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Abstract

Severe economic downturns like the great depression of the 1930s take place over ex-

tended periods of time. I model an economy where rare economic disasters increase the

likelihood of subsequent near term disasters. The mechanism generates more clustering

of disasters than existing models. Serial correlation in disasters has important impli-

cations for asset prices. For example, it generates a larger equity premium and a lower

risk free rate than similarly calibrated models without this feature. The calibrated

model developed here replicates the temporal structure of severe economic downturns

in OECD countries. It quantitatively explains the equity premium, the risk-free rate,

excess volatility and return predictability. It also generates the implied volatility smile

observed in equity index options.

∗I want to thank my dissertation committee Mark Grinblatt (chair), Antonio Bernardo, Hanno Lustig, and
Pierre-Olivier Weill. I am also grateful for comments from Gurdip Bakshi, Jack Bao, Bhagwan Chowdhry,
Alexander David, Mark Garmaise, Robert Geske, Anisha Ghosh, Benjamin Remy Holcblat, Burton Holifield,
Kewei Hou, Holger Kraft, Lars-Alexander Kuehn, Marc Martos-Vila, Emilio Osambela, Ari Pandes, Eduardo
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1 Introduction

To explain what has come to be known as the equity premium puzzle1, financial economists

have pointed to the risk of rare economic disasters. An example of such a disaster occurred

from 1930 to 1932, when the U.S. economy contracted by more than 10% each year. A

sequence of large annual declines in economic activity like this is difficult to reconcile with

existing disaster models developed in Rietz (1988), Barro (2006), Gabaix (2010), and Wachter

(2010), which view each disaster as an isolated rare event. The great depression experience

suggests that these events are not independent: Once an economic decline is experienced, it

is likely to repeat, causing the economic crisis to unfold over an extended period of time.

This paper models the general equilibrium dynamics of asset prices - including stocks,

bonds, and options - when large scale declines in consumption tend to cluster. If economic

agents rationally anticipate such clustering, their consumption and investment plans will

dramatically differ from those generated in the extant literature on rare events. Moreover,

they will revise their consumption and investment decisions in response to an initial ad-

verse consumption shock which could mark the beginning of a crisis. The desire to form

precautionary savings will then be more pronounced. This will increase demand for riskless

investments, resulting in a lower risk-free rate. Furthermore, increased uncertainty about

future economic health brought about by the arrival of a rare disaster makes agents reluc-

tant to hold risky assets. Fear of further economic downturns will require these assets to

increase their expected returns. Hence, valuation multiples like the price to dividend ratio

will drop and price declines will exceed the decline in cash flows. In most instances the econ-

omy will prove resilient; economic downturns will be short-lived, and, in hindsight, economic

participants will appear to have been overly prudent in their investment decisions. This

mechanism results in an ex-post excessive reaction of economic quantities to realized risk,

which can account for observed pricing phenomena. These include time-varying expected

returns and risk-premia that can be predicted by the price-dividend ratio as well as excess

stock market volatility.

The recent financial crisis of 2007-2009 illustrates one such episode where an initial dis-

aster occurred in one part of the financial sector that subsequently caused contagion with

widespread consequences throughout the financial system. Fear of this downturn to develop

into another great depression led households to slash consumption and investors to shy away

from risky assets.2

1See Mehra and Prescott (1985)
2This notion was echoed by respected economics:

Paul Krugman, New York Times, January 4, 2009: ”This looks an awful lot like the beginning of a second
Great Depression.”
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During the fourth quarter of 2008, nondurable consumption expenditures declined by

7.66%, which translates into an annualized reduction of 27.29%. This represents the single

largest drop in over half a century and constitutes an event more than six standard deviations

from its historical mean.3 During this period, S&P 500 option implied volatility, measured

by the Volatility Index (VIX) sharply increased from 18.81% on August 22nd to 80.86% on

November 20th and then reverted to a lower level in the months following these events.4

Explaining such a drastic jump in implied volatility within the context of a consumption

based asset pricing model requires a sudden change in one of the state variables characterizing

economic uncertainty, like the conditional probability of further economic disasters. Existing

models in the disaster risk literature assume the disaster intensity to be either constant over

time as in Barro (2006), predicting option-implied volatility to be constant over time as well,

or to be subject to time variation that is unrelated to disaster arrival e.g. Wachter (2010).

Under either set of assumptions, option-implied volatility does not respond to the occurrence

of a disaster itself. The implied volatility pattern experienced during the recent financial

crisis can be explained in a model where the arrival of a disaster magnifies the probability

of disasters in the near future.

Moreover, during the fourth quarter of 2008, the S&P 500 index declined from 1282.83

on August 29th to 903.25 on December 31st, a 29.59% drop, which far exceeds the contem-

poraneous decline in personal consumption of 7.66%. This excessive stock market reaction is

a recurring phenomenon summarized in Paul Samuelson’s remark that ”Wall Street indexes

[had] predicted nine out of the last five recessions”. Indeed, this stylized fact is not unique to

U.S. capital markets. Barro and Ursúa (2009) document that only 28% of all stock market

declines exceeding 25% are accompanied by a macroeconomic contraction exceeding 10% in

OECD countries. I contend that this apparent puzzle can be accounted for by the model

developed in this paper. The consumption drop in the fall of 2008 was a rare event that

caused a surge in the probability of further disasters. While no similar consumption shock

has happened to this day, the fear of another such disaster remains above its normal level

as evidenced by high dividend-yields, a low risk-free rate, and a VIX that is above average.

The economic consequences of the possibility that a disaster can beget a crisis are an-

alyzed in the context of a representative agent endowment economy. The model is set

in continuous-time where the agent’s preferences are expressed using stochastic differential

Robert Barro, Wall Street Journal, March 4, 2009: ”... there is ample reason to worry about slipping
into a depression. There is a roughly one-in-five chance that U.S. GDP and consumption will fall by 10% or
more, something not seen since the early 1930s.”

Quoted from Gourio (2010).
3BEA, National Income and Product Accounts, Table 1.1.5.
4See figure 1.
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utility. The departure from standard time-separable expected utility separates risk aversion

from the willingness to substitute consumption over time and has been proven successful

in addressing the equity premium and risk-free rate puzzles in the long-run risk literature

initiated by Bansal and Yaron (2004). Aggregate consumption is subject to both diffusive

risk and infrequent jumps, which account for the possibility of rare but potentially disastrous

events.

In order to capture the idea of serial correlation in disasters, I introduce a self-exciting

jump-diffusion into the consumption-based asset pricing framework. Self-exciting processes,

developed in Hawkes (1971b), have recently been brought to bear in the field of credit risk

modeling to explain the phenomenon of default clustering.5 In the context of the model

presented here, these processes allow the occurrence of a disaster to affect the intensity of

future disaster arrival. The conditional likelihood of further significant economic downturns

increases in response to a substantial adverse shock to consumption, leading to the possibility

of self-perpetuating economic disasters. Self-exciting disaster risk in conjunction with a

preference for early resolution of uncertainty gives rise to an additional channel by which

disasters affect risk-premia, interests rates, and asset prices. Expected utility does not exhibit

a preference for the timing of resolution of uncertainty, which stochastic differential utility

does.

With a preference for the timing of resolution of uncertainty, the pricing kernel involves

continuation utility as well as instantaneous consumption growth. This dependence of the

stochastic discount factor on continuation utility makes makes it necessary to solve for the

representative agent’s value function in order to obtain equilibrium asset prices. Since the

partial differential equation characterizing indirect utility is nonlinear, standard PDE tech-

niques such as Fourier and Laplace transforms, which are essentially linear operations, are

of no avail in this situation. Instead, I resort to a log-linear approximation of the non-linear

term in the PDE around the unconditional mean consumption-to-wealth ratio, which is en-

dogenous to the model, in order to address this issue.6 This approximation is exact if the

representative agent has unit elasticity of intertemporal substitution and yields closed form

solutions for the pricing kernel, the risk-free rate, and risk-premia. Valuation ratios of claims

to aggregate consumption and corporate dividends are then exponentially affine functions of

the state variables. This affine structure gives rise to equity option prices in quasi closed-

form that can be efficiently determined by Fourier inversion techniques along the lines of

5See Azizpour, Giesecke, and Schwenkler (2010)
6This approximation has been suggested by Campbell, Chacko, Rodriguez, and Viceira (2004) in the

context of a portfolio choice problem and since been employed by Drechsler (2010) in an asset pricing
application. Alternative approximations has been proposed by Benzoni, Collin-Dufresne, and Goldstein
(2007) and Eraker and Shaliastovich (2008).
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Duffie, Pan, and Singleton (2000).

In order to illustrate the model’s quantitative implications for stocks, government bonds,

and equity options, I calibrate the parameters to historical data on U.S. aggregate consump-

tion and corporate dividends from the 20th century as well as historical macroeconomic crises

in OECD countries documented by Barro and Ursúa (2009). Under realistic assumptions

on the representative agent’s preferences, the model is able to match the magnitude of the

observed historical equity premium and the risk free rate. Furthermore, both the model-

implied treasury bill rate and the price-dividend ratio decline during times of crisis. The

equity premium and the VIX shoot up in response to a disaster giving rise to countercyclical

variation of these quantities. Monte Carlo simulations demonstrate the model’s ability to

account for excess-return predictability. Finally, the mechanism generates implied volatility

patterns close to the smile observed for S&P 500 equity index options.

Rare disasters have been proposed as a solution to the equity premium puzzle.7 Barro

(2006) provides international evidence of macroeconomic contractions that can account for

the equity premium and the risk-free rate with reasonable levels of risk aversion. Gabaix

(2010) models time variation in the disaster magnitude to explain stylized facts including

time variation in equity premia and return predictability. Wachter (2010) shows that time

variation in the disaster intensity can account for aggregate stock market volatility. In

contrast to these models, self-exciting disasters explain extended economic crises, jumps in

option implied volatilities during economic downturns, and large stock price reactions in

response to moderate declines in consumption.

The theory of self- exciting Hawkes-processes has recently been applied to problems in

finance.8 Azizpour, Giesecke, and Schwenkler (2010) demonstrate the ability of self-exciting

processes to account for the observed phenomenon of default clustering in credit markets.

Ait-Sahalia, Cacho-Diaz, and Laeven (2010) study portfolio choice when stock returns in

different markets are subject to self- and mutually-exciting jumps and use GMM to estimate

a model of financial contagion across countries. My paper uses self-exciting processes to

study general equilibrium asset pricing.

The paper is organized as follows. Section 2 introduces the model and derives general

equilibrium results for claims to corporate dividends and aggregate consumption, government

debt, as well as equity index options in this endowment economy. Section 3 presents a

calibration to historical U.S. data and empirically investigates the asset pricing implications

of the economic channel proposed in this paper. Section 4 concludes the analysis of this

7See Rietz (1988) and Mehra and Prescott (1988).
8See Hawkes (1971a) and Hawkes (1971b) for the original development. For a generalization to affine point

processes see Errais, Giesecke, and Goldberg (2010). Methods for efficient simulation of these generalized
Hawkes processes are provided in Blanchet, Giesecke, Glynn, and Zhang (2009).
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paper. The appendix presents a generalized version of the model that features long-run

risk as well as stochastic volatility in consumption and accounts for the possibility that rare

disasters are generated by a finite number of interrelated mutually-exciting jump processes.

Technical proofs following in the appendix are provided for the general model.

2 Model

2.1 Endowment Process

I model a representative agent endowment economy. Consumption growth is subject to

diffusive risk as well as rare disasters. The conditional probability of a disaster λt is governed

by a self-exciting process. The dynamics are as follows:

dCt
Ct−

= µCdt+ σCdBC,t +
(
eY

C
t − 1

)
dNt (1)

dλt = κλ(λ̄− λt)dt+ σλ
√
λtdBλ,t + Y λ

t dNt (2)

Nt is a counting process with stochastic intensity λt. The Brownian motions driving

consumption growth Ct and the jump intensity Bλ are assumed to be mutually independent.

For succinctness of notation, I will let Bt denote the multidimensional Brownian motion

(BC,t, Bλ,t)
T . The counting process Nt triggers jumps of random size in consumption growth

as well as its conditional intensity λt. The distribution of the jump size in consumption, Y C
t ,

is allowed to have support on the entire real line. In order to ensure that the disaster intensity

remains positive, the jump size in λt is the restricted to upwards jumps, i.e. Y λ
t > 0. Let Yt

denote the vector (Y C
t , Y

λ
t )T and assume that Yt is independent of both Bt and Nt. The joint

distribution of the disaster jump size and the upwards revision of the conditional disaster

intensity can be characterized by the moment generating function ΦY (u) = E
[
exp

(
uT · Yt

)]
.

This setup nests both a continuous-time version of Barro’s constant disaster risk model

as well as the time-varying rare disaster model by Wachter (2010). The novel feature of the

approach presented here is the use of a self-exciting jump process to capture the idea that

the occurrence of a rare disaster also results in a sharp increase of the conditional probability

of another disaster.

2.2 Preferences

The representative agent has recursive preferences which have been developed by Kreps and

Porteus (1978), Epstein and Zin (1989), and Weil (1989) in discrete time. This paper employs
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its continuous-time counterpart, stochastic differential utility (SDU), introduced by Duffie

and Epstein (1992a,b). Continuation utility of the representative agent, Jt, is defined by the

recursion

Jt = Et
[∫ ∞

t

f(Cs, Js)ds

]
, (3)

where f(C, J) is the normalized Porteus-Kreps aggregator

f(C, J) =
β

1− 1
ψ

J(1− γ)

(
C1− 1

ψ

((1− γ)J)
1
θ

− 1

)
for ψ 6= 1 (4)

f(C, J) = β(1− γ)J

(
logC − 1

1− γ
log ((1− γ)J)

)
for ψ = 1. (5)

In this definition, β assumes the role of a subjective time-discount factor, γ is the coefficient

of relative risk aversion, ψ denotes the elasticity of intertemporal substitution (EIS), and

the constant θ is defined as θ = 1−γ
1− 1

ψ

. In the special case where γ = 1
ψ

, the preference

structure coincides with power utility. If γ > 1
ψ

the representative agent prefers early over

late resolution of uncertainty.

2.3 Solution

The ultimate purpose in solving this asset pricing problem is in obtaining equilibrium char-

acterizations for such economic quantities as the wealth-consumption ratio, the risk free

rate, the equity premium, the dividend-yield, and the price of European options. We are

furthermore interested in the effect of an upwards revision in the disaster intensity on these

quantities in response to the arrival of such an event. The equilibrium stochastic discount

factor that prices assets in equilibrium depends on consumption growth as well as contin-

uation utility. It is therefore required to first solve for the equilibrium value function of

representative agent in order to study asset pricing problems in this economy.

2.3.1 The Value Function

The value function is obtained by rewriting the recursive definition (3) in terms of a partial

differential equation (PDE). This is possible since consumption and the disaster intensity

are Markov processes. Hence, continuation utility at time t is a function of consumption and

the disaster intensity at time t only. That means. Jt can be written as J(Ct, λt).
9 Applying

9Note that the Markov property implies

Jt = Et
[∫ ∞

t

f(Cs, Js)ds

]
= E

[∫ ∞
t

f(Cs, Js)ds

∣∣∣∣Ct, λt] = J(Ct, λt).
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a Feynman-Kac type argument to the recursive definition of continuation utility given in

equation (3) results in the PDE

DJt + f(Ct, Jt) = 0,

where DJt denotes the infinitesimal generator associated with the dynamics of Ct and λt.
1011

Substituting the expression for the infinitesimal generator derived in the appendix yields the

PDE 12

JCµCCt + Jλκλ(λ̄− λt) +
1

2
JCCσ

2
CC

2
t +

1

2
Jλλσ

2
λλt + Et− [∆Jt]λt + f(Ct, Jt) = 0, (6)

where ∆Jt denotes the jump size in the value function conditional on a jump of N .13 Since

the value function is homogeneous of degree 1− γ in consumption, one can write14

J(C, λ) =
C1−γ

1− γ
I(λ),

where I(λ) solves the differential equation

(1−γ)µC−
1

2
γ(1−γ)σ2

C+
Iλ
I
κλ(λ̄−λt)+

1

2

Iλλ
I
σ2
λλt+Et−

[
eY

C
t
I(λt− + Y λ

t )

I(λt)
− 1

]
λt+f(Ct, Jt) = 0.

(7)

This differential equation involves the aggregator f(C, J) which depends on whether the

elasticity of intertemporal substitution is equal to or different from one. The following

proposition provides a closed form solution for the case where the representative agent has

unit elasticity of intertemporal substitution.

Proposition 1 (Equilibrium Value Function for ψ = 1). If the representative agent has unit

10See the appendix for a heuristic derivation.
11The infinitesimal generator of J associated with (C, λ) is defined as

DJt = lim
h→0

Et− [J(Ct+h, λt+h)− J(Ct−, λt−)]

h
.

12I use the notation gX to denote the partial derivative of a function g with respect to X, except for gt,
which denotes the value of that function at time t.

13That means ∆Jt = J(Ct, λt) − J(Ct−, λt−) = J(Ct− · eY
C
t , λt− + Y λt ) − J(Ct−, λt−). In general, I use

∆Xt to denote the jump size in the process Xt conditional on a jump of Nt at time t.
14Homogeneity of the value function is established in lemma B.1.
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elasticity of intertemporal substitution ψ = 1, then the value function solving (6) is given by

J(C, λ) =
C1−γ

1− γ
· exp (A0 + Aλλ) .

where the coefficients A0 and Aλ satisfy the system of equations

0 = (1− γ)µC −
1

2
γ(1− γ)σ2

C + Aλκλλ̄− βA0

0 = −Aλ(β + κλ) +
1

2
A2
λσ

2
λ +

(
ΦY (η̂)− 1

)
,

with η̂ = (1− γ,Aλ)T .

Proof. See appendix.

The constants A0 and Aλ are determined by a non-linear system of equations and need

to be solved for numerically.

In the case where the EIS is different from one, the differential equation (7) is non-linear

and does not have a closed form solution. A method introduced by Campbell, Chacko,

Rodriguez, and Viceira (2004), however, admits a log-linearization of the nonlinear term in

this equation around the mean consumption-wealth ratio. The approximate solution for I(λ)

then takes the same functional form as in the case of a unit EIS. The following proposition

states the solution for the value function that results from this approximation.

Proposition 2 (Equilibrium Value Function for ψ 6= 1). If the representative agent has

elasticity of intertemporal substitution ψ that is different from one, then the value function

solving a Campbell, Chacko, Rodriguez, and Viceira (2004) approximation of (6) is given by

J(C, λ) =
C1−γ

1− γ
· exp (A0 + Aλλ) .

The coefficients A0 and Aλ satisfy the system of equations

0 = (1− γ)µC −
1

2
γ(1− γ)σ2

C + Aλκλλ̄+ θi0 + θi1 log β − βθ − i1A0

0 = −(κλ + i1)Aλ +
1

2
A2
λσ

2
λ +

(
ΦY (η̂)− 1

)
,

with η̂ = (1− γ,Aλ)T . The linearization constants are given by

i1 = β exp

(
−A0

θ
− Aλ

θ
E [λt]

)
and i0 = i1(1− log(i1)).
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Proof. See appendix.

The coefficients A0 and Aλ must again be determined numerically. In the calibration

below, Aλ is positive. Since γ > 1, the representative agent dislikes an increase in the

disaster intensity at the empirically relevant parameter values with a preference for early

resolution of uncertainty.

2.3.2 Asset Prices, Risk Premia, and the Risk Free Rate

In the absence of arbitrage, the price Pi,t of an asset paying dividend Di,s at time s ≥ t

solves

πtPi,t = Et
[∫ ∞

t

πsDi,sds

]
, (8)

where πt denotes the pricing kernel. The following proposition provides a differential char-

acterization for asset prices.

Proposition 3 (No-Arbitrage Pricing PDE). The no-arbitrage price Pi,t of a claim that

yields dividends Di,s at time s ≥ t satisfies the PDE

D(πt · Pi,t)
πt− · Pi,t−

+
Di,t−

Pi,t−
= 0,

which can be decomposed as15

Dπct
πt−

+
DP c

i,t

Pi,t−
+

d [πc, P c
i ]t

πt− · Pi,t− · dt
+

Et− [∆ (π · Pi)t]λt−
πt− · Pi,t−

+
Di,t−

Pi,t−
= 0. (9)

Proof. The proof of the first equation proceeds along the same line as the derivation of the

PDE for the value function. Equation (9) then follows from an application of Ito’s rule for

jump-diffusions.

This is an extension of the cash flow pricing equation in continuous-time to a jump-

diffusion setting.16

A risk free asset pays dividends at a rate rf,t and has a constant price Prf ,t. By applying

equation (9) one obtains the following characterization for the risk-free rate.

Proposition 4 (Risk Free Rate). The instantaneous risk free rate is given by

rf,t− = −Dπ
C
t

πt−
− Et− [∆πt]λt−

πt−
= −Dπt

πt−
. (10)

15The superscript c denotes the continuous part of a process. See Shreve (2004, chap. 11) for details.
16See Cochrane (2001, page 32) for the case of purely diffusive risk.
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Proof. A risk-free asset with instantaneous dividend yield Dt
PD,t

= rf,t has constant price

Prf ,t = Prf . Since dPrf ,t = 0, we have DPrf ,t = 0, d
[
πC , PC

D

]
t

= 0 and hence D (πc · P c
D) = 0,

and ∆(π · Prf )t = ∆πt. Upon substitution into (9), one obtains (10).

The instantaneous expected return of a risky asset paying dividend stream {Di,s}s≥t is

the sum of the expected appreciation of the continuous part, the expected return of the jump

component, and the instantaneous dividend yield, that is

Et−[ri,t] =
DP c

i,t

Pi,t−
+

Et− [∆Pi,t]λt−
Pi,t−

+
Di,t−

Pi,t−
.

Combining propositions 3 and 4 and using the definition of the expected return given above

one obtains the risk premium of a dividend paying asset, which is stated in the following

proposition.

Proposition 5 (Risk Premium). The instantaneous risk premium of a claim to dividends

{Di,s}s≥t is given by

Et− [ri,t]− rf,t− =
DP c

i,t

Pi,t−
+

Et− [∆Pi,t]λt−
Pi,t−

+
Di,t−

Pi,t−
− rf,t−

= − d [πc, P c
i ]t

πt− · Pi,t− · dt
− Et− [∆πt ·∆Pi,t]λt−

πt− · Pi,t−

(11)

Proof. See appendix.

The risk premium consists of two components. The first term represents compensation

for diffusive risk, whereas the second component designates the premium arising from the

exposure to disaster risk.

2.3.3 The Pricing Kernel

Duffie and Epstein (1992a) and Duffie and Skiadas (1994) show that the process πt given by

πt = exp

(∫ t

0

fJ(Cs, Js)ds

)
fC(Ct, Jt) (12)

can serve as a pricing kernel in a representative agent economy with stochastic differential

utility. The following proposition provides a characterization of the dynamics of the pricing

kernel as well as the equilibrium risk free rate.
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Proposition 6 (Pricing Kernel and Risk Free Rate). The dynamics of the pricing kernel

are governed by

dπt
πt−

= −rf,tdt+ ηTσtdBt +
(
exp

(
ηTYt

)
− 1
)
dNt −

(
ΦY (η)− 1

)
λtdt,

with π0 = 1, where η denotes the market price of risk vector

η =

(
−γ,

(
1− 1

θ

)
Aλ

)T
and σt denotes the matrix of diffusion coefficients

σt =

(
σC 0

0 σλ
√
λt

)
.

The equilibrium risk free rate is

rf,t = β +
1

ψ
µC−

[
1

2
γ

(
1 +

1

ψ

)]
σ2
C +

1

2

1

θ

(
1− 1

θ

)
A2
λσ

2
λλt + Λλt,

where Λ =
(
1− 1

θ

) (
ΦY (η̂)− 1

)
−
(
ΦY (η)− 1

)
.

