
The Society for Financial Studies

General Equilibrium Pricing of Options on the Market Portfolio with Discontinuous Returns
Author(s): Vasanttilak Naik and Moon Lee
Source: The Review of Financial Studies, Vol. 3, No. 4 (1990), pp. 493-521
Published by: Oxford University Press. Sponsor: The Society for Financial Studies.
Stable URL: http://www.jstor.org/stable/2962113
Accessed: 20/09/2008 10:05

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=oup.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

The Society for Financial Studies and Oxford University Press are collaborating with JSTOR to digitize,
preserve and extend access to The Review of Financial Studies.

http://www.jstor.org

http://www.jstor.org/stable/2962113?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=oup


General Equilibrium Pricing 
of Options on the Market 
Portfolio with Discontinuous 
Returns 

Vasanttilak Naik 
University of British Columbia 

Moon Lee 
University of Saskatchewan 

When the price process for a long-lived asset is of 
a mixed jump-diffusion type, pricing of options 
on that asset by arbitrage is notpossible if trading 
is allowed only in the underlying asset and a risk- 
less bond. Using ageneralequilibriumframework, 
we derive and analyze option prices when the 
underlying asset is the market portfolio with dis- 
continuous returns. The premium for the risk of 
jumps and the diffusion risk forms a significant 
part of the prices of the options. In this economy, 
an attempted replication of call and put options 
by the Black-Scholes type of trading strategies may 
require substantial infusion offunds when jumps 
occur. We study the cost and risk implications of 
such dynamic hedging plans. 

In this article, an equilibrium model for pricing 
options on the market portfolio and an analysis of the 
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financial implications of continuous hedging strategies when the 
returns on that portfolio are discontinuous are presented. Empirical 
evidence of discontinuities in the daily and weekly price changes for 
diversified equity portfolios can be found in Jarrow and Rosenfeld 
(1984), Ball and Torous (1985), andJorion (1988). Press (1967) noted 
long ago that the analytical characteristics of a Poisson mixture of 
normal distributions agree with the properties of the empirical dis- 
tribution of security prices. Diffusion price processes with a significant 
jump component could actually be one way to model times of high 
volatility in securities markets, such as we have observed in the past 
few years. Existing option-pricing formulas are, however, not appli- 
cable to the valuation of options on an aggregate portfolio of stocks 
when its returns contain jumps of random and unpredictable sizes 
occurring at random times. 

We use a general equilibrium framework to price options on the 
market portfolio with discontinuous returns by embedding the option- 
pricing problem in a representative agent economy of the Lucas (1978) 
type. The aggregate dividend process in the economy is exogenously 
given and is assumed to follow a diffusion process with a jump com- 
ponent, which induces a similar process for the equilibrium price of 
the market portfolio. The jump times and jump sizes are random. We 
introduce options on the market portfolio as zero net supply assets 
in the economy and solve for their equilibrium pricing equations. 

For the particular parameterization of the economy that we use, we 
derive and analyze closed-form solutions for call and put option prices. 
The formulas of Cox and Ross (1976) (the case of no diffusion uncer- 
tainty) and Black and Scholes (1973) (the case of no jump uncer- 
tainty) emerge as special cases of the pricing equations derived in 
this paper. The option prices in our model include the price of the 
risk of jumps in the underlying asset's value as well as the price of 
the diffusion risk. We show that the option risk premium forms a 
significant part of the option's price. 

Cox and Ross (1976) develop an option-pricing model for a jump 
process without a diffusion term. In this model, the only relevant 
source of uncertainty is the time of the jumps. Jump sizes are of a 
fixed or predictable magnitude and there is no instantaneous uncer- 
tainty about the direction of the jump. In this case, there exists a self- 
financing strategy consisting of the underlying asset and the riskless 
bond which replicates the payoff on a given option, and the value of 
the replicating portfolio at any time is given by the Cox-Ross formula. 
Merton (1976a) posits asset-price dynamics having a diffusion com- 
ponent as well as jumps of unpredictable sizes occurring at random 
times. He uses a construct based on the intertemporal capital asset 
pricing model and a local no-arbitrage argument to solve the pricing 
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equations. A feature of the Merton model is the assumption that the 
jumps in security prices are uncorrelated with the return on the market 
portfolio. Clearly, this assumption is violated if the security under 
consideration is the market portfolio itself. We show that a model 
with independent diffusion and jump uncertainties is not complete 
in the Harrison and Pliska (1981) sense, so that contingent claims in 
such a model cannot be priced simply by a no-arbitrage argument as 
has been attempted by Aase (1988). An explicit general equilibrium 
argument is necessary, which is the approach taken in this article. 

Merton (1976b) and Ball and Torous (1985) have analyzed the 
pricing errors that arise from applying the Black-Scholes formula in 
a jump-diffusion economy. In this article, however, we consider the 
consequences of the application of the Black-Scholes trading strategy 
to replicate options in the jump-diffusion environment. We use our 
equilibrium pricing equations to analyze the nature of the risks and 
costs to which investors are exposed if they apply the Black-Scholes 
strategy of dynamic replication in a jump-diffusion economy. We 
show that the Black-Scholes strategy results in cash deficits at jump 
times, the ex ante value of which can be considerable. A continuous 
hedging plan with an increased level of volatility does not eliminate 
the jump-time cash outlays. It produces a continuous stream of surplus 
cash flows instead, but the hedging effectiveness of these additional 
cash flows against jump-time cash deficits is small. 

The article is organized in four sections. In Section 1, we lay down 
the notation and the basic assumptions. In Section 2, the equilibrium 
prices of the market portfolio and riskless bonds are first established, 
and then we consider the pricing of options on the aggregate equity 
portfolio. We examine the issue of the completeness of the jump- 
diffusion model and relate our pricing equations to the existing ones 
in the literature. In Section 3, we discuss the cost and risk implications 
of dynamic replicating rules, and, in Section 4, we present a brief 
summary and overall conclusions. 

1. The Structure of an Exchange Economy with Discontinuous 
Prices 

Consider a continuous-time variation of the Lucas (1978) pure 
exchange economy (see, also, Rubinstein, 1976) in a time-homoge- 
neous jump Markov setting. For simplicity, we limit the analysis to a 
single firm that produces costlessly one perishable consumption good. 
The firm is completely financed by equity and has one share outstand- 
ing. The dividends paid by the firm at an exogenously given stochastic 
rate {Jb} are modeled as a Markov process on a given probability space 
(Q, t; M) with t E (O, oo). The process {&b} generates the fundamental 
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uncertainty in the model. The information structure of the agents in 
the economy is given by the filtrationi iFt- (6q, 0 < q < t).l 

Let D, denote the cumulative dividends of the firm, f'bs ds. Since 
there exists only one firm in the economy, the equity share of the 
firm is interpreted as the market portfolio and the dividends of the 
firm have the interpretation of being the aggregate dividends in the 
economy. The equity share is perfectly divisible and competitively 
traded at instant t for a price (in terms of the consumption good) St. 
Also available for trading are J claims in zero net supply. The cumu- 
lative real dividend process on these claims is given exogenously by 
a J x 1 vector DJ. At instant t, the real prices of these claims are 
denoted by a J x 1 vector SJ. 

There exists a representative agent whose problem is to choose an 
optimal portfolio strategy specifying the number of shares of each 
traded asset to be held at a given time. Every feasible trading strategy 
generates an infinite consumption stream. In making his choice, the 
agent seeks to maximize his expected utility of lifetime consumption 

E U( ct, t) dt, (1) 
t=O 

where the preference function Uis continuously differentiable, strictly 
concave, and strictly increasing in its first argument. 

