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Abstract

We provide a new theoretical framework for disentangling and estimating sensitivity
towards systematic diffusive and jump risks in the context of factor pricing models. Our
estimates of the sensitivities towards systematic risks, or betas, are based on the notion
of increasingly finer sampled returns over fixed time intervals. In addition to establish-
ing consistency of our estimators, we also derive Central Limit Theorems characterizing
their asymptotic distributions. In an empirical application of the new procedures using
high-frequency data for forty individual stocks and an aggregate market portfolio, we
find the estimated diffusive and jump betas with respect to the market to be quite dif-
ferent for many of the stocks. Our findings have direct and important implications for
empirical asset pricing finance and practical portfolio and risk management decisions.
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1 Introduction

Linear discrete-time factor models permeate academic asset pricing finance and also form
the basis for a wide range of practical portfolio and risk management decisions. Importantly,
within this modeling framework equilibrium considerations imply that only non-diversifiable
risk, as measured by the factor loading(s) or the sensitivity to the systematic risk factor(s),
should be priced, or carry a risk premium. Conversely, so-called neutral strategies that
immunize the impact of the systematic risk factor(s) should earn the risk free rate.

Specifically, consider the one-factor representation,

ri = αi + βir0 + εi, i = 1, ..., N, (1)

where ri and r0 denote the returns on the ith asset and the systematic risk factor, respectively,
and the idiosyncratic risk, εi, is assumed to be uncorrelated with r0. Then, provided suffi-
ciently weak cross-asset dependencies in the idiosyncratic risks (see Ross (1976) and Cham-
berlain and Rothschild (1983)), the absence of arbitrage implies that E(ri) = rf + λ0βi,
so that the differences in expected returns across assets are solely determined by the cross-
sectional variation in the betas. This generic one-factor setup obviously encompasses the
popular market model and CAPM implications in which the betas are proportional to the
covariation of the assets with respect to the aggregate market portfolio. However, the use
of other benchmark portfolios in place of r0, or more general multi-factor representations,
attach the same key import to the corresponding betas.

The beta(s) of an asset is(are), of course, not directly observable. The traditional way of
circumventing this problem and estimating betas rely on rolling linear regression, typically
based on five years of monthly data, see, e.g., the classical studies by Fama and MacBeth
(1973) and Fama and French (1992).1 Meanwhile, the recent advent of readily-available
high-frequency financial prices have spurred a renewed interest into alternative ways for
more accurately estimating betas. In particular, Andersen et al. (2005), Andersen et al.
(2006), Bollerslev and Zhang (2003), Barndorff-Nielsen and Shephard (2004a) and Hooper
et al. (2006) among others, have all explored new procedures for measuring and forecast-
ing period-by-period betas based on so-called realized variation measures constructed from
the summation of squares and cross-products of higher frequency within period returns.
These studies generally confirm that the use of high-frequency data results in statistically
far superior beta estimates relative to the traditional regression based procedures.

Meanwhile, another strand of the burgeon recent empirical literature concerned with the
analysis of high-frequency intraday financial data have argued that it is important to allow for
the possibility of price dis-continuities, or jumps, in satisfactorily describing financial asset
prices; see, e.g., Andersen et al. (2007) Barndorff-Nielsen and Shephard (2006), Huang and
Tauchen (2005) and Lee and Mykland (2007). This is further corroborated by the mounting
empirical evidence from options markets that the variation in returns associated with sharp
price dis-continuities seem to carry a separate risk premium from the one associated with
continuous price moves; see, e.g., Bates (2000), Eraker (2004), Pan (2002) and Todorov
(2007). Similarly, the results in Wright and Zhou (2007) suggest that bond prices contain a
separate premium for jump risk.

1For additional references on the estimation of time-varying betas based on more sophisticated data-driven
filters and explicit parametric models see, e.g., Ghysels and Jacquier (2006).
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Combining these recent ideas and empirical results naturally suggests decomposing the
return on the benchmark portfolio(s) within the linear factor model framework into the
returns associated with continuous and dis-continuous price moves (rc

0 and rd
0 respectively).

In particular, decomposing the return on the benchmark portfolio in the one-factor model
in equation (1), the model is naturally extended as,

ri = αi + βc
i r

c
0 + βd

i r
d
0 + εi, i = 1, ..., N, (2)

where by definition r0 = rc
0 + rd

0, and the two separate betas represent the systematic risks
attributable to each of the two return components. Of course, for βc

i = βd
i the model trivially

reduces to the standard one-factor model in equation (1). However, there is no apriori theo-
retical reason to restrict, let alone expect, the two betas to be the same. Indeed, the classical
paper by Merton (1976) hypothesized that in the context of the market model, jump risks
for individual stocks are likely to be non-systematic, so that effectively βd

i = 0. On the other
hand, the evidence for larger cross-asset correlations for extreme returns documented in Ang
and Chen (2002) among others, indirectly suggests non-zero jump sensitivities. Despite the
obvious importance both from a theoretical asset pricing as well as a practical portfolio man-
agement perspective, direct empirical assessment of this issue have hitherto been hampered
by the lack of formal statistical procedures for actually estimating different types of betas.

The present paper fills this void by developing a general theoretical framework for disen-
tangling and separately estimating sensitivity towards systematic continuous and systematic
jump risks. The asymptotic theory underlying our results rely on the notion of increasingly
finer sampled returns over a fixed time-interval. Our estimation and inference procedures
thus extend the results in Barndorff-Nielsen and Shephard (2004a) on realized covariation
measures for continuous sample path diffusions. For simplicity and ease of notation we will
focus on the one-factor representation in equation (2). However, the same ideas and esti-
mation procedures extend to more general multi-factor representations. The derivation of
the results directly builds on and extends the work of Jacod (2006) on power variation for
general semimartingales (containing jumps) and the recent work of Ait-Sahalia and Jacod
(2006) and Jacod and Todorov (2007) on testing for jumps in discretely sampled univari-
ate and multivariate processes. Related ideas have also recently been explored by Mancini
(2006) and Gobbi and Mancini (2007). We also utilize the procedures of Barndorff-Nielsen
and Shephard (2004b) and Barndorff-Nielsen et al. (2005) for measuring the continuous sam-
ple path variation in the construction of feasible estimates for the asymptotic variances of
the betas.

