 
proportional to Y,-'. The additional term 47 in our model is the key to our model's ability to generate 
option smirks. Economically, it adds a layer to the market price of rare-event risk that is above and 
beyond that associated with risk aversion, and this extra degree of freedom arises from uncertainty 
aversion toward rare-event risk. 

22 
Specifically, the pricing kernel generated by the habit formation preference of Campbell and Cochrane 
can be shown to be proportional to S,- Y, , where S, is the surplus consumption ratio and Y, is the 
aggregate consumption (which equals aggregate endowment in equilibrium). In their external habit 
specification, the dynamics of s =log(S) follows 

St = (1- >)s + ks,_- +A(s,_l)(y- y,t -g), 

where (, s, and g are parameters, y=log Y, and A(s,t_) is the sensitivity function. Effectively, by 
introducing an external habit through the surplus consumption ratio S, the habit formation preference 
of Campbell and Cochrane generates an equilibrium pricing kernel proportional to Y, , where y_, = 

y(1 + A (St )) is the implied state-dependent risk-aversion coefficient. 
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converted the prices to BS-vols using a constant risk-free rate of 5% and 
dividend payout rate of 2%. These calculations generate inverted options 
smirks contrary both to the data and to the implications of our model with 
rare-event premiums.23 

Moving beyond the standard formation of habit, one could add an 
exogenous shock to the habit so that it is not perfectly correlated with 
the consumption shock. For example, one could allow the jump compo- 
nent of the endowment to affect the habit more severely than the diffusive 
component. These models would do better in explaining the option smirks 
than the standard habit models. It would be important, however, to 
develop an economic explanation for why the habit shock has the requisite 
correlation patterns with the diffusive and jump components of endow- 
ments to generate the option smirks. In contrast, option smirks arise 
naturally in our model because of uncertainty aversion toward rare events. 

4.4 Features of the underlying shocks vs. the pricing kernel 
The various utility specifications examined in our calibration exercises 
effectively lead us to various forms of pricing kernels, which in turn play 
an important role in pricing options and shaping the smile curves. Given 
that option prices also depend on the underlying stock dynamics, it is 
therefore natural to question the role played by the underlying stock 
dynamics in generating smile curves. 

We would like to point out that to resolve the puzzle associated with 
smile curves, modifying the underlying stock dynamics alone is not ade- 
quate because any return process, however sophisticated, has to fit to the 
actual dynamics observed in the underlying stock market. Once this con- 
straint is enforced, there is little room for different specifications of the 
return process to maneuver in order to generate the kind of smile curves 
observed in the options market. This point can be best made by examining 
the data from both markets nonparametrically. As reported by Jackwerth 

(2000), the option-implied risk-neutral return distribution is much more 

negatively skewed than the actual return distribution observed directly 
from the underlying stock market. In other words, the option-implied 
crash is both more frequent and more severe than that observed from 
the stock market. 

Therefore, the pricing kernel, which links the two distributions,plays an 

important role in resolving this puzzle and reconciling the information 
from the two markets. Conversely, the empirical literature on the 
joint estimation of stock and option markets presents a great deal of 

23 It should be mentioned that both interest rate and dividend yield are stochastic in their models. For the 
purpose of understanding option smirks, however, the stochastic nature of risk-free rate or dividend yield 
should not play an important role. The inverted option smirk pattern implied by their equilibrium option 
prices stays true when different risk-free rates and dividend yields are used. 
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information regarding the empirical features of pricing kernels. Less, 
however, is known about what features of utility functions generate pri- 
cing kernels consistent with those considered in the empirical literature. 

In this article, we provide such a link between utility function and 

pricing kernel. Specifically, we start with a utility specification motivated 
by uncertainty aversion toward rare events, and arrive at an equilibrium 
pricing kernel of the form, 

't =- e-pte-X*t* Yt- 

As can be seen from our calibration exercises, the presence of a nontrivial 

optimal c* in the pricing kernel plays an important role in generating the 
"smirk" patterns in options across moneyness. At the same time, as 
discussed at the end of Section 3, the presence of the optimal T in the 

pricing kernel can be traced back to the utility specification that corre- 

sponds to uncertainty aversion toward rare events. 