The feasible trading strategies are predictable, locally bounded, 
self-financing, and satisfy the nonnegative wealth constraint at all 
times. In addition, at time zero, the value of the agent's portfolio 
must be less than or equal to the value of the securities with which 
he is endowed. The agent is assumed to be endowed with one share 
of the firm and none of the contingent claims. Predictability is an 
informational constraint on the agent, requiring him to choose port- 
folios at any time t based only on information available before t. 
Broadly speaking, local boundedness ensures that the cumulative 
mean and variance exposure of the investor's portfolio remains finite 
in finite time, so that the stochastic integral for wealth is well-defined. 
The self-financing condition is the restriction that portfolio wealth at 
time t be equal to the initial value of the portfolio plus trading gains, 
net of the value of consumption between 0 and t. The nonnegative 
wealth constraint rules out borrowing without repayment and, as 
indicated in Harrison and Pliska (1981) and shown in Dybvig and 
Huang (1988), eliminates all arbitrage opportunities in an equilib- 
rium price system. 

A competitive equilibrium of the above economy is a set of security- 

'By assumption, this filtration satisfies the usual conditions. All conditional expectations in the 
forthcoming analysis are with respect to this filtration. 
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price processes and a process for the price of the consumption good 
such that, given the dynamic control problem of maximizing the 
expected utility function of expression (1) subject to budget and 
other feasibility constraints, the representative agent optimally chooses 
to continue to hold one share of the firm and none of the contingent 
claims and to consume the total amount of dividends issued by the 
firm so that both the securities and goods markets clear instantane- 
ously. We assume that the process {6t}, the function U(, ) and the 
cumulative dividend processes on the contingent claims are such that 
the following conditions are satisfied: 

E U(6s, s) ds < , (2) 

Ef Uj(bs7 s) as ds < , (3) 

E fUc3(s, s) dD:s < , 1 < i - J, (4) 

where Dit denotes the ith element of the vector DJ. Given this, it can 
be shown that in the present economy a competitive equilibrium 
exists, and in this equilibrium the real price at time t of a security 
with a cumulative real dividend process2 Dt is given by 

Ett{f Uj(s, s) dDs} 

UL(&t, t) 

The above is the usual stochastic Euler equation expressing the price 
of a security as the sum of its discounted expected dividends with 
the marginal rate of substitution as the random discount rate. 

Having described the basic structure of our economy, we set out 
the preference and distributional assumptions of the model. The 
utility function of the agent exhibits constant relative risk aversion. 
A convenient form is U(c, t) = exp[-kt]cy/y, where y < 1. Aggregate 
dividends are assumed to follow a compound diffusion-Poisson pro- 
cess under which the stochastic growth function for the ratio of the 
dividend at time s to time t, t < s, is given by3 

2 D, could be the cumulative dividend process on the share of the firm or on any of the contingent 
claims. 

3The stochastic differential equation for the dividend process is given by 

-d= (a - Xk) dt + a dz + (exp[y] - 1) dN,, 

where y is normally distributed with mean (it - O.5 a) and variance Y. 
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bs bt exph(a 2 k )( ) ? z t) ]1 
where a is the instantaneous expected rate of change of aggregate 
dividends, 0.2 is the instantaneous variance of rate of change in aggre- 
gate dividends, conditional on the Poisson event not occurring, {zt} 

is a standard Gauss-Wiener process, {Nt} is a Poisson process with 
parameter X, and y, is the random size of the ith jump in the process 
{log at}. For all i, y, is normally distributed with mean (,y-0 5U2) 

and variance a 2. The expected jump amplitude, k, is equal to exp[,uy] 
- 1. The random variables {Nt, t ? 0}, {zt, t - O}, and {y, i> 1} are 
mutually independent and y, is independent of yj, for i #/ j. 

For this structure of preferences and dividends, the conditions 
ensuring finite values for the equilibrium expected utility and the 
price of the market portfolio [Equations (2) and (3)] can be simply 
stated in terms of the parameters of the utility function and the div- 
idend process. We assume that the parameters of the economy are 
such that the following condition is satisfied: 

,0 - a (zy) > O, (6) 

where a(-) as a function of y is given by 

a(y) = y(a-Xk) + y/-1 I) (72 2 

+ X{exp(myy + a ) (7) 

Condition (4) ensures finite equilibrium prices for all contingent 
claims. 

Our specification of the dividend process corresponds to an econ- 
omy that is infrequently subject to real shocks of unpredictable mag- 
nitude. Shocks to the equilibrium prices are induced by shocks to 
the dividends. The shocks to dividends could result from output 
shocks or shocks due to technological changes. The principal enquiry 
of this article is structured on this model, where the fundamental 
uncertainty is the uncertainty about dividends and consumption takes 
place continuously in time. An alternative construction is to consider 
a T (<oo) horizon economy with a representative agent but without 
intermediate consumption where the process {6t} models the flow of 
information about the terminal cash flow 6T, and jumps in at corre- 
spond to lumpy arrival of information about the final cash flow. The 
equilibrium equations are similar (but not the same) in the two 
models. In Appendix B, we solve for the pricing equations for this 
alternative model. 
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The assumption of constant relative risk aversion and the multi- 
plicative structure of the {16} process make the marginal rates of 
substitution between current and future consumption independent 
of the current level of aggregate consumption or wealth, which allows 
us to take account of the wealth effects on equilibrium prices in a 
simple manner. This eventually allows us to derive option-pricing 
formulas that nest the arbitrage-based Black and Scholes (1973) and 
Cox and Ross (1976) option models, and to relate conveniently to 
these models. Also, since we are interested in the prices of claims 
on the market portfolio, we want our formulas to depend on economy- 
wide risk aversion because we believe risk aversion to be an important 
determinant of the values of such securities. The isoelastic parame- 
terization permits us to do that precisely. 

2. Equilibrium Security Prices in a Jump-Diffusion Economy with 
Risk-Averse Agents 

For constant relative risk-averse preferences, the Euler equation of 
the previous section simplifies to give the following pricing equation 
for the market portfolio: 

St8l= Et exp[-k(s - t)]6y ds. (8) 

Similarly, if a (zero net supply) contingent claim pays off4 h(QT) on 
date T, its price for any t ' Tis given by Sh, where 

5thy = Etexp[- (T- t)]6T-1 h(6T). (9) 

The contingent claims that are of interest to us are riskless bonds of 
various maturities, and call and put options on the market portfolio. 
As shown below, the equilibrium prices of the market portfolio, risk- 
less bonds and call and put options on the market portfolio can be 
derived in closed form in the present model. 

Proposition 1. Let St be the equilibrium price at time t of the market 
portfolio in the economy described in Section 1 where the aggregate 
dividends evolve as in Equation (5), and the agent has a utility 
function with constant relative risk aversion and a constant time 
discount factor q5. St is given by S(6, t) S(b) with 

S(6) a A(y) (10) 

I It is straightforward to introduce claims with more general payoffs. 
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where a(-) is as defined in Equation (7). 

The proof follows from the substitution of (5) into (8) and the 
evaluation of the resulting integrals and expectations. 

From Equations (10) and (5), it is clear that the equilibrium sto- 
chastic evolution of St is given by 

Ss = St exp[c a - -_ Xk) (s - t) + af (Zs - Zt) + yj]i ( 

where s > t and all the variables are defined as in Equation (5). 
This, then, endogenizes a mixed jump-diffusion process for the 

price of the market portfolio. A process of this type was taken as the 
primitive in Merton (1976a) and was the basis of empirical investi- 
gations byjarrow and Rosenfeld (1984), Ball and Torous (1985), and 
Jorion (1988). Jorion5 notes (p. 434) that, ".. . the jump-diffusion 
model is a significant improvement over the simple diffusion model 
in both the foreign exchange and stock markets." Equation (10) also 
shows that the endogenously derived dividend yield 7r [---a(zy)] 
on the market portfolio in the above economy is constant. 