To illustrate the practical usefulness of the new procedures, we estimate separate contin-
uous and jump betas with respect to an aggregate market portfolio for a sample of forty in-
dividual stocks. Consistent with the aforementioned previous studies on high-frequency beta
estimates which implicitly restrict the two kind of betas to be the same, we find overwhelm-
ing empirical evidence that both kinds of systematic risks in the stocks vary non-trivially
from month-to-month. Our findings of systematically positive jump betas for all of the
stocks directly contradict the notion that jump risk is diversifiable. More importantly, our
results also show that for some of the stocks the two types of betas can be quite different. In
particular, the estimated jump betas are often larger and generally less persistent than their
continuous counterparts. Although the calendar time span of high-frequency data available
for the empirical analysis is too short to allow for the construction of meaningful tests for
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whether the separate betas truly reflect differences in priced systematic risks, the differences
in the estimates are large enough to conjecture that they could make an important difference
in terms of pricing and allow for more informed portfolio and risk management decisions.

The rest of the paper proceeds as follows. Section 2 details our theoretical setup and
assumptions, along with the intuition for how to calculate continuous and jump betas in the
unrealistic situation when continuous price records are available. Our new procedures for
actually estimating separate betas based on discretely sampled high-frequency observations
and the corresponding asymptotic distributions allowing for formal statistical inference are
presented in Section 3. Our empirical application entailing estimates of the betas for the
extended market model for the forty individual stocks is discussed in Section 3. Section 4
concludes. All of the proofs are relegated to a technical Appendix.

2 The Continuous Record Case and Assumptions

Discrete-time models and procedures along the lines of the simple one-factor model in equa-
tion (1) are commonly used in finance for describing returns over annual, quarterly, monthly
or even daily horizons. Our goal here is to make inference for the separate betas in the ex-
tended one-factor model in (2) under minimal assumptions about the processes that govern
the returns within the discrete time intervals. To this end, assume that within some fixed
interval [0, T ] the log-price process pi is generated by the following general process (defined
on the probability space (Ω,F ,P)),

dpit = αitdt + βc
i σ0tdW0t + σitdWit + βd

i

∫

E0

κ(δ0(t, x))µ̃0(dt, dx) + βd
i

∫

E0

κ′(δ0(t, x))µ0(dt, dx)

+

∫

Ei

κ(δi(t, x))µ̃i(dt, dx) +

∫

Ei

κ′(δi(t, x))µi(dt, dx), i = 1, ..., N, (3)

where (W0,W1, ..., WN) denotes a (N + 1)× 1 standard Brownian motion with independent
elements; µ0 is a Poisson random measure on [0,∞)×E0 with (E0, E0) an auxiliary measurable
space, with the compensator of µ0 denoted ν0(ds, dz) = ds⊗λ0(dz) for some σ-finite measure
λ0 on (E0, E0); µi is a Poisson random measure on [0,∞) × Ei with (Ei, Ei) an auxiliary
measurable space, with the compensator of µi denoted νi(ds, dz) = ds ⊗ λi(dz) for some
σ-finite measure λi on (Ei, Ei); the two measures µ0 and µi are independent from each other;
κ(x) is a continuous function on R into itself with compact support such that κ(x) = x
around 0 and κ′(x) = x− κ(x).2

This very general theoretical framework essentially encompasses all discrete-time one-
factor models described by the benchmark representation in equation (1). The systematic
diffusive risk is captured by σ0tdW0t, explicitly allowing for time-varying stochastic volatil-
ity. The systematic jump risk is determined by the Poisson measure µ0 and the jump size

2Note that κ(x) + κ′(x) = x, and therefore we integrate the big jumps with respect to the jump measure
and the small jumps with respect to the compensated measure. This is so because, the big jumps are almost
surely finite and thus integration for them can be done in the usual sense, while the small jumps can have
a lot of variation, which requires defining them in a stochastic sense (with respect to a martingale measure
(see Jacod and Shiryaev (2003))).
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function δ0(·, ·), which allow for both time-varying jump intensities and jump sizes. Consis-
tent with the extended discrete-time model in (2), the continuous-time representation in (3)
also explicitly allows for different (but constant over [0, T ]) sensitivities to the systematic
diffusive and jump risks, captured by βc

i and βd
i , respectively. Now, suppose that continuous

records over the [0, T ] time-interval were available for all of the price processes. Is it possible
to separately infer the βc

i and βd
i , i = 1, ..., N coefficients, without making any additional

parametric assumptions about the underlying process? The answer to this question is a
qualified ’yes’.

In particular, it follows by standard arguments that for i 6= j,

[pc
i , p

c
j](0,T ] = βiβj

∫ T

0

σ2
0sds and

∑
s≤T

(∆pis)
2(∆pjs)

2 = (βd
i β

d
j )

2

∫

E0

δ0(t, x)4µ0(dt, dx), (4)

where [pc
i , p

c
j](0,T ] is the quadratic covariation between the continuous parts of pi and pj over

[0, T ]. Hence, ratios of the separate betas are readily obtained as,

βc
i

βc
j

=
[pc

i , p
c
k](0,T ]

[pc
j, p

c
k](0,T ]

and

∣∣∣∣
βd

i

βd
j

∣∣∣∣ =

√∑
s≤T (∆pis)2(∆pks)2

∑
s≤T (∆pjs)2(∆pks)2

, (5)

for some k = 1, ..., N , such that k 6= i, and k 6= j3. Note, since the square destroys the sign,
the second ratio only gives the absolute value of the relative sensitivity to the systematic
jump risk, and not the ratio itself. This is unlikely of little practical concern, as the sign of βd

i

will generally be obvious from the context. Note also that the ratios in equation (5) provide
an assessment of the relative magnitude of the sensitivity towards systematic risks for the
different assets without the use of any observations on the systematic risk factor itself.