Finally, we would like to point out that there are potential alternative 

explanations for "smirk" patterns. For example, a nontrivial ST could 
show up in the pricing kernel simply because the investor has a very 
pessimistic prior about the jump component. That is, he starts with the 
prior that the jump intensity is A* and the mean percentage jump is k*. 
Although observationally equivalent, the economic source behind this 
interpretation is very different from ours. In our model, the optimal A* 
and k* arise endogenously from robust control due to uncertainty aversion 
toward rare events. In the Bayesian interpretation, A* and k* are a part of 
the investor's prior. It is important to point out that without using 
information from the options market, it is hard for the investor to come 
up with such a prior. 

5. Conclusion 

Motivated by the observation that models with rare events are easy to 
build but hard to estimate, we have developed a framework to formally 
investigate the asset pricing implication of imprecise knowledge about 
rare events. We modeled rare events by adding a jump component in 
aggregate endowment and modified the standard pure-exchange economy 
by allowing the representative agent to perform robust control [in the 
sense of Anderson, Hansen, and Sargent (2000)] as a precaution against 
possible model misspecification with respect to rare events. The equili- 
brium is solved explicitly. 

Our results show that the total equity premium has three components: 
the diffusive risk premium, the jump-risk premium, and the rare-event 
premium. In such a framework, the standard model with only risk aver- 
sion becomes a special case with overidentifying restrictions on the three 
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components of the total equity premium. While such restrictions do not 
appear if we fit the model to the equity data alone, these restrictions do 
become important as we apply the model to a range of securities with 
varying sensitivity to rare events. Our calibration exercise on equity and 
equity options across moneyness provides one such example. Our results 
suggest that uncertainty aversion toward rare events and, consequently, 
rare-event premiums play an important role in generating the "smirk" 
pattern observed for options across moneyness. 

Appendix A: Changes of Probability Measures for Jumps 

We first derive the arrival intensity Ah of the Poisson process under the new probability 
measure P(S). Let 

dM = dNt - Adt 

be the compensated Poisson process, which is a P-martingale. Applying the Girsanov 
theorem for point processes [see, e.g., Elliott (1982)], we have 

dMP() = dM E(ea+b'-b J-b22 - 1)Adt = dMt- (ea- )Adt = dNt- Adt 

where A = A exp(a), as given in Equation (3). 
Next we derive the mean percentage jump size k5 under P(6). Let 

dM = (ez - 1)St-dNt - kStAdt 

be the compensated pure-jump process, which is a P-martingale. Applying the Girsonov 
theorem, we have 

dMP() = dMt - E[(ea+bZ'--2 - 1)(ez - 1)]StAdt 

=(eZ - 1)St_dNt - kStAtdt 

where k = (1 +k) exp(bo-2)- 1, as given in Equation (3). 

Appendix B: Proofs of Propositions 

Proof of Proposition 1. Given zero bequest motive, it must be that J(T, W) = 0. The deriva- 
tion of the HJB equation involves applications of Ito's lemma for jump-diffusion processes. 
The derivation is standard except for the penalty term. In particular, we need to calculate the 
continuous-time limit of the "extended entropy" measure. For this, we first let 

rg \l,f^t+^\~\ r f^+A zYi^+A^ f7 t+ nt+A ('t+/ 
E[h(ln 

- 
)] =Et | 

A 
(ln 

- 
t)1 =Et(` In( )` t +E, 

- 
(A 

- 
)) L t \t \ 1 c/ /S t /1 \ 

-E, ((,+A lnS,+A - t,lnSt) + 2 Et( ) (B. ) 

where we use the martingale property Et(,t+ A)= , of the Radon-Nikodym process {~}. 
Applying Ito's lemma to the processes {(ln5} and {(2} separately, a straightforward 
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calculation shows that 

lim IEt((tlnt+a -tlnt)=A l+a +- l 
jb2- l))e 

A-oA \ \0 2 / 

lim Et, ( ) =A(1 + (ea+b22 2)ea). A-O 
2 t =AI(eab - 2)e"). 

Proof of Proposition 2. We conjecture that the solution to the HJB equation is indeed of the 
form in Equation (14). The first-order condition for c becomes 

c =f(t)- W. (B.2) 

Substituting Equations (14) and (B.2) into the HJB equation, we have 

3y l+f'(t) P++ -+ -1 3'o2 sup - +rr O ur+ 
2 

c,O Y f (t) 1-' A (t) 

a 202lba(1 2 a] +inf { A [1+ (ab+ 
b - 1) +,(I1 + 

(ea b2 - 
2)e)] 

+ -Aea(Ez(b)[(1 + (ez- 1)0)1-] - 1) 0. 