The equilibrium price of a pure discount bond that pays one unit 
of the consumption good at its maturity date T is given in this econ- 
omy by 

St( exp[{-0 + a(y - 1) } (T- t)], (12) 

where a(-) is as defined in Equation (7). This implies that the term 
structure in the present economy is flat with the instantaneous riskless 
interest rate, r, given by 

r= X + (1 - y)(a - Xk) + (o2/2)(y - 1)(2 - y) 
+ X[1 - exp((y - )Y + (a/2)(1 - y)(2 -)) 

The deterministic term structure of interest rates and the constant 
dividend yield are consequences of the fact that the investment oppor- 
tunity set is constant over time in the present economy.6 

The market portfolio and the riskless bond constitute the basic 
securities in our model. Before we direct our attention to the problem 
of the valuation of options on the market portfolio, we address the 
more fundamental question of whether claims contingent on the 
realization of the process {StJ can be priced in the present model 

5 Jorion (1988) uses weekly data for returns on the CRSP value-weighted index for the period 1974- 
1985. 

6 The riskless interest rate is not positive for all values of the underlying parameters. However, in 
our numerical analysis we consider only those parameter combinations for which it is positive. 
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simply by a no-arbitrage argument-that is, whether the present model 
is complete in the Harrison and Pliska (1981) sense. 

Let us consider claims that mature on or before some date T. Notice 
that there are three independent sources of uncertainty in the present 
model-the process {zt, 0 ? t ? T}, the process {Nt, 0 ? t ? T}, and 
the process {yi, i-1 }. If there were no Poisson uncertainty, we would 
have the Black-Scholes (1973) setup in which, as is well known, all 
claims can be priced by arbitrage. If there were no diffusion uncer- 
tainty and if the jump sizes were constant or even predictable, we 
would be in the Cox and Ross (1976) setup, and it can be shown that 
that model is complete as well. However, if we have both types of 
uncertainty, even if there were no uncertainty about the jump sizes, 
the minimum number of securities needed to complete the model is 
3 because the multiplicity of the filtration generated by independent 
processes {zt} and {Nt} is 2. Duffie and Huang (1985) provide a com- 
plete treatment of the issues of multiplicity and completeness. 

If the securities markets model consists of only two securities, one 
with a price process of the kind given in Equation (11) and the other 
a riskless bond with a constant interest rate, we show in Appendix A 
that the model is not complete and thus it is not true that all claims 
can be priced by a replication argument alone in such a model. Aase 
(1988) considers the pricing of options on an asset whose price 
dynamics is of the kind specified in Equation (11). It is suggested in 
his article that a model with this price process is complete, with 
trading in only a riskless bond and the underlying asset. The argument 
is that, since a model with only the diffusion uncertainty is complete 
with two assets, and the model with only uncertainty in jump times 
but with predictable jump sizes is complete with two assets, a model 
that has both these sources of uncertainty is also complete with two 
assets. This final implication is stated without proof there, and our 
counterexample shows that it need not hold. 

2.1. Equilibrium valuation of options 
Given the above considerations, we use the Euler condition (9) to 
value options contingent on { St}, the price process for the market 
portfolio in our economy. This is accomplished in the following 
propositions for European call and put options. 

Proposition 2. Consider a European call option on the marketport- 
folio maturing at date T with exercise price K The value of the option 
at time t (t ? T), S c, is given by 

Go 

St = (n) W(St) rn) rn) 6n ( T - t) (13) 
n =o 
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where 

p( n) = exp[-X(T- t)] [X(T- t)] n 

and 

W(st) irn rn, Cn (T- t)) = St exp[-7rn(T- t)]N(d1n) 

-Kexp[-rn(T- t)]N(d2n), (14) 

with 

rn = + (1- Y){a + ( t) Xk 

+ + 2 (T- t)}{(7 -1)(2 - 

2 (+aY (T Tt)){(- } 
an = a + y ( Xk} 

- !~2 ~(T- t)}{( 

ln (S/K) + (T - t, + 2) ( T- t) 
dl~~~~~~~~2 =- - t/ 

ln (St/K) + (rn - ii- -o2 2,)(T- t) 

2nan 

Proposition 2 is an application of Equation (9) using the payoff func- 
tion 

max[ST- K, 0] max a- -K ]. 

To gain some insight into the pricing formula (13), note that p(n) St 
x exp[-7rn(T - t)] is the price at time t of a security that promises 
to deliver one unit of the market portfolio at time T if and only if n 
jumps occur in the interval (t, T). Similarly, the price at time t of a 
security that promises to deliver one unit of the consumption good 
at time T conditional on n jumps occurring between t and T is 
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p(n)exp[-rn(T - t)]. Call the first security the conditional market 
portfolio, and the second one a conditional bond. Also recall that the 
variance of log(ST/St) conditional on n jumps in (t, T) is a (T - t). 
Now, the nth term in the sum in (13) gives the price at time t of a 
conditional option (i.e., of an option that promises to pay max[ST - 
K, 0] at Tif n jumps occur between tand T). According to the pricing 
formula (13), the price of the conditional option is given by the 
application of the Black-Scholes formula to the prices of the con- 
ditional market portfolio and the conditional bond using the con- 
ditional variance. The price of the unconditional call is the sum of 
the prices of all possible conditional calls. 

In the following proposition we state the price of a European put 
in the present economy. 

Proposition 3. Let SP be the price at time t of a European put option 
maturing at date T and with exercise price K, which is written on 
the market portfolio. Then the put price at time t is 

SP 
SP p(n) V(St, Irn) rn) a n ( T- t) ) (15) 

n =0 

where 

V(St n rn, n, (T- t)) = Kexp[-rn(T- t)]N(-d2n) 
- St exp[-Irn(T- t)]N(-din) (16) 

and p(n), rn,, 7rn di,n d2n, and an are as defined in Proposition 2. 

The above call and put formulas satisfy the put-call parity for Euro- 
pean options on assets with a constant dividend yield.7 As X 0, the 
process { St} converges to a lognormal diffusion and the above pricing 
formula for the call option converges to the usual Black-Scholes 
formula with a constant dividend yield. As (a, ay) - 0, the underlying 
price process converges to a pure jump process with a constant jump 
size, which is a special case of the processes considered in Cox and 
Ross (1976). In this case, the above call formula converges to the 
Cox-Ross pure jump formula with a constant dividend yield. Setting 
(a, ay) equal to zero in the formula (13) for a call's price, we get, 
after simplification, 

7Comparative statics exercises reveal that, typically, put prices are higher and call prices are lower 
with increasing risk aversion, ceteris paribus. Under risk neutrality and when u, = 0, put and call 
prices are increasing in X and o-. When agents are risk averse, in-the-money calls tend to lose value 
with increasing jump intensity and jump variance. Some of these results are obtained from numerical 
analysis. 
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zp(n)exp[-rn(T - 0] 
n =0 

x max (S, exp [(a - Xk) ( T -t) + ,utn]K, O) .(17) 
Using the expressions for the equilibrium interest rate, r, and the 
dividend yield, ir, the above formula can be rewritten as 

00 

exp[- r(T- t)] : p*(n)max(S, exp[(a - Xk) 
n =0 

*(T- t) + Myn] -K, 0), (18) 

where 

p*(n) = exp[-X*(T- t)] 
( 

n(T 
t)) 

and 

x* (a- Xk + -r) 
(exp[y] -1) 

This is the Cox-Ross pure jump formula for a call on a risky asset 
with a constant dividend yield. 