Meanwhile, most practical uses of factor models in finance, and one-factor models in
particular, associate the source of the systematic risks with specific assets, or benchmark
portfolios. Specifically, suppose that observations are available on some reference asset 0
that is only exposed to the systematic risks, i.e.,

dp0t = α0tdt + σ0tdW0t +

∫

E0

κ(δ0(t, x))µ̃0(dt, dx) +

∫

E0

κ′(δ0(t, x))µ0(dt, dx). (6)

Standardizing by this benchmark asset in equation (5), it follows that for i = 1, ..., N ,

βc
i =

[pc
i , p

c
0](0,T ]

[pc
0, p

c
0](0,T ]

and |βd
i | =

√∑
s≤T (∆pis)2(∆p0s)2

∑
s≤T (∆p0s)4

, (7)

so that the actual values of the betas (again subject to sign for the jump betas), and not
just their ratios, may be uncovered from the continuous price records. Even if the one-
factor structure in equation (3) does not hold, the βc

i and βd
i in (7) still provide meaningful

3An alternative estimator for the ratio of the jump betas that does not involve a reference asset k may
be constructed as ∣∣∣∣

βd
i

βd
j

∣∣∣∣ =

(∑
s≤T (∆pis)2+α(∆pjs)2∑
s≤T (∆pis)2(∆pjs)2+α

)1/α

, α > 0.
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measures of the (average over [0, T ]) sensitivity of asset i to the diffusive and jump moves in
the reference asset 0.

The expressions for the betas given above form the basis for all of our estimators and
inference procedures discussed below. However, for the results reported on below, we need
the following, mostly, technical conditions on the underlying process in (3).

Assumption A1

(a) The functions αit, σ0t, σit, δ0(ω, t, x) and δi(ω, t, x) are left-continuous and have right
limits with respect to t for all i = 1, ..., N .

(b) |δ0(ω, t, x)| ≤ γk(x) for t ≤ Tk(ω), where γk(x) is a deterministic function such that∫
E0
|γk(x)|2 ∧ 1λ0(dx) < ∞, and Tk is a sequence of stopping times increasing to +∞.

A similar condition holds for δi(ω, t, x) for all i = 1, ..., N .

(c)
∫ t

0
|σ0s|ds > 0 a.s. for every t > 0.

(d) σ0 and σi for i = 1, ..., N , are Itô semimartingales, with coefficients satisfying the
conditions in (a) and (b).

Assumption A1 is identical to the assumptions made in Jacod (2006). It is a rather weak
set of assumptions, and with the possible exception of part (c) which rules out pure-jump
specifications, virtually all parametric models employed in finance satisfy these conditions.

In addition to the minimal Assumption A1, for some of our results we will need an
additional slightly stronger assumption.

Assumption A2: |δ0(ω, t, x)| ≤ γk(x) for t ≤ Tk(ω), where γk(x) is deterministic function
such that

∫
E0
|γk(x)|s∧1λ0(dx) < ∞ for some s ∈ [0, 2], and Tk denotes a sequence of stopping

times increasing to +∞. A similar condition holds for δi(ω, t, x) for all i = 1, ..., N .

Assumption A2 is again adapted from the general setup in Jacod (2006). It strengthens
part (b) of Assumption A1 (when s in A2 is strictly less than 2), in restricting the activity
of the jumps in the prices. In the case of time-homogeneous jumps it amounts to requiring
the so-called Blumenthal-Getoor index (Blumenthal and Getoor (1961)) of the jumps to be
no larger than s. Intuitively, if the small jumps are too frequent, they become statistically
indistinguishable from the diffusive part of the process.

3 Estimation of Systematic Diffusive and Jump Risks

The discussion and formula in the preceding section were predication on the notion of con-
tinuous price records. In practice, of course, we do not have access to continuously recorded
prices over the [0, T ] time-interval, but instead we only observe the prices over some discrete
time grid, say i∆n for i = 0, 1, · · · , [T/∆n]. Using such discretely observed price data we
next discuss how to actually implement the ideas in the previous section in estimating the
sensitivity parameters of interest, βc

i and βd
i . We also present Central Limit Theorems for

the resulting estimators based on the conceptual idea of increasingly finely sampled prices,
or ∆n → 0. We begin with the estimation of the sensitivity towards systematic jump risk.
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3.1 Inference about βd
i

Our estimator for the sensitivity towards systematic jump risk is constructed by consistently
estimating the numerator and denominator in the infeasible ratio in equation (5). In so
doing, we build directly on many of the results in Jacod and Todorov (2007). To this end,
let p = (p0, p1, ..., pN), and denote the corresponding vector of discrete price increments,

∆n
i p = pi∆n − p(i−1)∆n . (8)

Also, define

V (f, ∆n)t =

[t/∆n]∑
i=1

f(∆n
i p), 0 ≤ t ≤ T, (9)

where the RN+1 measurable function f is given by,

fij(p) = (pipj)
2, (10)

for i, j = 0, 1, ..., N . Our estimator for the ratio of the jump betas between assets i and j
may then be compactly expressed as

(̂
βd

i

βd
j

)
=

√
V (fki, ∆n)T

V (fkj, ∆n)T

, (11)

for some k = 0, 1, ..., N . To avoid trivial (and uninteresting) cases we further restrict i 6= j,
i 6= k, and j = k if and only if j = k = 0. Note that for k = j = 0, the ratio provides a
direct estimate of |βd

i |.
The feasible estimator in equation (11) directly mirrors the expression in (5) based on

continuously recorded prices. Since the price increments only enters in powers of two, the
contribution from the continuous part of prices in fij(∆

n
i p) will be negligible (asymptoti-

cally). Intuitively, higher powers (higher than two) serve to compress the contribution from
the continuous price moves, while at the same time inflating the contribution coming from
jumps, in effect making the jumps “visible”.4

In order to characterize the distribution of the estimator, we will consider an auxiliary
space (Ω′,F ′,P′), which is an extension of the original one and supports two sequences (Uq)
and (U ′

q) of N + 1-dimensional standard normals, as well as the sequence (κq) of uniform
random variables on [0, 1], all of which are mutually independent. We further denote by
(Sq)q≥1 the sequence of stopping times that exhausts the “jumps” in the measures µ0 and µi;
i.e., for each ω we have Sp(ω) 6= Sq(ω) if p 6= q, while µ0(ω, {t}×E0) = 1 or µi(ω, {t}×E) = 1
if and only if t ≡ Sq(ω) for some q. Finally, following Jacod and Todorov (2007) we define
the following subsets of Ω,

Ω
(ij)
T = {ω : on [0, T ] the process ∆pis∆pjs is not identically 0}, (12)

4For simplicity we will here focus on the function in (10) and the accompanying estimator in (11).
However, as discussed in more detail in Jacod and Todorov (2007), the same logic applies for arbitrary
twice-continuously differentiable functions on R2, in which the second partial derivatives go to 0 around the
origin.
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for i, j = 1, ...N and i 6= j. The set Ω
(ij)
T represents the events for which there is at least one

common jump in pi and pj over the [0, T ] time-interval. Because of the assumed one-factor

structure, these sets are equivalent to the set Ω
(0)
T with at least one systematic jump on [0, T ].