Proof. See appendix.

The risk-free rate is a linear function of the disaster intensity. The first two terms

represent the subjective time preference and the desire to smooth a consumption stream

that is expected to grow over time. Both terms make a positive contribution to the risk-

free rate. The second effect is declining in the willingness of the representative agent to

substitute consumption over time. The third term arises from a motive to form precautionary

savings as insurance against diffusive shocks. It is linear in both the degree of risk aversion

and the variance of diffusive risk and lowers the risk-free rate. The last term on the right

hand side captures the total effect of disasters on the risk-free rate. The term 1/(2θ)(1 −
1/θ)A2

λσ
2
λλt accounts for the effect of an increase in the diffusive volatility of the jump

intensity σλ
√
λt on continuation utility brought about by an increase in the disaster intensity.

The desire to insure against shocks to the disaster intensity stemming from diffusive risk is

more pronounced if the disaster intensity is high and lowers the risk free rate if both relative

risk aversion and the EIS exceed one and the representative agent prefers early resolution of

uncertainty, i.e. γ > 1/ψ.17 The remaining term Λλt captures both precautionary savings

17To see this, first note that
(
1− 1

θ

)
=

1
ψ−γ
1−γ > 0 if γ > 1 and the representative agent prefers early
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to compensate for lost consumption in the event of a disaster and hedging demand against

the upwards revision of the disaster intensity following disaster arrival. It can be shown

that these effects have a negative impact on the risk-free rate if the representative agent

has a unit EIS and relative risk aversion is greater than one.18 in the empirical calibration,

which has ψ > 1, this term is negative as well. This means that the unconditional risk free

rate is lower in equilibrium than in a model without disasters. Furthermore, the fact that

self-excitation increases disaster risk λt in response to a disaster implies that the risk-free

rate drops during times of crisis.

2.4 Defaultable Short-Term Government Debt

Historically, economic crises have often been accompanied by at least a partial default of the

government on its liabilities. To account for this possibility, I follow Barro and Wachter in

assuming that whenever a rare disaster occurs, the government defaults with probability q.

The fraction of notional that is lost in the event of default is identical to the reduction in

consumption due to the disaster.

Let rL,t denote the promised interest rate on short term government debt. Given contin-

uous reinvestment of interest payments, the value of government debt PL,t evolves according

to
dPL,t
PL,t−

= rL,tdt+
(
eY

L
t − 1

)
dNk,t,

where Y L
t = Y C

t with probability q and Y L
t = 0 with probability 1− q. Since this investment

strategy yields no dividends, PL,t satisfies the pricing equation

Dπct
πt−

+
DP c

L,t

PL,t−
+
d [πc, P c

L]t
πt−PL,t−dt

+
Et− [∆ (π · PL)t]λt−

πt−PL,t−
= 0.

The equilibrium rate promised by the government on short-term debt can then be charac-

terized as follows.

Proposition 7 (Equilibrium Interest Rate on Short-Term Government Debt). The instanta-

neous interest rate on defaultable short term debt promised by the government in equilibrium

resolution of uncertainty, i.e. γ > 1/ψ. Furthermore, 1
θ =

1− 1
ψ

1−γ < 0 if ψ > 1 and γ > 1/ψ. Hence

1/(2θ)(1− 1/θ)A2
λσ

2
λλt > 0

18Note that ψ = 1 implies 1
θ = 0. Hence the expression

(
1− 1

θ

) (
ΦY (η̂)− 1

)
−
(
ΦY (η)− 1

)
simplifies to

E
[
exp

(
−γY Ct +AλY

λ
t

) (
exp

(
Y Ct
)
− 1
)]

. Since Y tC < 0, the factor exp (Y tC) − 1 is negative. Additionally,

exp
(
−γY Ct +AλY

λ
t

)
is positive for Aλ > 0. Hence their product is negative.
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is

rL,t = rf,t +
[
ΦY (η)− ΦY (η̃)

]
qλt,

where η̃ =
(
1− γ,

(
1− 1

θ

)
Aλ
)T

.

Proof. See appendix.

The default risk premium on government debt
[
ΦY (η)− ΦY (η̃)

]
qλt is positive and in-

creasing in both the disaster intensity λt and the probability of default conditional on a

disaster q.19

The expected return on government bills rb,t =
DPL,t
PL,t−

incorporates an adjustment of the

promised rate rL,t for the unconditional expected loss in the event of government default. It

is given by20

rb,t = rL,t +
(
ΦY (e1)− 1

)
qλt.

This adjustment is the product of the disaster intensity λt, the probability of government

default conditional on a disaster q, and the expected loss given default ΦY (e1) − 1 =

E
[
exp

(
Y C
t

)
− 1
]
< 0.

The risk premium of an asset with respect to the return on government debt is related

to the risk premium with respect to the risk-free rate by

Et [ri,t − rb,t] = Et [ri,t − rf,t] +
[
ΦY (η̃)− ΦY (η)−

(
ΦY (e1)− 1

)]
qλt.

The risk premium measured with respect to the return on government bills is below that

with respect to the risk-free rate, which accounts for the exposure to systematic default risk

of government debt.21

19Note that

ΦY (η)− ΦY (η̃) = E
[
exp

(
−γY Ct +

(
1− 1

θ

)
AλY

λ
t

)
·
(
1− exp

(
Y Ct
))]

> 0

if Aλ > 0, γ > 1, and γ > 1
ψ , i.e. investors prefer early resolution of uncertainty, since Y Ct < 0 and Y λt > 0.

20ei denotes a vector whose ith element is 1 and all remaining elements are 0.
21Note that the term

ΦY (η̃)− ΦY (η)−
(
ΦY (e1)− 1

)
= E

[(
exp

(
−γY Ct +

(
1− 1

θ

)
AλY

λ
t

)
− 1

)(
exp

(
Y Ct
)
− 1
)]

is negative, since exp
(
−γY Ct +

(
1− 1

θ

)
AλY

λ
t

)
> 1 and exp

(
Y Ct
)
< 1 if γ > 1, Aλ > 0, and the representa-

tive agent prefers early resolution of uncertainty.
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2.5 The Price of a Consumption Claim

The representative agent’s wealth in this economy is the present value of all future consump-

tion, that is the price of an asset that pays consumption as its dividend given by

PC,t = Et
[∫ ∞

t

πs
πt
Cs

]
.

The valuation ratio of the consumption claim, i.e. the wealth-consumption ratio, is denoted

by Ht =
PC,t
Ct

. The following two propositions give the wealth-consumption ratio and the

consumption risk premium for the cases ψ = 1 and ψ 6= 1 respectively. If the representative

agent has unit elasticity of intertemporal substitution, the solution is exact and the wealth-

consumption ratio is a constant β−1.

Proposition 8 (Wealth-Consumption Ratio and Consumption Risk Premium for ψ = 1).

If the representative agent has unit elasticity of intertemporal substitution ψ = 1, then the

wealth-consumption ratio is Ht = β−1. The instantaneous risk premium of a claim to the

consumption stream is given by

Et− [rC,t − rf,t−] = γσ2
C +

[
ΦY (η)− ΦY (η̂) + ΦY (e1)− 1

]
λt−

Proof. See appendix.

In the case where ψ is different from one, an approximate solution exists, which log-

linearizes the consumption-wealth ratio around its unconditional mean applying the same

technique as in proposition 2.

Proposition 9 (Wealth-Consumption Ratio and Consumption Risk Premium for ψ 6= 1). If

the representative agent has elasticity of intertemporal substitution different from one, then

the wealth-consumption ratio is given by

H(λ) = exp
(
AC0 + ACλ λ

)
,

where the AC0 = −logβ + A0

θ
and ACλ = Aλ

θ
. The instantaneous risk premium on a claim to

consumption with respect to the risk free rate is

Et− [rC,t − rf,t−] =γσ2
C +

[
ΦY (η)− ΦY (η̂) + ΦY

(
ηC
)
− 1
]
λt−,

with ηC =
(
1, ACλ

)T
.

Proof. See appendix.
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2.6 Valuation of a Claim to Corporate Dividends

Following Abel (1999), Campbell (2003), and Wachter (2010), I model corporate dividends

Dt as a levered claim to consumption by letting Dt = Cφ
t . Dividend growth is then governed

by
dDt

Dt−
=

(
φµC +

1

2
φ(φ− 1)σ2

C

)
dt+ φσCdBc,t +

(
eφY

C
t − 1

)
dNt. (13)

I will denote the time t price-dividend ratio of a claim to the dividend stream {Ds}s≥t by

Gt = G(λt). The price of equity PD,t = Dt ·Gt follows

dPD,t
PD,t−

=

(
φµC +

1

2
φ(φ− 1)σ2

C

)
dt+

Gλ

Gt

κλ(λ̄− λt)dt+
1

2

Gλλ

Gt

σ2
λλtdt

+ φσCdBc,t + σλ
Gλ

Gt

√
λtdBλ,t +

∆(D ·G)t
Dt−Gt−

dNt.

Substitution of the dynamics for the equity price and the stochastic discount factor into

equation (9) yields a differential equation for G(λ). Log-linearization of the dividend-yield

around its unconditional mean gives rise to an approximation whose solution is exponentially

affine in the the disaster intensity. The following proposition summarizes this solution and

provides and expression of the equity premium with respect to the risk-free rate.

Proposition 10 (Price Dividend Ratio). The equilibrium price-dividend ratio of a claim to

corporate dividends is given by

G(λ) = exp
(
AD0 + ADλ λ

)
,

where the coefficients AD0 and ADλ satisfy the system of equations

0 =− β +

(
φ− 1

ψ

)
µC +

(
1

2
γ

(
1 +

1

ψ

)
− γφ+

1

2
φ (φ− 1)

)
σ2
C + ADλ κλλ̄+ g0 − g1A

D
0

0 =
1

2

(
ADλ
)2
σ2
λ − (κλ + g1)ADλ +

(
1− 1

θ

)
Aλσ

2
λA

D
λ −

1

2

1

θ

(
1− 1

θ

)
A2
λσ

2
λ

−
(

1− 1

θ

)(
ΦY (η̂)− 1

)
+
(
ΦY
(
η + ηD

)
− 1
)
,

with ηD =
(
φ,ADλ

)T
. The instantaneous equity risk premium with respect to the risk-free rate

is given by

Et− [rD,t − rf,t−] = γφσ2
C −

(
1− 1

θ

)
Aλσ

2
λA

D
λ λt− + ΛDλt−,

where ΛD =
[
ΦY (η) + ΦY

(
ηD
)
− ΦY

(
η + ηD

)
− 1
]
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Proof. See appendix.

The equity premium consists of three components. The first term γφσ2
C is present in a

standard Lucas (1978) endowment economy in the absence of disasters. It denotes compensa-

tion for shocks to consumption due to the Brownian motion. The term −
(
1− 1

θ

)
Aλσ

2
λA

D
λ λt

arises from the representative agent’s objective to hedge against diffusive shocks to the dis-

aster intensity. In the calibration presented below, this term, which has been studied by

Wachter (2010), contributes positively to the equity risk premium and is increasing in the

disaster intensity.22 The remaining term ΛDλt captures the effect of both disasters them-

selves and the resulting increase of the disaster intensity due to their arrival. These effects

raise the equity premium.23 The assessment of the relative magnitude of these two effects is

a quantitative exercise that is carried out as part of the calibration presented below. It turns

out that at the empirically relevant parameters, the second effect accounts for the major

part of the equity premium. Hence, the representative agent is less anxious about the loss in

consumption due a disaster itself than the possibility that this event could lead to a sequence

of disasters.

2.7 The Risk-Neutral Measure

In order to determine equilibrium prices of financial derivatives, it is convenient to work

under an equivalent risk-neutral measure P̃. To construct this probability measure, define the

exponential martingale Zt = exp
(∫ t

0
rudu

)
πt. Since Zt satisfies Zt > 0 a.s. and E [Zt] = 1,

it is a Radon-Nikodym derivative. Fix a positive time T and define the equivalent probability

measure P̃ by

P̃(A) =

∫
ω∈A

ZT (ω)dP(ω) for all A ∈ FT .

Under this measure, the price at time t of an asset that provides a dividend stream {Di,s}∞s=t
is given by

Pi,t = Ẽ
[∫ ∞

t

e−
∫ s
t ruduDi,sds

∣∣∣∣Ft] .
22Note that 1 − 1

θ =
1
ψ−γ
1−γ is positive for γ > 1 and γ > 1

ψ , i.e if the representative agent prefers early

resolution of uncertainty. Moreover, Aλ > 0 and ADλ < 0, which ensures that −
(
1− 1

θ

)
Aλσ

2
λA

D
λ λt is

positive.
23To see this, first note that 1 − 1

θ =
1
θ−1

1−γ > 0 if γ > 1 and the representative agent has a preference for
early resolution of uncertainty. Therefore

ΦY (η)+ΦY
(
ηD
)
−ΦY

(
η + ηD

)
−1 = E

[(
exp

(
−γY Ct +

(
1− 1

θ

)
AλY

λ
t

)
− 1

)(
1− exp

(
φY Ct +ADλ Y

λ
t

))]
> 0,

since exp
(
−γY Ct +

(
1− 1

θ

)
AλY

λ
t

)
> 1 and exp

(
φY Ct +ADλ Y

λ
t

)
< 1 with Aλ > 0 and ADλ < 0.
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The Radon-Nikodym derivative process Zt in this model is governed by

dZt
Zt−

= ηTσtdBt +
(
exp

(
ηTYt

)
− 1
)
dNt −

(
ΦY (η)− 1

)
λtdt,

with initial condition Z0 = 1. The dynamics of consumption, dividends, and disaster risk

which obtain under P̃ are summarized by the following proposition.

Proposition 11 (Dynamics Under the Risk-Neutral Measure). The dynamics for consump-

tion growth, dividend growth, and the state variables under the risk-neutral measure P̃ are

given by

d lnCt =

[
µC −

(
γ +

1

2

)
σ2
C

]
dt+ σCdB̃C,t + Y C

t dÑt

d lnDt = φ

[
µC −

(
γ +

1

2

)
σ2
C

]
dt+ φσCdB̃C,t + φY C

t dÑt

dλt =

[
κλ(λ̄− λt) +

(
1− 1

θ

)
Aλσ

2
λλt

]
dt+ σλ

√
λtdB̃t + Y λ

t dÑt,

where B̃C and B̃λ are independent Brownian motions under P̃. Furthermore, the intensity

of the counting process Ñ is

λ̃t = ΦY (η)λt

under the martingale measure P̃. The moment-generating function of Yt under P̃ is given by

Φ̃Y (u) =
ΦY (u+ η)

ΦY (η)
.

Proof. See appendix.

Under the risk-neutral measure, the drift of both log consumption and log dividend

growth is reduced by a component which increases in risk aversion, volatility of diffusive

shocks to consumption, and corporate leverage. Furthermore, the intensity of disasters

under the equivalent martingale measure is higher than under the physical measure.24

The dynamics of the logarithm of the price of equity under the risk neutral measure

follow immediately from the proposition above.

Corollary 1 (Dynamics of the Price of Equity under P̃). The log-Price of equity lnPD,t is

24Note that ΦY (η) = E
[
exp

(
−γY Ct +AλY

λ
t

)]
> 1 since Aλ > 0.
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governed by the process

d lnPD,t =

[
φ

(
µC −

(
γ +

1

2

)
σ2
C

)
+ ADλ

(
κλ
(
λ̄− λt

)
+

(
1− 1

θ

)
Aλσ

2
λλt

)]
dt

+φσCdB̃C,t + ADλ σλ
√
λtdB̃λ,t +

(
φY C

t + ADλ Y
λ
t

)
dÑt

under the risk-neutral measure P̃.

Proof. See appendix.

2.8 Equilibrium Prices of European Derivatives

Equilibrium Prices of European options that arise in this endowment economy can be com-

puted in quasi-closed form using transform techniques developed by Carr and Madan (1999)

and Duffie, Pan, and Singleton (2000). The following proposition provides the Fourier trans-

form of the price of a general state contingent claim on equity with European exercise that

pays f(lnPD,t) at maturity date T .

Proposition 12 (Prices of European Derivatives). Let xt = lnPD,t and consider a state

contingent claim which yields a cash flow of f(xT ) at expiration T . Denote by Pf,t =

Ẽ
[

exp
(
−
∫ T
t
rf,sds

)
f(xT )

∣∣∣Ft] the equilibrium price of the derivative at time t ≤ T . The

Fourier transforms FPf,t(u) =
∫∞
−∞ e

i·u·xtPf,t(xt)dxt is given by

FPf,t(u) = exp(i · u · xt) · Ff(u) · Ψ̃x(t, x,−u, T ),

where Ψ̃x
t,T (t, x, u, T ) = Ẽ

[
exp

(
−
∫ T
t
rf,sds

)
exp (iuxT )

∣∣∣Ft] denotes the discounted charac-

teristic function of the log price of equity under the risk-neutral measure.

Proof. See appendix.

This result is an application of the method developed in Lewis (2000) to a representative

agent economy with self-exciting disaster risk. The derivative price at time t can then be

determined by Fourier inversion, which entails numerical integration along a strip parallel

to the real axis, i.e. an evaluation of the integral

Pf,t =
1

2π

∫ iω+∞

iω−∞
exp (−iuxt)FPf,t(u)du, (14)

for appropriate choice of ω ∈ R.

The applicability of this result in practice depends on the availability of simple expressions

for the discounted characteristic function of the log price of equity as well as the Fourier

19



transform of the derivative payoff. The appendix provides the joint discounted characteristic

function of the log equity price and the disaster intensity arising from this consumption

based model up to the solution of a system of ordinary differential equations, which are

solved numerically. The Fourier transform of the payoff at expiration of a European option

with log strike price k is given by

Ff(u) =
exp ((iu+ 1)k)

iu(iu+ 1)
.

For the valuation of call options, the integral (14) is computed with ω > 1 whereas put

option prices are obtained by choosing ω < 0.

3 Calibration and Simulation

In order to illustrate the economic implications of self-exciting disaster risk quantitatively,

the model is calibrated according to a dataset on economic crises documented in Barro and

Ursúa (2009). The ability of self-perpetuating economic disasters to account for stylized

asset pricing facts is then investigated based on a simulation of the calibrated model.

3.1 Calibration

The dynamics of consumption growth and the disaster intensity of the model to be calibrated

are given by

dCt = µCCtdt+ σCCtdBC,t + Ct−
(
exp

(
Y C
t

)
− 1
)
dNt

dλt = κλ
(
λ̄− λt

)
dt+ σλ

√
λtdBλ,t + Y λ

t dNt,

where BC,t and Bλ,t are independent Brownian motions and Nt is a counting process with

intensity λt. In order to ensure that disasters reduce consumption, the jump size Y C
t has a

negative Gamma distribution with shape parameter aJ and scale parameter bJ , i.e. −Y C
t

i.i.d.∼
GA(aJ , bJ). For simplicity, I assume that whenever a disaster occurs, the conditional disaster

intensity λt jumps up by a constant Y λ. A calibration hence involves picking values for the

8 parameters µC , σC , κλ, λ̄, σλ, aJ , bJ , and Y λ.

The consumption dynamics during non-crisis times are identical to existing models in

the disaster risk literature such as Barro (2006) and Wachter (2010). In order to facilitate

comparison with these models, I adopt their parameter choices for the mean and the standard

deviation of consumption growth during normal times and set µC = 0.0252 and σC = 0.02.

Wachter considers time variation in the disaster intensity that is unrelated to disaster arrival.

20



To clearly distinguish the ability of self-perpetuating economic disasters to explain stylized

asset pricing facts, I shut down the channel investigated in her paper by setting σλ = 0.

The remaining parameters of the model, which control both the magnitude and the tem-

poral behavior of economic crises, are calibrated to match salient features of a dataset on

macroeconomic crises around the world presented in Barro and Ursúa (2008). The major

characteristics of this dataset are summarized in Barro and Ursúa (2009), which also matches

economic crises with contemporaneous declines in a stock market index. The study docu-

ments 100 severe economic downturns across 30 countries during which the macroeconomy

contracted by more than 10%. In this paper, I am trying to explain stylized asset pricing

facts for the U.S. I am restricting the sample to crises in 20 OECD countries since their

economies and capital markets exhibit a higher degree of similarity with the those of the

U.S.

Both the duration and the magnitude of each of the 57 crises remaining after this selection

procedure are provided in Barro and Ursúa (2009) and are summarized in table 2 of the

present paper. The probability of the economy moving into a recession that results in a

contraction of at least 10% is 3.8%. Such a crisis lasts for 5.33 years on average. The mean

and standard deviation of the decline in consumption experienced over the course of the

crisis are 23.66% and 13.91% respectively. Raising the threshold of the loss in consumption

during a crisis from a 10% to 15% reduces the probability of observing such an event in a

given year to 2.2% and increases the average duration to 5.64% years. The conditional mean

and standard deviation of the decline in consumption are 32.33% and 15.60% respectively.

Further raising the bar for the macroeconomic contraction to 25% decreases the odds of

observing such a crisis to 1.07% and raises the average crisis length to 6.19 years. The

expected macroeconomic contraction associated with this event is 45.00%, while its standard

deviation is 13.18% in the data.

The parameters to be calibrated are the speed of mean reversion κλ, the mean reversion

target λ̄, the increase in the disaster intensity in response to disaster arrival Y λ, as well as

the shape and scale parameters of the gamma distribution determining the jump size in log

consumption, aJ and bJ . In order to find a calibration that replicates the moments sum-

marized above, 5, 000 independent paths are simulated from the model, each with a length

of 100 years. The jump intensity of each simulated path is initialized at its unconditional

mean E[λt] = κλλ̄/(κλ − Y λ). In the first period, a disaster is simulated that results in an

increase in the intensity from E[λt] to E[λt] + Y λ and simultaneously causes a downwards

jump in log consumption according to the distribution of Y C
t . This disaster marks the po-

tential beginning of a crisis. In each simulated path, the end of this crisis is declared when

the disaster intensity falls below a crisis threshold for the first time. I define this threshold
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to be reached once the crisis intensity has reverted halfway back to its unconditional mean

from the first jump, i.e. the critical intensity for declaring a crisis is E[λt] + Y λ/2.

The parameter values that are chosen by this procedure are summarized in table 1. A

comparison of the model implied characteristics of a crisis with their sample counterparts

is detailed in table 2. The calibration is conservative in that both the probabilities of

observing macroeconomic contractions that result in a consumption loss of at least 10%,

15%, and 25% respectively and their associated expected reductions conditional on these

thresholds are smaller than in the data. Historically, both small and medium crises have

lasted slightly longer than implied by the calibration. The average length of a crisis that

results in a consumption reduction of 10% or more is 4.27 years versus 5.33 years in the

data. The mean duration of a crisis that destroys at least 15% of consumption is 5.13 years

compared with a historical duration of 5.64 years. On the other hand, large crises that result

in a consumption loss exceeding 25% last longer in the model than they do in the data (7.19

years in the model versus 6.19 years in the data). Not every disaster in the model turns

into a crisis that results a consumption decline of more than 10%. The calibrated model

implies a moderate amount of crises that fall below the 10% threshold. The unconditional

probability of observing a crisis that results in a macroeconomic contraction between 0%

and 10% is 3.92% per year, which translates to roughly one such event every 25 years. The

cumulative consumption loss during such an episode, which takes about 2 years, is 4.21%

on average, or about 2.12% during each year of the crisis. The distribution of the disaster

intensity arising from this calibration is depicted in figure 5. The unconditional mean of the

disaster intensity is 10.06%. The intensity remains below 22% with a probability of 90%. In

95% and 99% of all cases the disaster intensity is below 31% and 53% respectively. Despite

the simple dynamics of consumption and disaster risk, the calibration does well at explaining

the frequency, magnitude, and duration of crises exceeding of 10% without introducing an

unreasonable number of small crises.