2.2. Risk premium implicit in option prices 
The above formulas price the risk in option cash flows arising from 
the possibility of continuous as well as discrete random changes in 
the price of the underlying asset by restricting investors' preferences. 
This is the reason why the risk-aversion parameter y enters the option- 
pricing formulas. It is in this respect that the call formula (13) differs 
from the formula derived in Merton (1976a), in spite of the apparent 
similarities that arise on account of the similarity of our distributional 
assumptions to those in that study. 

Merton (1976a) assumes that jumps in the prices of the underlying 
asset are uncorrelated with the changes in the price of the market 
portfolio, so that the jump risk is not priced in equilibrium. This 
assumption is combined with a local no-arbitrage argument to arrive 
at a pricing equation which asserts that, if the price of the underlying 
asset at time t is S, then the price of a European call maturing at T 
and with exercise price K is equal to8 

exp[i a so T- t) ]E(max [Tt eO] I St = S), (19) 

where { St} is a stochastic process that evolves according to 

8 This follows from a rewriting of equation (16) in Merton (1976a). 
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ST = St exp[(r- - - Xk) (T - t) + (ZT - z) + Y 

where r is the instantaneous riskless interest rate (assumed to be 
constant) and the other variables have the same definition as ours. 
Thus, the Merton (1976a) formula equates the call-option price to 
the expected value (discounted at the riskless interest rate) of the 
option cash flow under the assumption that the underlying asset earns 
an instantaneous expected return equal to r. This parallels the der- 
ivation of the Black-Scholes formula in Cox and Ross (1976) using 
"risk-neutral" pricing. ST is the price of the underlying asset at time 
T under the "risk-neutral" probability measure. The formula is jus- 
tified by (i) a local no-arbitrage condition, which, it is argued, allows 
a portfolio, having no diffusion risk and consisting of the underlying 
asset, riskless bonds, and the option in question to be formed; and 
(ii) the assumption of the uncorrelated jumps, which implies that 
the jump risk is not priced in equilibrium. 

We use a fully stated economic equilibrium to price the options in 
which we are interested. Both the jump risk and the diffusion risk 
are priced in this equilibrium. In contrast with Equation (19) above, 
our formula (13) for the price of a call option on the market portfolio 
is equivalent to 

Stc = exp[-r(T - t)]Et max[ST- K, 0] 
+ CoVt(UC(ST, T)/Uc(St, t), max[ST - K, 0]), (20) 

where 

ST = St exp(a - - - Xk)(T- t) + ( ZT - 
Zt) + 2 yj 

Thus, the call price is a sum of two terms. The first term is similar to 
(not the same as) the Merton (1976a) formula: it is the expected cash 
flow on the option (discounted at the riskless interest rate which is 
shown to be constant in our equilibrium) when the underlying asset 
earns its equilibrium instantaneous expected exdividend return of a. 
Since we do not use the local no-arbitrage argument, we do not 
conclude that the option is priced as if the underlying asset earns an 
expected return equal to the riskless interest rate. The prices of options 
in our model depend on the endogenously determined price process 
for the underlying asset. 

The second term in Equation (20) is the equilibrium price of the 
jump and diffusion risks implicit in the option's price: it equals the 
covariance of the option's payoff with the change in the marginal 
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utility of equilibrium aggregate wealth.9 Under our parameterization, 
we can explicitly evaluate that term and do not need to assume that 
the jump correlation with returns on aggregate wealth is zero. That 
assumption would be unacceptable when the underlying asset is the 
market portfolio. As shown below, the covariance term is too large 
to be ignored in pricing options on the market portfolio. 

Table 1 shows the absolute value of the covariance term [the second 
term of Equation (20)] as a percentage of the option prices for some 
representative parameter values.10 

In Table 1, we consider combinations of low and high values for 
X and a,. Even for a relatively moderate volatility of jump sizes (a, = 
0.05) and a low jump frequency (X of 0.25 translates into 1 jump in 
4 years on average), the risk premiums are about 20 percent of the 
option prices for near-the-money options. These risk premiums 
increase to as much as 30 to 40 percent when the frequency of jumps 
or the volatility of jump sizes is high. As we would intuitively expect, 
our numerical analysis shows that the option risk premiums increase 
as the level of risk aversion in the economy or the intensity of jumps 
increases or as the options move out of the money. 

3. Implications of Continuous Hedging in the Jump-Diffusion 
Economy 

In a pure diffusion economy in which the Black-Scholes assumptions 
are met, there exists a dynamic self-financing trading strategy com- 
prising the market portfolio and the riskless bond that replicates any 
claim whose cash flows are contingent on the price of the market 
portfolio. It follows that in an arbitrage-free economy the value of 
the replicating portfolio must equal the price of the claim. 

Suppose now that the underlying price process has jumps of random 
amplitudes occurring at random time intervals and takes the form of 
Equation (11), and that riskless bonds of various maturities are also 
available for trading. As pointed out in Section 2, a dynamic hedging 
plan, involving only the underlying asset and riskless bonds, no lon- 
ger exists as there are more sources of uncertainty than can be hedged 

9 In equilibrium, the agent holds only the market portfolio and thus his aggregate wealth at any time 
tis S,. 

10 In the numerical analysis here and elsewhere, we select a set of plausible parameter values which 
ensure positive equilibrium interest rates and dividend yields in the exchange economy for coef- 
ficents of risk aversion ranging from -1 to 1. These values of the risk aversion parameter cover the 
possible range of investor types that we wish to explore: y = 1, for risk neutrality; -y = 0 for an 
agent with logarithmic utility; and for the agent who is substantially risk-averse, y = -1. The set 
of parameter values fixed in the analysis are a = 0.05, X = 0.07, a = 0.15, u, = 0, S0 = 1, time to 
maturity = 1, and the infinite sum of the cumulative Poisson distribution is truncated at n = 10. 
For the values of X that we consider, the option prices are not affected by truncation at higher 
values of n. The unit of time is one year. 

506 



Options on the Market Portfolio with Jumps 

Table 1 
Risk premiums on calls and puts in the jump economy 

Calls Puts 

(% of call price) (% of put price) 

K X= 1, aY= 0.15 X = 0.25, oy= 0.05 X = 1, oY= 0.15 X = 0.25, oy= 0.05 

0.9 24.3 14.2 30.1 23.9 
1.0 31.7 19.9 24.2 18.3 
1.1 40.4 26.7 19.3 13.8 

T= 1; S0 = 1; y = 0; X = 0.07; a = 0.05; a = 0.15; uy = 0. The risk premium of an option is defined 
to be the difference between the price of the option and the expected value of its cash flow 
discounted at the riskless interest rate expressed as a percentage of the price of the option. T is 
the time to maturity of the option; K is the exercise price; S0 is the current price of the market 
portfolio; y is the risk-aversion parameter (y = 0 corresponds to logarithmic utility); and X is the 
rate of time preference. a is the instantaneous expected exdividend rate of return on the market 
portfolio, and a2 is the instantaneous variance of the return on the market portfolio conditional on 
no jumps occurring. X is the intensity of jumps, o2 is the variance of jumps in the process for the 
logarithm of the price of the market portfolio, and uy - 05oa2 is the mean size of the jumps in that 
process. 

with two assets. In general, the Black-Scholes plan will neither be 
self-financing nor replicate the claim. In this section, we investigate 
the cost and risk implications of such continuous replication plans 
as applied to the market portfolio with discontinuous returns. 

