Qualifier Question 2010

Return Bounds '
For any asset with a dividend stream D; and whose price process P}, define the returns
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These are gross returns; think of numbers like 1.06 for equity. Therefore, we can restrict
attention to random variables that are strictly positive. The risk free asset has return /.,
earned from period ¢ to ¢t + 1. Again, this is a gross-rate so think 1.01 (The risk-free asset
has Dj,; = 1 and pays 0 at all other periods and has price B;.) The absence of arbitrage
implies there exists a positive random variable, m,, called the stochastic discount factor such
that Ey[mr] ] =1 for all j = 1,2... .

[Hints: Lots of parts here. Skim it all before you start. Write something(!) for each
part. Some algebra properties at the end might help.]

(a) Consider a complete markets economy and a representative agent with CRRA utility.
Preferences are:
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log of endowment growth logzy,; = log(esi1/e;) ~ NID(Z,0%). What is the pricing
kernel, my, in this economy? [Be brief. You can state this without much derivation.
This is just to get us rolling.]

(b) Alvarez and Jerman: Suppose there was an asset (call it *) in the economy whose return
happened to be 7}, = m,_ +11. Show that the absence of arbitrage implies that for all
assets in the economy, Ei[logr7, ] > E[logr], ] (where all returns are a strictly positive
random variable).

[Hint: Time is short, so let us simplify. Consider a one-period version of the model with
a finite number of states, z € {1, ..., Z} so returns are r(z) and discount factor m(z). In
this setting, think of “choosing” the random r(z) with the largest expected log return.]

(c) Alvarez and Jerman (AJ Bound). Show that absence of arbitrage implies that
log Ey[mi11] — Ei[log myy] = Eiflog 7“{+1 — log 7“t1+1]

[Hint: Start with the previous result]
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(d) Hansen-Jagannathan (HJ Bound). Show that the absence of arbitrage implies:
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where V; and E; are conditional moments. [Hint: Nothing fancy is needed here. A couple
of lines is all that is needed. If you get stuck, explain your logic. You can also restrict
yourself to the one-period finite-state case as in (b) if you like.]

(e) In the setting like (a), where logm;,; ~ NID(m,c?) and logrfJrl ~ NID(#,07%).
Compare AJ and HJ bounds. Why are they (roughly) pointing to the same conclusion?
[Hint: Calculate the left-hand side of HJ and AlJ]

(f) In what setting would AJ and HJ provide quantitatively different implications? Why?
[Open ended discussion here. Keep it brief.]

FYI:

e logz ~ N(z,0?) implies Elexp(z)] = exp(Z + 0.502)

V(exp(2))*®

0.5
Elexp(2)] = (eXp(O—g) - 1) ~ 0,

e log 2z ~ N(z,0?) implies

e For any z and x random variables, cov(z, z) = Elxz| — F[z|E[Z]



SOLUTIONS — DO NOT INCLUDE WITH EXAM, of course

(a) The question did not ask much here, so just the first line is all that is needed.

_ a—1
M1 = By

logmiyr = logB+ (a—1)logziyy
logmi1 ~ NIID(m,o2)
m=1logf+ (a— 1)z

o2 = (a—1)%2

(b) Drop all the “t” subscripts and focus on the case of z € {1, ..., Z} states with probabilities
p(z). Choose a random variable r(z) > 0 to solve:

m(a)x Elogr(z)

st. Em(2)r(z)] =1
The first order condition is
p(2)r(2)"" = Ap(z)m(2)
This implies that r(z) = m(z)"'A7!. Just plug 7(z) = m(z)~! into the constraint and
notice it holds; hence the multiplier A = 1 (this last bit is not too important).

(¢) (1) Start with the previous result; (2) The risk-free rate is not random; (3) 74, =
(E[ma]) ™
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(d) T am hoping this one is easier. Start with E[mr/] =1 and E[mr'] =1 to get E[m(r/ —
r!)] = 0. (We can ignore all the time subscripts for the moment)

Em(r’ —r")] = 0
cov(r!,m) + E[r’ —r'|E[m] = 0
cov(ri, m) E[ri —r'] E[m] 0
Vim]0sV[r]os V[R5 Vim]os
E[ri —r'] E[m] _ cov(ri, m)
V05 Vm]os Vm]0sV [ri]05



But |$§j[:@]f@5| < 1 and focus on the case of E[r/ —r!] >0

E[ri —r'] E[m] _ ‘ cov(ri,m)
V05 Vm]os VIm]0sV [ri]o5
E[ri —r'] E[m] .
V05 Vim]os
E[ri —r!] V[m]%5
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(Projection argument works as well)

(e) In the log-normal setting, both AJ and HJ are pointing to the same thing: large excess
returns imply a high volatility to the pricing kernel. For HJ:

V[m]%5
X O
E[m]
(see “FYI's”). For AJ,
log E[myy1] — Eiflogme] = m+0.502 —m = 0.502,

(f) The AJ bound log E[mi1] — Ei[logmi1] will pick up higher order moments of the
distribution of m (Note that L(m) = log E[m;11] — E[logmy1] > 0 is an Entropy
measure of the dispersion in the random variable m). So any modeling assumption
that implies a pricing kernel that departure to from log-normality will make AJ and HJ
bounds, arguably, quantitatively different. For example, stochastic volatility, disaster
risk, etc. (Of course this will remain a quantitative question since all of these features
do show up in the second moment of the kernel as well). And, if you want bonus points,
mention non-expected utility preferences. These also may have a big impact on the
higher order moments of the equilibrium pricing kernel.