Note that even if the model allows for systematic jump risk in the assets, it still might be
the case that the observed realization of the prices is not in the set Ω

(0)
T . This can happen

with a positive probability for example if the systematic jumps are compound Poisson. The
following theorem provides the distribution of our estimator on all non-empty sets, Ω

(0)
T .

Theorem 1 Assume that pi and p0 are governed by equations (3) and (6), respectively, and
that βi 6= 0. Further assume that Assumption A1 holds. Then for ∆n → 0:5

(a) (̂
βd

i

βd
j

)
P−→

∣∣∣∣
βd

i

βd
j

∣∣∣∣ on Ω
(0)
T , (13)

(b)

1√
∆n




(̂
βd

i

βd
j

)
−

∣∣∣∣
βd

i

βd
j

∣∣∣∣


 L−(s)−→ Ld

T on Ω
(0)
T , (14)

Ld
T =

∣∣∣∣∣
βd

i

βd
j

∣∣∣∣∣

∑
q:Sq≤T

(
(∆p0Sq)

3
[√

κqR
1

q +
√

1− κqR
2

q

])
∑

s≤T (∆p0s)4
, (15)

R
1

q =
1

βd
i

σiSq−U i
q − 1{j 6=0}

1

βd
j

σjSq−U j
q and R

2

q =
1

βd
i

σiSqU
′i
q − 1{j 6=0}

1

βd
j

σjSqU
′j
q . (16)

Conditional on FT , Ld
T has mean 0 and variance

VT =

∑
q:Sq≤T

[
(∆p0Sq)

6

((
σ2

iSq− + σ2
iSq

)
+ 1{j 6=0}

(
βd

i

βd
j

)2 (
σ2

jSq− + σ2
jSq

))]

2(βd
j )

2(
∑

s≤T (∆p0s)4)2
. (17)

If in addition ∆p0Sq∆σiSq ≡ 0 for all Sq ≤ T , then conditional on FT , Ld
T is normal.

(c) The results in parts (a) and (b) continue to hold for

(̃
βd

i

βd
j

)
=

√√√√
∑[T/∆n]

i=1 (∆n
i pi)2(∆n

i pk)21{|∆n
i pi|>α∆$

n ∪ |∆n
i pk|>α∆$

n }∑[T/∆n]
i=1 (∆n

i pj)2(∆n
i pk)21{|∆n

i pj |>α∆$
n ∪ |∆n

i pk|>α∆$
n }

, (18)

for arbitrary values of α > 0 and $ > 1
3
.

5The notation
L−(s)−→ means convergence stable in law. This convergence is stronger than the usual conver-

gence in law. Its importance for us comes from the fact that it implies joint convergence of the converging
sequence with any random variable defined on the original probability space (see Jacod and Shiryaev (2003)
for further details).
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(d) If in addition Assumption A2 holds for some s < 2, then the variance VT for j = k = 0
may be consistently estimated by

V̂T =

∑[T/∆n−kn−1]
i=kn+2 (∆n

i p0)
6 (ĉ(n,−)j + ĉ(n, +)j) 1{|∆n

i p0|≥α∆$
n }

2
(∑[T/∆n]

i=1 (∆n
i p0)41{|∆n

i p0|≥α∆$
n }

)2 , (19)

ĉ(n,±)i =
1

kn∆n

π

2

∑

j∈In,±(i)

|∆n
j p̂

cn
i0 ||∆n

j−1p̂
cn
i0 |, p̂cn

i0 := pi − β̂c
i pj,

where In,−(i) = {i−kn, i−kn +1, · · · , i−1} for i > kn +1, In,+(i) = {i+2, · · · , i+kn}
for i < [T/∆n]− kn; α > 0, $ ∈ (0, 1

2
); kn →∞ and kn∆n → 0; and β̂c

i denotes some
consistent estimator for βc

i .

Proof: See Appendix.

Part (a) of the theorem shows that the proposed estimator does indeed converge to the
(absolute value of the) ratio of the sensitivities toward systematic jump risk. Importantly,

this convergence is restricted to the set Ω
(0)
T .6 This is, of course, quite natural as it isn’t

possible to infer any quantities/parameters related to co-jumping when there is no common
arrival of jumps in the asset prices. As such, the estimator in equation (11) should only be
used in situations when there were actually systematic jumps present.

We note that the convergence in probability and the Central Limit Theorem stated in
part (a) and part (b) of the theorem hold under very general conditions and in particular
no restriction on the jump activity: finite or infinite activity, finite or infinite variation
jumps are all allowed. Several observations regarding the asymptotic limit in (15) are in
order. First, the larger the systematic jumps, the lower the asymptotic variance and the
more accurate the estimates for the sensitivities to systematic jump risk. Intuitively, smaller
common jumps are generally harder to separate from continuous co-movements, and in turn
result in less precise estimates of βd

i . Second, the longer the [0, T ] time-interval, the more
realizations of systematic jumps on average, and hence the more accurate the estimates.
Of course, this assumes that the same one-factor structure with identical jump sensitivities
in (3) hold true over the entire time-interval. We will return to this issue in the empirical
section below. Third, the less the idiosyncratic risks, the more precise the estimates. In
particular, if observations on the common (systematic) factor p0 are available, the use of
these will result in the most precise estimates.

6For the events in (Ω(0)
T )c corresponding to only idiosyncratic jumps in i, j or k, the limiting value of

the estimator in (11) is a random quantity conditional on the observed prices. When neither systematic nor
idiosyncratic jumps are present on [0, T ], the limit equals

√√√√ 3(βc
i β

c
k)2

∫ T

0
σ4

0sds + 1{k 6=0}(βc
i )2

∫ T

0
σ2

ksσ
2
0sds + (βc

k)2
∫ T

0
σ2

isσ
2
0sds + 1{k 6=0}

∫ T

0
σ2

isσ
2
ksds

3(βc
jβ

c
k)2

∫ T

0
σ4

0sds + 1{k 6=0}(βc
j )2

∫ T

0
σ2

ksσ
2
0sds + 1{j 6=0}(βc

k)2
∫ T

0
σ2

jsσ
2
0sds + 1{j 6=0,k 6=0}

∫ T

0
σ2

jsσ
2
ksds

,

which for j = k = 0 is strictly greater than the sensitivity towards the (absolute of the) sensitivity towards
diffusive systematic risk.