Consider first the case in which the agent attempts to replicate 
dynamically the payoff on a claim using the Black-Scholes trading 
strategy, with the volatility parameter assumed to be equal to the 
volatility of the continuous part of the asset's price movement, a2. In 
this case, the hedging plan fails to be self-financing at the times when 
a jump occurs (and only at such times); at these jump times, either 
infusion of funds is needed to accomplish the intended replication 
or funds can be withdrawn. 

Suppose that the market supplies the agent with a jump-financing 
securitywhich, at the time of a jump, reimburses him the exact amount 
of additional cash needed (or charges him the extra cash generated) 
to bring the agent's portfolio back to a position from which dynamic 
replication by the Black-Scholes hedging strategy can be continued. 
Then, this jump-financing security supports the dynamic hedging. 
The price of this security at any time is equal to the difference between 
the price of the claim (which is being replicated) and the value of 
the (intended) Black-Scholes replication portfolio held at that time. 
This price can be called the ex ante cost of the potential infusions 
and withdrawals of funds that this strategywill need to actually accom- 
plish the replication. The following proposition makes the above idea 
rigorous. 

Proposition 4. Consider an economy in which the price of the market 
portfolio, S,, evolves according to Equation (11), the marketportfolio 
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yields dividends at time t a, equal to rS,, where r is a constant, and 
the price at time t (t ? T) of a pure discount bond paying 1 unit of 
the numeraire risklessly at time T is Bt exp[- r(T - t)], for some 
constant r. Consider a claim that matures at time T and pays off 
g(ST) at that time for some twice differentiable g(. 11 

Let C(St,t) be the unique solution (which is twice continuously 
differentiable in itsfirst argument and once continuously differen- 
tiable in its second argument) to the following partial differential 
equation:12 

C2 + (r - ir) C1S + 'C Uo2S2 = rC, 

subject to the boundary condition that C(ST, T) equals g(ST). 

Suppose that agents can also buy and sell a jump-financing secu- 
rity,13 which has the following cash flows: 

C(Sq, q) - C(Sq_, q-) - C1(Sq-, q-)[Sq -Sq], (21) 

for all times q for which Sq does not equal Sq_, that is, the times for 
which there is a jump in the price process of the underlying asset. 
Call this security the jump-financing security associated with claim 
g(ST) and strategy C(S, t).14 

If there are no arbitrage opportunities in the economy, the price 
at time t (t ? T) of a security that pays off g(ST) at time T is equal 
to C(St, t) plus the value at time t of the jump-financing security 
associated with claim g(O) and strategy C(S, t). 

Proof. See Appendix A. 

Recall that the Black-Scholes continuous hedging plan would 
require holding C1(Sq-, q-) units of the underlying asset and (C(Sq_, 
q-) - C1(Sq-, q-)Sq-)/Bq units of the riskless bond at any time q. 
The Black-Scholes plan is not self-financing as at every jump time 
the portfolio that is required to be held for replication to succeed 
and the portfolio that can actually be purchased with the value accu- 
mulated till then do not have the same price. Infusion or withdrawal 
of funds is needed at the jump times. It can be directly verified that 
the cash flows on the jump-financing security are exactly the infusions 
(or withdrawals) of cash that are needed. If g(ST), the cash flow at 

Later on, we will applythis and similar results to options whose terminal payoffs are not differentiable 
functions of S. However, these payoffs can be approximated arbitrarily closely by smooth functions. 
See Duffie (1988). 

12 Subscripts denote partial derivatives. 
13 This security will make the replication of claim g(Q) possible using a trading strategy based on 

C(, ). It does not make the jump-diffusion model complete in the Harrison and Pliska (1981) 
sense. 

14 Sq equals limuTq S,. This limit is to be understood in an almost sure sense. 
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Table 2 
Black-Scholes replication of a put in the jump economy (assumed volatility, a2): Cost of 
cash deficits during continuous replication of a put in the jump economy 

'Y= -1 'Y= 1 

X l X = 0.25 X = 1 X = 0.25 

K a,= 0.15 r,= 0.05 o-y= 0.15 o-y= 0.05 oY= 0.15 oy= 0.05 oy= 0.15 oy= 0.05 

0.9 74.7 12.2 28.4 3.2 138.2 16.6 35.9 4.2 
1.0 28.3 5.4 10.6 2.1 56.3 7.9 15.2 2.0 
1.1 11.3 2.2 4.1 0.6 25.3 3.6 6.8 0.9 

T= 1; S0 = 1; X = 0.07; a = 0.05; a = 0.15; uy = 0. The cost of cash deficits during continuous 
hedging of a put in the jump economy is the difference between the equilibrium value of the put 
[Equation (15)] and the value of the assets in the Black-Scholes portfolio for that put as a percentage 
of the value of the Black-Scholes portfolio. Tis the time to maturity of the option; Kis the exercise 
price; S0 is the current price of the market portfolio; y is the risk-aversion parameter; and X is the 
rate of time preference. a is the instantaneous expected exdividend rate of return on the market 
portfolio, and a2 is the instantaneous variance of the return on the market portfolio conditional on 
no jumps occurring. X is the intensity of jumps, oY is the variance of jumps in the process for the 
logarithm of the price of the market portfolio, and uy - 0.5oy is the mean size of the jumps in that 
process. 

maturity on the claim being replicated, is convex in ST, then all the 
jump cash flows as defined in expression (21) are positive. Thus, if 
a call or a put option was being replicated using the Black-Scholes 
plan, at all jump times fund infusion would be needed for the rep- 
lication to succeed, irrespective of whether the jumps were upward 
or downward.15 

The equilibrium we have specified in the preceding sections meets 
the requirements of Proposition 4, and in that equilibrium we can 
price a security with cash flows g(ST) at time T. As explained above, 
given that equilibrium, the value of the jump-financing security for 
claim g(*) and strategy C(, ) at time t is simply the difference 
between the equilibrium value of the claim gQ() at time t and the 
value of assets in the Black-Scholes portfolio at time t, C(St, t). Table 
2 shows the values of the jump-financing security for a put option on 
the market portfolio (expressed as a percentage of the initial value 
of the Black-Scholes replication portfolio) at some representative 
parameter values. 

The ex ante cost of cash deficits at jump times can be more than 
50 percent of the initial value of the assets in the Black-Scholes 
replication strategy. It is apparent that the volatility of jump sizes is 
a more influential determinant of the ex ante cost of hedging than is 
the jump intensity. This suggests that it is much less expensive to 
maintain the Black-Scholes hedging strategy in a market with fre- 
quent jumps of small magnitude than in a market in which infrequent 

15 It can also be shown that, for a fixed time of the jump and for a given price of the underlying asset 
immediately before the jump, the funds infusion is a convex function of the jump size. 
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jumps of large magnitude can happen. As expected, as the probability 
of jumps or the maturity of the option increases so does this cost. 

The above discussion relates to the situation in which the volatility 
assumed for continuous hedging is the volatility of the continuous 
part of the asset's price movement, a2. The question arises naturally 
whether the cash deficits arising at jump times could be eliminated 
if the volatility assumed in the continuous hedging plan were higher 
(say, equal to a2 + Xa 2).16 

Let C*(S, t) be the Black-Scholes solution to the following partial 
differential equation: 

C2* + (r - 7r) C*S + (a2 + Xa y)C*S2 = rC*, 

subject to the boundary condition that C*(S, T) equals g(ST). 

