
Asset Returns in the Long Run

Ian Martin∗

23 September, 2008

Abstract

The fundamental equation of asset pricing states that the expected time-

and risk-adjusted cumulative return on any asset equals one at all horizons.

This paper arrives, via a theorem of Kakutani, at an apparently paradoxical

result: for a typical asset, the realized time- and risk-adjusted cumulative return

tends to zero with probability one. As a special case, this result strengthens the

familiar fact that the growth-optimal portfolio outperforms other assets at long

horizons. The apparent paradox is resolved by a further result, which shows

that the long-run value of a non-growth-optimal asset is driven by the possibility

of extremely good news at the level of the individual asset or extremely bad

news at the aggregate level.

∗ian.martin@stanford.edu; http://www.people.fas.harvard.edu/∼iwmartin/. First draft: 14

April, 2007. I thank Brandon Bates, John Campbell, John Cochrane, and Lars Hansen for their

comments.
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The fundamental equation of asset pricing states that the expected time- and

risk-adjusted cumulative return on any asset equals one at all horizons. Working in a

rather general setting, this paper arrives, via a theorem of Kakutani, at an apparently

paradoxical result: for a typical asset, the realized time- and risk-adjusted cumulative

return tends to zero with probability one.

Consider the fundamental asset-pricing equation,

EtMt+1Rt+1 = 1 .

I have introduced a stochastic discount factor, Mt+1, that prices payoffs at time t+ 1

from the perspective of time t. Rt+1 is the gross return, from time t to t+ 1, on some

arbitrary asset.

The objects of interest in this paper will be the martingale Xt ≡ M1R1 · · ·MtRt,

and the random variable X∞ ≡ limt→∞Xt. The asset-pricing equation states that

EXt = 1 for all finite t, so it is natural to expect that EX∞ = 1, too. In Section 1,

I show that this may or may not be true; typically, in fact, it is not, and when it is

not, X∞ = 0.1 This dichotomy, together with a diagnostic that determines which of

the two cases applies, is the main result of the paper.

The result applies to any valid stochastic discount factor, but to understand it

better I consider, in Section 2, the special case in which the stochastic discount factor

is the reciprocal of the return on the growth-optimal portfolio. The main result then

establishes the familiar observation that the return on the growth-optimal portfolio

is, in the long run, arbitrarily larger than the return on a non-growth-optimal2 asset

with probability arbitrarily close to one. I require weaker assumptions than were

made by Latané (1959), Samuelson (1971), and Markowitz (1976). Of greater interest,

1This statement holds with probability one, or almost surely. Throughout the paper, in the

interest of readability, limits of random variables are always almost-sure limits unless otherwise

noted.
2In a sense to be made precise below.
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though, is the fact that I provide a generalization of this traditional result to allow

for stochastic discount factors other than the reciprocal of the return on the growth-

optimal portfolio. If markets are incomplete, there may be many different stochastic

discount factors, and we may wish to think in terms of, say, the marginal utility of

wealth, or of consumption.

In Section 3, I consider this more general setting in which Mt is any valid stochastic

discount factor. How are we to square the fact that EXt = 1 with the fact that, for

most assets, we have X∞ = 0? I show that such assets derive their value—their

EXt = 1—from low-probability events in which the realized value of Xt is enormous.

When such an event happens, either M1 · · ·Mt is large or R1 · · ·Rt is large, or both.

The former possibility, which is driven by extreme left-tail events, can be thought of as

representing the importance of rare disasters; this interpretation becomes particularly

clear when considering the riskless strategy in which R1 · · ·Rt is deterministic. The

latter possibility represents the importance of the extreme right tail of the distribution

of returns on the asset in question, and is particularly clear in a risk-neutral world in

which M1 · · ·Mt is deterministic.

Section 4 conducts simulations that illustrate the preceding results in the context

of a simple economy featuring two assets—one riskless, the other i.i.d. lognormal.

Section 5 concludes.

1 The main result

Time is discrete; today is time 0. I make three assumptions:

(i) There is no arbitrage.

(ii) The asset of interest has limited liability.

