
Qualifier Question 2010

Return Bounds
For any asset with a dividend stream Dt and whose price process P j

t , define the returns

rjt+1 =
P j
t+1 +Dj

t+1

P j
t

These are gross returns; think of numbers like 1.06 for equity. Therefore, we can restrict
attention to random variables that are strictly positive. The risk free asset has return r1

t+1

earned from period t to t + 1. Again, this is a gross-rate so think 1.01 (The risk-free asset
has D1

t+1 = 1 and pays 0 at all other periods and has price Bt.) The absence of arbitrage
implies there exists a positive random variable, mt, called the stochastic discount factor such
that Et[mtr

j
t+1] = 1 for all j = 1, 2... .

[Hints: Lots of parts here. Skim it all before you start. Write something(!) for each
part. Some algebra properties at the end might help.]

(a) Consider a complete markets economy and a representative agent with CRRA utility.
Preferences are:

U(c0, c1, ...) = E0

∞∑
t=0

βtcαt /α

log of endowment growth log xt+1 = log(et+1/et) ∼ NID(x̄, σ2
x). What is the pricing

kernel, mt+1 in this economy? [Be brief. You can state this without much derivation.
This is just to get us rolling.]

(b) Alvarez and Jerman: Suppose there was an asset (call it ∗) in the economy whose return
happened to be r∗t+1 = m−1

t+1. Show that the absence of arbitrage implies that for all

assets in the economy, Et[log r∗t+1] ≥ Et[log rjt+1] (where all returns are a strictly positive
random variable).

[Hint: Time is short, so let us simplify. Consider a one-period version of the model with
a finite number of states, z ∈ {1, ..., Z} so returns are r(z) and discount factor m(z). In
this setting, think of “choosing” the random r(z) with the largest expected log return.]

(c) Alvarez and Jerman (AJ Bound). Show that absence of arbitrage implies that

logEt[mt+1]− Et[logmt+1] = Et[log rjt+1 − log r1
t+1]

[Hint: Start with the previous result]
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(d) Hansen-Jagannathan (HJ Bound). Show that the absence of arbitrage implies:

Vt(mt+1)
0.5

Et[mt+1]
≥
Et[r

j
t+1 − r1

t ]

Vt[rt+1]0.5

where Vt and Et are conditional moments. [Hint: Nothing fancy is needed here. A couple
of lines is all that is needed. If you get stuck, explain your logic. You can also restrict
yourself to the one-period finite-state case as in (b) if you like.]

(e) In the setting like (a), where logmt+1 ∼ NID(m̄, σ2
m) and log rjt+1 ∼ NID(r̄j, σ2

j ).
Compare AJ and HJ bounds. Why are they (roughly) pointing to the same conclusion?
[Hint: Calculate the left-hand side of HJ and AJ]

(f) In what setting would AJ and HJ provide quantitatively different implications? Why?
[Open ended discussion here. Keep it brief.]

FYI:

• log z ∼ N(z̄, σ2
z) implies E[exp(z)] = exp(x̄+ 0.5σ2

z)

• log z ∼ N(z̄, σ2
z) implies V (exp(z))0.5

E[exp(z)]
= (exp(σ2

z)− 1)
0.5 ≈ σz

• For any z and x random variables, cov(x, z) = E[xz]− E[x]E[z]
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SOLUTIONS – DO NOT INCLUDE WITH EXAM, of course

(a) The question did not ask much here, so just the first line is all that is needed.

mt+1 = βxα−1
t+1

logmt+1 = log β + (α− 1) log xt+1

logmt+1 ∼ NIID(m̄, σ2
m)

m̄ = log β + (α− 1)x̄

σ2
m = (α− 1)2σ2

x

(b) Drop all the “t” subscripts and focus on the case of z ∈ {1, ..., Z} states with probabilities
p(z). Choose a random variable r(z) > 0 to solve:

max
r(z)

E log r(z)

s.t. E[m(z)r(z)] = 1

The first order condition is

p(z)r(z)−1 = λp(z)m(z)

This implies that r(z) = m(z)−1λ−1. Just plug r(z) = m(z)−1 into the constraint and
notice it holds; hence the multiplier λ = 1 (this last bit is not too important).

(c) (1) Start with the previous result; (2) The risk-free rate is not random; (3) r1
t+1 =

(E[mt+1])
−1

Et[log r∗t+1] ≥ Et[log rjt+1]

Et[log r∗t+1]− log r1
t+1 ≥ Et[log rjt+1]− log r1

t+1

Et[logm−1
t+1]− log(E[mt+1]

−1) ≥ Et[log rjt+1 − log r1
t+1]

logE[mt+1]− Et[logmt+1] ≥ Et[log rjt+1 − log r1
t+1]

(d) I am hoping this one is easier. Start with E[mrj] = 1 and E[mr1] = 1 to get E[m(rj −
r1)] = 0. (We can ignore all the time subscripts for the moment)

E[m(rj − r1)] = 0

cov(rj,m) + E[rj − r1]E[m] = 0

cov(rj,m)

V [m]0.5V [rj]0.5
+
E[rj − r1]

V [rj]0.5
E[m]

V [m]0.5
= 0

E[rj − r1]

V [rj]0.5
E[m]

V [m]0.5
= − cov(rj,m)

V [m]0.5V [rj]0.5
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But | cov(rj ,m)
V [m]0.5V [rj ]0.5 | < 1 and focus on the case of E[rj − r1] > 0

E[rj − r1]

V [rj]0.5
E[m]

V [m]0.5
=

∣∣∣∣ cov(rj,m)

V [m]0.5V [rj]0.5

∣∣∣∣
E[rj − r1]

V [rj]0.5
E[m]

V [m]0.5
≤ 1

E[rj − r1]

V [rj]0.5
≤ V [m]0.5

E[m]

(Projection argument works as well)

(e) In the log-normal setting, both AJ and HJ are pointing to the same thing: large excess
returns imply a high volatility to the pricing kernel. For HJ:

V [m]0.5

E[m]
≈ σm

(see “FYI’s”). For AJ,

logE[mt+1]− Et[logmt+1] = m̄+ 0.5σ2
m − m̄ = 0.5σ2

m

(f) The AJ bound logE[mt+1] − Et[logmt+1] will pick up higher order moments of the
distribution of m (Note that L(m) = logE[mt+1] − Et[logmt+1] > 0 is an Entropy
measure of the dispersion in the random variable m). So any modeling assumption
that implies a pricing kernel that departure to from log-normality will make AJ and HJ
bounds, arguably, quantitatively different. For example, stochastic volatility, disaster
risk, etc. (Of course this will remain a quantitative question since all of these features
do show up in the second moment of the kernel as well). And, if you want bonus points,
mention non-expected utility preferences. These also may have a big impact on the
higher order moments of the equilibrium pricing kernel.
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