By a natural extension of Proposition 4, it can be shown that the 
Black-Scholes strategy based on C*(S, t) is equivalent to a portfolio 
comprising one unit of the claim g(ST); long one unit of a security 
that pays continuously a cash flow at the stochastic rate that equals 
O.5Xa2C*C(Sq-, q-)S2q_ at time q (we label this security the jump- 
variance security); and short one unit of a jump-financing security 
that pays C*(Sq, q) - C*(Sq_, q-) - C*i(Sq_, q-)[Sq - Sq_ ], for all 
times q for which Sq does not equal Sq. 

Since Cl*(, ) is positive when the claim being replicated is a put 
or a call, the cash flow from the jump variance security is always 
positive. By the same reasoning, the short position in the jump-financ- 
ing security involves a cash outflow at all jump times. Thus, the Black- 
Scholes hedging plan with a higher assumed volatility is still not self- 
financing and does not accomplish the intended replication. The 
investment in the incremental volatility seeks to make up for the cash 
deficits at jump times by creating a continuous stream of cash inflows. 
A numerical analysis of our equilibrium option pricing formulas shows 
that the ex ante value of the cash deficits at jump times from strategy 
C*(S, t) is almost the same as the value of the continuous stream of 
cash inflows arising from the incremental volatility. However, this 
does not imply that jump time cash deficits are fully offset by the 
accumulation of the surplus cash inflow stream. The two cash flow 
streams have different risk characteristics as we show below. 

The probability of substantial cash deficits at jump times is signif- 
icant irrespective of whether the hedging scheme is based on C or 
C*. To show this, we derive below a lower bound on the probabilities 
that the cash deficits at jump times will exceed a given value. Let t1 
denote the time of the first jump of the process {NJ}, and let Yq denote 

16 Variance per unit time of log(SI/S0), conditional on n jumps occurring in the interval (0, t) is r2 

+ nr2. The expectation of this conditional variance is r2 + Xra. 
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the difference between the change in the value of C* and the change 
in the value of its Black-Scholes replication portfolio when a jump 
occurs at time q: 

Yq C*(Sq, q) - C*(Sq, q-) - C*(Sq-, q-)(Sq - Sq_). 

If the security being replicated is a European put or a call, then we 
have, for x > 0 and with Yq defined above, 

Pt Yq > (Yt > X} n {NT> o}). 

The probability on the right-hand side of the above equation can be 
evaluated in closed form as shown in Appendix A. Table 3 displays 
the values of the resulting lower bound on the probability that the 
jump cash outflows will be greater than 1 percent of the initial value 
of the underlying asset, when the security being replicated is a Euro- 
pean put. This computation is done for the Black-Scholes strategy 
with assumed volatility of r2 + Xa 2 and U2. In the latter case, the 
computations for the lower-bound probability are the same except 
that C* is replaced by C in the definition of Yq. 

Table 3 shows that the probability that the dynamic hedging plan 
calls for a funds infusion greater than 1 percent of the initial value 
of the underlying portfolio can be as much as 10-30 percent and 
remains nonnegligible even for low values of X and ay. More notably, 
the table shows that the difference between the values of the lower- 
bound probabilities for the Black-Scholes plan with higher volatility 
and those for the plan with volatility equal to i2 is small. This dem- 
onstrates that the effect of incremental volatility in reducing the cash 
deficits is not very pronounced. The probability figures in this table 
reaffirm the earlier observation that the variance of jump sizes has a 
far greater effect on cash deficits at jump times than does the frequency 
of jumps. 

Since the incremental volatility does not seem to reduce the prob- 
ability of large cash deficits appreciably, the only advantage of the 
dynamic hedging plan with increased volatility lies in the surplus 
cash inflow stream that it generates. Recall that this inflow is at a 
stochastic rate of 0.5XC l(Sq-, q-)S2q_- Xq at time q. In general, 
this stream of cash inflows does not offset the cash deficits incurred 
at jump times. The key determinant of the size of a cash shortfall at 
a given jump time is the size of the jump, which is independent of 
past innovations due to the Brownian motion. Therefore, the amount 
of the cash deficit at the jump time is unrelated to the sum of the 
incremental cash inflows that have been accumulated till the time of 
the jump. The investment in the incremental volatility does not pro- 
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Table 3 
Probability of large funds infusion during continuous hedging in the jump economy 

BS hedging with a2 + XO2 BS hedging with a2 

7y X = 1.00 X = 0.25 X = 1.00 X = 0.25 

.15 .30 .11 .31 .11 

.05 .04 .02 .05 .02 

T = 1; S0 = 1; K = 1; -y = 1; f = 0.07; a = 0.05; a = 0.15; uy = 0. BS hedging is Black-Scholes 
hedging strategy for a European put. The entries in the cells are the lower-bound probabilities 
that funds infusion at jump times exceeds 1 percent of the initial portfolio value. T is the time to 
maturity of the option; K is the exercise price; S0 is the current price of the market portfolio; y is 
the risk-aversion parameter; and X is the rate of time preference. a is the instantaneous expected 
exdividend rate of return on the market portfolio, and a2 is the instantaneous variance of the return 
on the market portfolio conditional on no jumps occurring. X is the intensity of jumps, Y2 is the 
variance of jumps in the process for the logarithm of the price of the market portfolio, and ,uy - 
0.5oy is the mean size of the jumps in that process. 

vide any insurance against the random jump size. Moreover, jumps 
of a considerable magnitude can occur at any time before the claim 
matures. Obviously, the continuous stream of surplus cash inflows 
does not provide very much of a cushion against cash deficits at jump 
times if the jumps occur early in the life of the claim. These obser- 
vations are confirmed by a simulation analysis.17 Not surprisingly, our 
simulations also show that the surplus cash flows from the incremental 
volatility are always strictly positive but do not usually take on large 
values. The jump-time deficits, however, are zero with a strictly pos- 
itive probability (the probability of no jumps) but when they do occur 
they can be quite large. 

4. Conclusions 

In the seminal articles by Black and Scholes (1973) and Cox and Ross 
(1976), the prices of contingent claims are determined in complete 
markets. Merton (1976a) considers pricing options in an incomplete 
market, generalizing the pure jump model of Cox and Ross to include 
uncertainties in jump sizes and jump times and encompassing the 
diffusion model of Black and Scholes. Recognizing that the principle 
of arbitrage behind the Black-Scholes derivation is inapplicable when 
there are multiple sources of uncertainty, Merton assumes that the 
jump component of an asset's return is uncorrelated with the return 
on the market portfolio before applying a local no-arbitrage argument 
to derive an option-pricing formula. This article dealt with the val- 
uation of options on the portfolio of all risky assets in the economy. 

17 The simulation is for puts on the market portfolio maturing in six months. Five hundred sample 
paths of the process given by Equation (11) are drawn. Given a price path for the market portfolio, 
the discrete counterparts of the integral for the surplus cash stream and the cash deficits are 
computed using the closed-form expressions for C*, C*, and C*. 
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The risk of jumps in the underlying asset's return is clearly not diversi- 
fiable in this case. As neither the no-arbitrage argument nor Merton's 
approach is appropriate in this context, we derived the pricing equa- 
tions for the European call and put options on the market portfolio 
by placing restrictions on investors' preferences. The option formulas 
are internally consistent and are reducible to the Black-Scholes for- 
mula and the Cox-Ross formula. 