(iii) All random variables are independent across periods.
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Assumption (i) implies that for all t ≥ 1 we can define Mt to be a stochastic

discount factor which prices payoffs at time t from the perspective of time t− 1, and

then we have

Mt > 0 and E (M1R1 ·M2R2 · . . . ·MtRt) = 1 . (1)

Assumption (ii) implies that for any t ≥ 1

Rt ≥ 0 , (2)

where Rt is the gross realized return from time t−1 to time t on some arbitrary asset

or investment strategy. Mt and Rt are random variables that only become known at

time t.

To simplify notation, define the random variables Xt, t = 1, 2, . . ., by

Xt ≡M1R1 ·M2R2 · . . . ·MtRt ,

so EXt = 1. Xt is a non-negative martingale, because

Et−1Xt = Et−1 (M1R1 · · ·MtRt)

= M1R1 · · ·Mt−1Rt−1 Et−1 (MtRt)

= M1R1 · · ·Mt−1Rt−1

= Xt−1 .

Two definitions will be convenient. First, let

X∞ ≡ lim
t→∞

Xt = lim
t→∞

M1R1 ·M2R2 · . . . ·MtRt .

As Xt is a non-negative martingale, the random variable X∞ exists almost surely by

the martingale convergence theorem.

Since, for any finite t,

EXt = 1,
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it is tempting—but wrong—to conclude that in general

EX∞ = E lim
t→∞

Xt
?
= lim

t→∞
EXt = lim

t→∞
1 = 1.

The interchange of expectation and limit is the weak link in this chain, as demon-

strated by

Proposition 1. Under assumptions (i)–(iii), either

∞∑
t=1

var
√
MtRt <∞ and EX∞ = 1 (3)

or
∞∑
t=1

var
√
MtRt =∞ and X∞ = 0 . (4)

Proof. I adapt the proof of Kakutani’s (1948) product martingale theorem in Williams

(1995, pp. 144–5).

Absence of arbitrage implies that EMtRt = 1, so by Jensen’s inequality, E
√
MtRt ≤

1; it also implies that E
√
MtRt > 0. For notational convenience, write at = E

√
MtRt;

so we have at ∈ (0, 1].

First, suppose that
∑

var
√
MtRt < ∞. As EMtRt = 1, this is equivalent to∑

(1− a2
t ) < ∞. By Lemma 1 (a standard result proved, for convenience, in the

Appendix) this implies
∏
a2
t > 0; hence also

∏
at > 0. Now, define a new martingale

Yt =

√
M1R1

a1

√
M2R2

a2

· · ·
√
MtRt

at
.

We have EY 2
t = 1/(a1a2 · · · at)2 ≤ 1/ (

∏
as)

2 <∞, so the martingale Yt is uniformly

bounded in second moment. We then have

E
(

sup
t
Xt

)
≤ E

(
sup
t
Y 2
t

)
≤ 4 sup

t
E
(
Y 2
t

)
<∞.
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(The second inequality is Doob’s L 2 inequality—see Williams (1995, pp. 143–4).)

That is, the random variable suptXt is integrable. Since suptXt dominates Xt, it

follows that Xt is uniformly integrable, and so EX∞ = 1.

Alternatively, suppose that
∑

var
√
MtRt < ∞. Then

∏
at = 0. Defining Yt as

before, Yt is a non-negative martingale, and so has an almost-sure limit, Y∞. But

since Y∞ =
√
X∞/

∏
at, and

∏
at = 0, it must be the case that X∞ = 0.

To get some intuition for the result, note that (3) only prevails if the variance of
√
MtRt declines rapidly to zero as t→∞: in other words if MtRt is roughly constant

for large t. The following result makes this idea formal.

Proposition 2. EX∞ = 1 can only occur if MtRt → 1 as t→∞. That is, the case

EX∞ = 1 can only prevail if

(i) the period return, Rt, tends to the growth-optimal return, and

(ii) the period SDF, Mt, tends to the reciprocal of the growth-optimal return.

Proof. By Chebyshev’s inequality, we have, for arbitrary ε > 0,

P
(∣∣∣√MtRt − E

√
MtRt

∣∣∣ > ε
)
≤ var

√
MtRt

ε2
.

If EX∞ = 1, Proposition 1 tells us that
∑

var
√
MtRt < ∞; combining these facts,

we have
∞∑
t=1

P
(∣∣∣√MtRt − E

√
MtRt

∣∣∣ > ε
)
<∞. (5)

It follows from (5) and the first Borel-Cantelli lemma that

√
MtRt − E

√
MtRt → 0. (6)

Next, I show that E
√
MtRt → 1. Suppose, for a contradiction, that this is not the

case. Then, since at ≡ E
√
MtRt ≤ 1, we must have

∏
at = 0, and hence also

∏
a2
t = 0.
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It follows from Lemma 1 that
∑

(1− a2
t ) = ∞. Equivalently,

∑
var
√
MtRt = ∞.