The first-order conditions in 0, a, and b give Equations (15-17), respectively. Substituting 
the solutions 0*, a*, and b* back to equation (B.3), we obtain the ordinary differential 

equation forf(t), 

' l-+f'(t)r+O* i-r+ A( t) 
1-' f(t) 1- r 

+r+ 
(,-r+ A (t) 2 y'02(0*)2 

+ [1 (a* (b*)22 - )ea +,B(1+ (ea*+b* )2 -2)e"a*) 
+ A 1+ a* 2 ) 

o 

+ Aea (EZ(b) [(l + (e - 1)0*)1 -] - 1) = 0 (B.4) 
l-y* 

Proof of Proposition 3. Applying the equilibrium condition 0 = 1 to the first-order condi- 
tions (16) and (17), we immediately obtain Equations (20) and (21) for the optimal a* and b*. 

Next, the equilibrium conditions of St= W, and c,= Y, imply A(t) =ft). The ordinary 
differential Equation (B.4) becomes 

A'(t) 
(t) , (B.5) a 

where the constant coefficient a is defined by 

-= - ( - 
y)/ + -y(I - y) - Ae (e(l-')(,A+b*u)+(1 

- 
y)2 1) 

1 +('a - 
2 

?()(B.6) 
- A[1 + (a* + (b*)212 

- 1)e'a + /3(1 + (ea*+(b*)2r2 - 2)ea)]. 

Under the terminal condition A(T) = 0, A(t) can be solved uniquely, 

A() =a(- exp(- 
T- 

)) 

The first-order condition (15) evaluated at 0 = 1 gives, 

? + = r + y2 Aeae (e(l- )b.* 1 +(l - )2 ?+( e_yb -*+y2J -t) (B.7) a 
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Using Equations (B.5) and (B.7), it is a straightforward calculation to show that the equity 
premium (cum-dividend) and the risk-free rate are as given in Equations (18) and (22). 

Finally, to see that Xr is indeed a pricing kernel, one can first show, via a straightforward 
deviation, that rr produces the equilibrium risk-free rate and the total equity premium for the 
stock. Next, one can solve the same equilibrium problem by adding a derivative security 
(nonlinear in stock) with zero net supply and show that the equilibrium risk premium for the 
derivative security can indeed be produced by ir. X 

Appendix C: The Option-Pricing Formula 

The following result can be found in Merton (1976), and is included for the completeness of 
the article. Let Co denote the time-0 price of a European-style call option with exercise price K 
and time r to expiration. It is a straightforward derivation to show that 

Co =e-k T (A'/JBS(So,K, rj,q, aj, ) (C.8) 
j=o0 

where A' = AQ ( + kQ), and for j = 0, 1, ..., 

= r-AQkQ + ln(l + kQ) 2 = o2 
J T T 

and where BS(So, K, r,q, a, T) is the standard Black-Scholes option pricing formula with 
initial stock price So, strike price K, risk-free rate r, dividend yield q, volatility a, and time 
T to maturity. To price a put option with the same maturity and strike price, one can use the 
put-call parity. 

Appendix D: The Case of Recursive Utility 

This appendix provides the equilibrium pricing kernel and the asset-pricing implication for 
an agent with a continuous-time Epstein and Zin (1989) recursive utility facing the endow- 
ment process Y defined in Equation (1). 

D.1. Stochastic differential utility 
For a consumption process c, the representative agent's utility U is determined by 

U= Vo, 

with 

Vt =Et[jf (cs VS)ds]. (D.9) 

As pointed out by Duffie and Epstein (1992b) (p. 365), for the case of Brownian information, 
the above utility characterizes the continuous-time version of recursive utility; for non- 
Brownian information, such as the jump-diffusion case we are considering here, the above 
utility characterizes only a subclass of the continuous-time version of recursive utility. We 
will further specialize to the following case, which has the feature of separating intertemporal 
substitution from risk aversion [p. 420, Duffie and Epstein (1992a), see also Epstein and Zin 
(1989) for a discrete-time version], 

p 
c-V (( - y)V) 

f(c, V) = -8 (( 1 -y)V)- ' (D.10) 
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where y the risk-aversion coefficient and 1/5 is the elasticity of intertemporal substitution. 
When = y, the utility function reduces to the standard time-and-state additive power utility 
and p is the constant discount rate. 