The pricing equation for the European put was employed to analyze 
the Black-Scholes hedging strategy in a jump-diffusion environment 
in which it is not, in general, self-financing. We showed that to main- 
tain the Black-Scholes hedging strategy in a jump-diffusion model 
always requires additional investments at jump times, irrespective of 
whether the jumps in asset prices are upward or downward. If the 
Black-Scholes replicating portfolio is constructed for a volatility equal 
to the volatility of the diffusion component, the additional invest- 
ments required at jump times can be large and the ex ante cost of 
these investments is considerable. To construct the replicating port- 
folio at a volatility inclusive of part or all of the volatility due to the 
jump component, additional initial investment is necessary. This addi- 
tional investment generates surplus cash inflows along the continuous 
portion of the sample path in the asset's price. Since the jumps in 
the asset's price might be potentially big, net cash outlays may still 
be needed at jump times. In volatile markets the surplus cash stream 
is likely to provide a poor hedge against the risk of large cash outlays 
needed at jump times for the replicating portfolio to succeed. Our 
analysis also revealed that the variance of jump sizes is a more impor- 
tant determinant of the cost and risk of large jump-time cash deficits 
than is the frequency of jumps; and, thus, jump effects are expected 
to be important in economies with considerable uncertainty about 
jump sizes even if the probability of a jump occurring is small. 

Appendix A 

Incompleteness of the jump-diffusion model with two traded 
assets 
We show that a model in which the uncertainty is generated by a 
Brownian motion and an independent Poisson process is not com- 
plete in the Harrison and Pliska (1981) sense, if trading can take 
place only in a riskless asset and a risky asset with a diffusion price 
process with jumps. Our example below is similar to the one given 
in Harrison and Pliska (1981, Section 6.3). 

Let (Q, S; M) be a complete probability space on which a standard 
Brownian motion {zt, 0 < t ?< 7 and a Poisson process {Nt, 0 < t < 

7} of rate X are defined. {Nt} and {zt} are mutually independent. Let 
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xt--zt + nt zt + Nt - Xt (Al) 

Consider an economy in which two securities are available for 
continuous trading between 0 and T: a riskless bond maturing at T 
whose price at time t is Bt 1, 0 ' t ' T; and a risky asset whose 
price at time t, St, is given by &(x) t, the exponential process associated 
with {xt}. It can be checked that 

St- 9(x)t= exp[zt - 0.5t - Xt + log(2)Nt]. (A2) 

This price process is in the general class of processes considered in 
Aase (1988). 

The investors are endowed with the filtration t = o-(Sq, 0 ' q ' 
t). We first observe that St- t 0-(zq, Nq, 0 < q < t). This follows 
as Nt = Yo<q,tl[{sq -sq- I and zt can be inferred from St and Nt. Here, 
1A for a set A denotes the indicator variable of that set. That is to say 
that the observation of the paths of the process {St} is equivalent to 
observing the paths of {zt} and {Nt} since the jumps of {St} coincide 
with the jumps of {Nt} and St is functionally related to Nt and zt. It is 
also immediate that St o(Sq, 0 ' q ' t) o-(xq, 0 ' q ' t). 

Since xt is a Et martingale, it is a Wt martingale. This implies that 
the discounted risky asset price process Zt St/Bt St is a St mar- 
tingale, and so MP itself can be taken as the reference probability 
measure. Alsoyt zt + log(2) ntis a ,tand, therefore, a Wtmartingale. 
St, xt, and yt are all square integrable. 

We show that yt cannot be written as a stochastic integral with 
respect to xt. This will imply that yt cannot be written as a stochastic 
integral against Zt so that, by the theorem in Harrison and Pliska 
(1983), the above model is not complete. The proof is in two steps. 

Proof (1) yt cannot be written as a stochastic integral against xt, that 
is, there does not exist a process {at}, which is St predictable and 
with E f T a2 d[x]t < oo, such that 

rt rt 
Yt= Yo + as dxs a5 dxs. (A3) 

Note that zo = no = 0. The square integrability restriction on inte- 
grands corresponds to equations (4.1) and (2.2) in Aase (1988). See 
also Duffie and Huang (1985, section 4). 

The proof is by contradiction. Suppose that {at} with the above 
properties exists. Then 

rT rT 

Efj a~2 d[z]t < oo and E J 2d[n]t < oo, (A4) 
o o 

since d[x]t = d[z]t + d[n]t. Also, 
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f a5 dx5 = as dz5 + f 
adns 

= 1 dz5 + log(2) dn5. (A5) 

The last equality in (A5) follows from the definition of Yt. Equation 
(A5) implies, by lemma A.2 in Duffie and Huang (1985), 

,[3tE [0, T]: at = 1 and at = log(2)] > 0, (A6) 

which is not possible. 
Conditions of lemma A.2 in Duffie and Huang (1985) are satisfied 

as {zt} and {nt} constitute a finite set of elements of 2 the set of 
square-integrable ( Et, 0P) martingales, with the representation prop- 
erty of their Theorem 4.1 and as (A4) holds. The proof of this rep- 
resentation property can be found in proposition 7.3 of Wong and 
Hajek (1985). 

(2) If {Yt} cannot be written as a stochastic integral with respect to 
{xt}, then it cannot be written as a stochastic integral against St = 

&(x)t, since, if it could be, then Yt = ItOs dS, would hold for 
some predictable process {JO}, such that E I T 02 d[S]s < oo. But 
E sgT O2 d[S]s < om and the predictability of processes {lO} and {St_} 
imply that {OtSt-} is a valid integrand against {xt} and It 0 dS5 
- f osSs- dx5. This contradicts Part (1) above. Therefore, this implies 
that in the above economy, it is not possible to replicate a claim 
maturing at time Twith the payoff given by YT 1log(ST exp[OT]) for 
0 = 0.5 + X - X log(2). 

The price process postulated in this example is not arbitrary. It can 
be supported in a general equilibrium. It is the equilibrium price 
process in the representative agent economy of the kind described 
in Appendix B (the economy with no intermediate consumption) in 
which -y = 1, a = 0, o- = 1, ,uy = log(2), ory = 0, and 60 = 1. 

Proof of Proposition 4 
The filtration underlying all the computations for this proposition is 
{tl}, where ,t = o-(Ss, 0 < s < t). We will show that there exists a 
predictable trading strategy that replicates the claim and is self-financ- 
ing. 

Consider the predictable strategy that has at time q, CG(Sq-, q-) 
units of the underlying asset, (C(Sq_, q-) - CG(Sq_, q-)Sq_/Bq 

units of the pure discount riskless bond maturing at Tand 1 unit of 
the jump-financing security associated with claim g(ST) and strategy 
C(S, t). Let jt be the value of the jump-financing security at time t. 
The value at any time t ' T of assets in the trading strategy is Ct + 
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Jt by construction. The strategy would be self-financing if the value 
of assets in the strategy at any time t equals the value of the assets at 
time 0 plus any capital gains or losses (including the cash flows on 
the jump-financing security) and dividends realized between 0 and 
t. That is to say, letting Gt = St + f tb dq, we must have 

ct + Jt= Co + Jo + f CG(Sq, q-) dGq 

+ [C(5,- q-) Gi(Sq-, q-)Sq-]dB 
X Bg 

B 

+ f dJq 

+ : [C(Sq, q) - C(Sq_, q-) 
O<q t 

- CG(Sq-, q-)[Sq - Sq_]]. (A7) 

The last term in the above equation is the cumulative cash flow on 
the jump-financing security up to time t. However, since bq equals 
rSq, 

rt rt 
f Ci(Sq-, q-) dGq= C1(S_, q-) dSq 

+ Cf G(S_, q-)irSq dq. (A8) 

Also, as dBq = rBq dq, and from the partial differential equation stated 
in the proposition, 

r[C(Sq,q-) - C(Sq-, q-)Sq_] 