But this contradicts our starting assumption, so we must indeed have

E
√
MtRt → 1. (7)

Combining (6) and (7), we have
√
MtRt → 1, and hence also MtRt → 1, as

required.

For the second statement, observe that for a general SDF M and return R, if

we have MR = 1 then R is the growth-optimal return, since—applying Jensen’s

inequality to EMR = 1—we have E logR ≤ E log(1/M), with equality if and only if

R = 1/M .

We also have a third result that throws further light on the properties of {Xt} in

the two cases:

Proposition 3. If EX∞ = 1, then E supXt < ∞. If X∞ = 0, then E supXt = ∞

(and see also the new result I’ve added to the later proposition).

Proof. The first statement was shown in the course of the proof of Proposition 1.

The second statement follows because if E supXt were not infinite, then Xt could be

bounded by the integrable random variable supXt. It would then follow that Xt was

a uniformly integrable martingale, and so EX∞ = 1, a contradiction.

And a fourth:

Proposition 4. If X∞ = 0, then we have

E [Xt log (1 +Xt)]→∞ as t→∞ , (8)

even though, of course,

EXt = 1 for all t.

Proof. Write something here. . .
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Equation (8) is to be contrasted with the starting observation that EXt = 1 for

all t. The important feature of the equation is that log (1 +Xt) grows very slowly

with Xt. The fact that the expectation in (8) tends to infinity expresses a sense in

which Xt is enormous in some states of the world.

I now turn to the interpretation of these results. [****What follows is in urgent

need of an overhaul... Should mention that it generalizes the Samuelson et al results,

but only briefly. Then move on to discuss implications for more interesting, non-

inverse-growth-optimal SDFs. I think it generalizes the paper of Chamberlain and

Wilson (2000) showing that consumption goes to infinity in a variety of situations.

Also related to Weitzman’s papers on long run rates. Important feature is that we

can choose the SDF and return in question optimally to get strong and interpretable

results; eg marginal utility is much easier to think about than inverse of return on

growth-optimal portfolio. . . Two leading cases that will often be useful: Rt = Rf,t or

Rt = R∗t ]

2 The growth-optimal portfolio

As a first step, it is helpful to consider a particular SDF: the reciprocal of the growth-

optimal return, R∗t = arg maxRt E logRt. To see that this is an SDF, suppose that

there are N assets with returns R
(i)
t , i = 1, . . . , N . The growth-optimal portfolio is

obtained by picking αi, i = 1, . . . , N to solve

max
{αi}

E log
∑

αiR
(i)
t s.t.

∑
αi = 1 .

The first-order conditions are that, for each i,

E
R

(i)
t∑

αjR
(j)
t

= λ .
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Multiplying both sides of this equation by αi and summing over i, we find λ = 1, so

E
R

(i)
t∑

αjR
(j)
t

= 1 for all i ,

which exhibits 1/
∑
αjR

(j)
t = 1/R∗t as a valid SDF.

[CONTINUE EDITING FROM HERE!!!!] If markets are complete, the stochastic

discount factor is unique and, necessarily, Mt = 1/R∗t . In the incomplete market case,

the main result applies to any valid stochastic discount factor, but we can get further

insight into Proposition 1 by choosing to focus on the stochastic discount factor 1/R∗t .

Doing so, we have

XT =
R1 ·R2 · . . . ·RT

R∗1 ·R∗2 · . . . ·R∗T
,

so in this case XT has a simple interpretation as the relative performance of the asset

in question by comparison with the G-OP.

We can conclude the section by rephrasing Proposition 1 as follows.

Proposition 5. Suppose that assumptions (i)–(iii) hold, and define at = E
√
Rt/R∗t .

Either
∞∏
t=1

at > 0 and E
[

lim
T→∞

R1 ·R2 · . . . ·RT

R∗1 ·R∗2 · . . . ·R∗T

]
= 1 (9)

or
∞∏
t=1

at = 0 and lim
T→∞

R1 ·R2 · . . . ·RT

R∗1 ·R∗2 · . . . ·R∗T
= 0 . (10)

Proof. Follows from Proposition 1, after setting Mt = 1/R∗t .