D.2 The pricing kernel 
Duffie and Epstein (1992b) and Duffie and Skiadas (1994) show that the pricing kernel for a 

single-agent economy with stochastic differential utility formulation defined by Equation 
(D.9) is given by 

7rt = exp - fv (C, J,)ds c(c, J), (D.11) 

where c is the agent's optimal consumption and J is his indirect utility function, and wherefc 
andfv are first derivatives off with respect to c and V, respectively. Applying this result to 
our case, and setting the optimal consumption to the endowment Y, we obtain the equili- 
brium pricing kernel, 

rt = exp p -(1 ys)J )l ds pYt((1 - y)J,) Y, (D.12) 
Vo-? ' I- I 

1 - 
{ (\ - y)J,) 

1 

J 

where the indirect utility function J is the solution to 

Jt = Et [ f(YsJ,)ds (D.13) 

To obtain the pricing kernel, we need to compute J, and we do so by conjecturing that 

Jt= ((t)Yt)1- (D.14) 

where l(t) is a deterministic function of time. Substituting Equation (D.14) into Equation 
(D.13), one can verify that the indirect utility is indeed of the conjectured form with l(t) 
defined by 

/ A(1-8)(T-t) \ 1-S 

/(t)= (1 - )A (D.15) 

where 

A=- + -gA' g (1-y) - Y2 +(e(1-Y)J+( -l). (D.16) 

Substituting Jt into Equation (D.12), we obtain the equilibrium pricing kernel for the 

economy, 

rrT = exp(ij p l "l(s) - lds) pl(t)-Y Y-7. (D.17) 

D.3 Asset pricing 
Setting 8 = y in Equation (D. 17), we are back to the case of power utility, and the pricing 
kernel derived in Equation (D.17) for the recursive utility reduces to the familiar form24: 
7r, =p exp(-pt) Y,-7. Setting the power-utility case as the benchmark, we can see that the 

24 The constant coefficient p in 7rt should not cause any confusion, since pricing kernels are determined only 
up to a multiplicative constant. Had we defined the normalized aggregatorfin a slightly different form 
than that in Equation (D. 10), this extra factor could have been taken care of. We chose to work with the 
current form off, since it was the original form provided by Duffie and Epstein (1992a). 
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recursive utility results in a more complex risk-free rate, which could be time varying, through 
the pricing kernel's dependence on l(t). Its effect on the market prices of endowment shocks, 
however, remains identical to the power-utility case. This can be seen from the fact that in 
both cases the pricing kernel depends on the endowment through Y-. 

This result is quite intuitive, given that the recursive utility introduced in Equation (D. 10) is 

designed to separate intertemporal substitution from risk aversion. If our interest is on how 
the diffusive endowment shocks are priced differently from the rare events, we need look no 
further than the special case of power utility, which captures the risk-aversion component of 
the recursive utility. The intertemporal component of the recursive utility does affect pre- 
ferences, but only through the risk-free rate. 

From this, one can already obtain an intuitive understanding on how the recursive utility 
will affect option pricing. Specifically, the diffusive shocks and rare events will be priced in a 

very similar fashion to the benchmark case of power utility. As we discussed earlier, the 

power-utility case is not adequate to explain the observed pricing kernel in the empirical 
literature. In particular, it cannot generate the level of differential pricing of the diffusive 
Brownian shocks vs. the shocks due to rare events. In this respect, although the recursive 

utility has two preference parameters y and 8, which bring it to equal footing with the 

uncertainty aversion case considered in this article, the recursive utility is not capable 
of generating the type of pricing kernels consistent with those reported in the empirical 
literature. 