9



As noted in part (b) of the theorem, the absence of any common jumps between the
price levels and the stochastic volatility for the continuous price process implies that the
distribution of Ld

T will be normal. In the empirical results reported on below we simply
proceed under this maintained assumption. The results reported in Jacod and Todorov
(2007) suggest that even if this assumption is violated, the use of the right approximating
limit for Ld

T , obtained by substituting the jumps in Ld
T with the price increments and the

stochastic volatilities with the square root of the ĉ’s, would not give rise to materially different
distributions and test statistics.

Part (c) of the theorem formally shows that the asymptotic results in parts (a) and (b)
remain true if we drop the terms in V (fki, ∆n)T for which both price increments are smaller
than some pre-specified threshold level. Intuitively, these terms will capture continuous
moves and their impact will therefore be negligible asymptotically. In finite samples, however,
it might be desirable to use the truncated estimator in equation (18). Of course, for very
high values of $ the two estimators will be numerically the same. We will discuss reasonable
choices for α and $ in the empirical section below.

The final part (d) of the theorem provides a consistent estimator for VT in the case of
j = k = 0. This is the estimator that we will actually rely on in the empirical section.7 In
addition to the previous Assumption 1, the V̂T estimator requires that Assumption 2 holds
for some s < 2. This is a very weak regularity type assumption. Jumps for which s = 2 are
extremely active and for practical purposes impossible to separate from the continuous price
movements. Otherwise the estimator for VT is essentially based on a portfolio consisting of
assets pi and p0, which eliminates the systematic diffusive risk, along with an estimate of the
local stochastic variance of the continuous part of this portfolio, ĉ(n,±)i. The truncation em-
ployed in the estimator is asymptotically immaterial. Just like the truncated estimator itself
defined in part (c), the price increments only enter the variance estimator in powers higher
than two so that the contribution from the continuous part is asymptotically negligible.

We next turn to a discussion of our estimates for the sensitivities to systematic diffusive
risks.

3.2 Inference about βc
i

Analogous to the estimator for the sensitivity towards jump risk discussed above, our estima-
tor for the sensitivity towards continuous systematic risk is based on the first infeasible ratio
in equation (7), replacing the numerator and denominator by feasible estimates. To this
end, we need some additional notation. In particular, let X denote a generic N -dimensional
semimartingale. The following multidimensional realized truncated variation

V
′′
n (X,α,$)t =




∑[t/∆n]
i=1 (∆n

i X
1)21{||X||≤α∆$

n }
...∑[t/∆n]

i=1 (∆n
i X

d)21{||X||≤α∆$
n }


 , (20)

7It is possible to construct an estimator for VT in the general case of k 6= 0 by estimating the limiting
variance in the multivariate CLT stated as part of the proof of the theorem. However, this estimator is
considerably more complicated and less intuitive than V̂T , and since we do not use it in the empirical
analysis, we leave out the details.
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then represents a natural extension of the univariate truncated realized variation measures
analyzed in Mancini (2001, 2006) and Jacod (2006). Also, define the following vector con-
structed from the original prices,

X ij
k =




pi + pk

pi − pk

pj + pk

pj − pk


 , (21)

for i = 1, ..., N and j, k = 0, 1, ..., N . Our estimator for the ratio of the continuous betas is
then defined as, (̂

βc
i

βc
j

)
=

V
′′1
n (X ij

k , α, $)T − V
′′2
n (X ij

k , α, $)T

V ′′3
n (X ij

k , α, $)T − V ′′4
n (X ij

k , α, $)T

. (22)

The following theorem characterizes the behavior of the estimator. As in the previous sub-
section, to avoid uninteresting cases we restrict i 6= j, i 6= k, and j = k if and only if
j = k = 0.

Theorem 2 Assume that pi and p0 are governed by equations (3) and (6), respectively.
Further assume that Assumption A1 holds, and let α > 0 and $ ∈ (0, 1

2
). Then for ∆n → 0:

(a) (̂
βc

i

βc
j

)
P−→ βc

i

βc
j

. (23)

(b) If in addition Assumption A2 holds for some s ≤ 4$−1
2$

,

1√
∆n

((̂
βc

i

βc
j

)
− βc

i

βc
j

)
L−(s)−→ Lc

T := KT × U, (24)

where U ∼ N(0, 1) is defined on an extension of the original probability space and is
independent of the filtration F , and

KT =

√
∫ T

0

(
(βc

k)
2σ2

0u + 1{k 6=0}σ2
ku

)(
σ2

iu + 1{j 6=0}
(

βc
i

βc
j

)2

σ2
ju

)
du

βc
jβ

c
k

∫ T

0
σ2

0udu
.

(c) The variance KT may be consistently estimated by

K̂T =

√
K̂1

T

K̂2
T

,

where,

K̂1
T =

π2

4∆n

[T/∆n]−3∑
i=1

∣∣∣∣∆n
i pk∆

n
i+1p̂

cn
ij ∆n

i+2pk∆
n
i+3p̂

cn
ij

∣∣∣∣,
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K̂2
T =

π

8

[T/∆n]−1∑
i=1

(|∆n
i (pj + pk)∆

n
i+1(pj + pk)| − |∆n

i (pj − pk)∆
n
i+1(pj − pk)|),

and

p̂cn
ij := pi −

(̂
βc

i

βc
j

)
pj.

Proof: See Appendix.

Part (a) of the theorem shows that the use of the truncated variation measures afford a
consistent estimator for the quantity of interest. This consistency holds true for any values
of α > 0 and $ ∈ (0, 1

2
). Of course, as discussed further in the empirical section below, the

actual numerical value of the estimator for a given ∆n will depend upon the specific choice
of these tuning parameters. Assumption A1, part (c) guarantees non-vanishing systematic
diffusive risk, so that in contrast to the estimator for the sensitivity towards systematic
jump risk in Theorem 2, which only converges on Ω

(0)
T , the estimator for the sensitivity to

systematic diffusive risk converges on the whole set Ω.
Unlike the CLT for the jump beta in Theorem 1, which holds quite generally, the CLT

for the continuous beta in part (b) of Theorem 2 involves a non-trivial restriction related
to the activity of the jumps. In practical applications it is natural to choose $ to be close
to 0.5, so that in the case of time-homogenous jumps the restriction in part (b) essentially
excludes jumps of infinite variation. Given the maintained assumption of non-vanishing
continuous price components, we do not believe this to be restrictive. Importantly, the
limiting distribution of Lc

T is always normal. In parallel to the estimates for the jump
beta, the expression for the asymptotic variance of Lc

T indicates that the precision of the
continuous beta estimates increase with the use of longer [0, T ] time-periods and assets with
less idiosyncratic risk.