2.1 Examples

Example 1: the G-OP. Suppose the asset in question is the G-OP. Then Rt/R
∗
t is

trivially equal to 1, so

at = 1 and hence
∞∏
t=1

at = 1 .
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The growth-optimal portfolio is the archetypal Type 1 asset with EX∞ = 1.

Example 2: an i.i.d. world. Fix any asset other than the G-OP. Since the world

is i.i.d., at equals a, some constant. Since the asset in question is not the G-OP and

the world is nondeterministic, the mean-1 random variable MtRt is nonconstant, so

a Jensen’s inequality argument delivers the strict inequality a < 1. It follows that

∞∏
t=1

at =
∞∏
t=1

a = 0 .

Any fixed asset which is not the growth-optimal portfolio is of Type 2: X∞ = 0 and

equation (10) holds.

Example 3: an i.i.d. risk-neutral world. In this case, the stochastic discount factor

is deterministic, so the G-OP has deterministic returns and so must be invested in

the riskless asset. As a result of the previous example, we can say that any strategy

which invests in the same risky asset each period must eventually have returns which

satisfy

R1 ·R2 · · · · ·RT

Rf,1 ·Rf,2 · · · · ·Rf,T

< ε (11)

where Rf,t indicates the riskless rate from time t − 1 to time t. The realized return

on any risky asset is ultimately negligible by comparison with the riskless return.

Example 4: eventually-growth-optimal strategies. Consider the strategy of invest-

ing in arbitrary fashion until some fixed finite time T ′ and then investing in the G-OP.

Such a strategy is eventually-growth-optimal. Since at = 1 for t larger than T ′, we

have
∞∏
t=1

at =
T ′∏
t=1

at > 0

and so eventually-growth-optimal strategies are of Type 1, and satisfy EX∞ = 1.

Example 5: fixed strategies that invest in the G-OP infinitely often. A trading

strategy which invests in the G-OP infinitely often may nonetheless be of Type 2.

Suppose, for example, that the strategy invests in the G-OP during time periods 1,
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3, 5, . . . , and in some other i.i.d. asset during time periods 2, 4, 6, . . . ; write a for

the value of at during these even periods and note that a < 1 by Jensen’s inequality.

We have
∞∏
t=1

at =
∞∏
t=1

a2t =
∞∏
t=1

a = 0

and so X∞ = 0.

Example 6: strategies that are never growth-optimal but which satisfy EX∞ = 1.

If a trading strategy becomes increasingly similar to the G-OP over time, it may be

possible to sustain the case EX∞ = 1. Suppose for example that we have

at = 1− 1/t2

for all t. It follows that
∑∞

t=1(1−at) <∞ and this condition implies that
∏∞

t=1 at > 0.

2.2 Relationship with previous results

Various authors have obtained results similar to Proposition 5. Latané (1959) and

Samuelson (1971) assume that the world is i.i.d., and rely on the Weak Law of Large

Numbers and the Central Limit Theorem respectively. They show that

P
[
R1 ·R2 · · · · ·RT

R∗1 ·R∗2 · · · · ·R∗T
< 1

]
−→ 1 as T →∞. .

This conclusion is weaker than the conclusion presented above for three reasons.

First, the result holds only at the time horizon T , and gives no guarantee about what

happens thereafter. Second, the result shows only that the G-OP outperforms, rather

than that it overwhelmingly outperforms. Third, the result holds with probability

approaching one, rather than with probability equal to one.

Markowitz (1976) also assumes that the world is i.i.d., and shows that the Strong

Law of Large Numbers delivers the conclusion of Proposition 5,3

lim
T→∞

R1 ·R2 · . . . ·RT

R∗1 ·R∗2 · . . . ·R∗T
= 0 .

3In fact, under the i.i.d. assumption of Markowitz’s paper, a stronger result can be obtained,
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Each result, weak or strong, can be derived by applying the appropriate Law of

Large Numbers, Weak or Strong, to the random variables logMt + logRt, which are

i.i.d. by assumption and which have mean E logMt + logRt ≡ µ < 0 by Jensen’s

inequality.