The leverage of corporate dividends is set to φ = 3, the value chosen by Bansal and Yaron

(2004). The probability of partial default by the government in the event of a disaster q is

set to the same value as in Wachter’s calibration, wherein q = 0.4.

Preference parameters are chosen to match the equity premium and the expected return

on short term government debt in U.S. data from 1890 to 2004. Relative risk aversion

γ assumes a value of 2.65, the elasticity of intertemporal substitution (EIS) ψ, is set to

1.5, and the calibration uses a subjective discount factor of β = 0.02. The degree of risk

aversion is significantly below 10, which is considered an upper bound in the literature for

this parameter. There is some disagreement on the magnitude of the EIS between the

macroeconomics literature on real business cycles and the long-run risk literature. Models of
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real business cycles typically require the EIS to be close to but smaller than one in order to

match moments of macroeconomic data.25 In contrast to that, the long-run risk literature

requires the EIS to significantly exceed unity. I follow Bansal and Yaron (2004) and use a

value of 1.5.

3.2 Simulation Results

Two paths from the calibrated model are simulated for 25, 000 years at a monthly frequency

and then aggregated to an annual horizon. Annual moments from the simulation are reported

in table 3 along with their sample counterparts in U.S. data. Historical moments on returns,

consumption, and dividends spanning the period from 1890 to 2004 are from Robert Shiller’s

dataset reported in Wachter (2010).26 Throughout the empirical analysis I use returns on

short term government debt in the model as a proxy for returns on U.S. treasury bills.

3.2.1 The Equity Premium and the Return on Government Bills

The model with self-excitation is able to explain an equity premium of 6.08% along with

a low expected return on government bills of 2.15%, both with a reasonable level of risk

aversion. Furthermore, the model can address the excess volatility puzzle documented by

Shiller (1981). Equity return volatility generated by the model is 18.96% per year which

compares to 18.48% in U.S. data. The mechanism achieves this result without predicting

counterfactually high volatility in the return on treasury bills, which is 2.79% in the sim-

ulation and 5.91% historically. The unconditional Sharpe ratio of 0.32 exactly matches its

counterpart in the data. The volatility of both log consumption and log dividend growth is

slightly above its historical value.

The dependence of the risk-free rate and the yield on government bills on the disaster

intensity is depicted in figure 2. Since government debt is subject to default and investors are

risk averse, the risk-free rate is below the expected return on government bills, which in turn

is below the promised yield of these investments. All of these rates of return are decreasing

in the disaster intensity. The risk-free rate is driven by an objective to smooth consumption

over time and to form precautionary savings. Both of these motives become more pronounced

in response to an upwards revision of the disaster intensity. If the probability of a disaster

increases, expected consumption growth declines and the consumption smoothing motive

increases the investor’s desire to transfer wealth into the future. In addition to that, the

precautionary savings objective intensifies during periods in which agents face higher odds

25See for e.g. Kydland and Prescott (1982), Lucas (1990), and Jones, Manuelli, and Siu (2000).
26The data is available on Shiller’s website at http://www.econ.yale.edu/ shiller/data.htm. See Shiller

(1989) for details on the construction of this dataset.
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of a disaster. Both of these effects contribute towards a negative relationship between the

risk-free rate and the disaster probability.

In contrast to a truly risk-free asset, government debt is itself subject to default in the

event of a disaster. This systematic default risk causes risk averse investors to demand a

premium that is increasing in the disaster probability. This latter effect partially counteracts

the consumption smoothing and precautionary savings motives and decreases the sensitivity

of the expected return on government debt with respect to the disaster intensity. In turn,

the promised yield on these assets must be even higher than the expected yield to provide

compensation for the possibility of default during economic disasters. The relationship be-

tween the risk-free rate as well as the promised and expected return on government bills are

depicted in figure 2. These latter rates are less sensitive to changes in the disaster intensity

compared to the risk-free rate. In times of crisis, the expected real return on government

bills can be negative. This happens whenever the disaster intensity rises above 23%, which

occurs in 9 out of 100 years in the simulation. In contrast to that, the realized real return

on treasury bills in U.S. data has been negative in 25 out of 100 years.

The equity premium compensates investors for two sources of risk. The compensation

for diffusive risk in prices and consumption considered by Lucas (1978) is too small to ac-

count for the observed equity premium in the U.S. Its contribution towards the total equity

premium of 6.07% in the calibration presented here amounts to just 0.318%. The major

part of the risk premium stems from compensation for the exposure of equity investments to

rare economic disasters. In the context of recursive preferences, agents care about disasters

for two reasons. The occurrence of a disaster leads to a sharp contemporaneous decline in

both corporate dividends and consumption which requires equity to offer a premium for this

exposure to systematic risk. In addition to that, the arrival of a disaster causes an upwards

revision in the conditional disaster intensity by virtue of self-excitation. This causes both

a decline in expected future consumption growth and an increase in the uncertainty about

its future realization. A shock to the persistent disaster intensity, which increases uncer-

tainty about future consumption growth affects indirect utility from future consumption. If

investors exhibit a preference for the timing of resolution of uncertainty, i.e. if ψ 6= 1/γ,

indirect utility enters into the pricing kernel. In particular, if agents prefer early resolution of

uncertainty, which is the case that obtains in this calibration, they dislike an increase in the

uncertainty about future consumption growth and hence require additional compensation

for the possibility of a positive shock to the intensity of disaster arrival in the future.

Figure 3 illustrates how these individual components determine the equity premium in

relation to the disaster intensity. The amount of diffusive risk equity investments are exposed

to is constant with respect to the disaster intensity and its contribution to the equity pre-
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mium is small in magnitude. The compensation for the instantaneous effect of a disaster on

consumption is depicted by the dashed line and represents that part of the equity premium

which arises from diffusive risk as well as the direct impact of a disaster on consumption.

It is the risk premium that arises in a model with power utility such as Barro (2006) if dis-

asters take place over extended periods rather than being concentrated at a single instant.

The indirect effect of disasters on the equity premium works through the forward looking

component in the pricing kernel that obtains in the case of stochastic differential utility with

a preference for early resolution of uncertainty. It is compensation for the upwards revision

of the jump intensity that is brought about by the arrival of a disaster.

3.2.2 Stock Market Crashes and Macroeconomic Contractions

Historically, stock market crashes have been observed even in the absence of significant

declines in macroeconomic activity. Indeed, Paul Samuelson once famously remarked that

”Wall Street indexes [had] predicted nine out of the last five recessions” (Samuelson (1966).

In fact, an analysis of the crisis dataset in Barro and Ursúa (2009) indicates that in 28%

of all cases, periods of negative stock market returns exceeding 25% were associated with a

contemporaneous decline in macroeconomic activity of more than 10% in OECD countries.

Likewise, the odds of a macroeconomic contraction exceeding 25% given a stock market

decline of 25% were only 11% in this historical dataset.

A standard disaster risk model, in which the entire reduction in consumption is realized

instantaneously is unable to account for this phenomenon since the only cause of a significant

stock market decline is an economic disaster. The possibility of a self-perpetuating economic

crisis can provide an explanation for this apparent puzzle. In the event of a disaster, agents

rationally anticipate the possibility of a more severe economic crisis which leads to an increase

in the compensation required for holding risky assets. This effect on the equity premium

and hence the discount rate makes stock valuations decline by more than the reduction in

dividends that is due to the disaster. In most cases, a more severe economic contraction

does not materialize and the downturn in financial markets appears to have been excessive

ex-post.

A simulation of the calibrated model demonstrates that self-excitation is consistent with

this empirical fact. Table 6 illustrates the probability of observing a macroeconomic down-

turn in excess of a 10% and 25% threshold conditional on a stock market crash of at least

25%. In the simulation, a stock market crash exceeding 25% goes along with a macroeco-

nomic contraction of at least 10% in roughly 4 out of 10 cases, which is slightly higher than

in the historical dataset. The calibration exactly hits the mark for crises of more than 25%,

which have a conditional probability of 11% both in the model and in the data.
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3.2.3 Return Predictability

Valuation ratios on the aggregate stock market negatively predict future excess returns at

various horizons in U.S. data. Panel C of table 4 reports slope coefficients from a regression

of excess returns in the U.S. stock market over 1, 2, 4, 6, 8, and 10 years on the log price-

dividend ratio at the beginning of the period. Low valuations relative to dividends predict

higher than average returns and vice versa. Due to persistence in the price-dividend ratio,

its predictive power for excess returns is increasing with the horizon. This predictability

pattern arises naturally in the context of a model with a self-exciting disaster intensity. The

disaster intensity λ completely determines the price-dividend ratio. An increase in λ due to

the occurrence of a disaster raises the conditional equity premium and leads to a decrease

of the price-dividend ratio. In most cases, another disaster does not occur and a low price-

dividend ratio is followed by a period of higher than average returns due to mean reversion

of the disaster intensity, which leads to an increase in the valuation ratio.

Table 4, panel A illustrates the model’s ability to generate return predictability in the

calibration presented here. Slope coefficients from a regression of excess returns on the log

price-dividend ratio are negative throughout and decrease with the horizon. The model

manages to reproduce the predictability pattern observed at medium horizons of 4 and 6

years. The degree to which excess-returns are predictable by the price-dividend ratio implied

by the models is higher than in data at short horizons of 1 and 2 years and lower at long

horizons of 8 and 10 years. Furthermore, the R2’s from these regressions are significantly

below their counterparts in historical data.

3.2.4 Equity Options

The model succeeds at generating the implied volatility smirk pattern for equity index options

qualitatively. Figure 6 and 7 depict the implied volatility of put options with one month and

one year to expiration respectively. Option prices are computed at the unconditional mean

disaster intensity. High implied volatilities of out of the money put options reflect relatively

high prices for these options, which are compensation for insurance against economic disasters

provided by these instruments. The smirk generated by the model is more pronounced than

its empirical counterpart in put options on the S&P 500 index.

Figure 8 graphs the model-generated VIX computed from both call and put options with

30 days to expiration as a function of the disaster intensity.27 The model-implied VIX is

27The calculation implements the methodology used by the Chicago Board Options Exchange
outlined in the document ”The CBOE Volatility Index-VIX” available from the CBOE website
(www.cboe.com/micro/vix/vixwhite.pdf). The computation is based on model-implied prices for calls and
puts with moneyness between 80% and 120%.
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positively related to the conditional likelihood of a disaster, which can help in explaining

the sharp increase in the VIX during the fall of 2008. A VIX of 16.23 on June 29, 2007 just

before the beginning of the crisis corresponds to a disaster intensity of 4.5% per year in the

calibration, which is the mean reversion target. The implied volatility of 18.81 on August

22 of 2008 is consistent with a disaster intensity of about 6% per annum. Furthermore, the

subsequent surge of the VIX to 80.86 on November 20, 2008 implies that market participants

expected disaster arrival to occur at an instantaneous rate of 1.36 events per year. This

increase of 130% in the disaster intensity requires more than 6 consumption disasters if the

upward revisions in the intensity is 20% as in the calibration. In contrast to that, there was

only one such disaster during the fourth quarter of 2008. The decline of the VIX to around

16 by mid April 2010 can be attributed to mean reversion of the disaster intensity in the

absence of further large negative consumption declines. This highlights the model’s ability

to qualitatively account for the observed VIX dynamics but also demonstrates its numerical

shortfalls in matching the exact magnitude.

4 Conclusion

In this paper, I have demonstrated the importance of self-perpetuating economic disasters

for understanding stylized asset pricing facts. A calibration of a simple model can explain

the equity premium and risk free rate with a reasonable degree of risk aversion. Excess

volatility and return predictability by valuation multiples arise naturally with this model. It

is the first disaster risk model which can account for the empirical observation that severe

economic downturns develop over extended periods of time. This feature allows predictions

for the behavior of equilibrium quantities during a crisis and can account for an increase in

the VIX and the dividend-yield as well as a decline in the risk-free rate in response to the

occurrence of a consumption disaster.

Previous disaster risk models have been criticized for their assumption that the entire

extent of an economic contraction be realized in a single instant.28 This paper demonstrates

the ability of self-exciting disasters to address this point which gives further justification to

this important class of models.

While the model is able to account for the implied volatility smile in equity index op-

tions, it fails to capture its magnitude. Implied volatilities of out of the money put options

generated by the model exceed the corresponding observations in S&P 500 option markets.

This shortcoming might in part be owed to the simple model of corporate cash flows as-

sumed in this paper. In reality, a stock market index is not just a levered claim to aggregate

28See for instance Constantinides (2008).
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consumption. A more sophisticated model that properly accounts for the corporate fraction

in this economy, like the one proposed by Longstaff and Piazzesi (2004), might contribute

to resolve this issue.

Promising avenues for future research include the empirical analysis of the dynamics of

equity premia and bond yields during severe economic downturns in developed countries as

well as an investigation of the implications of self-exciting disasters for the cross-section of

expected returns.
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A Affine Jump Diffusions

Fix a probability space (Ω,F ,P) with filtration {Ft}t≥0 satisfying the usual hypothesis, on

which are defined a d-dimensional Brownian motion Wt, K counting processes with inde-

pendent arrival Nk,t, k ∈ {1, 2, ..., K}, and associated with each process Nk, a sequence of

d-dimensional i.i.d. random vectors {Yk,t}t≥0.29 The distribution of Yk,t can be characterized

by its joint moment generating function

ΦY
k (u) = E

[
exp(uT · Yk,t)

]
for some u ∈ Rd. Define the process Xt ∈ D ⊂ Rd by

dXt = µ(Xt)dt+ σ(Xt)dWt +
K∑
k=1

Yk,tdNk,t (A.1)

with initial condition X0 = x. The counting processes {Nk}k=1,2,...,K have stochastic arrival

intensity λk(Xt). Assume that the coefficients of (A.1) satisfy the restrictions

µ(X) = K0 +K1 ·X , with K0 ∈ Rd, K1 ∈ Rd×d

σ(X) · σ(X)T = H0 +
d∑
i=1

H1,iXi , with H0, H1 ∈ Rd×d (A.2)

λk(X) = λ0,k + λT1,kX , with λ0,k ∈ R, λ1,k ∈ Rd

rf,t(X) = ρ0 + ρ1X , with ρ0 ∈ R, λ1 ∈ Rd,

where rf,t denotes the risk-free rate. Under these conditions Xt is an affine jump diffusion

(AJD) and the following results hold as special cases to the theory developed in Duffie, Pan,

and Singleton (2000). The following lemma gives the characteristic function of an affine

jump diffusion.

Lemma A.1 (Discounted Characteristic Function of Affine Jump Diffusion). For some

u ∈ Cd, T ≥ t, and Xt ∈ D, let

ΨX(t, x, T, u) = E
[

exp

(
−
∫ T

t

rf,sds

)
exp(iuTXT )

∣∣∣∣Xt = x

]
denote the characteristic function of the XT conditional on Xt = x. If the jump diffusion

(A.1) satisfies the affine coefficient restrictions (A.2), then its characteristic function is given

29See e.g. Protter (2005, page 3) for a definition of the usual hypothesis.
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by

ΨX(t, x, T, u) = exp(A0(T − t) + AX(T − t)Tx)

where A0(τ) and AX(τ) are functions in C- and Cd respectively, satisfying the system of

ordinary differential equations

A′0(τ) = AX(τ)TK0 +
1

2
AX(τ)TH0AX(τ) +

K∑
k=1

(
ΦY
k (AX(τ))− 1

)
λ0,k − ρ0

A′X,i(τ) =
[
AX(τ)TK1

]
i
+

1

2
AX(τ)TH1,iAX(τ) +

K∑
k=1

(
ΦY
k (AX(τ))− 1

)
λ1,k,i − ρ1,i

(A.3)

with initial conditions A0(0) = 0 and AX(0) = iu.

Proof. First note that exp
(
−
∫ t

0
rf,sds

)
ΨX(t, x, T, u) is a martingale under P, i.e. for any

t1 ≤ t2 ≤ T , we have

E
[

exp

(
−
∫ t2

0

rf,sds

)
ΨX(t2, Xt2 , T, u)

∣∣∣∣Xt1 = x

]
=E

[
E
[

exp

(
−
∫ T

0

rf,sds

)
exp(iuTXT )

∣∣∣∣Xt2 = x

]∣∣∣∣Xt1 = x

]
= exp

(
−
∫ t1

0

rf,sds

)
E
[

exp

(
−
∫ T

t1

rf,sds

)
exp(iuTXT )

∣∣∣∣Xt1 = x

]
= exp

(
−
∫ t1

0

rf,sds

)
ΨX(t1, Xt1 , T, u).

Let Dt = exp
(
−
∫ t

0
rf,sds

)
. The dynamics of DtΨ

X
t = DtΨ

X(t,Xt, s, u) follow from an

application of Ito’s formula for jump-diffusions, which yields

d
(
DtΨ

X
t

)
Dt−

=

[
∂ΨX

∂t
+
∂ΨX

∂XT
µ(Xt) +

1

2
tr

(
∂2ΨX

∂X∂XT
σ(Xt)σ(Xt)

T

)
+

K∑
k=1

Et−
[
∆ΨX

k,t

]
λk(Xt)− rf,t

]
dt

+
∂ΨX

∂XT
σ(Xt)dWt +

K∑
k=1

[
∆ΨX

k,tdNk,t − Et−
[
∆ΨX

k,t

]
λk(Xt−)dt

]
.

The martingale restriction on ΨX(t,Xt, s, u) gives rise to the partial differential equation

∂ΨX

∂t
+
∂ΨX

∂XT
µ(Xt) +

1

2
tr

(
∂2ΨX

∂X∂XT
σ(Xt)σ(Xt)

T

)
+

K∑
k=1

Et−
[
∆ΨX

k,t

]
λk(Xt−)− rf,t = 0.

Substitution of the conjecture ΨX(t, x, T, u) = exp(A0(T − t) + AX(T − t)Tx) yields the

30



differential equation

−
(
A′0(τ) + A′X(τ)Tx

)
+ Ax(τ)T (K0 +K1x) +

1

2
AX(τ)TH0AX(τ)

+
1

2

d∑
i=1

AX(τ)TH1,iAX(τ)xi +
K∑
k=1

(
ΦY
k (AX(τ))− 1

)
(λ0,k + λ1,kx)− (ρ0 + ρ1x) = 0.

Since the coefficients multiplying each xi and the constant must be zero individually to make

the equation hold for all x, one obtains the system of ordinary differential equations of the

proposition.

The next result gives a characterization of the dynamics of the affine jump diffusion under

a change of measure.

Lemma A.2 (Change of Measure for Affine Jump Diffusion). Let Xt be an affine jump-

diffusion and η ∈ Rd. Denote by Zt the Radon-Nikodym process

dZt
Zt−

= ηTσ(Xt)dWt −
K∑
k=1

[
(1− exp

(
ηTYk,t)

)
dNk,t −

(
1− ΦY

k (η)
)
λk(Xt−))dt

]
,

with Z0 = 0. Fix T > 0 and define the probability measure P̃ by

P̃(A) =

∫
ω∈A

ZT (ω)dP(ω) for all A ∈ FT

Under the probability measure P̃ the process Xt is an affine jump diffusion with dynamics

dXt = µ̃(Xt)dt+ σ(Xt)dW̃ +
K∑
k=1

Yk,tdÑk,t,

where W̃t is a d-dimensional Brownian motion and Ñk, k ∈ {1, 2, ..., K} are K independent

counting processes with intensities λ̃k(Xt) under P̃. The drift coefficient is given by µ̃(X) =

K̃0 + K̃1X, with

K̃0 = K0 +HT
0 η

K̃1 = K1 +
[
HT

1,1η...H
T
1,dη
]
.

The arrival intensity of the point process Nk is given by λ̃k(X) = λ̃0,k + λ̃1,kX with

λ̃0,k = λ0,kΦ
Y
k (η)

λ̃1,k = λ1,kΦ
Y
k (η).
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Under P̃, the random variable Yk,t has moment generating function

Φ̃Y
k (u) =

ΦY
k (u+ η)

ΦY
k (η)

.

Proof. Since Zt is an exponential martingale, we have Zt > 0 a.s. and E [Zt] = 1 for all

t ≥ 0. Hence Zt is a Radon-Nikodym derivative and P̃ is a probability measure. The proof

proceeds by showing that the characteristic function of Xt under the measure P̃ is that of an

affine jump diffusion with the proposed parameters. The characteristic function of Xs under

P̃ conditional on Ft is defined as

Ψ̃X(t,Xt, s, u) = Ẽ
[
exp

(
iuTXs

)∣∣Ft] = E
[
Zs exp

(
iuTXs

)∣∣Ft] .
The process ZtΨ̃

X(t,Xt, s, u) is a P-martingale, since for any t1 ≤ t2 ≤ s, we have

E
[
Zt2Ψ̃

X(t2, Xt2 , s, u)
∣∣∣Ft1] = E

[
Zt2Ẽ

[
exp(iuTXs)

∣∣Ft2]∣∣∣Ft1]
= E

[
Zt2E

[
Zs
Zt2

exp(iuTXs)
∣∣Ft2]∣∣∣∣Ft1]

= Zt1E
[
Zs
Zt1

exp(iuTXs)

∣∣∣∣Ft1]
= Zt1Ψ̃

X(t1, Xt1 , s, u).

In the following let Ψ̃X
t denote Ψ̃X(t,Xt, s, u). By an application of Ito’s rule, the dynamics

of ZtΨ̃
X
t under P are given by

d
(
ZtΨ̃

X
t

)
=

[
∂Ψ̃X

∂t
+

1

2
tr

(
∂2Ψ̃X

∂X∂XT
σ(Xt)σ(Xt)

T

)
+

K∑
k=1

(
1− ΦY

k (η)
)

Ψ̃X
t λk(Xt)

+
(
µ(Xt)

T + ηTσ(Xt)σ(Xt)
T
) ∂Ψ̃X

∂X

]
Ztdt

+

[
∂Ψ̃X

∂XT
σ(Xt) + ηTσ(Xt)

]
ZtdWt +

K∑
k=1

∆
(
ZΨ̃X

)
k,t
dNk,t.

Since ZtΨ̃
X
t is a martingale under P, the characteristic function of Xt under P̃, Ψ̃X(t,Xt, s, u)
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satisfies the partial differential equation

∂Ψ̃X

∂t
+

1

2
tr

(
∂2Ψ̃X

∂X∂XT
σ(X)σ(X)T

)
+

K∑
k=1

(
1− ΦY

k (η)
)

Ψ̃X
t λk(X)

+
(
µ(X)T + ηTσ(X)σ(X)T

) ∂Ψ̃X

∂X
+

K∑
k=1

Et−
[
∆
(
ZΨ̃X

)
k,t

]
λk(X) = 0

Substituting the conjecture Ψ̃X(t,X, s, u) = exp
(
Ã0(s− t) + ÃX(s− t)TX

)
and letting τ =

s− t gives rise to the ordinary differential equation

−
(
Ã′0(τ) + Ã′X(τ)TX

)
+

1

2
ÃX(τ)TH0ÃX(τ) + ÃX(τ)TK0 + ÃX(τ)TK1X

+
1

2

d∑
i=1

ÃX(τ)TH1,iÃX(τ)Xi +
K∑
k=1

(
1− ΦY

k (η)
)
λ0,k +

K∑
k=1

(
1− ΦY

k (η)
)
λ1,kX

+ ηTH0ÃX(τ) + ηT
d∑
i=1

H1,iÃX(τ)Xi +
K∑
k=1

(
ΦY
k

(
η + ÃX(τ)

)
− 1)

)
(λ0,k + λ1,kX) = 0.