The consistent estimator for the asymptotic variance of Lc
T in part (c) is based on mul-

tipower variation measures. Analogous to the construction in part (c) in Theorem 1, the

estimate for K̂1
T involves a linear combination of assets i and j that eliminates the systematic

diffusive risk, p̂cn
ij . The particular ordering of pk and p̂c

ij used in defining K̂1
T is, of course,

arbitrary.8

We next turn to a practical empirical illustration of the new estimators and distributional
results in Theorems 1 and 2.

4 Empirical Illustration

Our empirical illustration is based on high-frequency transaction prices for forty large capi-
talization stocks over the January 1, 2001 to December 31, 2005 sample period, for a total
of 1, 241 active trading days. The data were obtained from the Trade and Quote Database
(TAQ). The name and ticker symbols for each of the individual stocks are given in the tables
below. The same data has previously been analyzed by Bollerslev et al. (2007) from a very

8An alternative, and somewhat more complicated, estimator for KT could be constructed from appropri-
ately defined truncated power variation measures.
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different perspective, and we refer to the discussion therein for further details concerning the
methods and filters employed in cleaning the raw price data.

The theoretical results derived in the preceding section is based on the notion of increas-
ingly finer sample prices, or ∆n → 0. Meanwhile, a host of practical market microstructure
complications, including bid-ask spreads, price discreteness and non-synchronous trading
effects, prevent us from sampling too frequently, while maintaining the fundamental semi-
martingale assumption underlying our results. Ways in which to best deal with the market
microstructure ”noise” in the implementation of univariate realized variation measures is
currently a very active area of research; see, e.g., Ait-Sahalia et al. (2005), Hansen and
Lunde (2006) and Barndorff-Nielsen et al. (2007) and the references therein. However, these
procedures do not easily generalize to a multivariate context, where the issues are further
confound by non-synchronous recording of prices across assets, and little work has yet been
done in regards to the practical estimation of multivariate power variation measures in the
presence of ”noise”. Hence, we simply follow most of the literature in the use of a not-too-fine
sampling frequency as a way to strike a reasonable balance between the desire for as finely
sampled prices as possible on the one hand and the desire not to overwhelm the measures
by market microstructure effects on the other. While the magnitude and the impact of the
”noise” obviously differs across stocks and across time, the analysis in Bollerslev et al. (2007)
suggests that a conservative sampling frequency of 22.5 minutes mitigates the effect of the
”noise” for all of the forty stocks in the sample.9

The one-factor market model most often employed in practice identifies the systematic
risk factor with the return on the aggregate market portfolio. Hence, rather than estimating
the relative factor sensitivities across the forty stocks, we treat the market as asset 0 and
focus on the sensitivities with respect to that benchmark as defined in equation (7). These
direct beta estimates are obviously somewhat easier to interpret than the more generally valid
sensitivity ratios.10 We use the S&P500 index as our measure for the aggregate market, with
the corresponding high-frequency returns constructed from the prices for the SPY Exchange
Traded Fund (ETF).

Our model-free approach only permits the estimation of discontinuous betas over periods
in which there were actually jumps in the reference asset 0, as formally defined by the set
Ω

(0)
T . We therefore begin our empirical analysis with testing for systematic jumps in the

SPY contract. To do so we use the non-parametric test in Barndorff-Nielsen and Shephard
(2006) and Huang and Tauchen (2005) based on the difference in the logarithmic daily
realized variance and bipower variation measures. Since the SPY is less susceptible to market
microstructure ”noise” than many of the forty stocks in the sample, we rely on a finer
5-minute sampling frequency in the implementation of the tests. Also, to avoid falsely
classifying no-jump days as jump days, we use a fairly conservative critical value of 3.09
for the normally distributed test statistic, corresponding to a 0.2% significance level. The
resulting tests indicate that the market jumped on 106 of the 1, 241 days in sample. At the
monthly level 50 out of the 60 months in the sample contained at least one significant jump

9For simplicity we decided to maintain the identical sampling frequency for all of of the stocks throughout
the sample. However,we also experimented with the use of other sampling frequencies, resulting in the same
basic findings as the ones reported below.

10Importantly, as noted above the distributional results in Theorems 1 and 2 also imply that the explicit
use of the right 0 benchmark asset will give rise to most accurate sensitivity estimates.
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day, while all of the 20 quarters contained significant jumps. In the following we restrict our
calculation of jump betas to only those significant time periods; i.e., 106 days, 50 months,
and 20 quarters.

In calculating the betas, we focus on the estimators for βd
i and βc

i defined in equations
(18) and (22) for j = k = 0, respectively. Both estimators involve truncation of the price
increments, necessitating a choice of α and $. As previously noted, choosing $ = 0.49 < 0.5
essentially excludes jumps of infinite variation, which are (perhaps) hard to differentiate from

continuous price moves with discretely sample observations. For β̂d
i we set α = 2

√
BV(0,T ),

where BV(0,T ) denotes the bi-power variation of the relevant price process. This choice of
α explicitly recognizes that σ2

i (and/or σ2
0) is likely changing over time. Intuitively, over

short time-periods the continuous part of the price process is approximately normal, so
that our choice of α used in estimating the jump betas discard only those price increments
which are within two standard deviations of 0, and thus most likely to be associated with
continuous price movements. On the other hand, for β̂c

i we set α = 3
√

BV(0,T ), discarding
only those price increments which are more than three standard deviations away from 0, and
thus unlikely to be associated with continuous price moves. These two different values of
α arguably reflect a conservative choice in classifying (and consequently discarding) a price
increment as being either continuous or one that contains jump(s). Of course, asymptotically
the values of α and $ do not matter.11

Turning to the actual empirical results, Figures 1-4 plot the time series of quarterly,
monthly and daily continuous and jump beta estimates for two representative firms, IBM
and Genentech. The daily beta estimates are obviously somewhat noisy and difficult to
interpret. Meanwhile, the estimates for the monthly betas appear much more stable, while
still showing interesting and clearly discernable patterns over time. Even though the same
longer run dynamic dependencies are visible in the quarterly betas, they afford a much less
detailed picture, and some of the more subtle dependencies appear to have been lost at the
quarterly horizon. Hence, in the following we will concentrate our discussion and analysis
on the monthly beta estimates.12

In order to compare more directly the monthly beta estimates, Figure 5 combines the
separate betas for each of the two stocks in the same graph. The plot in the top panel shows
that the betas for IBM tend to be close. However, the plot for Genentech in the bottom
panel reveals some rather marked differences in the estimates. In particular, for the months

in which there were systematic jumps β̂d
i is almost always greater than β̂c

i , and sometimes
by a considerable amount. Before starting to speculate on the economic significance and
importance of these findings, it is naturally to ask whether these apparent differences in the
betas are actually statistically significant.