D.4 An explicit example 
To be more concrete, we work out an explicit example by considering an economy with an 
infinite horizon (T -* oo). For the purpose of option pricing, this is an appropriate con- 
sideration, since the maturity of an option is typically short compared with the lifespan of the 

economy. This specialization gives us the added convenience of a constant riskfree rate, since, 
when A < 0, we have 

P 
limT,?o(t) ( (1 -)A) /)(D.18) 

Applying Ito's lemma to the pricing kernel (D. 17) specialized for this economy, we have 

- = -rdt - ydBt + (e-Z - l)dN -A(e-YAJ+-2 - l)dt, (D.19) 
7Tt 

where ao, ryJ, oj, A are the diffusion and jump parameters affecting the endowment process 
(see Section 1), and where the risk-free rate r can be derived: 

y (Y ) + ) 2 2_(e 2 1 r= p + y- 
) 2 _ A(e-12 -) + 1 1- ) 

g (D.20) 

where A/ is the drift parameter for the endowment process (see Section 1) and g is as defined 
in Equation (D. 16). From this, we can see that the elasticity of intertemporal substitution 
affects the pricing kernel only through its affect on the risk-free rate. This is consistent with 
our general discussion in Section D.3. 

For the purpose of option pricing, let us consider a stock that has the same set of risk 

exposures as the endowment shock and pays out dividend at a constant rate of q: 

St = ,sdt + o-dBt + (eZ' - )dNt - Akdt, (D.21) 
St 

where k is the mean percentage jump size as defined in Section 1 and A, is the ex-dividend 

expected stock return. In order to determine the equilibrium expected equity return sL, and 
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option prices, we take advantage of risk-neutral pricing. Under the risk-neutral measure Q 
defined by the equilibrium pricing kernel ir, it must be that 

S = (r - q)dt + odB? + (e - l)dNQ -AQkQdt, (D.22) 
St 

where r is the risk-free rate solved in Equation (D.20), q is the dividend payout ratio, and A 
and kQ are the risk-neutral jump intensity and the mean percentage jump size, respectively. 
Using Equations (D.19), (D.21), (D.22), and the Girsanov theorem, it is straightforward to 
show that 

AQ =Aex p(y +2y2o- J), = ( l+k)exp(-7o )- 1, (D.23) 

and 

t, = r -q + yo-2 + Ak - AQkQ. (D.24) 

In terms of pricing risky assets (equity and options), the recursive utility provides exactly the 
same market prices of risks as the power utility. This can be seen by comparing the above 
results to those reported in Proposition 3, Equations (18) and (19) for an investor without 
uncertainty aversion. 

Appendix E: On Normalization 

In this appendix, we examine the economic impact of the normalization factor /i of our utility 
specification and investigate the economic driving force behind our main result: normal- 
ization vs. uncertainty aversion. 

It is clear that in a one-period model, the choice of the normalization factor amounts to 
constant scaling and will not affect the model-uncertainty aspect of the utility specification. 
In a multiperiod setting, the normalization does play a role in affecting preferences. To 
demonstrate that it is indeed uncertainty aversion not normalization that is driving our result, 
we provide the following concrete example, which extends our setting by allowing for a 
general form of the normalization factor. 

Consider a representative agent who maximizes his utility in the following discrete-time 
setting, 

Ut = u(c,) + e-Pmint{A(Ef[v(,+lI)], Ef[Ut+l]) + Et[Ut+i]}, (E.25) 

where A > 0 and A(0, ) = 0. Mapping back to our utility specification in Equation (4), we 
have u(c)= c1- 7/ - y) and 

A(Ef [v(~t+ )], E [U,]) = ?,(Et [ Ut+ I])Ef[v( )] (E.26) 

where i(Et[Ut+i]) is the normalization factor, Et[v(,t,+)] is the discrepancy or distance 
measure, and / is the uncertainty aversion parameter. 

Assuming the existence of an optimal solution to the agent's problem, we let 5* be the 
Radon-Nikodym derivative that defines the optimal alternative measure P(s*), and c* be the 
optimal consumption, which, in our setting, equals the representative agent's endowment in 
equilibrium. We will show, at the end of this appendix, that the pricing kernel is of the form 

Tr,+l = 7rte (A + l)+1 u,(ct+) and 7 = 1, (E.27) u 
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where we use the notation 

A*t = u(E* [v(*+l)], Et' [Jt+l]), (E.28) 

where Au is the derivative of A with respect to the second argument of A and J is the indirect 
utility function. Note that in Anderson, Hansen, and Sargent (2000), Au = 0, while in 
our case, 

I-y 
Au= Et' [v(+,l)]. 