Since this equation holds for all values of X, the coefficients multiplying each of the compo-

nents Xi and the constant term must be separately equal to zero. This yields the system of

simultaneous differential equations

Ã′0(τ) =
(
KT

0 + ηTH0

)
ÃX(τ) +

1

2
ÃX(τ)TH0ÃX(τ) +

K∑
k=1

(
ΦY
k

(
η + ÃX(τ)

)
− ΦY

k (η)
)
λ0,k

Ã′X,i(τ) =
((
KT

1 + ηTH1,i

)
ÃX(τ)

)
i
+

1

2
ÃX(τ)TH1,iÃX(τ) +

K∑
k=1

(
ΦY
k

(
η + ÃX(τ)

)
− ΦY

k (η)
)
λ1,k,i.

The claim then follows by comparing coefficients of the differential equation above with the

one for the characteristic function given in lemma A.1.

The following result provides the conditional expectation of an affine jump-diffusion.

Lemma A.3 (Expectation of Affine Jump-Diffusion). Let Xt be an affine jump-diffusion.

The conditional expectation E [XT | Ft] is given by

E [XT | Ft] =
1

i
(α0(T − t) + αX(T − t) ·Xt) ,
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where α0 : R+ 7→ Cd and αX : R+ 7→ Cd×d solve the differential equations

α′0(τ) = αX(τ) ·K0 +
K∑
k=1

αX(τ)∇ΦY
k (0)λ0,k

α′X,i(τ) = [αX(τ) ·K1](1,...,d),i +
K∑
k=1

αX(τ)∇ΦY
k (0)λ1,k,i

(A.4)

with initial conditions α0(0) = (0, ..., 0)T and αX,j(0) = i · eTj . 30

Proof. Let ΨX∗
(t,Xt, T, u) = E

[
exp(iuTXT )

∣∣Ft], i.e. the characteristic function of Xt,

which can be obtained from lemma A.1 by setting ρ0 = 0 and ρ1 = 0. By the properties of

characteristic functions, the first moment of Xt, can be computed as

E [XT | Ft] =
1

i

∂ΨX∗
(t,Xt, T, u)

∂u

∣∣∣∣
u=0

= i−1 ΨX∗
(t,Xt, T, u)

(
∂A0(τ, u)

∂u
+
∂
(
AX(τ, u)T

)
∂u

·Xt

)∣∣∣∣∣
u=0

= i−1ΨX∗
(t,Xt, T, 0) (α0(τ) + αX(τ) ·Xt) ,

where

α0(τ) =
∂A0(τ, u)

∂u

∣∣∣∣
u=0

and αX(τ) =
∂
(
AX(τ, u)T

)
∂u

∣∣∣∣∣
u=0

.

Differentiation of (A.3) with respect to u yields

α′0(τ) = αX(τ) ·K0 + αX(τ) ·H0 · AX(τ) +
K∑
k=1

αX(τ)∇ΦY
k (AX(τ))λ0,k

α′X,i(τ) = [αX(τ) ·K1](1,...,d),i + αX(τ) ·H1,i · AX(τ) +
K∑
k=1

αX(τ)∇ΦY
k (AX(τ))λ1,k,i.

The boundary conditions given in the lemma arise by differentiation of the boundary con-

ditions for the equations characterizing A0(τ) and AX(τ) with respect to u. Since u = 0,

ΨX∗
(t,Xt, T, 0) = E[exp(i · 0 ·XT )|Xt] = 1. Accordingly A0(τ) = 0 and AX(τ) = (0, ..., 0)T .

30∇ΦY (u) denotes the gradient
(
∂ΦY

∂u1
, ∂ΦY

∂u2
, ..., ∂ΦY

∂ud

)T
.
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Hence, the differential equations above simplify to

α′0(τ) = αX(τ) ·K0 +
K∑
k=1

αX(τ)∇ΦY
k (0)λ0,k

α′X,i(τ) = [αX(τ) ·K1](1,...,d),i +
K∑
k=1

αX(τ)∇ΦY
k (0)λ1,k,i.

B A Generalized Asset Pricing Model

This appendix presents a generalizes asset pricing model, which extends the model considered

in this paper towards long-run risk and stochastic volatility. Furthermore, disasters may be

driven by a finite number of interrelated self-exciting jump processes.

B.1 Endowment Process

I model a representative agent endowment economy. Consumption growth contains a small

persistent component and is subject to both diffusive risk with time-varying uncertainty and

occasional rare disasters. The dynamics are as follows:

dCt = (µC +Xt)Ctdt+
√
VtCtdBC,t + Ct−

K∑
k=1

(
eY

C
k,t − 1

)
dNk,t (B.1)

dXt = −κXXtdt+ σX
√
VtdBX,t +

K∑
k=1

Y X
k,tdNk,t (B.2)

dVt = κV (V̄ − Vt)dt+ σV
√
VtdBV,t +

K∑
k=1

Y V
k,tdNk,t (B.3)

dλk,t = κλ,k(λ̄k − λk,t)dt+ σλ,k
√
λk,tdBk,t +

K∑
j=1

Y λk
j,t dNj,t (B.4)

The counting processes N1,t through NK,t have independent arrival times with stochastic

intensity λk,t respectively. The Brownian motions driving consumption growth Ct, expected

consumption growth Xt, economic uncertainty Vt and jump intensities Bλk are assumed to be

mutually independent. For succinctness of notation, I will let Bt denote the multidimensional

Brownian motion (BC,t, BX,t, BV,t, Bλ1,t, ..., BλK ,t)
T . Each jump process Nk,t triggers jumps

of random size in consumption growth and the state variables Xt, Vt, and {λk,t}Kk=1. The
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distribution of the jump size to both consumption, Y C
k,t, and expected consumption growth

Y X
k,t is allowed to have support on the entire real line. In order to ensure that economic

uncertainty Vt and the intensities λk,t remain positive, the restrictions Y V
k,t > 0 and Y

λj
k,t > 0

are imposed. Let Yk,t denote the vector (Y C
k,t, Y

X
k,t, Y

V
k,t, Y

λ1
k,t , ..., Y

λK
k,t )T and assume that it is

independent of Bt and {Nk}Kk=1. The joint distribution of jump sizes can be characterized

by the moment generating function ΦY
k (u) = E

[
exp

(
uT · Yk,t

)]
.

This setup nests both a continuous-time version of the long-run risk model due to Bansal

and Yaron (2004) and the time-varying rare disaster model by Wachter (2010). The novel

feature of the approach presented here is the use of a self-exciting jump process to capture the

idea that the occurrence of a rare disaster also results in a sharp increase of the conditional

probability of another disaster.

B.2 Preferences

The representative agent has recursive preferences developed in discrete time by Kreps and

Porteus (1978), Epstein and Zin (1989), and Weil (1989). The model employs its continuous-

time counterpart, stochastic differential utility (SDU), introduced by Duffie and Epstein

(1992a,b). Continuation utility of the representative agent, Jt, is defined by the recursion

Jt = Et
[∫ ∞

t

f(Cs, Js)ds

]
, (B.5)

where f(C, J) is the normalized Porteus-Kreps aggregator

f(C, J) =
β

1− 1
ψ

J(1− γ)

(
C1− 1

ψ

((1− γ)J)
1
θ

− 1

)
for ψ 6= 1 (B.6)

f(C, J) = β(1− γ)J

(
logC − 1

1− γ
log ((1− γ)J)

)
for ψ = 1. (B.7)

In this definition, β assumes the role of a subjective time-discount factor, γ is the coefficient of

relative risk aversion, ψ denotes the elasticity of intertemporal substitution, and the constant

θ is defined as θ = 1−γ
1− 1

ψ

. In the special case γ = 1
ψ

, the preference structure coincides with

power utility.

B.3 Solution

We are ultimately interested in the impact of time-variation in the stochastic opportunity

set, in particular the effect of a jump in the disaster intensity in response to a rare event,

on equilibrium quantities like the wealth-consumption ratio, the risk free rate, the dividend-
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yield, and equity option prices. This requires an expression for the pricing kernel, which

can be directly inferred from the intertemporal marginal rate of substitution (IMRS) of

the representative agent and the dynamics of aggregate consumption in models with power

utility. In the case of recursive preferences, the IMRS of the representative agent also depends

on continuation utility, that is the value function, which is determined endogenously. Hence

I begin by deriving the value function for a representative agent in this economy.

B.3.1 The Value Function

In order to make progress on the derivation of the value function Jt, I rewrite the recursion

(B.5) in terms of a partial differential equation (PDE) in J . We first however exploit the

fact that the dynamics of Ct, Xt, Vt, and {λk,t}Kk=1 follow a Markov process, which implies

that continuation utility is a function of the state at time t only, i.e. Jt can be written

as J(Ct, Xt, Vt, λ1,t, ..., λK,t).
31 Applying a Feynman-Kac type argument to the recursive

definition of continuation utility given in equation (B.5) results in the PDE

DJt + f(Ct, Jt) = 0,

where DJt denotes the infinitesimal generator associated with the dynamics of Ct, Xt, Vt,

and {λk,t}Kk=1.3233 Substituting the expression for the infinitesimal generator derived below

yields the PDE 34

JC(µC +Xt)Ct − JXκXXt + JV κV (V̄ − Vt) +
K∑
k=1

Jλkκλk(λ̄k − λk,t) +
1

2
JCCVtC

2
t

+
1

2
JXXσ

2
XVt +

1

2
JV V σ

2
V Vt +

1

2

K∑
k=1

Jλkλkσ
2
λk
λk,t +

K∑
k=1

Et− [∆Jt,k]λk,t− + f(Ct, Jt) = 0,

(B.8)

31Note that the Markov property implies

Jt = Et
[∫ ∞

t

f(Cs, Js)ds

]
= E

[∫ ∞
t

f(Cs, Js)ds

∣∣∣∣Ct, Xt, Vt, λ1,t, ..., λK,t

]
= J(Ct, Xt, Vt, λ1,t, ..., λK,t).

32See the section on derivations and proofs below for a heuristic derivation.
33The infinitesimal generator is defined as

DJt = lim
h→0

Et− [J(Ct+h, Xt+h, Vt+h, λ1,t+h, ..., λK,t+h)− J(Ct−, Xt−, Vt−, λ1,t−, ..., λK,t−)]

h
.

34I use the notation gX to denote the partial derivative of a function g with respect to X, except for gt,
which denotes the value of that function at time t.
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where ∆Jk,t denotes the jump size in the value function conditional on a jump of Nk, i.e.35

∆Jk,t = J(Ct, Xt, Vt, λ1,t, ..., λK,t)− J(Ct−, Xt−, Vt−, λ1,t−, ..., λK,t−)

= J(Ct− · eY
C
k,t , Xt− + Y X

k,t, Vt− + Y V
k,t, λ1,t− + Y λ1

k,t , ..., λK,t− + Y λK
k,t )

− J(Ct−, Xt−, Vt−, λ1,t−, ..., λK,t−).

The solution for the value function takes the form36

J(C,X, V, λ1, λK) =
C1−γ

1− γ
I(X, V, λ1, ..., λK), (B.9)

where the function I(·) remains to be determined. Upon substituting (B.9) into (B.8) one

obtains37

(1− γ)(µC +Xt)−
IX
I
κXXt +

IV
I
κV (V̄ − Vt) +

K∑
k=1

Iλk
I
κλk(λ̄k − λk,t)−

1

2
γ(1− γ)Vt

+
1

2

IXX
I
σ2
XVt +

1

2

IV V
I
σ2
V Vt +

1

2

K∑
k=1

Iλkλk
I

σ2
λk
λk,t +

K∑
k=1

Et−
[
eY

C
k,t
Ik,t
Ik,t−

− 1

]
λk,t− + f(Ct, Jt) = 0,

(B.10)

where Ik,t and Ik,t− are used to denote I(Xt− + Y X
k,t, Vt− + Y V

k,t, λ1,t− + Y λ1
k,t , ..., λK,t− + Y λK

k,t )

and I(Xt−, Vt−, λ1,t−, ..., λK,t−) respectively.

Since the form of the aggregator depends on whether the EIS is different from unity, I

will treat the cases ψ = 1 and ψ 6= 1 separately in the analysis that follows. I will begin by

analyzing the case ψ = 1 which has an exact closed form solution for I(·) of the form

I(X, V, λ1, ..., λK) = exp

(
A0 + AX ·X + AV · V +

K∑
k=1

Aλkλk

)
.

The coefficients A0, AX , AV , and Aλ1 , ..., AλK are determined by a nonlinear system of equa-

tions given in the following proposition. Details of the computation are presented in the

section on derivations and proofs below.

Proposition B.1 (Equilibrium Value Function for ψ = 1). If the representative agent has

35To see that Ct = Ct− · eY
C
k,t at jump times of Nk, first note that equation (B.1) implies ∆Ct,k =

Ct−

(
exp

(
Y Ck,t

)
− 1
)

. It then follows that at jump times of the kth counting process, we have Ct = Ct− +

∆Ct,k = Ct− · exp
(
Y Ck,t

)
.

36This follows from the homogeneity of the value function with respect to consumption. See lemma B.1.
37See section on derivations and proofs below for details on the derivation.
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unit elasticity of intertemporal substitution ψ = 1, then the value function solving (B.8) is

given by

J(C,X, V, λ1, ..., λK) =
C1−γ

1− γ
· exp

(
A0 + AX ·X + AV · V +

K∑
k=1

Aλkλk

)
.

where the coefficients A0, AX , AV , and Aλ1 , ..., AλK satisfy the system of equations

0 = (1− γ)µC + AV κV V̄ +
K∑
k=1

Aλkκλk λ̄k − βA0

0 = (1− γ)− AXκX − βAX

0 = −βAV − AV κV −
1

2
γ(1− γ) +

1

2
A2
Xσ

2
X +

1

2
A2
V σ

2
V

0 = −Aλkκλk +
1

2
A2
λk
σ2
λk
− βAλk +

(
ΦY
k (η̂)− 1

)
∀k ∈ {1, ..., K},

with η̂ = (1− γ,AX , AV , Aλ1 , ..., AλK )T .

Proof. See section on derivations and proofs.

Having established the value function for the case of a unit elasticity of intertemporal

substitution, I now turn to the analysis for ψ 6= 1. This situation is slightly more complicated

as an exact closed form solution to the ensuing nonlinear partial differential equation does not

exist. A method introduced by Campbell, Chacko, Rodriguez, and Viceira (2004), however,

admits a log-linearization of the nonlinear term in the PDE around the mean consumption-

wealth ratio. The solution of the approximate problem then takes the same functional form

as for the case of ψ = 1. The following proposition states the solution for the value function

resulting from this approximation, with the details once again being relegated to the section

on derivations and proofs below.

Proposition B.2 (Equilibrium Value Function for ψ 6= 1). If the representative agent has

elasticity of intertemporal substitution ψ that is different from one, then the value function

solving a log-linear approximation of the PDE (B.8) is given by

J(C,X, V, λ1, ..., λK) =
C1−γ

1− γ
· exp

(
A0 + AX ·X + AV · V +

K∑
k=1

Aλk , λk

)
.
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where the coefficients A0, AX , AV , and Aλ1 , ..., AλK satisfy the system of equations

0 = (1− γ)µC + AV κV V̄ +
K∑
k=1

Aλkκλk λ̄k + θi0 + θi1 log β − βθ − i1A0

0 = (1− γ)− AXκX − i1AX

0 = −i1AV − AV κV −
1

2
γ(1− γ) +

1

2
A2
Xσ

2
X +

1

2
A2
V σ

2
V

0 = −(κλk + i1)Aλk +
1

2
A2
λk
σ2
λk

+
(
ΦY
k (η̂)− 1

)
for all k ∈ {1, ..., K},

with η̂ = (1− γ,AX , AV , Aλ1 , ..., AλK )T .

Proof. See section on derivations and proofs.

B.3.2 Asset Prices, Risk Premia, and the Risk Free Rate

In the absence of arbitrage, the price Pi,t of an asset paying dividend Di,s at time s ≥ t

solves

πtPi,t = Et
[∫ ∞

t

πsDi,sds

]
, (B.11)

where πt denotes the pricing kernel. The following proposition provides a differential char-

acterization for asset prices.

Proposition B.3 (No-Arbitrage Pricing PDE). The no-arbitrage price Pi,t of a claim yield-

ing dividends Di,s at time s ≥ t satisfies the PDE

D(πt · Pi,t)
πt− · Pi,t−

+
Di,t−

Pi,t−
= 0,

which can be decomposed as38

Dπct
πt−

+
DP c

i,t

Pi,t−
+

d [πc, P c
i ]t

πt− · Pi,t− · dt
+

∑K
k=1 Et−

[
∆ (π · Pi)k,t

]
λk,t−

πt− · Pi,t−
+
Di,t−

Pi,t−
= 0. (B.12)

Proof. The proof of the first equation proceeds along the same line as the derivation of the

PDE for the value function. Equation (B.12) then follows from an application of Ito’s rule

for jump-diffusions.

This is an extension of the pricing equation for cash flows in continuous-time discussed

in e.g. Cochrane (2001, page 32) to a jump-diffusion setting.

38The superscript c denotes the continuous part of a process. See Shreve (2004, chap. 11) for details.
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A risk free asset pays dividends at rate rf,t and has a constant price Prf ,t. By applying

equation (B.12) one obtains the following characterization for the risk-free rate.

Proposition B.4 (Risk Free Rate). The instantaneous risk free rate is given by

rf,t− = −Dπ
C
t

πt−
−
∑K

k=1 Et− [∆πk,t]λk,t−
πt−

= −Dπt
πt−

. (B.13)

Proof. A risk-free asset with instantaneous dividend yield Dt
PD,t

= rf,t has constant price

Prf ,t = Prf . Since dPrf ,t = 0, we have DPrf ,t = 0, d
[
πC , PC

D

]
t

= 0 and hence D (πc · P c
D) = 0,

and ∆(π · Prf )k,t = ∆πk,t. Upon substitution into (B.12), one obtains (B.13).

The instantaneous expected return of a risky asset paying dividend stream {Di,s}s≥t is

the sum of the expected appreciation of the continuous part, the expected return of the jump

component, and the instantaneous dividend yield, that is

Et[ri,t−] =
DP c

i,t

Pi,t−
+

∑K
k=1 Et− [∆Pi,k,t]λk,t−

Pi,t−
+
Di,t−

Pi,t−
.

Combining propositions B.3 and B.4 and using the definition of the expected return given

above one obtains the risk premium of a dividend paying asset, which is stated in the following

proposition.

Proposition B.5 (Risk Premium). The instantaneous risk premium of a claim to dividends

{Di,s}s≥t is given by

Et [ri,t−]− rf,t− =
DP c

i,t

Pi,t−
+

∑K
k=1 Et [∆Pi,k,t]λk,t−

Pi,t−
+
Di,t−

Pi,t−
− rf,t−

= − d [πc, P c
i ]t

πt− · Pi,t− · dt
−
∑K

k=1 Et− [∆πk,t ·∆Pi,k,t]λk,t−
πt− · Pi,t−

(B.14)

Proof. See section on derivations and proofs.

The risk premium consists of two components. The first term represents compensation

for diffusive risk, whereas the second component designates the premium arising from the

exposure to disaster risk.

B.3.3 The Pricing Kernel

Duffie and Epstein (1992a) and Duffie and Skiadas (1994) show that the process πt given by

πt = exp

(∫ t

0

fJ(Cs, Js)ds

)
fC(Ct, Jt) (B.15)
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can serve as a pricing kernel in a representative agent economy with stochastic differential

utility. The following proposition provides a characterization of the dynamics of the pricing

kernel as well as the equilibrium risk free rate.

Proposition B.6 (Pricing Kernel and Risk Free Rate). The dynamics of the pricing kernel

are governed by

dπt
πt−

= −rf,tdt+ ηTσtdBt +
K∑
k=1

[
exp

(
ηTYk,t

)
− 1
]
dNk,t −

K∑
k=1

[
ΦY
k (η)− 1

]
λk,tdt,

with π0 = 1, where η denotes the market price of risk vector

η =

(
−γ,

(
1− 1

θ

)
AX ,

(
1− 1

θ

)
AV ,

(
1− 1

θ

)
Aλ1 , ...,

(
1− 1

θ

)
AλK

)T
and σt denotes the matrix of diffusion coefficients

σt =



√
Vt 0 0 0 . . . 0

0 σX
√
Vt 0 0 . . . 0

0 0 σV
√
Vt 0 . . . 0

0 0 0 σλ1
√
λ1,t . . . 0

0 0 0 0
. . . 0

0 0 0 0 . . . σλK
√
λK,t


.

The equilibrium risk free rate is

rf,t =β +
1

ψ
µC +

1

ψ
Xt−

[
1

2
γ

(
1 +

1

ψ

)
+

1

2

1

θ

(
1− 1

θ

)(
A2
Xσ

2
X + A2

V σ
2
V

)]
Vt

+
K∑
k=1

[(
1− 1

θ

)((
ΦY
k (η̂)− 1

)
+

1

2

1

θ
A2
λk
σ2
λk

)
−
(
ΦY
k (η)− 1

)]
λk,t.

Proof. See section on derivations and proofs.

The expressions simplify with a unit elasticity of intertemporal substitution since ψ = 1

implies 1
θ

= 0. The proposition establishes that the risk-free rate is a linear function of the

state variables.

B.4 Defaultable Short-Term Government Debt

Historically, economic crises have often been accompanied by at least a partial default of

the government on its liabilities. To account for this possibility, I follow Barro and Wachter
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in assuming that whenever a rare disaster of type k occurs, the government defaults with

probability qk. Furthermore, the fraction of notional that is lost in the event of default is

identical to the reduction in consumption due to the disaster. Let rL,t denote the promised

interest rate on short term government debt. Given continuous reinvestment of interest

payments, the value of government debt PL,t evolves according to

dPL,t
PL,t−

= rL,tdt+
K∑
k=1

(
eY

L
k,t − 1

)
dNk,t,

where Y L
k,t = Y C

k,t with probability qk and Y L
k,t = 0 with probability 1 − qk. Since this

investment strategy yields no dividends, PL,t satisfies the pricing equation

Dπct
πt−

+
DP c

L,t

PL,t−
+
d [πc, P c

L]t
πt−PL,t−dt

+

∑K
k=1 Et−

[
∆ (π · PL)k,t

]
λk,t−

πt−PL,t−
= 0.

The equilibrium rate promised by the government on short-term debt can then be charac-

terized as follows.

Proposition B.7 (Equilibrium Interest Rate on Short-Term Government Debt). The in-

stantaneous interest rate on defaultable short term debt promised by the government in equi-

librium is

rL,t = rf,t +
K∑
k=1

[
ΦY
k (η)− ΦY

k (η̃)
]
qkλk,t,

where η̃ =
(
1− γ,

(
1− 1

θ

)
AX ,

(
1− 1

θ

)
AV ,

(
1− 1

θ

)
Aλ1 , ...,

(
1− 1

θ

)
AλK

)T
.

Proof. See section on derivations and proofs.

The expected return on government bill’s rb,t =
DPL,t
PL,t−

, which adjust the promised rate for

the possibility of default, is then given by39

rb,t = rL,t +
K∑
k=1

(
qkEt

[
exp

(
Y C
k,t

)
− 1
]

+ (1− qk)Et [exp(0)− 1]
)
λk,t

= rL,t +
K∑
k=1

(
ΦY
k (e1)− 1

)
qkλk,t.

The risk premium of an asset with respect to the return on government debt is related to

39ei denotes a vector whose ith element is 1 and all remaining elements are 0.
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the risk premium with respect to the risk-free rate by

Et− [ri,t − rb,t−] = Et− [ri,t − rf,t−] +
K∑
k=1

[
ΦY
k (η̃)− ΦY

k (η)−
(
ΦY
k (e1)− 1

)]
qkλk,t

B.5 The Price of a Consumption Claim

The representative agent’s wealth in this economy is the present value of all future consump-

tion, i.e the price of an asset that pays consumption as its dividend, i.e.

PC,t = Et
[∫ ∞

t

πs
πt
Cs

]
.