Breiman (1960) does not require that random variables are independent across

time. But he does assume that returns are bounded away from zero and from infin-

ity, thereby ruling out lognormality of returns or the possibility of bankruptcy, for

example. Given this boundedness assumption, he shows that Proposition 5 holds if a

condition equivalent to
∞∏
t=1

eEt−1 log(Rt/R∗t ) = 0

holds.

3 Where’s the value in a Type 2 asset?

Who would buy a Type 2 asset, if a dollar placed in the growth-optimal portfolio will

outperform it, in the long run, with probability one? Why aren’t such assets cheaper?

Fix, for the sake of argument, some particular Type 2 asset. How are we to square

the fact that Xt tends to zero with the fact that EXt = 1 for all finite t? It seems

intuitively clear that there must be some unlikely states of the world in which Xt

is very large, and that the value of the Type 2 asset in question is driven by these

unlikely states of the world.

The following Proposition makes this idea formal.

namely that

lim
T→∞

(
R1 ·R2 · . . . ·RT

R∗1 ·R∗2 · . . . ·R∗T

)1/T

< 1 ,

where Rt is the return on a fixed non-growth-optimal asset.
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Proposition 6. For Type 1 assets, we have

E sup
t≥1

Xt <∞ , (12)

while for Type 2 assets, we have

E sup
t≥1

Xt =∞ and sup
t≥1

E
(
Xt log+Xt

)
=∞ and lim

t→∞
E [Xt log (1 +Xt)] =∞ ,

(13)

where log+(x) ≡ max {log x, 0}.

Proof. Equation (12) is established in the course of the proof of Kakutani’s product

martingale theorem in Williams (1995, pp. 144–5). (It leads to the conclusion that

for Type 1 assets, the family {Xt} is uniformly integrable,4 from which Proposition

1 follows.)

Both parts of (13) can be established by contradiction. If E suptXt < ∞ then

it would follow that the family of random variables {Xt}, being dominated by the

integrable random variable suptXt, would be uniformly integrable, and hence that

EX∞ = EX1 = 1. But this contradicts the conclusion of Proposition 1.

Similarly, if supt E
(
Xt log+Xt

)
< ∞ it would follow, by Proposition IV-2-10 of

Neveu (1975, p. 70), that suptXt would be integrable, and hence, as in the previous

paragraph, that {Xt} would be a uniformly integrable family of random variables.

Again, this contradicts Proposition 1, and the result follows.

When contemplating (12) and (13), it is helpful to keep in mind the fact that

sup
t≥0

EXt = sup
t≥1

1 = 1 .

4A family {Xt} of random variables is uniformly integrable if

sup
t≥1

E (|Xt|1[|Xt| > a]) −→ 0 as a→∞.
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Although the expected value of Xt is equal to 1 for all t, and the expected value of

the supremum of Xt is finite for Type 1 assets, the expected value of the supremum

of Xt is infinite in the case of Type 2 assets: there are rare states of the world in

which Xt becomes very large indeed.

In such states, we have

M1R1 ·M2R2 · · ·MtRt very large,

and so we must have some combination of large M1 · · ·Mt and large R1 · · ·Rt. The

former possibility, large M1 · · ·Mt, corresponds roughly to the realization of a disas-

trously bad state of the world. In a consumption-based model with time-separable

utility, for example, M1 · · ·Mt is large when marginal utility at time t is high. The

latter possibility, large R1 · · ·Rt, corresponds to a particularly favorable return real-

ization for the asset in question.

In some sense, therefore, the value in Type 2 assets derives either from aggregate

disasters (large M1 · · ·Mt) or asset-specific triumphs (large R1 · · ·Rt). At a general

level, we can say no more. Nonetheless, for the sake of intuition, it is interesting

to consider simple special cases that focus attention on each of the two channels

separately.

Suppose, first, that we are in a risk-neutral i.i.d. world, as in Example 3 above,

and consider a risky Type 2 asset. Since M1 · · ·Mt = (1/Rf )
t is deterministic, the

value of the asset is driven by very occasional asset-specific triumphs—explosions in

R1 · · ·Rt—that is, by extreme right-tail events.

Conversely, suppose that the world is i.i.d. but not risk-neutral, so that Mt is

not constant, and that we are considering the riskless strategy that rolls cash over in

the riskless asset. Now, R1 · · ·Rt = (Rf )
t is deterministic. Again, this is a Type 2

strategy, but now the value is derived from aggregate disasters—states of the world

which occur with very low probability, but in which M1 · · ·Mt is far larger than its
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expected value. In other words, the value of this strategy, in the long run, is driven by

the presence of extreme left-tail events. Weitzman (2004) emphasizes the importance

of this effect.