The asymptotic distributional results in Theorems 1 and 2 afford a direct way of assessing
the accuracy of the beta estimates, and in turn allow for the calculation of period-by-period
confidence intervals. Looking at the corresponding 95-percent confidence intervals in Fig-
ures 6-7, it is clear that the intervals for the monthly Genentech betas often do not have any
points in common suggesting that the betas are indeed different, while the intervals for IBM

11We also experimented with other values for these tuning parameters, resulting in very similar beta
estimates to the ones reported below. Further details concerning these results are available upon request.

12This also mirrors the ubiquitous monthly return regressions in the empirical finance literature.
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generally involve some overlap making it impossible to statistically tell the two betas apart.
Note that the width of the confidence intervals for the jump betas vary much more than the
width of the intervals for the continuous betas. As discussed in connection with Theorem
1 above, this is to be expected. Intuitively, it is much easier to estimate the sensitivity to
systematic jump risk in months where the market experienced a few large jumps than it is
in months involving more moderate sized jumps.

To illustrate the results on a broader basis, we report in Table 1 the average monthly
continuous and jump beta estimates for each of the forty stocks in the sample. We also in-
clude (in square brackets) the corresponding 95-percent confidence intervals for the averages,
constructed from the sum of the asymptotic variances in Theorems 1 and 2. Consistent with
the visual impression from the figures, the average betas for IBM are very close, 0.981 versus
0.990, with overlapping confidence intervals, while those for Genentech are very different,
0.992 versus 1.406, with non-overlapping confidence intervals. In fact, looking across all of
the forty stocks for only five of the stocks do the confidence intervals for the average betas
overlap, indicating that on average most of the stocks do respond differently to continuous
and discontinuous market moves. Moreover, with a few exceptions the average jump betas
are greater than the continuous betas, suggesting that for the large capitalization stocks
analyzed here, larger (jump) market moves tend to be associate with proportionally larger
systematic price reactions than smaller more common (continuous) market moves. Also,
while Genentech exhibits the largest numerical difference of 0.414, the differences in the two
betas for many of the other stocks are clearly non-trivial and economically important.13

In addition to allowing for the estimation of separate betas, one of the main attractive
features of the high-frequency based estimation approach developed here is the ability to
reliably estimate the betas over relatively short time spans, such as a month. Indeed, as
noted above in connection with our discussion of the representative time series plots for IBM
and Genentech, the monthly beta estimates for both of the stocks do seem to vary in an
orderly and reliable fashion from one month to the next.14 Of course, the averages reported
in Table 1 in effect obscures any variation in the betas. Thus, to complement these results
and more directly highlight this important feature of our new procedures, we present a series
of tests for constancy of the betas. In particular, let β̂c

i,t denote the estimate for βc
i for month

13We also calculated the proportion of the total diffusive and jump variation for each of the stocks due to
idiosyncratic variation, as formally defined by

Rc
i =

∫ T

0
σ2

isds
∫ T

0
σ2

isds + (βc
i )2

∫ T

0
σ2

0sds
and Rd

i =

∫ T

0

∫
Ei

δ2
i (t, x)µi(dt, dx)

∫ T

0

∫
Ei

δ2
i (t, x)µi(dt, dx) + (βd

i )2
∫ T

0

∫
E0

δ2
0(t, x)µ0(dt, dx)

.

The average values of the two measures averaged across the forty stocks and sixty (resp. fifty) months in
the sample were close and equal to 0.688 and 0.686, respectively. The average measures for the two types
of idiosyncratic risks generally also differed very little for each of the individual stocks, with a maximum
difference of only 0.071 for Texas Instruments. Further details of these results are available upon request.

14This obviously suggests that temporal variations in the betas might be predictable. We will not pursue
the issue of modeling and forecasting the betas here, instead referring to Andersen et al. (2006) where
reduced-form time series models for simpler realized monthly betas based on standard realized variation
measures are presented.

15



t = 1, ..., 60 in the sample. The following three test statistics,

T c
i,m =

30∑
t=1

(
β̂c

i,2t − β̂c
i,2t−1

)2

Âvar(β̂c
i,2t) + Âvar(β̂c

i,2t−1)

L−→ χ2
30, (25)

T c
i,q =

7∑
t=1

(∑3
j=1

(
β̂c

i,6(t−1)+3+j − β̂c
i,6(t−1)+j

))2

∑3
j=1

(
Âvar

(
β̂c

i,6(t−1)+3+j

)
+ Âvar

(
β̂c

i,6(t−1)+j

)) L−→ χ2
10, (26)

T c
i,y =

2∑
t=1

(∑12
j=1

(
β̂c

i,24(t−1)+12+j − β̂c
i,24(t−1)+j

))2

∑12
j=1

(
Âvar

(
β̂c

i,24(t−1)+12+j

)
+ Âvar

(
β̂c

i,24(t−1)+j

)) L−→ χ2
2, (27)

then provide direct tests for equality of adjacent monthly betas, quarterly-averaged monthly
betas, and annual-averaged monthly betas, respectively. Similarly, we define the test statis-
tics T d

i,m, T d
i,q and T d

i,y based on the monthly β̂d
i,t estimates, to test for equality of the jump

betas over monthly, quarterly, and annual horizons. Since, there were no systematic jumps
in 10 of the 60 months in the sample, T d

i,m has a limiting χ2
25 distribution under the null

of constant monthly jump betas. The limiting distributions of T d
i,q and T d

i,y are χ2
10 and χ2

2,
respectively. The actual results of the tests reported in Table 1 strongly reject that the
monthly and quarterly betas stayed the same over the sample. This is true for both types of
betas. Meanwhile, for a few of the stocks we are not able to reject the hypothesis that the
annual averages are constant.