The valuation ratio of the consumption claim, i.e. the wealth-consumption ratio, is denoted

by Ht =
PC,t
Ct

. The following two propositions give the wealth-consumption ratio and the

consumption risk premium for the cases ψ = 1 and ψ 6= 1 respectively. If the representative

agent has unit elasticity of intertemporal substitution, the solution is exact and the wealth-

consumption ratio is a constant β−1.

Proposition B.8 (Wealth-Consumption Ratio and Consumption Risk Premium for ψ = 1).

If the representative agent has unit elasticity of intertemporal substitution ψ = 1, then the

wealth-consumption ratio is Ht = β−1. The risk premium of a claim to the consumption

stream is given by

Et− [rC,t − rf,t−] = γVt +
K∑
k=1

[
ΦY
k (η)− ΦY

k (η̂) + ΦY
k (e1)− 1

]
λk,t−

Proof. See section on derivations and proofs.

In the case where ψ is different from one, an approximate solution exists, which log-

linearizes the nonlinear term in the pricing PDE employing the same technique as in propo-

sition B.2.

Proposition B.9 (Wealth-Consumption Ratio and Consumption Risk Premium for ψ 6= 1).

If the representative agent has elasticity of intertemporal substitution different from one, then

the wealth-consumption ratio is given by

H(X, V, λ1, ..., λK) = exp

[
AC0 + ACXX + ACV V +

K∑
k=1

ACλkλk

]
,
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where the AC0 = −logβ + A0

θ
, ACX = AX

θ
, ACV = AV

θ
, and ACλk =

Aλk
θ

for all k = 1, ..., K. The

risk premium on a claim to consumption is

Et− [rC,t − rf,t−] =

[
γ −

(
1− 1

θ

)
1

θ

(
A2
Xσ

2
X + A2

V σ
2
V

)]
Vt− +

K∑
k=1

[
ΦY
k (η)− ΦY

k (η̂) + ΦY
k

(
ηC
)
− 1
]
λk,t−,

with ηC =
(
1, ACX , A

C
V , A

C
λ1
, ..., ACλK

)T
.

Proof. See section on derivations and proofs.

B.6 Valuation of a Claim to Corporate Dividends

Following Abel (1999), Campbell (2003), and Wachter (2010), I model corporate dividends

Dt as a levered claim to consumption by letting Dt = Cφ
t . Dividend growth is then governed

by

dDt

Dt−
=

(
φ(µC +Xt) +

1

2
φ(φ− 1)Vt

)
dt+ φ

√
VtdBc,t +

K∑
k=1

(
eφY

C
k,t − 1

)
dNk,t. (B.16)

I will denote the time t price-dividend ratio of a claim to the dividend stream {Ds}s≥t by

Gt = G(Xt, Vt, λ1,t, ..., λK,t). By an application of Ito’s rule for jump-diffusions, the price of

equity PD,t = Dt ·Gt follows

dPD,t
PD,t−

=

(
φ(µC +Xt) +

1

2
φ(φ− 1)Vt

)
dt+ φ

√
VtdBc,t

+
GX

Gt

(
−κXXtdt+ σX

√
VtdBX,t

)
+
GV

Gt

(
κV (V̄ − Vt)dt+ σV

√
VtdBV,t

)
+

K∑
k=1

Gλk

Gt

(
κλk(λ̄k − λk,t)dt+ σλk

√
λk,tdBk,t

)
+

1

2

GXX

Gt

σ2
XVtdt+

1

2

GV V

Gt

σ2
V Vtdt+

1

2

K∑
k=1

Gλkλk

Gt

σ2
λk
λk,tdt+

K∑
k=1

∆(D ·G)t
Dt−Gt−

dNk,t.

Substitution of the dynamics for PD,t and the pricing kernel into equation (B.12) yields a

PDE, in which the dividend-yield is log-linearized around its unconditional mean using the

method developed by Campbell, Chacko, Rodriguez, and Viceira (2004). This yields the

approximation

1

Gt

= exp (log(Dt)− log(PD,t)) ≈ g0 + g1 (log(Dt)− log(PD,t) = g0 − g1 log(Gt),
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with g1 = exp (E [log(Dt)− log(PD,t]) , g0 = g1(1 − log(g1)). The approximate PDE has

a closed-form solution which is exponentially affine in the state variables. The following

proposition summarizes this solution and gives the equity premium with respect to the risk-

free rate.

Proposition B.10 (Price Dividend Ratio). The equilibrium price-dividend ratio of a claim

to corporate dividends is given by

G(X, V, λ1, ..., λK) = exp

(
AD0 + ADXX + ADV V +

K∑
k=1

ADλkλk

)
,

where the coefficients AD0 , A
D
X , A

D
V , and ADλ1 , ..., A

D
λK

satisfy the system of equations

0 =− β +

(
φ− 1

ψ

)
µC + ADV κV V̄ +

K∑
k=1

ADλkκλk λ̄k + g0 − g1A
D
0

0 =φ− 1

ψ
− (κX + g1)ADX

0 =
1

2
γ

(
1 +

1

ψ

)
− γφ+

1

2
φ(φ− 1)− (κV + g1)ADV +

1

2

(
ADX
)2
σ2
X +

1

2

(
ADV
)2
σ2
V

+

(
1− 1

θ

)(
AXσ

2
XA

D
X + AV σ

2
VA

D
V

)
− 1

2

1

θ

(
1− 1

θ

)(
A2
Xσ

2
X + A2

V σ
2
V

)
0 =

1

2

(
ADλk
)2
σ2
λk
− (κλk + g1)ADλk +

(
1− 1

θ

)
Aλkσ

2
λk
ADλk −

1

2

1

θ

(
1− 1

θ

)
A2
λk
σ2
λk

−
(

1− 1

θ

)(
ΦY
k (η̂)− 1

)
+
(
ΦY
k

(
η + ηD

)
− 1
)
,

with ηD =
(
φ,ADX , A

D
V , A

D
λ1
, ..., ADλK

)T
. The instantaneous equity risk premium with respect

to the risk-free rate is given by

Et− [rD,t− − rf,t−] =

[
γφ−

(
1− 1

θ

)(
AXσ

2
XA

D
X + AV σ

2
VA

D
V

)]
Vt−

+
K∑
k=1

[
ΦY
k (η) + ΦY

k

(
ηD
)
− ΦY

k

(
η + ηD

)
− 1−

(
1− 1

θ

)
Aλkσ

2
λk
ADλk

]
λk,t−.

Proof. See section on derivations and proofs.
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B.7 The Risk-Neutral Measure

In order to determine equilibrium prices of financial derivatives, it is often convenient to work

under an equivalent risk-neutral probability measure P̃. To obtain this alternative measure,

introduce a martingale Zt > 0 a.s. with E [Zt] = 1 and πt = exp
(
−
∫ t

0
rudu

)
Zt. Fix a

positive time T and define the equivalent probability measure P̃ by

P̃(A) =

∫
ω∈A

ZT (ω)dP(ω) for all A ∈ FT .

Under this measure, the price at time t of an asset that provides a dividend stream {Di,s}∞s=t
is given by

Pi,t = Ẽ
[∫ ∞

t

e−
∫ s
t ruduDi,sds

∣∣∣∣Ft] .
An appropriate Radon-Nikodym derivative process Zt satisfying the conditions outlined

above is given by

dZt
Zt−

= ηTσtdBt +
K∑
k=1

[
exp

(
ηTYk,t

)
− 1
]
dNk,t −

K∑
k=1

[
ΦY
k (η)− 1

]
λk,tdt,

with initial condition Z0 = 1. The economic dynamics which obtain under P̃ are summarized

in the following proposition.

Proposition B.11 (Dynamics Under the Risk-Neutral Measure). The dynamics for con-

sumption growth, dividend growth, and the state variables under the risk-neutral measure P̃
defined above are given by

d lnCt =

[
µC +Xt −

(
γ +

1

2

)
Vt

]
dt+

√
VtdB̃C,t +

K∑
k=1

Y C
k,tdÑk,t

d lnDt = φ

[
µC +Xt −

(
γ +

1

2

)
Vt

]
dt+ φ

√
VtdB̃C,t +

K∑
k=1

φY C
k,tdÑk,t

dXt = −κXXtdt+

(
1− 1

θ

)
σ2
XAXVtdt+ σX

√
VtdB̃X,t +

K∑
k=1

Y X
k,tdÑk,t

dVt =

[
κV (V̄ − Vt) +

(
1− 1

θ

)
σ2
VAV Vt

]
dt+ σV

√
VtdB̃V,t +

K∑
k=1

Y V
k,tdÑk,t

dλk,t =

[
κλ,k(λ̄k − λk,t) +

(
1− 1

θ

)
Aλkσ

2
λk
λk,t

]
dt+ σλ,k

√
λk,tdB̃k,t +

K∑
j=1

Y λk
j,t dÑj,t,
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where B̃C, B̃X , B̃V , and B̃λk k = 1, ..., K are independent Brownian motions under P̃.

Furthermore, the arrival of the processes Ñk k = 1, ..., K is independent with intensity

λ̃k,t = ΦY
k (η)λk,t

under the martingale measure P̃. The moment-generating function of jump sizes of Yk,t under

P̃ is given by

Φ̃Y
k (u) =

ΦY
k (u+ η)

ΦY
k (η)

.

Proof. See section on derivations and proofs.

Hence, under the risk-neutral measure, expected consumption and dividend growth are

adjusted downwards by an additive component that is increasing in both risk aversion and

leverage. This result immediately gives rise to the dynamics of the log price of equity under

the risk neutral measure.

Corollary B.1 (Dynamics of the Price of Equity under P̃). The log-Price of equity lnPD,t

is governed by the process

d lnPD,t =

(
φ

[
µC +Xt −

(
γ +

1

2

)
Vt

]
− AXκXXt +

(
1− 1

θ

)
ADXAXσ

2
XVt

+ ADV

[
κV
(
V̄ − Vt

)
+

(
1− 1

θ

)
σ2
VAV Vt

]
+

K∑
k=1

ADλk

[
κλk
(
λ̄k − λk,t

)
+

(
1− 1

θ

)
Aλkσ

2
λk
λk,t

])
dt

+φ
√
VtdB̃C,t + ADXσX

√
VtdB̃X,t + ADV σV

√
VtdB̃V,t +

K∑
k=1

ADλkσλk
√
λk,tdB̃k,t

+
K∑
j=1

(
φY C

j,t + ADXY
X
j,t + ADV Y

V
j,t +

K∑
k=1

ADλkY
λk
j,t

)
dÑj,t

under the risk-neutral measure P̃.

Proof. See section on derivations and proofs.

B.8 Equilibrium Prices of European Derivatives

Equilibrium Prices of European options that arise in this endowment economy can be com-

puted in quasi-closed form using transform techniques developed by Carr and Madan (1999)
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and Duffie, Pan, and Singleton (2000). The following proposition provides the Fourier trans-

form of the price of a general state contingent claim on equity with European exercise that

pays f(lnPD,t) at maturity date T .

Proposition B.12 (Prices of European Derivatives). Let xt = lnPD,t and consider a state

contingent claim which yields a cash flow of f(xT ) at expiration T . Denote by Pf,t =

Ẽ
[

exp
(
−
∫ T
t
rf,sds

)
f(xT )

∣∣∣Ft] the equilibrium price of the derivative at time t ≤ T . The

Fourier transforms FPf,t(u) =
∫∞
−∞ e

i·u·xtPf,t(xt)dxt is given by

FPf,t(u) = exp(i · u · xt) · Ff(u) · Ψ̃x(t, x,−u, T ),

where Ψ̃x
t,T (t, x, u, T ) = Ẽ

[
exp

(
−
∫ T
t
rf,sds

)
exp (iuxT )

∣∣∣Ft] denotes the discounted charac-

teristic function of the log price of equity under the risk-neutral measure.

Proof. See section on derivations and proofs.

This result is an extension of a method developed in Lewis (2000) toward this represen-

tative agent economy with self-exciting disasters. The derivative price at time t can then

be determined Fourier inversion, which entails numerical integration along a strip parallel to

the real axis, i.e. an evaluation of the integral

Pf,t =
1

2π

∫ iω+∞

iω−∞
exp (−iuxt)FPf,t(u)du,

for appropriate choice of ω ∈ R.

The applicability of this result hinges on the availability of simple expressions for the

discounted characteristic function of the log price of equity as well as the Fourier transform

of the derivative payoff. The ODEs defining the discounted joint characteristic function of

the log price of equity and the state variables arising in this consumption based model is

provided in the section on derivations and proofs below. In the case of a European option, the

Fourier transform of the payoff at expiration with log strike price k takes on the particularly

straightforward form

Ff(u) =
exp ((iu+ 1)k)

iu(iu+ 1)
.

For the valuation of call options, the integral is computed with ω > 1 whereas put option

prices are obtained by choosing ω < 0.
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B.9 Derivations and Proofs

B.9.1 Steady state mean and expected mean reversion of self-exciting jump

intensity

The jump intensity follows

dλt = κλ(λ̄− λt)dt+ σλ
√
λtdBt + Y λ

t dNt,

where Bt is a Brownian motion, Nt is a counting process with conditional intensity λt, and Y λ
t

is a random variable that has bounded support with Ȳ λ ≡ E
[
Y λ
t

]
< κλ and is independent

of Bt and Nt. Taking expectations on both sides and dividing by dt one obtains

E [dλt]

dt
= κλ(λ̄− E [λt]) + Ȳ λE [λt] .

Letting m(t) = E[λt] one can express the dynamics of E[λt] in terms of the ordinary differ-

ential equation

m′(t) =
(
Ȳ λ − κλ

)
m(t) + κλλ̄

with initial condition m(0) = λ0. The solution to this linear first order equation takes the

form

m(t) =
κλλ̄− exp

((
Ȳ λ − κλ

)
t
)

(κλ(λ̄− λ0) + λ0Ȳ
λ)

κλ − Ȳ λ
.

The steady state mean E [λ∞] is defined as

E [λ∞] ≡ lim
t→∞

m(t) =
κλλ̄

κλ − Ȳ λ
.

The steady state mean of the jump intensity is finite and non-negative if and only if κλ > Ȳ λ,

i.e. the speed of mean-reversion is greater than the expected size of the jump in the intensity.

Under this condition, the expectation of the jump intensity approaches the steady state mean

as t → ∞. In fact, m(t) is strictly decreasing for λ0 > E [λ∞] and strictly increasing for

λ0 < E [λ∞]. This can be seen by differentiating m(t) with respect to t, which yields

m′(t) = exp
((
E
[
Y λ
t

]
− κλ

)
t
)

(κλ(λ̄− λ0) + λ0E
[
Y λ
t

]
).

This expression is strictly negative for λ0 > E [λ∞] and strictly positive for λ0 < E [λ∞].
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B.9.2 Infinitesimal generator of C,X, V, λ1, ..., λK

For any compactly supported function g(C,X, V, λ1, ..., λK) that is twice continuously dif-

ferentiable in the arguments C,X, V, λ1, ..., λK , define the infinitesimal generator

Dgt = lim
h→0

Et− [g(Ct+h, Xt+h, Vt+h, λ1,t+h, ..., λK,t+h)− g(Ct−, Xt−, Vt−, λ1,t−, ..., λK,t−)]

h
,

where the dynamics of Ct, Xt, Vt, λ1,t, ..., λK,t are given in equation (B.1) through (B.4). An

application of Ito’s rule for jump diffusions yields the dynamics

dgt = gCdC
c
t + gXdX

c
t + gV dV

c
t +

K∑
k=1

gλkdλ
c
k,t +

1

2
gCCd [Cc, Cc]t +

1

2
gXXd [Xc, Xc]t

+
1

2
gV V d [V c, V c]t +

1

2

K∑
k=1

K∑
j=1

gλkλjd
[
λck, λ

c
j

]
t
+ gCXd [Cc, Xc]t + gCV d [Cc, V c]t + gXV d [Xc, V c]t

+
K∑
k=1

gCλkd [Cc, λck]t +
K∑
k=1

gXλkd [Xc, λck]t +
K∑
k=1

gV λkd [V c, λck]t +
K∑
k=1

∆gk,tdNk,t,

where ∆gk,t = g(Ct, Xt, Vt, λ1,t, ..., λK,t)− g(Ct−, Xt−, Vt−, λ1,t−, ..., λK,t−) is the jump size of

g conditional on a jump in the kth point process Nk at time t, i.e.

∆gk,t = g(Ct− · eY
C
k,t , Xt− + Y X

k,t, Vt− + Y V
k,t, λ1,t− + Y λ1

k,t , ..., λK,t− + Y λK
k,t )

− g(Ct−, Xt−, Vt−, λ1,t−, ..., λK,t−).

Upon substituting the dynamics of Ct, Xt, Vt, λ1,t, ..., λK,t one obtains

dgt = gC

(
(µC +Xt)Ctdt+

√
VtCtdBC,t

)
+ gX

(
−κXXtdt+ σX

√
VtdBX,t

)
+ gV (κV (V̄ − Vt)dt+ σV

√
VtdBV,t) +

K∑
k=1

gλk

(
κλk(λ̄k − λk,t)dt+ σλk

√
λk,tdBk,t

)
+

1

2
gCCVtC

2
t dt+

1

2
gXXσ

2
XVtdt+

1

2
gV V σ

2
V Vtdt+

1

2

K∑
k=1

gλkλkσ
2
λk
λk,tdt

+
K∑
k=1

Et [∆gk,t]λk,tdt+
K∑
k=1

∆gk,tdNk,t −
K∑
k=1

Et− [∆gk,t]λk,tdt.
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Recognizing that
∑K

k=1 ∆gtdNk,t −
∑K

k=1 Et [∆gt]λk,t is a martingale, the infinitesimal gen-

erator can be written as

Dgt = gC(µC +Xt)Ct − gXκXXt + gV κV (V̄ − Vt) +
K∑
k=1

gλkκλk(λ̄k − λk,t)

+
1

2
gCCVtC

2
t +

1

2
gXXσ

2
XVt +

1

2
gV V σ

2
V Vt +

1

2

K∑
k=1

gλkλkσ
2
λk
λk,t +

K∑
k=1

Et− [∆gk,t]λk,t.

B.9.3 Homegeneity of Indirect Utility with Porteus-Kreps aggregator

The following lemma establishes that the value function for stochastic differential utility

with a Porteus-Kreps aggregator is homogeneous in consumption of degree 1− γ.

Lemma B.1 (Homogeneity of Indirect Utility with Porteus-Kreps aggregator). Let Jt denote

indirect utility associated with the stochastic sequence of consumption C = {Cs}∞s=t. Let

Cλ = {λCs}∞s=t. Indirect utility Jλt associated with Cλ is Jλt = λ1−γJt.

Proof. We first establish that the aggregator satisfies f(λC, λ1−γ) = λ1−γf(C, J). If ψ = 1,

we have

f(λC, λ1−γJ) = β(1− γ)λ1−γJ

(
log (λC)− 1

1− γ
log
(
(1− γ)λ1−γJ

))
= λ1−γβ(1− γ)J

(
log (C)− 1

1− γ
log ((1− γ)J)

)
= λ1−γf(C, J).

Likewise, if ψ 6= 1, we can write

f(λC, λ1−γJ) =
β

1− 1
ψ

Jλ1−γ

(
λ1− 1

ψC1− 1
ψ

((1− γ)λ1−γJ)
1
θ

− 1

)

= λ1−γ β

1− 1
ψ

J

(
C1− 1

ψ

((1− γ)J)
1
θ

− 1

)
= λ1−γf(C, J).
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Hence

Jλt = Et
[∫ ∞

t

f(λCs, J
λ
s )ds

]
= Et

[∫ ∞
t

f(λCs, λ
1−γJs)ds

]
= λ1−γEt

[∫ ∞
t

f(Cs, Js)ds

]
= λ1−γJt.

B.9.4 Partial derivatives of the normalized Porteus-Kreps aggregator

The normalized Porteus-Kreps aggregator for the stochastic differential utility process Jt =

Et
[∫∞
t
f(Cs, Js)ds

]
is given by

f(C, J) =
β

1− 1
ψ

J(1− γ)

(
C1− 1

ψ

((1− γ)J)
1
θ

− 1

)
for ψ 6= 1

and

f(C, J) = β(1− γ)J

(
logC − 1

1− γ
log ((1− γ)J)

)
for ψ = 1,

with θ = 1−γ
1− 1

ψ

. The partial derivatives with respect to C and J are

fC(C, J) = βC−
1
ψ ((1− γ)J)1− 1

θ for ψ 6= 1

fC(C, J) = β(1− γ)
J

C
for ψ = 1

and

fJ(C, J) = βθ

((
1− 1

θ

)
C1− 1

ψ

((1− γ)J)
1
θ

− 1

)
for ψ 6= 1

fJ(C, J) = β ((1− γ) logC − log((1− γ)J)− 1) for ψ = 1.
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B.9.5 A Heuristic Derivation of the PDE for the Value Function

The recursion given in equation (B.5) can be written as follows

Jt = Et
[∫ ∞

t

f(Cs, Js)ds

]
= Et

[∫ t+∆t

t

f(Cs, Js)ds+

∫ ∞
t+∆t

f(Cs, Js)ds

]
= Et

[∫ t+∆t

t

f(Cs, Js)ds+ Et+∆t

[∫ ∞
t+∆t

f(Cs, Js)ds

]]
= Et

[∫ t+∆t

t

f(Cs, Js)ds+ Jt+∆t

]
,

where the third equality follows from the law of iterated expectations and the final step

applies the definition of the value function to the second term inside the expectation. Sub-

tracting Jt = J(Ct, Xt, Vt, λ1,t, ..., λK,t) on both sides, dividing by ∆t, and taking the limit

∆t→ 0 gives rise to

0 = lim
∆t→0

Et
[∫ t+∆t

t
f(Cs, Js)ds

]
∆t

+ lim
∆t→0

Et [Jt+∆t − Jt]
∆t

.

Under regularity conditions the first term converges to f(Ct, Jt) and the second term is the

infinitesimal generator of the value function, i.e. DJt + f(Ct, Jt) = 0, which establishes the

claim.

B.9.6 Solution of the PDE for the Value function

The solution for the PDE (B.8) takes the form

J(C,X, V, λ1, λK) =
C1−γ

1− γ
I(X, V, λ1, ..., λK)

for both ψ = 1 and ψ 6= 1. Substituting this conjecture into the aggregator yields

f(C, J) = βθJ
(
I−

1
θ − 1

)
for ψ 6= 1

f(C, J) = −βJ log(I) for ψ = 1.
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The jump term ∆Jk,t is given by

∆Jk,t =
C1−γ
t− · e(1−γ)Y Ck,t

1− γ
· I(Xt− + Y X

k,t, Vt− + Y V
k,t, λ1,t− + Y λk

k,t , ..., λK,t− + Y λK
k,t )

−
C1−γ
t−

1− γ
· I(Xt−, Vt−, λ1,t−, ..., λK,t−)

= Jt− ·
(
e(1−γ)Y Ck,t

Ik,t
Ik,t−

− 1

)
,

where Ik,t− = I(Xt−, Vt−, λ1,t−, ..., λK,t−) and Ik,t = I(Xt−+Y X
k,t, Vt−+Y V

k,t, λ1,t−+Y λ1
k,t , ..., λK,t−+

Y λK
k,t ). Substituting the expression for ∆Jk,t and the partial derivatives of the conjectured

solution (B.9) into (B.8) yields (B.10).

B.9.6.1 Exact Closed Form Solution for ψ = 1 (Proof of Proposition B.1) Sub-

stituting the aggregator for the case ψ = 1 into (B.10) results in the PDE

(1− γ)(µC +Xt)−
IX
I
κXXt +

IV
I
κV (V̄ − Vt) +

K∑
k=1

Iλk
I
κλk(λ̄k − λk,t)−

1

2
γ(1− γ)Vt

+
1

2

IXX
I
σ2
XVt +

1

2

IV V
I
σ2
V Vt +

1

2

K∑
k=1

Iλkλk
I

σ2
λk
λk,t +

K∑
k=1

Et−
[
e(1−γ)Y Ck,t

Ik,t
Ik,t−

− 1

]
λk,t − βJ log(I) = 0,

which has an analytical solution of the form

I(X, V, λ1, ..., λK) = exp

(
A0 + AX ·X + AV · V +

K∑
k=1

Aλkλk

)
.