The pricing kernel (E.27) can in fact provide quite a general understanding of the asset- 
pricing implication of our utility specification. Broadly speaking, premiums associated with 
risk aversion are incorporated through u'(c+* )/u'(c*) and premiums associated with uncer- 
tainty aversion are incorporated through t+l. The normalization factor shows up in the 

pricing kernel via Aut, which is known at time t and can only affect the risk-free rate. In other 
words, there is no direct impact of the normalization factor on the market prices of risk or 
uncertainty (of course, it does have an indirect effect through the optimal s). 

Recall that the main result of our article builds on a nontrivial solution of it+l and its 
presence in the pricing kernel. From the above analysis, we can see that the driving force for 
this result is clearly the minimization part of the utility specification, which is motivated by 
uncertainty aversion. Specifically, taking away the minimization part of Equation (E.25) by 
not allowing investors to choose alternative measures, we will have a trivial solution of* = 1, 
regardless of the choice of the normalization factor. On the other hand, taking away the 
normalization factor, A no longer depends on E [U,t+], and we have Au =0. The exact 
functional form of the optimal 6t*+ might become more complicated (to the extent that we 
will not be able to solve our problem in closed form), we will still have a nontrivial t+ 

present in the pricing kernel. In other words, the fact that our main result builds on 

uncertainty aversion is not affected in any qualitative fashion by the choice of normalization. 
The pricing kernel in Equation (E.27) can also help us obtain some intuition regarding the 

equivalence result between robust control and recursive utility. For example, in Maenhout 
(2001), the setting is that of a pure diffusion with only one Brownian motion. We have 
6* = exp(-a*Bt - 1/2(a*)2t), for some optimal value of a*. Given that the Brownian motion 
is the only shock driving the aggregate endowment Yt = Yo exp(o- Bt -1/2 o2 t + ,t), it is easy 
to show that the random component of t*+ can be written as Y- where 0=a*/oa. In 
addition, the marginal utility contributes u'(Yt+1) = Yt- to the pricing kernel. Combining 
the two, the component of the pricing kernel associated with risk aversion is of the form 
Y-(+), while the component associated with intertemporal substitution is of the form 
1 + Au. From this, we can see the possibility of, for the purpose of asset pricing, this specific 
robust-control problem being equivalent to a recursive utility with the risk-aversion coeffi- 
cient y + 0. In a more general setting with multiple sources of random shocks, however, the 

optimal sT might not be a function Yt. For example, in our setting, s* picks up only the 
Poisson component, not the Brownian component. For such cases, the equivalence to 
standard recursive utility does not generally apply. 

Finally, we show that the pricing kernel is indeed of the form in Equation (E.27). Let J be 
the indirect utility function, which is a function of the state variables including the wealth 

process W and other state variables X affecting the endowment process J = J(t, Wt, Xt). In 
the following analysis, we will suppress arguments t and X, in function J for notational 
simplicity. The principle of optimality implies25 

J(W,) = max,,{ Iu(c) + e-Pmin6{A(E [v(t,+l)], E [J(Wt+l)]) + Ef[J(Wt+i)]}}, (E.29) 

25 We suppress the portfolio part of the optimization problem to focus on the pricing kernel. It should be 
clear that our results will not be affected. 
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where, given any security with time t + 1 return denoted by R, + , we have, 

Wt+l =( Wt - c,)Rt+,. (E.30) 

The first-order condition of Equation (E.29) for c, gives 

u'(c7)- e-P(Au(E? [v(*+)], EF[J,+,]) + I)Ef (Jw(W,1+)R,+l) = 0, (E.31) 

where Jw denotes the derivative of the indirect utility J with respect to wealth W. Using the 
fact that both u'(c7) and A*t = Au(Ef [v(t+1)], E [Jt+,]) are in the time-t information set, 
we can rewrite the above first-order condition as 

=E (e-P A( ) J(Wt )Rtt+ E e- J+l J(W *)R (E.32) 

Using the envelope theorem, we have 

Jw(Wt+ ) = u'(ct+,). (E.33) 

Using the above results, we can now verify that the rr defined in Equation (E.27) is indeed a 
valid pricing kernel in that, 

Et 
( 

t+t Rt+l 1, (E.34) 

for any security with return Rt+1. 
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