4 An example

Consider an i.i.d. economy with two assets, a riskless asset which pays the certain

return Rf,t ≡ erf and a risky asset which pays the lognormal return Rt ≡ eµ−σ
2/2+σZt ,

where Zt is a standard Normal random variable. It is easy to check that the stochastic

discount factor Mt ≡ e−rf−λ
2/2−λZt prices the assets, where λ is the Sharpe ratio

(µ − rf )/σ. (Notice that Mt so defined is not the reciprocal of the return on the

growth-optimal portfolio, since the latter is not lognormally distributed.) Each asset

is of Type 2, as is easily checked.

Writing Xf,t ≡M1Rf,1 · · ·MtRf,t and Xt ≡M1R1 · · ·MtRt, we have

Xf,t = e−λ(Z1+···+Zt)−λ2t/2 (14)

Xt = e(σ−λ)(Z1+···+Zt)−(σ−λ)2t/2 (15)

Notice that in this example with just one kind of shock, realistic values of σ and

λ imply that Xt is large when (Z1 + · · ·+Zt) is small: in the long run, only disasters

matter.

Figure 1 plots a realization of Xt and Xf,t. Each time period represents one

quarter. I have set σ = 0.08 and λ = 0.25, which corresponds to an annualized

standard deviation of 16% and Sharpe ratio of 50% for the risky asset. Proposition 1

states that Xt and Xf,t tend to zero as t tends to infinity; along this particular sample

path, Xt and Xf,t are indistinguishable from zero, even in the zoomed-in graphs, after

about 700 quarters. Note also the occasional spikes, which Proposition 6 led us to

expect.
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(a) The evolution of Xt over time
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(b) The evolution of Xf,t over time
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Figure 1: Realizations of Xt and Xf,t on one particular sample path.
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(b) Zooming in

Figure 2: Realizations of Xt on 100 sample paths.
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Figure 2 shows realizations of Xt along 100 different sample paths. As before, each

period represents one quarter. On two sample paths, Xt spikes above 250. These

spikes are so large, compared with the values of Xt attained on the vast majority

of sample paths, that only about six of the sample paths are visible on the first,

unzoomed, diagram. Despite these spikes, after 800 quarters only one sample path

remains above 0.5.

In the continuous-time limit, the analogue of Xt would follow a geometric Brow-

nian martingale of the form eαWt−α2t/2, where α is some constant and Wt is a Brow-

nian motion. In this special case, we can see directly that eαWt−α2t/2 → 0, because

αWt − α2t/2→ −∞ as t→∞; this follows, in turn, from the fact that Wt/t→ 0 as

t→∞ (Karatzas and Shreve (1991, p. 104)).

5 Conclusion

Although expected time- and risk-adjusted cumulative returns on any asset equal one

at all horizons, realized time- and risk-adjusted cumulative returns on Type 2 assets

tend to zero with probability one.

This apparent paradox is resolved in Section 3, which demonstrates that the value

of such an asset is driven by the possibility of two types of rare events: spectacular

outperformance of the asset itself, and occasional aggregate disasters. Only the first

is relevant for the valuation of risky assets in a risk-neutral economy; only the second

is relevant for the valuation of riskless strategies in a risky, risk-averse world.

Just three assumptions underpin these results. Two of these—no arbitrage and

limited liability—are uncontroversial. The third—independence across time of the

relevant random variables—is less desirable. Ritter (1979) presents a generalization

of Kakutani’s theorem that relaxes the independence assumption, and it may be that

the ideas in that paper can be used to improve Proposition 1; in the interests of
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simplicity, I have not pursued such an extension here.
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A Appendix

Lemma 1. For any infinite sequence of numbers {at}, with at ∈ (0, 1] for all t,∏
at > 0 if and only if

∑
(1− at) <∞.

Proof. For either to hold, we must have at → 1. Furthermore,
∏
at > 0 if and only if∑

log(1/at) <∞. But
∑

log(1/at) converges if and only if
∑

(1− at) converges, by

the limit comparison test, since

log(1/at)

1− at
→ 1 as at → 1

by l’Hôpital’s rule.
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