Given this functional form, the jump term simplifies to

Ik,t
Ik,t−

=
exp

(
AX
(
Xt− + Y X

k,t

)
+ AV

(
Vt− + Y V

k,t

)
+
∑K

k=1Aλk

(
λk,t− + Y λk

k,t

))
exp

(
AXXt− + AV Vt− +

∑K
k=1Aλkλk,t−

)
= exp

(
AXY

X
k,t + AV Y

V
k,t +

K∑
k=1

AλkY
λk
k,t

)
.
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Substituting this solution into the PDE and collecting terms involving Xt, Vt, λ1,t, ..., λK,t

yields

0 = (1− γ)µC + AV κV V̄ +
K∑
k=1

Aλkκλk λ̄k − βA0

+ [(1− γ)− AXκX − βAX ]Xt +

[
−βAV − AV κV −

1

2
γ(1− γ) +

1

2
A2
Xσ

2
X +

1

2
A2
V σ

2
V

]
Vt

+
K∑
k=1

[
−Aλkκλk +

1

2
A2
λk
σ2
λk
− βAλk +

(
ΦY
k (η̂)− 1

)]
λk,t.

The terms multiplying the state variablesXt, Vt, λ1,t, ..., λK,t have to be separately zero, which

implies the following nonlinear system of equations in the coefficientsA0, AX , AV , Aλ1 , ..., AλK :

0 = (1− γ)µC + AV κV V̄ +
K∑
k=1

Aλkκλk λ̄k − βA0

0 = (1− γ)− AXκX − βAX

0 = −βAV − AV κV −
1

2
γ(1− γ) +

1

2
A2
Xσ

2
X +

1

2
A2
V σ

2
V

0 = −Aλkκλk +
1

2
A2
λk
σ2
λk
− βAλk +

(
ΦY
k (η̂)− 1

)
∀k ∈ {1, ..., K}

This concludes the proof to the proposition.

B.9.6.2 Approximate Solution for ψ 6= 1 (Proof of Proposition B.2) In the case

ψ 6= 1 a closed form solution to the PDE is not available. Substituting the aggregator for

this case into equation (B.10) yields

(1− γ)(µC +Xt)−
IX
I
κXXt +

IV
I
κV (V̄ − Vt) +

K∑
k=1

Iλk
I
κλk(λ̄k − λk,t)−

1

2
γ(1− γ)Vt

+
1

2

IXX
I
σ2
XVt +

1

2

IV V
I
σ2
V Vt +

1

2

K∑
k=1

Iλkλk
I

σ2
λk
λk,t +

K∑
k=1

Et−
[
e(1−γ)Y Ck,t

Ik,t
Ik,t−

− 1

]
λk,t − βθ + βθI−

1
θ = 0.

The last term on the left hand side makes the PDE nonlinear. Recognizing that βI−
1
θ is the

consumption-wealth ratio, we can apply the approximation introduced by Campbell, Chacko,

Rodriguez, and Viceira (2004). This method results in the following log-linearization of the

last term appearing in the PDE around the mean consumption-wealth ratio

Ct
Wt

= β · I−
1
θ = exp (log(Ct)− log(Wt)) ≈ i0 + i1 (log(Ct)− log(Wt)) = i0 + i1

(
log(β)− 1

θ
log(I)

)
,
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with i1 = exp (E[log(Ct)− log(Wt)]) and i0 = i1(1− log(i1)).

The solution to this log-linearized PDE can be now be obtained analytically and takes

the same form as for ψ = 1. Substituting the approximation and the functional form of I

into the PDE and collecting terms yields

(1− γ)µC + AV κV V̄ +
K∑
k=1

Aλkκλk λ̄k + θi0 + θi1 log β − βθ − i1A0

+ [(1− γ)− AXκX − i1AX ]Xt +

[
−i1AV − AV κV −

1

2
γ(1− γ) +

1

2
A2
Xσ

2
X +

1

2
A2
V σ

2
V

]
Vt

+
K∑
k=1

[
−(κλk + i1)Aλk +

1

2
A2
λk
σ2
λk

+
(
ΦY
k (η̂)− 1

)]
λk,t = 0.

The method of undetermined coefficients once again implies a system of equations. The

coefficients A0, AX , AV , and Aλ1 , ..., AλK simultaneously satisfy

0 = (1− γ)µC + AV κV V̄ +
K∑
k=1

Aλkκλk λ̄k + θi0 + θi1 log β − βθ − i1A0

0 = (1− γ)− AXκX − i1AX

0 = −i1AV − AV κV −
1

2
γ(1− γ) +

1

2
A2
Xσ

2
X +

1

2
A2
V σ

2
V

0 = −(κλk + i1)Aλk +
1

2
A2
λk
σ2
λk

+
(
ΦY
k (η̂)− 1

)
for all k ∈ {1, ..., K},

which concludes the proof of the proposition.

B.9.7 Derivation of the Risk Premium (Proof of Proposition B.5)

Substituting equation (B.13) into the pricing PDE (B.12) yields

DP c
i,t

Pi,t−
+

∑K
k=1 Et− [∆Pi,k,t]λk,t−

Pi,t−
+
Di,t−

Pi,t−
− rf,t−

=− d [πc, P c
i ]t

πt− · Pi,t− · dt
−

∑K
k=1 Et−

[
∆ (π · Pi)k,t

]
λk,t−

πt− · Pi,t−
−
∑K

k=1 Et− [∆πk,t]λk,t−
πt−

−
∑K

k=1 Et− [∆Pi,k,t]λk,t−
Pi,t−

 .

Using the definitions ∆ (π · Pi)k,t = πk,tPi,k,t − πt−Pi,t−, ∆πk,t = πk,t − πt−, and ∆Pi,k,t =

Pi,k,t − Pi,t−, one can rewrite the sums inside the parentheses on the right hand side of the
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previous equation as

K∑
k=1

Et−
[
πk,tPi,k,t − πt−Pi,t−

πt− · Pi,t−
− πk,t − πt−

πt−
− Pi,k,t − Pi,t−

Pi,t−

]
λk,t−.

Rearranging terms gives rise to

K∑
k=1

Et−
[

(πk,t − πt−) (Pi,k,t − Pt−)

πt− · Pi,t−

]
λk,t− =

K∑
k=1

Et−
[

∆πk,t ·∆Pi,k,t
πt− · Pi,t−

]
λk,t−.

Substituting back into the equation above yields the expression for the risk premium (B.14)

and concludes the proof of proposition B.5.

B.9.8 Derivation of Pricing Kernel Dynamics (Proof of Proposition B.6)

The general form of the pricing kernel in an endowment economy under stochastic differential

utility is given by equation (B.15). An application of Ito’s formula then implies the dynamics

dπt
πt−

= fJ(Ct, Jt)dt+
dfC(Ct, Jt)

fC(Ct, Jt)
, (B.17)

with

dfC,t = fCCdC
c
t +

1

2
fCCCd [Cc, Cc]t + fCJdJ

c
t

+
1

2
fCJJd [J c, J c]t + fCCJd [Cc, J c]t +

K∑
k=1

∆fC,k,tdNk,t.
(B.18)

The continuous part of the value function evolves according to

dJ ct
Jt−

=

[
(1− γ)(µC +Xt)− AXκXXt + AV κV (V̄ − Vt) +

K∑
k=1

Aλkκλk(λ̄k − λk,t)

+
1

2
A2
Xσ

2
XVt +

1

2
A2
V σ

2
V Vt +

1

2

K∑
k=1

A2
λk
σ2
λk
λk,t −

1

2
γ(1− γ)Vt

]
dt

+(1− γ)
√
VtdBC,t + AXσX

√
VtdBX,t + AV σV

√
VtdBV,t +

K∑
k=1

Aλkσλk
√
λk,tdBk,t.

The remainder of the derivation depends on the functional form of the aggregator which

differs for ψ = 1 and ψ 6= 1. Hence the two cases are treated separately in what follows.
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B.9.8.1 Pricing Kernel and Risk Free Rate for ψ = 1 To proceed with the calcula-

tion of dfC we need to establish higher order partial derivatives of the aggregator in the case

of ψ = 1. The relevant partial derivatives are given by

fC(C, J) = β(1− γ)
J

C

fCC(C, J) = −fC(C, J)
1

C

fCCC(C, J) = 2fC(C, J)
1

C2

fCJ(C, J) = fC(C, J)
1

J

fCJJ(C, J) = 0

fCCJ(C, J) = −fC(C, J)
1

CJ
.

We next derive an expression for the jump term appearing in (B.18). At times t when Nk

jumps, we have Ct = Ct−e
Y Ck,t and

Jt =
C1−γ
t− e(1−γ)Y Ck,t

1− γ
exp

(
AX
(
Xt− + Y X

k,t

)
+ AV

(
Vt− + Y V

k,t

)
+

K∑
j=1

Aλj(λj,t− + Y
λj
k,t )

)
.

For the jump term of fC at times of the kth jump, i.e. ∆fC,k,t, we obtain

∆fC,k,t = fC(Ct, Jt)− fC(Ct−, Jt−)

=βC−γt− exp

(
−γY C

k,t + AX
(
Xt− + Y X

k,t

)
+ AV

(
Vt− + Y V

k,t

)
+

K∑
j=1

Aλj(λj,t− + Y
λj
k,t )

)

−βC−γt− exp

(
AXXt− + AV Vt− +

K∑
j=1

Aλjλj,t−

)

=βC−γt− exp

(
AXXt− + AV Vt− +

K∑
j=1

Aλjλj,t−

)[
exp

(
−γY C

k,t + AXY
X
k,t + AV Y

V
k,t +

K∑
j=1

AλjY
λj
k,t

)
− 1

]

=fC(Ct−, Jt−)

[
exp

(
−γY C

k,t + AXY
X
k,t + AV Y

V
k,t +

K∑
j=1

AλjY
λj
k,t

)
− 1

]
.
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Substituting the equations from proposition B.1 into the value function dynamics above, we

obtain

dJ ct
Jt

=

[
βA0 + βAXXt + βAV Vt +

K∑
k=1

(
βAλk −

(
ΦY
k (η̂)− 1

))
λk,t

]
dt

+(1− γ)
√
VtdBC,t + AXσX

√
VtdBX,t + AV σV

√
VtdBV,t +

K∑
k=1

Aλkσλk
√
λk,tdBk,t.

Combining theses results with (B.18), we find

dfC(Ct, Jt)

fC(Ct−, Jt−)
=

[
− µC + βA0 + (βAX − 1)Xt + (βAV + γ)Vt +

K∑
k=1

(
βAλk −

(
ΦY
k (η̂)− 1

))
λk,t

]
dt

− γ
√
VtdBC,t + AXσX

√
VtdBX,t + AV σV

√
VtdBV,t +

K∑
k=1

Aλkσλk
√
λk,tdBk,t

+
K∑
k=1

[
exp

(
ηTYk,t

)
− 1
]
dNk,t.

Substituting the solution for Jt into the partial derivative of the aggregator with respect to

the value function fJ(Ct, Jt) yields

fJ(Ct, Jt) = −β

(
A0 + AXXt + AV Vt +

K∑
k=1

Aλkλk,t

)
− β.

Putting this result together with (B.17) gives rise to the following dynamics for the pricing

kernel

dπt
πt−

=

[
− β − µC −Xt + γVt −

K∑
k=1

[ (
ΦY
k (η̂)− 1

)]
λk,t

]
dt

− γ
√
VtdBC,t + AXσX

√
VtdBX,t + AV σV

√
VtdBV,t +

K∑
k=1

Aλkσλk
√
λk,tdBk,t

+
K∑
k=1

[
exp

(
ηTYk,t

)
− 1
]
dNk,t.

The risk-free rate can now be computed using proposition B.4, which results in

rf,t = β + µC +Xt − γVt +
K∑
k=1

[
ΦY
k (η̂)− ΦY

k (η)

]
λk,t.
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Substituting back into the dynamics of the pricing kernel, we obtain the statement in propo-

sition B.6 for a unit EIS by noting that ψ = 1 implies 1
θ

= 0.

B.9.8.2 Pricing Kernel and Risk Free Rate for ψ 6= 1 Once again we first need to

establish some higher order partial derivatives of the aggregator. In the case of ψ 6= 1 we

obtain

fCC(C, J) = − 1

ψ
fC(C, J)

1

C

fCCC(C, J) =
1

ψ

(
1 +

1

ψ

)
fC(C, J)

1

C2

fCJ(C, J) =

(
1− 1

θ

)
fC(C, J)

1

J

fCJJ(C, J) = −1

θ

(
1− 1

θ

)
fC(C, J)

1

J2

fCCJ(C, J) = − 1

ψ

(
1− 1

θ

)
fC(C, J)

1

CJ
.

Using the equations from proposition B.2, we obtain the dynamics of the continuous part of

the value function

dJ ct
Jt

=

[
i1A0 + θ(i0 + i1 log β − β) + i1AXXt + i1AV Vt

+
K∑
k=1

(
i1Aλk −

(
ΦY
k (η̂)− 1

))
λk,t

]
dt

+(1− γ)
√
VtdBC,t + AXσX

√
VtdBX,t + AV σV

√
VtdBV,t +

K∑
k=1

Aλkσλk
√
λk,tdBk,t.
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The jump term of fC,t for a jump of Nk can be computed as

∆fC,k,t = f(Ct, Jt)− f(Ct−, Jt−)

= βC
− 1
ψ

t− e−
1
ψ
Y Ck,t

(
C1−γ
t− e

(1−γ)Y Ck,t+A0+AX(Xt−+Y Xk,t)+AV (Vt−+Y Vk,t)+
∑K
j=1 Aλj

(
λj,t−+Y

λj
k,t

))1− 1
θ

− βC
− 1
ψ

t−

(
C1−γ
t− eA0+AXXt−+AV Vt−+

∑K
j=1 Aλjλj,t−

)1− 1
θ

= fC(Ct−,Jt−)

[
e
(− 1

ψ
+1−γ−1+ 1

ψ )Y Ck,t+(1− 1
θ )
(
AXY

X
k,t+AV Y

V
k,t+

∑K
j=1 AλjY

λj
k,t

)
− 1

]

= fC(Ct−,Jt−)

[
e
−γY Ck,t+(1− 1

θ )
(
AXY

X
k,t+AV Y

V
k,t+

∑K
j=1 AλjY

λj
k,t

)
− 1

]
.

Substitution of these results into (B.18) yields

dfC,t
fC,t−

=

[
− 1

ψ
µC +

(
1− 1

θ

)
(i1A0 − θ (i0 + i1 log β − β)) +

[(
1− 1

θ

)
i1AX −

1

ψ

]
Xt

+

[
1

2
γ

(
1 +

1

ψ

)
+

(
1− 1

θ

)
i1AV −

1

2

1

θ

(
1− 1

θ

)(
A2
Xσ

2
X + A2

V σ
2
V

)]
Vt

+

(
1− 1

θ

) K∑
k=1

[
i1Aλk −

(
ΦY
k (η̂)− 1

)
− 1

2

1

θ
A2
λk
σ2
λk

]
λk,t

]
dt

−γ
√
VtdBC,t +

(
1− 1

θ

)
AXσX

√
VtdBX,t +

(
1− 1

θ

)
AV σV

√
VtdBV,t

+

(
1− 1

θ

) K∑
k=1

Aλkσλk
√
λk,tdBk,t +

K∑
k=1

(
exp

(
ηTYk,t

)
− 1
)
dNk,t.

Using the approximation around the mean consumption-wealth ratio, the partial derivative

of the aggregator with respect to indirect utility evaluated at the solution for Jt is given by

fJ(Ct, Jt) =

(
1− 1

θ

)
βθI

− 1
θ

t − βθ

≈ (θ − 1) (i0 + i1 log β)−
(

1− 1

θ

)
i1

(
A0 + AXXt + AV Vt +

K∑
k=1

Aλkλk,t

)
− βθ.
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Combining these results with (B.17) and once again using the equations in proposition B.2,

gives rise to the pricing kernel dynamics

dπt
πt−

=

[
− β − 1

ψ
µC −

1

ψ
Xt+

[
1

2
γ

(
1 +

1

ψ

)
− 1

2

1

θ

(
1− 1

θ

)(
A2
Xσ

2
X + A2

V σ
2
V

)]
Vt

−
(

1− 1

θ

) K∑
k=1

[ (
ΦY
k (η̂)− 1

)
+

1

2

1

θ
A2
λk
σ2
λk

]
λk,t

]
dt

−γ
√
VtdBC,t +

(
1− 1

θ

)
AXσX

√
VtdBX,t +

(
1− 1

θ

)
AV σV

√
VtdBV,t

+

(
1− 1

θ

) K∑
k=1

Aλkσλk
√
λk,tdBk,t +

K∑
k=1

(
exp

(
ηTYk,t

)
− 1
)
dNk,t.

Applying proposition B.4 yields the risk free rate

rf,t =β +
1

ψ
µC +

1

ψ
Xt−

[
1

2
γ

(
1 +

1

ψ

)
+

1

2

1

θ

(
1− 1

θ

)(
A2
Xσ

2
X + A2

V σ
2
V

)]
Vt

+
K∑
k=1

[(
1− 1

θ

)((
ΦY
k (η̂)− 1

)
+

1

2

1

θ
A2
λk
σ2
λk

)
−
(
ΦY
k (η)− 1

)]
λk,t.

Substitution of the risk-free rate into the pricing kernel dynamics above yields the result of

proposition B.6 for an EIS different from unity and concludes the proof.

B.9.9 The Interest Rate on Defaultable Short-Term Government Debt

The equilibrium promised rate rL,t is determined by the equation

Dπct
πt−

+
DP c

L,t

PL,t−
+
d [πc, P c

L]t
πt−PL,t−dt

+

∑K
k=1 Et−

[
∆ (π · PL)k,t

]
λk,t−

πt−PL,t−
= 0.

We have
DP cL,t
PL,t−

= rL,t and d [πc, P c
L]t = 0. Furthermore, at times of the process Nk, we have

PL,k,t
PL,t−

= exp
(
Y Z
k,t

)
and

πk,t
πt−

= exp

(
−γY C

k,t +

(
1− 1

θ

)(
AXY

X
k,t + AV Y

V
k,t +

K∑
j=1

AλjY
λj
k,t

))
.
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Hence it is straightforward to compute the expectations

Et−
[
∆ (π · PL)k,t

]
πt− · PL,t−

= Et

[
exp

(
Y Z
k,t − γY C

k,t +

(
1− 1

θ

)(
AXY

X
k,t + AV Y

V
k,t +

K∑
j=1

AλjY
λj
k,t

))
− 1

]

= qkΦ
Y
k

(
1− γ,

(
1− 1

θ

)
AX ,

(
1− 1

θ

)
AV ,

(
1− 1

θ

)
Aλ1 , ...,

(
1− 1

θ

)
AλK

)
+ (1− qk)ΦY

k

(
−γ,

(
1− 1

θ

)
AX ,

(
1− 1

θ

)
AV ,

(
1− 1

θ

)
Aλ1 , ...,

(
1− 1

θ

)
AλK

)
− 1

= qkΦ
Y
k (η̃) + (1− qk)ΦY

k (η)− 1

and

Et− [∆πk,t]

πt−
= ΦY

k

(
−γ,

(
1− 1

θ

)
AX ,

(
1− 1

θ

)
AV ,

(
1− 1

θ

)
Aλ1 , ...,

(
1− 1

θ

)
AλK

)
− 1

= ΦY
k (η)− 1.

Combining these results gives rise to

Et−
[
∆ (π · PL)k,t

]
πt− · PL,t−

=
Et− [∆πk,t]

πt−
+ qk

(
ΦY
k (η̃)− ΦY

k (η)
)
.

Substitution into the pricing equation yields

rL,t = −Dπ
c
t

πt−
−
∑K

k=1 Et− [∆πk,t]λk,t−
πt−

+
K∑
k=1

(
ΦY
k (η)− ΦY

k (η̃)
)
qkλk,t−.

Recognizing that the risk-free rate is given by

rf,t− = −Dπ
C
t

πt−
−
∑K

k=1 Et− [∆πk,t]λk,t−
πt−

,

one obtains the equation given in the proposition.

B.9.10 The Wealth Consumption Ratio and the Consumption Risk Premium

I am going to show that the wealth-consumption ratio is β−1I
1
θ and derive an expression

for the risk premium on a claim to aggregate consumption. According to proposition B.3,

wealth, which is the price of an asset that delivers consumption Cs as its dividend at time
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s ≥ t, satisfies the PDE

Dπct
πt−

+
DP c

C,t

PC,t−
+

d [πc, P c
C ]t

πt− · PC,t− · dt
+

∑K
k=1 Et−

[
∆ (π · PC)k,t

]
λk,t−

πt− · PC,t−
+

Ct−
PC,t−

= 0. (B.19)

In the following, the wealth-consumption ratio, that is the price-dividend ratio of a claim to

consumption, will be denoted by Ht = H(Xt, Vt, λ1,t, ..., λK,t). The dynamics of the wealth-

consumption ratio are then given by

dHt =

[
−HXκXXt +HV κV (V̄ − Vt) +

K∑
k=1

Hλkκλk(λ̄k − λk,t)

+
1

2
HXXσ

2
XVt +

1

2
HV V σ

2
V Vt +

1

2

K∑
k=1

Hλkλkσ
2
λk
λk,t

]
dt

+HXσX
√
VtdBX,t +HV σV

√
VtdBV,t +

K∑
k=1

Hλkσλk
√
λk,tdBk,t +

K∑
k=1

∆Hk,tdNk,t.

The price of a claim to consumption can be written as PC,t = Ht · Ct. Its continuous part

follows the process

dP c
C,t = d (Hc

tC
c
t ) = HtdC

c
t + CtdH

c
t + d [Hc, Cc]t .

Substituting the dynamics of consumption, we have

dP c
C,t

PC,t
=

[
µC +Xt −

HX

Ht

κXXt +
HV

Ht

κV (V̄ − Vt) +
K∑
k=1

Hλk

Ht

κλk(λ̄k − λk,t)

+
1

2

HXX

Ht

σ2
XVt +

1

2

HV V

Ht

σ2
V Vt +

1

2

K∑
k=1

Hλkλk

Ht

σ2
λk
λk,t

]
dt

+
√
VtdBC,t +

HX

Ht

σX
√
VtdBX,t +

HV

Ht

σV
√
VtdBV,t +

K∑
k=1

Hλk

Ht

σλk
√
λk,tdBk,t.

The infinitesimal generator of the continuous part of the wealth process is hence given by

DP c
C,t

PC,t
= µC +Xt −

HX

Ht

κXXt +
HV

Ht

κV (V̄ − Vt) +
K∑
k=1

Hλk

Ht

κλk(λ̄k − λk,t)

+
1

2

HXX

Ht

σ2
XVt +

1

2

HV V

Ht

σ2
V Vt +

1

2

K∑
k=1

Hλkλk

Ht

σ2
λk
λk,t.
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The remainder of the derivation depends on the value of the elasticity of intertemporal

substitution. The following subsections will treat the cases ψ = 1 and ψ 6= 1 respectively.

B.9.10.1 Price of a Consumption Claim with ψ = 1 (Proof of Proposition B.8)

In the case where ψ = 1, the infinitesimal generator of the continuous part of the pricing

kernel is given by

Dπct
πt

=− β − µC −Xt + γVt −
K∑
k=1

(
ΦY
k (η̂)− 1

)
λk,t.