= 

C2(Sq-, 
q-) + 1 

2CGi(Sq-, 
q-)S21 - 

rC1(S,_, 
q-)Sq_, 

we have that 

rt[C(Sq_,q-) - C,(S, q-)S ,,- 
Bq dBq 

vo B~~~~~q 

rt 
= G C2( Sq, q-) dq 

+ X [2 I Cll(S q-)S2g - rCG1(Sq, q-)Sq- dq. (A9) 
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Equations (A8) and (A9), and the fact the Jt equals JO + fI dJq, 
imply that for the trading strategy to be self-financing we must have 

ct= CO + C((S,q q-) dSq 

+ FKC2(Sq_, q-) + !2G (Sq, dq 

+ [C(Sq, q) - C(Sq, q-) 
o<q?t 

- Ci(Sq-, q-)[Sq - SqJ]- (Al 0) 

However, by the Doleans-Dade-Meyer generalization of Ito's for- 
mula to functions of semimartingale processes [see Elliott (1982, 
theorem 12.13)], we have that Ct equals 

CO + GC(Sq_, q-) dSq 

t 

+ C2( S_, q-) dq 

+ 1- J'Cll(Sq, q-) d (SC)q 
2 o 

+ : [C(Sq, q) - C(Sq-, q-) -C G(S_, q-)[Sq -S, 
O<q? t 

(A1) 

where the process ( Sc )q is the predictable quadratic variation process 
associated with the continuous martingale part of the process St. [See 
Elliot (1982, chapters 10-12) for a detailed description.] 

It can be checked that the predictable quadratic variation of the 
continuous martingale part of the process St as defined in the prop- 
osition is 

rq 
(SC)q = 0.2 S 2 ds. (Al 2) 

Using relation (A12) to substitute for d ( Sc )q in expression (All) 
we see that by the generalized Ito rule the right-hand side of Equation 
(A10) is indeed equal to the left-hand side of that equation. This 
shows that the strategy is self-financing. The fact that the strategy 
replicates the claim can be directly verified. 
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Computation of P({Y,, > x} n {N-T> O}) 
p(iyt, > x} n {NT> O}) equals 

T +0 JJ_[P(Yt, > XI NT> 0, t1 = t, St1 = exp[z]) 

x f(zINT > 0, t1 = t)g(tl NT> 0)] dz dt, (A13) 

where Yt, is the jump cash flow at time t1, ff I t, = t) is the normal 
density function with mean (a - Xk - 0.5o-2) t and variance o-2t, 

g(tlNT> 0) X exp[-Xt] 
1 -exp[-XT]'7 

and 

P( Ytl > x INT > 0, t =St, = exp[z]) 

= 1 - 'A[log Y (Z,t)] + A'[log Yd(Z, t)]. 

Here y (z,t) and yd(z,t) are unique solutions to 

C*(yexp[z], t) - C*(exp[z], t) 

- C*(exp[z], t)(y - 1)exp[z] = (A14) 

over the ranges (1, mo) and (0, 1), respectively. A() is the cumulative 
probability distribution of a normal random variable with mean (Ay 
- 0.5c- ) and variance cry. The left-hand side of Equation (A14) is 
monotonically decreasing in y over (0, 1] and monotonically increas- 
ing in y over (1, oo); hence, unique solutions to the said equations 
exist for all positive x. 

The probability in the integral in Equation (A13) is the probability 
that the absolute jump size at the time of the first jump is greater than 
what would have caused the jump cash flow to equal x. This proba- 
bility is conditional on {NT > 0}, the time of first jump, t1, being equal 
to tand the asset price just before the first jump being equal to exp[z]. 
f( I ) is the density of log(st,_) conditional on {NT > 0} and on the 
first jump time being equal to t. g( ) is the density of the first jump 
time conditional on {NT > 0}. 

Appendix B: Interpreting {6J as Information about 
Terminal Cash Flows 

Below, we briefly describe an alternative method of pricing options 
on the share of a representative firm in the economy, where the jumps 
in the price of the share are induced by jumps in the information 
about the terminal cash flows paid off by the firm. We consider an 
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exchange economy in which economic activity takes place in the time 
interval [0, T]. There is one firm and a representative agent. The firm 
is financed by one equity share and it pays out a terminal divided 6T 

at time T, and the agents in the economy receive continuous infor- 
mation about 3T by an exogenously given stochastic process {&b} on 
a probability space (Q, I; M). The share of the firm, a riskless bond 
maturing at Tand options on the share maturing at Tare competitively 
traded at every t E [0, T]. The riskless bond serves as the numeraire, 
so all prices are relative to the price of a riskless security. 

The representative agent maximizes expected utility of consump- 
tion at time T, 

EU(cT), (B1) 

subject to a budget constraint, where CT equals his wealth at time T 
U( ) is assumed, as before, to be of the form (1/7y)c. The maximi- 
zation takes place over all Ft predictable, locally bounded, and self- 
financing trading strategies that are budget feasible at time 0 and 
satisfy the nonnegative wealth constraint at every instant. 

Now suppose that the information arrival about the terminal divi- 
dend is given by the following compound diffusion-Poisson process: 

at = 60 exp( a --Xk) t+ zt ]yi (B2) 

where {zt} is a standard Gauss-Wiener process, {Nt} is a Poisson 
process with parameter X, and yi is the random size of the ith jump 
in the process {log bt}. For all i, yi is normally distributed with mean 
(Ay - 0.5k ) and variance a. The mean jump displacement k is equal 
to exp[AY] - 1. The random variables {Nt, t ' 0}, {zt, t - 0}, and {Yi, 
i - 1} are mutually independent and yi is independent of yj, for 

I . 
The Euler equations for the above economy yield the equilibrium 

price of the equity share at time t, St, to be St = Et6}y/Etby- 1, and the 
price at time t of a call option maturing at T and having an exercise 
price of Kis given by S c = Et6}1- max[6T -K, 0]/Et6}1-. Recall that 
given our assumptions, 6p7-1 is almost surely strictly positive. Evalu- 
ating the expectations in these pricing equations for the information 
process specified in Equation (B2), we get St= at exp[c(T- t)], where 

c = (a - Xk) + (y - 1) U2 + X [exp[7yA + 0.5-y('y - J)2] 

- exp[(y - 1)pu + 0.5(1 - ry)(2 - )0r2]] 

and 
00 

St =:p(n) W(St, kn, fn, O-n, ( T- t)) (B3) 
n=O 
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where 

p( n) = exp[-X(T T- t)] [X(T T- t)] n 

= ~~~n! 

and 

W(St kn7 Jn Jn (T- t)) = St exp[(-kn)(T- t)]N(d1n) 

- Kexp[(-fn)(T- t)]N(d2n), 

with 

kn= ={exp[-yAy + 0.5y(yy - 1)y] - 1} 

- (-yAy + 0.5y(y - 1)v) T-t' 

n= X{exp[(y - )y + 0.5(1 - y)(2 - y)o- y]1} 

- ((y - 1)y + 0.5(- 2)(-y -1)o) T-2t' 

2 =(2 + 2 n 

0 = 

' 
n (YT- t 

ln(SJ)+ f- kn-2 2n)(T- t) 

di 
nStK fn - 

kn+20 

t:ny/ T- 

+ CnV k~-~y )(T- t) 

The formula for the price of a put option has the same functional 
form as that in Proposition 3 with the parameters redefined as in 
Equation (B3). 

The above formula reduces to the Black-Scholes formula (with 
zero interest rate and no dividends) when X = 0, and reduces to the 
Cox-Ross formula (with zero interest rate and no dividends) when 
0. and ory are both equal to zero. 
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