The cross-variation of the continuous parts of the pricing kernel and wealth is

d [πc, P c
C ]t

πtPC,tdt
=

[
− γ + AXσ

2
X

HX

Ht

+ AV σ
2
V

HV

Ht

]
Vt +

K∑
k=1

Aλkσ
2
λk

Hλk

Ht

λk,t.

The wealth consumption ratio is conjectured to be constant at Ht = β−1. This implies that

the jump term is given by

∆ (π · PC)k,t
πt− · PC,t−

=
πk,t
πt−

exp
(
Y C
k,t

)
− 1

= exp

(
(1− γ)Y C

k,t + AXY
X
k,t + AV Y

V
k,t +

K∑
j=1

AλjY
λj
k,t

)
− 1.

Substitution of these results verifies that the conjecture satisfies the PDE (B.19), i.e. that

the wealth consumption ratio is indeed given by β−1. The risk premium of a consumption

claim is given by

Et−[rC,t − rf,t−] = − d [πc, P c
c ]t

πt · PC,t · dt
−
∑K

k=1 Et− [∆πk,t∆PC,k,t]λk,t−
πt− · PC,t−

.

The cross-variation between the continuous parts of the pricing kernel and the price of a

consumption claim is
d [πc, P c

C ]t
πtPC,tdt

= −γVt.
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Furthermore, the cross-variation of the jump components of the pricing kernel and the price

of consumption claim is given by

∑K
k=1 Et [∆πk,t∆PC,k,tλk,t−]

πt− · PC,t−
=

K∑
k=1

Et

[
exp

(
(1− γ)Y C

k,t + AXY
X
k,t + AV Y

V
k,t +

K∑
k=1

AλjY
λj
k,t

)
− 1

]
λk,t−

−
K∑
k=1

Et

[
exp

(
−γY C

k,t + AXY
X
k,t + AV Y

V
k,t +

K∑
k=1

AλjY
λj
k,t

)
− 1

]
λk,t−

−
K∑
k=1

Et
[
exp

(
Y C
k,t

)
− 1
]
λk,t−

=
K∑
k=1

(
ΦY
k (η̂)− ΦY

k (η)− ΦY
k (e1) + 1

)
λk,t−.

Combining these results yields the consumption risk premium

Et[rC,t − rf,t−] = γVt +
K∑
k=1

(
ΦY
k (η)− ΦY

k (η̂) + ΦY
k (e1)− 1

)
λk,t−,

as claimed in the proposition.

B.9.10.2 Price of a Consumption Claim with ψ 6= 1 (Proof of Proposition B.9)

When the EIS is different from unity, the infinitesimal generator of the continuous part of

the pricing kernel is given by

Dπct
πt

=− β − 1

ψ
µC −

1

ψ
Xt+

[
1

2
γ

(
1 +

1

ψ

)
− 1

2

1

θ

(
1− 1

θ

)(
A2
Xσ

2
X + A2

V σ
2
V

)]
Vt

−
(

1− 1

θ

) K∑
k=1

[(
ΦY
k (η̂)− 1

)
+

1

2

1

θ
A2
λk
σ2
λk

]
λk,t.

The cross-variation between the continuous parts of wealth and the pricing kernel is

d [πc, P c
C ]t

πt− · PC,t− · dt
=

[
− γ +

(
1− 1

θ

)
AXσ

2
X

HX

Ht

+

(
1− 1

θ

)
AV σ

2
V

HV

Ht

]
Vt

+

(
1− 1

θ

) K∑
k=1

Aλkσ
2
λk

Hλk

Ht

λk,t

Substituting the expressions for infinitesimal generator of the the wealth and pricing kernel

processes along with their cross-variation into (B.19) gives rise to the partial differential
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equation

0 =

(
1− 1

ψ

)
µC − β +

HV

Ht

κV V̄ +
K∑
k=1

Hλk

Ht

κλk λ̄k +

[(
1− 1

ψ

)
− HX

Ht

κX

]
Xt

+

[
1

2

HXX

Ht

σ2
X +

1

2

HV V

Ht

σ2
V −

HV

Ht

κV +

(
1− 1

θ

)(
AXσ

2
X

HX

Ht

+ AV σ
2
V

HV

Ht

)

+
1

2
γ

(
1

ψ
− 1

)
− 1

2

1

θ

(
1− 1

θ

)(
A2
Xσ

2
X + A2

V σ
2
V

)]
Vt

+
K∑
k=1

[
1

2

Hλkλk

Ht

σ2
λk
− 1

2

1

θ

(
1− 1

θ

)
A2
λk
σ2
λk

+

(
1− 1

θ

)
Aλkσ

2
λk

Hλk

Ht

− Hλk

Ht

κλk

−
(

1− 1

θ

)(
ΦY
k (η̂)− 1

)
+

Et
[
∆ (π · PC)k,t

]
λk,t−

πt− · PC,t−

]
λk,t +H−1

t .

At this point we will approximate the last term on the right hand side around the mean

consumption-wealth ratio, i.e.

H−1
t = exp (logCt − logPC,t) ≈ h0 − h1 log (logCt − logPC,t) = h0 − h1 logHt,

with h1 = exp (E [logCt − logPC,t]) and h0 = h1 (1− log h1). The solution to the linearized

PDE is of the form

H(Xt, Vt, λ1,t, ..., λK,t) = exp

(
AC0 + ACXXt + ACV Vt +

K∑
k=1

ACλkλk,t

)
.

The jump term for process Nk can be computed as

∆ (πPC)k,t
πt−PC,t−

=
πk,tPC,k,t
πt−PC,t−

− 1,

where
PC,k,t
PC,t−

= exp

(
Y C
k,t + ACXY

X
k,t + ACV Y

V
k,t +

K∑
j=1

ACλjY
λj
k,t

)
and

πk,t
πt−

= exp

(
−γY C

k,t +

(
1− 1

θ

)(
AXY

X
k,t + AV Y

V
k,t +

K∑
j=1

AλjY
λj
k,t

))
.
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The expression for the jump component in the PDE is then

∑K
k=1 Et

[
∆ (πPC)k,t

]
πt−PC,t−

=
K∑
k=1

Et
[

exp

(
(1− γ)Y C

k,t +

[(
1− 1

θ

)
AX + ACX

]
Y X
k,t

+

[(
1− 1

θ

)
AV + ACV

]
Y V
k,t +

K∑
j=1

[(
1− 1

θ

)
Aλj + ACλj

]
Y
λj
k,t

)
− 1

]

=
K∑
k=1

ΦY
k

(
η + ηC

)
,

where ηC =
(
1, ACX , A

C
V , A

C
λ1
, ..., ACλK

)T
. Substituting the trial solution and the expression

for the jump terms into the PDE, we obtain

0 =

(
1− 1

ψ

)
µC − β + ACV κV V̄ +

K∑
k=1

ACλkκλk λ̄k + h0 − h1A
C
0 +

[(
1− 1

ψ

)
− ACXκX − h1A

C
X

]
Xt

+

[
1

2

(
ACX
)2
σ2
X +

1

2

(
ACV
)2
σ2
V − ACV κV +

1

2
γ

(
1

ψ
− 1

)

+

(
1− 1

θ

)(
AXσ

2
XA

C
X + AV σ

2
VA

C
V

)
− 1

2

1

θ

(
1− 1

θ

)(
A2
Xσ

2
X + A2

V σ
2
V

)
− h1A

C
V

]
Vt

+
K∑
k=1

[
1

2

(
ACλk
)2
σ2
λk
− 1

2

1

θ

(
1− 1

θ

)
A2
λk
σ2
λk

+

(
1− 1

θ

)
Aλkσ

2
λk
ACλk − A

C
λk
κλk − h1A

C
λk

−
(

1− 1

θ

)(
ΦY
k (η̂)− 1

)
+
(
ΦY
k

(
η + ηC

)
− 1
)]
λk,t.
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Applying a separation argument gives rise to the following system of equations for the coef-

ficients of the wealth-consumption ratio

0 =

(
1− 1

ψ

)
µC − β + ACV κV V̄ +

K∑
k=1

ACλkκλk λ̄k + h0 − h1A
C
0

0 =

(
1− 1

ψ

)
− ACXκX − h1A

C
X

0 =
1

2

(
ACX
)2
σ2
X +

1

2

(
ACV
)2
σ2
V − ACV κV +

(
1− 1

θ

)(
AXσ

2
XA

C
X + AV σ

2
VA

C
V

)
+

1

2
γ

(
1

ψ
− 1

)
− 1

2

1

θ

(
1− 1

θ

)(
A2
Xσ

2
X + A2

V σ
2
V

)
− h1A

C
V

0 =
1

2

(
ACλk
)2
σ2
λk
− 1

2

1

θ

(
1− 1

θ

)
A2
λk
σ2
λk

+

(
1− 1

θ

)
Aλkσ

2
λk
ACλk − A

C
λk
κλk − h1A

C
λk

−
(

1− 1

θ

)(
ΦY
k (η̂)− 1

)
+
(
ΦY
k

(
η + ηC

)
− 1
)

for all k = 1, ..., K.

The proposition postulates that the wealth-consumption ratio is β−1I
1
θ , which implies AC0 =

− log β+ 1
θ
A0, ACX = 1

θ
AX , ACV = 1

θ
AV , and ACλk = 1

θ
Aλk for all k = 1, ..., K. Since then, both

the PDE determining I(·) and the PDE forH(·) are linearized around the mean consumption-

wealth ratio, the linearization constants must be the same, i.e. h0 = i0 and h1 = i1. Making

use of this conjecture, the equations simplify to

0 = (1− γ)µC − θβ + AV κV V̄ +
K∑
k=1

Aλkκλk λ̄k + θi0 − i1A0 + θ log β

0 = (1− γ)− (κX + i1)AX

0 =
1

2
γ

(
1

ψ
− 1

)
− 1

θ
(κV + i1)AV

+

[
1

2

1

θ2
+

1

θ

(
1− 1

θ

)
− 1

2

1

θ

(
1− 1

θ

)]
A2
Xσ

2
X +

[
1

2

1

θ2
+

1

θ

(
1− 1

θ

)
− 1

2

1

θ

(
1− 1

θ

)]
A2
V σ

2
V

0 =
1

2

1

θ2
(Aλk)

2 σ2
λk
− 1

2

1

θ

(
1− 1

θ

)
A2
λk
σ2
λk

+

(
1− 1

θ

)
1

θ
Aλkσ

2
λk
Aλk −

1

θ
Aλkκλk −

1

θ
i1Aλk

+
1

θ

(
ΦY
k (η̂)− 1

)
for all k = 1, ..., K.

Using the equations for the coefficients of the value function given in proposition B.2 it is

easily verified that the system of equations above is satisfied as well, which establishes that

Ht = β−1I
1/θ
t . In order to derive the consumption risk premium, we first note that the cross-

variation between the continuous parts of the pricing kernel and the price of consumption
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is

d [πc, P c
C ]t

πt− · PC,t− · dt
=

[
− γ +

1

θ

(
1− 1

θ

)(
AXσ

2
XAX + AV σ

2
VAV

)]
Vt +

1

θ

(
1− 1

θ

) K∑
k=1

Aλkσ
2
λk
Aλkλk,t.

Since the jump components of the pricing kernel and the price of the claim to consumption

are respectively given by

∆πk,t
πt−

= exp

(
−γY C

k,t +

(
1− 1

θ

)(
AXY

X
k,t + AV Y

V
k,t +

K∑
j=1

AλjY
λj
k,t

))
− 1

and
∆PC,k,t
PC,t−

= exp

(
Y C
k,t + ACXY

X
k,t + ACV Y

V
k,t +

K∑
j=1

ACλjY
λj
k,t

)
− 1,

their cross-variation is∑K
k=1 Et [∆πk,t∆PC,k,t]λk,t−

πt− · PC,t−

=
K∑
k=1

Et

[
exp

(
(1− γ)Y C

k,t + AXY
X
k,t + AV Y

V
k,t +

K∑
j=1

AλjY
λj
k,t

)
− 1

]
λk,t−

−
K∑
k=1

Et

[
exp

(
−γY C

k,t +

(
1− 1

θ

)(
AXY

X
k,t + AV Y

V
k,t +

K∑
j=1

AλjY
λj
k,t

))
− 1

]
λk,t−

−
K∑
k=1

Et

[
exp

(
Y C
k,t +

1

θ

(
AXY

X
k,t + AV Y

V
k,t +

K∑
j=1

AλjY
λj
k,t

))
− 1

]
λk,t−

=
K∑
k=1

(
ΦY
k (η̂)− ΦY

k (η)− ΦY
k

(
ηC
)

+ 1
)
λk,t−

Combining these results establishes the risk premium of the consumption claim

Et[rC,t − rf,t−] =

[
γ − 1

θ

(
1− 1

θ

)(
AXσ

2
XAX + AV σ

2
VAV

)]
Vt− −

1

θ

(
1− 1

θ

) K∑
k=1

Aλkσ
2
λk
Aλkλk,t−

+
K∑
k=1

(
ΦY
k (η)− ΦY

k (η̂) + ΦY
k

(
ηC
)
− 1
)
λk,t−

This concludes the proof of proposition B.9.
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B.9.11 The Price-Dividend Ratio and the Equity Premium (Proof of Proposi-

tion B.10)

I model corporate dividends as a levered claim to consumption letting Dt = Cφ
t . An appli-

cation of Ito’s formula gives the dynamics of dividend growth as

dDt = Dt

(
φ

(
µC +Xt +

1

2
(φ− 1)Vt

)
dt+ φ

√
VtdBC,t

)
+Dt−

K∑
k=1

(
exp

(
φY C

k,t − 1
))
dNk,t.

The price dividend-ratio, denoted by Gt, is a function of the state variables

PD,t
Dt

= G(Xt, Vt, λ1,t, ..., λK,t).

The dynamics of the price-dividend ratio can be obtained by Ito’s rule to yield

dGt =

[
−GXκXXt +GV κV (V̄ − Vt) +

K∑
k=1

Gλkκλk(λ̄k − λk,t)

+
1

2
GXXσ

2
XVt +

1

2
GV V σ

2
V Vt +

1

2

K∑
k=1

Gλkλkσ
2
λk
λk,t

]
dt

+GXσX
√
VtdBX,t +GV σV

√
VtdBV,t +

K∑
k=1

Gλkσλk
√
λk,tdBk,t +

K∑
k=1

∆Gk,tdNk,t.

Another Ito calculation yields the price process

dPD,t
PD,t−

=
d (Gt ·Dt)

Gt− ·DD−
=

[
φµC +

GV

Gt

κV V̄ +
K∑
k=1

Gλk

Gt

κλk λ̄k +

(
φ− κX

GX

Gt

)
Xt

+

(
1

2
φ(φ− 1)− κV

GV

Gt

+
1

2

GXX

Gt

σ2
X +

1

2

GV V

Gt

σ2
V

)
Vt

+
K∑
k=1

(
1

2

Gλkλk

Gt

σ2
λk
− κλk

Gλk

Gt

)
λk,t

]
dt

+ φ
√
VtdBC,t +

GX

Gt

σX
√
VtdBX,t +

GV

Gt

σV
√
VtdBV,t +

K∑
k=1

Gλk

Gt

σλk
√
λk,tdBk,t

+

∑K
k=1 ∆(G ·D)k,t
Gt− ·Dt−

dNk,t.
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The infinitesimal generator of the continuous part is given by

DP c
D,t

PD,t−
=φµC +

GV

Gt

κV V̄ +
K∑
k=1

Gλk

Gt

κλk λ̄k +

(
φ− κX

GX

Gt

)
Xt

+

(
1

2
φ(φ− 1)− κV

GV

Gt

+
1

2

GXX

Gt

σ2
X +

1

2

GV V

Gt

σ2
V

)
Vt +

K∑
k=1

(
1

2

Gλkλk

Gt

σ2
λk
− κλk

Gλk

Gt

)
λk,t.

In the absence of arbitrage, the valuation ratio Gt satisfies the PDE

Dπct
πt−

+
DP c

D,t

PD,t−
+

d [πc, P c
D]t

πt− · PD,t− · dt
+

∑K
k=1 Et−

[
∆ (π · PD)k,t

]
λk,t−

πt− · PD,t−
+G−1

t = 0. (B.20)

The remainder of the derivation depends on whether the elasticity of intertemporal substitu-

tion is equal to or different from unity. The following sections treat the two cases separately.

B.9.11.1 Price-Dividend Ratio and Equity Premium with ψ = 1 The cross-

variation of the continuous parts of the pricing kernel and the price-dividend ratio is

d [πc, P c
D]t

πt− · PD,t− · dt
=

[
− γφ+

(
AXσ

2
X

GX

Gt

+ AV σ
2
V

GV

Gt

)]
Vt +

K∑
k=1

Aλkσ
2
λk

Gλk

Gt

λk,t.

The price of equity satisfies the PDE

−β + (φ− 1)µC +
GV

Gt

κV V̄ +
K∑
k=1

Gλk

Gt

κλk λ̄k +

[
φ− 1− κX

GX

Gt

]
Xt

+

[
(1− φ)γ +

1

2
φ(φ− 1)− κV

GV

Gt

+
1

2

GXX

Gt

σ2
X +

1

2

GV V

Gt

σ2
V +

(
AXσ

2
X

GX

Gt

+ AV σ
2
V

GV

Gt

)]
Vt

+
K∑
k=1

[Et [∆ (π · PD)k,t

]
πt− · PD,t−

−
(
ΦY
k (η̂)− 1

)
+

1

2

Gλkλk

Gt

σ2
λk
− κλk

Gλk

Gt

+ Aλkσ
2
λk

Gλk

Gt

]
λk,t +G−1

t = 0.

Using the same linear approximation as before, i.e. G−1
t ≈ g0 − g1 logGt with g1 =

exp (E [logPD,t − logDt]) and g0 = g1(1 − log g1), the solution to the PDE takes the ex-

ponentially affine form

G(X, V, λ1, ..., λK) = exp

(
AD0 + ADXX + ADV V +

K∑
k=1

ADλkλk

)
.
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Computing the jump term gives rise to

πk,t ·Gk,t ·Dk,t

πt− ·Gt− ·Dt−
= exp

(
(φ− γ)Y C

k,t +
[
AX + ADX

]
Y X
k,t +

[
AV + ADV

]
Y V
k,t +

K∑
j=1

[
Aλj + ADλj

]
Y
λj
k,t

)
.

Substituting the functional form of the solution into the linearized PDE, one obtains

−β + (φ− 1)µC + ADV κV V̄ +
K∑
k=1

ADλkκλk λ̄k + g0 − g1A
D
0 +

[
φ− 1− (κX + g1)ADX

]
Xt

+

[
(1− φ)γ +

1

2
φ(φ− 1)− (κV + g1)ADV +

1

2

(
ADX
)2
σ2
X +

1

2

(
ADV
)2
σ2
V +

(
AXσ

2
XA

D
X + AV σ

2
VA

D
V

)]
Vt

+
K∑
k=1

[
+

1

2

(
ADλk
)2
σ2
λk
− (κλk + g1)ADλk + Aλkσ

2
λk
ADλk + ΦY

k

(
η + ηD

)
− ΦY

k (η̂)

]
λk,t = 0.

The constant term and the coefficients multiplying each of the state variables must be in-

dependently zero, whiche implies that AD0 , ADX , ADV , and ADλ1 , ..., ADλK satisfy the system of

equations

0 =− β + (φ− 1)µC + ADV κV V̄ +
K∑
k=1

ADλkκλk λ̄k + g0 − g1A
D
0

0 =φ− 1− (κX + g1)ADX

0 =(1− φ)γ +
1

2
φ(φ− 1)− (κV + g1)ADV +

1

2

(
ADX
)2
σ2
X +

1

2

(
ADV
)2
σ2
V +

(
AXσ

2
XA

D
X + AV σ

2
VA

D
V

)
0 =

1

2

(
ADλk
)2
σ2
λk
− (κλk + g1)ADλk + Aλkσ

2
λk
ADλk + ΦY

k

(
η + ηD

)
− ΦY

k (η̂) .

The equity risk premium is

Et− [ri,t− − rf,t−] = −
d [πc, P c

D]t
πt− · PD,t− · dt

−
∑K

k=1 Et− [∆πk,t ·∆PD,k,t]λk,t−
πt− · PD,t−

.

Specializing the cross-variation of the continuous parts to the proposed functional form

results in

d [πc, P c
D]t

πt− · PD,t− · dt
=

[
− γφ+ AXσ

2
XA

D
X + AV σ

2
VA

D
V

]
Vt +

K∑
k=1

Aλkσ
2
λk
ADλkλk,t.
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The jump component is

∆πk,t ·∆PD,k,t
πt− · PD,t−

=

(
exp

(
−γY C

k,t + AXY
X
k,t + AV Y

V
k,t +

K∑
j=1

AλjY
λj
k,t

)
− 1

)

·

(
exp

(
φY C

k,t + ADXY
X
k,t + ADV Y

V
k,t +

K∑
j=1

ADλjY
λj
k,t

)
− 1

)

= exp

(
(φ− γ)Y C

k,t +
[
AX + ADX

]
Y X
k,t +

[
AV + ADV

]
Y V
k,t +

K∑
j=1

[
Aλj + ADλj

]
Y
λj
k,t

)

− exp

(
−γY C

k,t +

(
AXY

X
k,t + AV Y

V
k,t +

K∑
j=1

AλjY
λj
k,t

))

− exp

(
φY C

k,t + ADXY
X
k,t + ADV Y

V
k,t +

K∑
j=1

ADλjY
λj
k,t

)
+ 1.

Combining these two terms gives rise to the equity premium

Et− [ri,t− − rf,t−] =

[
γφ−

(
AXσ

2
XA

D
X + AV σ

2
VA

D
V

)]
Vt

+
K∑
k=1

[
ΦY
k (η) + ΦY

k

(
ηD
)
− ΦY

k

(
η + ηD

)
− 1− Aλkσ2

λk
ADλk
]
λk,t

B.9.11.2 Price-Dividend Ratio and Equity Premium with ψ 6= 1 The cross-

variation of the continuous parts of the pricing kernel and the price-dividend ratio is

d [πc, P c
D]t

πt− · PD,t− · dt
=

[
− γφ+

(
1− 1

θ

)(
AXσ

2
X

GX

Gt

+ AV σ
2
V

GV

Gt

)]
Vt +

(
1− 1

θ

) K∑
k=1

Aλkσ
2
λk

Gλk

Gt

λk,t.
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The PDE satisfied by the price of equity is hence given by

−β +

(
φ− 1

ψ

)
µC +

GV

Gt

κV V̄ +
K∑
k=1

Gλk

Gt

κλk λ̄k +

[
φ− 1

ψ
− κX

GX

Gt

]
Xt

+

[
1

2
γ

(
1 +

1

ψ

)
− 1

2

1

θ

(
1− 1

θ

)(
A2
Xσ

2
X + A2

V σ
2
V

)
− γφ+

1

2
φ(φ− 1)

− κV
GV

Gt

+
1

2

GXX

Gt

σ2
X +

1

2

GV V

Gt

σ2
V +

(
1− 1

θ

)(
AXσ

2
X

GX

Gt

+ AV σ
2
V

GV

Gt

)]
Vt

+
K∑
k=1

[
−
(

1− 1

θ

)(
ΦY
k (η̂)− 1

)
+

Et−
[
∆ (π · PD)k,t

]
πt− · PD,t−

+
1

2

Gλkλk

Gt

σ2
λk
− κλk

Gλk

Gt

+

(
1− 1

θ

)
Aλkσ

2
λk

Gλk

Gt

− 1

2

1

θ

(
1− 1

θ

)
A2
λk
σ2
λk

]
λk,t +G−1

t = 0.

Using the same linear approximation as above, i.e. G−1
t ≈ g0 − g1 logGt with

g1 = exp (E [logPD,t − logDt]) and g0 = g1(1− log g1),

the solution to the PDE takes the exponentially affine form

G(X, V, λ1, ..., λK) = exp

(
AD0 + ADXX + ADV V +

K∑
k=1

ADλkλk

)
.

Computing the jump term gives rise to

πk,t ·Gk,t ·Dk,t

πt− ·Gt− ·Dt−
= exp

(
(φ− γ)Y C

k,t +

[(
1− 1

θ

)
AX + ADX

]
Y X
k,t +

[(
1− 1

θ

)
AV + ADV

]
Y V
k,t

+
K∑
j=1

[(
1− 1

θ

)
Aλj + ADλj

]
Y
λj
k,t

)
.
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Substituting the functional form of the solution into the linearized PDE one obtains

−β +

(
φ− 1

ψ

)
µC + ADV κV V̄ +

K∑
k=1

ADλkκλk λ̄k + g0 − g1A
D
0 +

[
φ− 1

ψ
− (κX + g1)ADX

]
Xt

+

[
1

2
γ

(
1 +

1

ψ

)
− 1

2

1

θ

(
1− 1

θ

)(
A2
Xσ

2
X + A2

V σ
2
V

)
+

1

2
φ(φ− 1)− γφ

− (κV + g1)ADV +
1

2

(
ADX
)2
σ2
X +

1

2

(
ADV
)2
σ2
V +

(
1− 1

θ

)(
AXσ

2
XA

D
X + AV σ

2
VA

D
V

)]
Vt

+
K∑
k=1

[
+

1

2

(
ADλk
)2
σ2
λk
− (κλk + g1)ADλk +

(
1− 1

θ

)
Aλkσ

2
λk
ADλk −

1

2

1

θ

(
1− 1

θ

)
A2
λk
σ2
λk

−
(

1− 1

θ

)(
ΦY
k (η̂)− 1

)
+
(
ΦY
k

(
η + ηD

)
− 1
)]
λk,t = 0.

The coefficients AD0 , ADX , ADV , and ADλ1 , ..., ADλK must hence satisfy the system of equations

0 =− β +

(
φ− 1

ψ

)
µC + ADV κV V̄ +

K∑
k=1

ADλkκλk λ̄k + g0 − g1A
D
0

0 =φ− 1

ψ
− (κX + g1)ADX

0 =
1

2
γ

(
1 +

1

ψ

)
− 1

2

1

θ

(
1− 1

θ

)(
A2
Xσ

2
X + A2

V σ
2
V

)
− γφ+

1

2
φ(φ− 1)

−(κV + g1)ADV +
1

2

(
ADX
)2
σ2
X +

1

2

(
ADV
)2
σ2
V +

(
1− 1

θ

)(
AXσ

2
XA

D
X + AV σ

2
VA

D
V

)
0 =

1

2

(
ADλk
)2
σ2
λk
− (κλk + g1)ADλk +

(
1− 1

θ

)
Aλkσ

2
λk
ADλk −

1

2

1

θ

(
1− 1

θ

)
A2
λk
σ2
λk

−
(

1− 1

θ

)(
ΦY
k (η̂)− 1

)
+
(
ΦY
k

(
η + ηD

)
− 1
)
.

The risk premium of a dividend claim is

Et− [ri,t− − rf,t−] = −
d [πc, P c

D]t
πt− · PD,t− · dt

−
∑K

k=1 Et− [∆πk,t ·∆PD,k,t]λk,t−
πt− · PD,t−

.

The cross-variation of the continuous parts has been computed above for general G and in

this particular instance of an exponantially affine function takes the form

d [πc, P c
D]t

πt− · PD,t− · dt
=

[
− γφ+

(
1− 1

θ

)(
AXσ

2
XA

D
X + AV σ

2
VA

D
V

)]
Vt +

(
1− 1

θ

) K∑
k=1

Aλkσ
2
λk
ADλkλk,t.
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The jump component is

∆πk,t ·∆PD,k,t
πt− · PD,t−

=

(
exp

(
−γY C

k,t +

(
1− 1

θ

)(
AXY

X
k,t + AV Y

V
k,t +

K∑
j=1

AλjY
λj
k,t

))
− 1

)

·

(
exp

(
φY C

k,t + ADXY
X
k,t + ADV Y

V
k,t +

K∑
j=1

ADλjY
λj
k,t

)
− 1

)

= exp

(
(φ− γ)Y C

k,t +

[(
1− 1

θ

)
AX + ADX

]
Y X
k,t +

[(
1− 1

θ

)
AV + ADV

]
Y V
k,t

+
K∑
j=1

[(
1− 1

θ

)
Aλj + ADλj

]
Y
λj
k,t

)

− exp

(
−γY C

k,t +

(
1− 1

θ

)(
AXY

X
k,t + AV Y

V
k,t +

K∑
j=1

AλjY
λj
k,t

))

− exp

(
φY C

k,t + ADXY
X
k,t + ADV Y

V
k,t +

K∑
j=1

ADλjY
λj
k,t

)
+ 1.

Combining these two terms, one finds the equity risk premium when ψ 6= 1 to be

Et− [ri,t− − rf,t−] =

[
γφ−

(
1− 1

θ

)(
AXσ

2
XA

D
X + AV σ

2
VA

D
V

)]
Vt−

+
K∑
k=1

[
ΦY
k (η) + ΦY

k

(
ηD
)
− ΦY

k

(
η + ηD

)
− 1−

(
1− 1

θ

)
Aλkσ

2
λk
ADλk

]
λk,t−.

B.9.12 Dynamics under the Risk-Neutral Measure (Proof of Proposition B.11)

Dynamics under the risk-neutral measure are obtained by exploiting the fact that the process

under the physical measure belongs to the class of affine-jump diffusion under and invoking

lemma A.2 which gives a characterization under an equivalent probability measure. The

dynamics of Xt = (lnCt, Xt, Vt, λ1,t, ..., λK,t)
T are governed by an affine jump diffusion. The

drift coefficients are given by

K0 =



µC

0

κV V̄

κλ1λ̄1

...

κλK λ̄k


, K1 =



0 1 −1
2

0 . . . 0

0 −κX 0 0 . . . 0

0 0 −κV 0 . . . 0

0 0 0 −κλ1 . . . 0
...

...
... 0

. . . 0

0 0 0 0 . . . −κλK


.
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The diffusion coefficient is

σ(Xt) =



√
Vt 0 0 0 . . . 0

0 σX
√
Vt 0 0 . . . 0

0 0 σV
√
Vt 0 . . . 0

0 0 0 σλ1
√
λ1,t . . . 0

0 0 0 0
. . . 0

0 0 0 0 . . . σλK
√
λK,t


.

Since the class of affine jump diffusion imposes the restriction σ(Xt)σ(Xt)
T = H0+

∑d
i=1H1,iXi,t,

we have H0 = 0, H1,1 = 0, H1,2 = 0, and

H1,3 =



1 0 0 0 . . . 0

0 σ2
X 0 0 . . . 0

0 0 σ2
V 0 . . . 0

0 0 0 σ2
λ1

. . . 0

0 0 0 0
. . . 0

0 0 0 0 . . . σ2
λK


.

For i ∈ {4, . . . , 3 +K}, H1,i is σ2
λk

at element (3 + k, 3 + k) and zero everywhere else.

The coefficients of the jump intensity are λ0,k = 0 for all k ∈ 1, . . . , K and λ1,k is zero,

except at position 3 + k, where it is one. The change of measure is characterized by the

Radon-Nikodym derivative process

dZt
Zt−

= ηTσ(Xt)dBt −
K∑
k=1

[(
1− exp(ηTYk,t)

)
−
(
1− ΦY

k (η)
)

(λk,0 + λk,1Xt) dt
]
,

where

ηT =



−γ(
1− 1

θ

)
AX(

1− 1
θ

)
AV(

1− 1
θ

)
Aλ1

...(
1− 1

θ

)
AλK


.

Under the equivalent measure P̃, by lemma A.2, the constant component in the drift co-

efficient is K̃0 = K0 + HT
0 η = K0. The coefficient multiplying the state Xt is given by
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K̃1 = K1 + [H1,1η . . .H1,Kη]. We have H1,1η = 0, H1,2η = 0, and

H1,3η =



−γ(
1− 1

θ

)
AXσ

2
X(

1− 1
θ

)
AV σ

2
V

0
...

0


.

Furthermore, for i ∈ {4, . . . , 3+K}, the term H1,iη has element −
(
1− 1

θ

)
Aλkσ

2
λk

at position

k = i− 3 and is zero elsewhere. Accordingly, we have

K̃1 =



0 1 −γ − 1
2

0 . . . 0

0 −κX
(
1− 1

θ

)
AXσ

2
X 0 . . . 0

0 0 −κV +
(
1− 1

θ

)
AV σ

2
V 0 . . . 0

0 0 0 −κλ1 +
(
1− 1

θ

)
Aλ1σ

2
λ1

. . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . −κλK +
(
1− 1

θ

)
AλKσ

2
λK


.

Both, the distribution of the jump size and the jump intensity under the equivalent measure

are stated in lemma A.2. The dynamics for Xt then follow from the fact that the process

remains within the class of affine jump diffusions under P̃. The diffusion coefficient is un-

affected by the change of measure. The process for log-dividend growth easily follows by

noting that Dt = Cφ
t implies lnDt = φ lnCt and hence d lnDt = φd lnCt, which yields

d lnDt = φ

[
µC +Xt −

(
γ +

1

2

)
Vt

]
dt+ φ

√
VtdB̃C,t +

K∑
k=1

φY C
k,tdÑk,t.

This concludes the proof of the proposition.
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B.9.13 Dynamics of the Equity Price under the Risk-Neutral Measure (Proof

of Corollary B.1)

This section derives the log price process of claim to the dividend stream {Ds}s≥t. Since the

log price of equity is given by

lnPD,t = lnDt + lnG(Xt, Vt, λ1,t, ..., λK,t)

= lnDt + AD0 + ADXXt + ADV Vt +
K∑
k=1

ADλkλk,t,

the price process satisfies

d lnPD,t = d lnDt + ADXdXt + ADV dVt +
K∑
k=1

ADλkdλk,t.

Substituting the dynamics of log dividends and state variables under the risk-neutral measure

one obtains

d lnPD,t =

(
φ

[
µC +Xt −

(
γ +

1

2

)
Vt

]
− AXκXXt +

(
1− 1

θ

)
ADXAXσ

2
XVt

+ ADV

[
κV
(
V̄ − Vt

)
+

(
1− 1

θ

)
σ2
VAV Vt

]
+

K∑
k=1

ADλk

[
κλk
(
λ̄k − λk,t

)
+

(
1− 1

θ

)
Aλkσ

2
λk
λk,t

])
dt

+φ
√
VtdB̃C,t + ADXσX

√
VtdB̃X,t + ADV σV

√
VtdB̃V,t +

K∑
k=1

ADλkσλk
√
λk,tdB̃k,t

+
K∑
j=1

(
φY C

j,t + ADXY
X
j,t + ADV Y

V
j,t +

K∑
k=1

ADλkY
λk
j,t

)
dÑj,t.

The joint process for the log equity price and the state variablesXt = (lnPD,t, Xt, Vt, λ1,t, ..., λK,t)
T

is an affine jump diffusion under the risk-neutral measure P̃. Accordingly, the drift coefficient
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satisfies µ(Xt) = K0 +K1Xt with

K0 =



φµC + ADV κV V̄ +
∑K

k=1 A
D
λk
κλk λ̄k

0

κV V̄

κλ1λ̄1

...

κλK λ̄k


, K1 =



0 K1,X K1,V K1,λ1 . . . K1,λK

0 −κX 0 0 . . . 0

0 0 K1,V,V 0 . . . 0

0 0 0 K1,λ1,λ1 . . . 0
...

...
... 0

. . . 0

0 0 0 0 . . . K1,λK ,λK


,

with

K1,X = φ− AXκX

K1,V = −φ
(
γ +

1

2

)
+

(
1− 1

θ

)
ADXAXσ

2
X − ADV κV +

(
1− 1

θ

)
AVA

D
V σ

2
V

K1,λk = −ADλkκλk +

(
1− 1

θ

)
ADλ Aλkσ

2
λk

K1,V,V = −κV +

(
1− 1

θ

)
AV σ

2
V

K1,λk,λk = −κλk +

(
1− 1

θ

)
Aλkσ

2
λk

The diffusion coefficient is

σ(Xt) =



φ
√
Vt ADXσX

√
Vt ADV σV

√
Vt ADλ1σλ1

√
λ1,t . . . ADλKσλK

√
λK,t

0 σX
√
Vt 0 0 . . . 0

0 0 σV
√
Vt 0 . . . 0

0 0 0 σλ1
√
λ1,t . . . 0

0 0 0 0
. . . 0

0 0 0 0 . . . σλK
√
λK,t


.
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The class of affine models requires σ(Xt)σ(Xt)
T to be a linear function of the state variables.

Here, we have σ(Xt)σ(Xt)
T

σ(Xt)σ(Xt)
T =



[
σ(Xt)σ(Xt)

T
]

1,1
ADXσ

2
XVt ADV σ

2
V Vt ADλ1σ

2
λ1
λ1,t . . . ADλKσ

2
λK
λK,t

ADXσ
2
XVt σ2

XVt 0 0 . . . 0

ADV σ
2
V Vt 0 σ2

V Vt 0 . . . 0

ADλ1σ
2
λ1
λ1,t 0 0 σ2

λ1
λ1,t . . . 0

...
...

...
...

. . .
...

ADλKσ
2
λK
λK,t 0 0 0 . . . σ2

λK
λK,t


,

where
[
σ(Xt)σ(Xt)

T
]

1,1
= φ2Vt +

(
ADX
)2
σ2
XVt +

(
ADV
)2
σ2
V Vt +

∑K
k=1

(
ADλk
)2
σ2
λk
λk,t. Accord-

ingly, we have H1,1 = 0, H1,2 = 0, and the matrices H1,3 and H1,i, with i = k+3, k = 1, ..., K

are respectively

H1,3 =



[H1,3]1,1 ADXσ
2
X ADV σ

2
V 0 . . . 0

ADXσ
2
X σ2

X 0 0 . . . 0

ADV σ
2
V 0 σ2

V 0 . . . 0

0 0 0 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 0


,

with [H1,3]1,1 = φ2 +
(
ADX
)2
σ2
X +

(
ADV
)2
σ2
V , and

H1,i =



(
ADλk
)2
σ2
λk

0 0 . . . ADλkσ
2
λk

. . . 0

0 0 0 . . . 0 . . . 0

0 0 0 . . . 0 . . . 0
...

...
...

. . .
...

. . .
...

ADλkσ
2
λk

0 0 . . . σ2
λk

. . . 0
...

...
...

. . .
...

. . .
...

0 0 0 . . . . . . . . . 0


.

The ordinary differential equations that determine the characteristic function of the joint

transition density of the log price of equity and the state variable can now be obtained from

lemma A.1.

B.9.14 Equilibrium Prices of European Derivatives (Proof of Proposition B.12)

In the absence of arbitrage, the price of a derivative security with European exercise that

provides f(xT ) at expiration T is given by the following expectation under the risk-neutral
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measure:

Pf,t(xt) = Ẽ
[

exp

(
−
∫ T

t

rf,sds

)
f(xT )

∣∣∣∣Ft] .
Closed form solutions to this expectations are not available in many cases of interest. How-

ever, the Fourier transform with respect to xt can be computed up to the solution of a

system of ordinary differential equations for the class of affine jump-diffusions. The Fourier

transform is defined as

FPf,t(u) =

∫ ∞
−∞

exp (iuxt)Pf,t(xt)dxt.

Substituting the definition and applying the properties of the Fourier transform, one obtains

FPf,t(u) =

∫ ∞
−∞

exp (iuxt) Ẽ
[

exp

(
−
∫ T

t

rf,sds

)
f(xT )

∣∣∣∣Ft] dxt
= Ẽ

[∫ ∞
−∞

exp (iuxt) exp

(
−
∫ T

t

rf,sds

)
f(xT )dxt

∣∣∣∣Ft]
= Ẽ

[
exp

(
−
∫ T

t

rf,sds

)∫ ∞
−∞

exp (iuxt) f(xt + ∆xt,T )dxt

∣∣∣∣Ft]
= Ẽ

[
exp

(
−
∫ T

t

rf,sds

)
exp (−iu∆xt,T )

∫ ∞
−∞

exp (iuxt) f(xt)dxt

∣∣∣∣Ft]
= exp (iuxt) Ẽ

[
exp

(
−
∫ T

t

rf,sds

)
exp (−iuxT )

∣∣∣∣Ft]Ff(u)

= exp (iuxt) Ψx(t, x,−u, T )Ff(u),

which confirms the proposition.
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C Tables

Table 1: Calibrated parameters

Parameters of consumption and dividend dynamics

Drift coefficient of consumption growth µC 0.0252

Diffusion coefficient of consumption growth σC 0.02

Mean reversion coefficient of jump intensity process κλ 0.368

Mean reversion target of disaster intensity process λ̄ 0.045

Diffusion coefficient of disaster intensity process σλ 0.00

Shape parameter of disaster size in log-consumption aJ 0.83

Scale parameter of disaster size in log-consumption bJ 0.10

Upwards revision of disaster intensity in response to disaster arrival Y λ 0.20

Leverage φ 3.00

Probability of government default in the event of disaster q 0.4

Preference parameters

Time discount factor β 0.02

Relative risk aversion γ 2.65

Elasticity of intertemporal substitution ψ 1.5

Parameters are from an annual calibration of the model

dCt = µCCtdt+ σCCtdBC,t + Ct−
(
exp

(
Y C
t

)
− 1
)
dNt

dλt = κλ
(
λ̄− λt

)
dt+ σλ

√
λtdBλ,t + Y λdNt,

where BC,t and Bλ,t are independent Brownian motions and Nt is a counting process with in-

tensity λt. The jump size in log consumption is distributed according to−Y C
t

i.i.d.∼ GA(aJ , bJ).

Dividends are a levered claim to consumption, i.e. Dt = Cφ
t . The representative agent has

recursive preferences with a normalized Porteus-Kreps aggregator

Jt = Et
[∫ ∞

t

f(Cs, Js)ds

]
, f(C, J) =

β

1− 1
ψ

J(1− γ)

(
C1− 1

ψ

((1− γ)J)
1
θ

− 1

)
.
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Table 3: Simulated moments from the model and sample moments in the data

Model U.S. Data

Expected return on government debt E [rB,t] 2.15% 2.01%

Std. dev. of return on government debt σ [rB,t] 2.79% 5.91%

Equity risk premium E [rD,t − rB,t] 6.08% 5.97%

Std. dev. of return on equity σ [rD,t] 18.96% 18.48%

Sharpe Ratio E [rD,t − rB,t] /σ [rD,t] 0.32 0.32

Std. dev. of log consumption growth σ [∆ ln(Ct)] 4.61% 3.56%

Std. dev. of log dividend growth σ [∆ ln(Dt)] 13.83% 11.51%

Moments for the model are from 2 paths of a monthly simulation of 25, 000 years aggre-

gated to an annual frequency. Each path is initialized at λ0 = E[λt]. Sample moments are

from U.S. data spanning the period from 1890 to 2004 as reported in Wachter (2010).
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Table 4: Long-horizon predictive regression of excess returns on the price-dividend ratio

Horizon in years
1 2 4 6 8 10

Panel A: Model (unconditional)
β1 -0.13 -0.24 -0.40 -0.50 -0.61 -0.67

R2 0.02 0.04 0.06 0.07 0.08 0.08
Panel B: Model (conditional)

β1 -0.25 -0.44 -0.69 -0.85 -0.92 -1.00

R2 0.08 0.14 0.21 0.24 0.24 0.24
Panel C: U.S. data

β1 -0.09 -0.14 -0.36 -0.48 -0.73 -0.98

R2 0.04 0.04 0.12 0.12 0.17 0.23

Results are from a regression of excess log returns on equity over the horizon t, t+ h on

the log price-dividend ratio at t. The regression is specified as

h∑
i=1

log rD,t+i − log rB,t+i = β0 + β1 (logPD,t − logDt) + εt

The first and second sets of results is from a Monte carlo simulation of the model detailed

in the notes accompanying table 3. The first set includes all simulated periods, while the

second set drops periods that include a macro contraction exceeding 10%. The third set of

results is from U.S. data from 1890 to 2004 as reported in Wachter (2010).
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Table 5: Long-horizon predictive regression of log consumption growth on the price-dividend
ratio

Horizon in years
1 2 4 6 8 10

Panel A: Model (unconditional)
β1 0.031 0.057 0.099 0.131 0.145 0.162

R2 0.0294 0.0456 0.0615 0.0679 0.0560 0.0518
Panel B: Model (conditional)

β1 0.009 0.016 0.030 0.034 0.046 0.051

R2 0.0037 0.0063 0.0104 0.0088 0.0123 0.0111
Panel C: U.S. data

β1 0.003 -0.001 -0.007 0.002 0.006 0.040

R2 0.0011 0.0000 0.0013 0.0001 0.0004 0.0129

Results are from a regression of log consumption growth over the horizon t, t+ h on the

log price-dividend ratio at t. The regression is specified as

h∑
i=1

∆ logCt+i = β0 + β1 (logPD,t − logDt) + εt

The first and second sets of results is from a Monte carlo simulation of the model detailed

in the notes accompanying table 3. The first set includes all simulated periods, while the

second set drops periods that included a macro contraction exceeding 10%. The third set of

results is from U.S. data from 1890 to 2004 as reported in Wachter (2010).
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Table 6: Macroeconomic Contractions and Stock Market Crashes

Probability of macroeconomic contraction
Model Data

conditional on stock market decline ≥ 25%

Macroeconomic contraction ≥ 10% 41.25% 28%

Macroeconomic contraction ≥ 25% 11.38% 11%
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D Figures

Figure 1: CBOE S&P 500 Implied Volatility Index (VIX)

2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

91



Figure 2: Relationship between short term rates and the disaster intensity
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This graph depicts the dependence between the risk-free rate rf , the promised yield on

government debt rL, and the expected return on government bills rB on the intensity λ

implied by a calibration of the self-exciting disaster risk model.
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Figure 3: Relationship between the equity premium and the disaster intensity
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This figure graphs the relationship of equity premium with respect to the disaster inten-

sity. The dotted line represents the case without disaster risk. The dashed line illustrates

the equity premium with expected utility. In this case investors require no compensation

for the increase in disaster intensity in response to the arrival of a disaster. With stochastic

differential utility with agents exhibiting a preference for early resolution of uncertainty the

equity premium is given by the solid line.

93



Figure 4: Relationship between the expected return on equity and the disaster intensity
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This figure graphs the relationship of the expected return on equity with respect to the

disaster intensity.
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Figure 5: Probability density of disaster intensity
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Figure 6: Implied volatility of equity index put options with 1 year until expiration
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Figure 7: Implied volatility of equity index put options with 1 month until expiration
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Figure 8: Model-implied VIX computed from 30 days OTM call and put option prices as a
function of the disaster intensity
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This graph depicts the relationship between the conditional disaster intensity and the

model-implied VIX computed from 30 days OTM call and put prices.

98



References

Abel, A. (1999): “Risk premia and term premia in general equilibrium,” Journal of Mon-

etary Economics, 43, 3–33.

Ait-Sahalia, Y., J. Cacho-Diaz, and R. J. Laeven (2010): “Modeling Financial Con-

tagion Using Mutually Exciting Jump Processes,” Working Paper Princeton University.

Azizpour, S., K. Giesecke, and G. Schwenkler (2010): “Exploring the Sources of

Default Clustering,” Working Paper, Stanford University.

Bansal, R., and A. Yaron (2004): “Risks for the Long Run: A Potential Resolution of

Asset Pricing Puzzles,” Journal of Finance, 59(4), 1481–1509.

Barro, R. (2006): “Rare disasters and asset markets in the twentieth century,” Quarterly

Journal of Economics, 121, 823–866.
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