In a sum, the empirical results for the forty stocks reported in the two tables show that
not only did the monthly continuous and jump betas differ significantly for most of stocks
in the sample, the betas also changed significantly through time over the five-year sample
period. As such the results clearly highlight the benefits and insights afforded by our new
procedures vis-a-vis the more traditional regressions based procedures for estimating betas
restricting the continuous and jump betas to be the same and implicitly treating the monthly
betas to be constant over long five-year periods.

5 Conclusion

Discrete-time factor models are used extensively in asset pricing finance. We provide a new
theoretical framework for separately identifying and estimating sensitivities towards con-
tinuous and discontinuous systematic risks, or betas, within this popular model setup. Our
estimates and distributional results are based on the idea of increasingly finer sampled returns
over fixed time-intervals. Using high-frequency data for a large cross-section of individual
stocks and a benchmark portfolio mimicking the aggregate market, we find that allowing for
separate continuous and jump betas can result in materially very different estimates from
the ones restricting the two types of betas to be the same. These results raise a number of
new interesting questions.

As discussed in the introduction, several recent studies have argued that the risk premia
associated with discontinuous, or jump, risks often appear to be quite different from the
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premia associated with continuous risks. The relatively limited time-span of high-frequency
data available for the empirical analysis here invariable limits the scope of such investigations.
Nonetheless, it would be interesting to somehow test whether the two types of betas carry
separate risk premia.

Along these lines, our findings of different sensitivities to systematic jump risks also
has important implications for practical portfolio and risk management. In particular, our
results suggest that portfolios designed to hedge the largest market moves, or systematic
price jumps, might have to be constructed differently from portfolios intended to neutralize,
or immunize, the more common systematic day-to-day market movements.

At a more fundamental level, the ability to accurately estimate separate betas over rela-
tively short time-spans also raise the possibility of investigating the economic determinants
behind the different types of risks. In particular, is it possibly to explain the differences and
temporal variation in the betas by underlying economic variables?

In spite of the continued dominance of the market model in practical applications, more
complicated multi-factor representations have often been shown to provide more accurate
descriptions of the cross-sectional variation in expected returns. It would be interesting to
formally extend the theoretical results for the one-factor model presented here to a multi-
factor setting allowing for the estimation of different continuous and jump betas with respect
to specific factor representing portfolios, including the popular Fama-French book-to-market
and size sorted portfolios and momentum based portfolios.

We leave further investigation of all of these issues for future research.
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Technical Appendix

A Proof of Theorem 1

Part (a). Part (a) of the Theorem follows directly from Lemma 8.2 in Jacod and Todorov (2007).
Part (b). To prove part (b) we first introduce some additional notation. We define σt, a random (N +1)×
(N + 1) matrix as follows

σt =




σ0t 0 . . . . . . . . . 0
β1σ0t σ1t 0 . . . . . . 0

... 0
. . . 0 . . . 0

...
...

. . . . . . . . .
...

...
...

. . . . . . 0
βNσ0t 0 . . . . . . 0 σNt




. (A.1)

Note that σtσ
′
t = ct, where Ct =

∫ t

0
csds is the second characteristic of the Itô semimartingale p (see

Jacod and Shiryaev (2003) for a definition of the characteristics of semimartingales). Using σt we define the
N + 1-dimensional variable

Rq =
√

κq σSq−Uq +
√

1− κq σSqU
′
q. (A.2)

The proof of Theorem 1, part (b) is based on the following Lemma.

Lemma 1 For the Itô semimartingale p satisfying the conditions in Theorem 1 and the functions fij(·)
defined in (10) we have

1√
∆n




V (fk0, ∆n)−∑
s≤T fk0(∆p)

V (fk1, ∆n)−∑
s≤T fk1(∆p)

...
V (fkN , ∆n)−∑

s≤T fkN (∆p)




L−(s)−→




Zk0
T

Zk1
T
...

Zkd
T


 , k = 0, 1, ..., N, (A.3)

where for arbitrary i we define Zki
t =

∑
q:Sq≤t 2(∆pkSq )(∆piSq )

2Rk
q + 2(∆pkSq )

2(∆piSq )R
i
q.

Proof of Lemma 1: First note that the elements Zki
t are well defined using Lemma 8.1 in Jacod and

Todorov (2007). The proof of the stable convergence result in (A.3) follows from Theorem 8.3 in Jacod and
Todorov (2007) and Theorem 2.12(i) in Jacod (2006). ¤

Using the CLT result in equation (A.3) and the Delta method, it follows that 1√
∆n

((̂
βd

i

βd
j

)
−

∣∣∣∣
βd

i

βd
j

∣∣∣∣
)

converges stably in law on Ω(0)
T to the random variable

1
2

(∑
s≤T (∆pks∆pis)2

)− 1
2

(∑
s≤T (∆pks∆pjs)2

) 1
2

Zki
T − 1

2

(∑
s≤T (∆pks∆pis)2

) 1
2

(∑
s≤T (∆pks∆pjs)2

) 3
2
Zkj

T . (A.4)

Using equations (3) and (6) we have

(∑
s≤T (∆pks∆pis)2

)− 1
2

(∑
s≤T (∆pks∆pjs)2

) 1
2

=

∣∣∣∣∣
βd

i

βd
j

∣∣∣∣∣
1(

βd
kβd

i

)2

1∑
s≤T (∆p0s)4

, (A.5)

(∑
s≤T (∆pks∆pis)2

) 1
2

(∑
s≤T (∆pks∆pjs)2

) 3
2

=

∣∣∣∣∣
βd

i

βd
j

∣∣∣∣∣
1(

βd
kβd

j

)2

1∑
s≤T (∆p0s)4

, (A.6)
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Zki
t =

∑

q:Sq≤t

2(∆p0Sq
)3((βd

i )2βd
kRk

q + βd
i (βd

k)2Ri
q), (A.7)

for arbitrary i. Plugging the last three expressions into equation (A.4) we get (15). To show (17) we use
(A.1) and the definition of Ri

q to write

R0
q =

√
κqσ0Sq−U0

q +
√

1− κqσ0SqU
0′
q ,

Ri
q = βd

i R0
q +

√
κqσiSq−U i

q +
√

1− κqσiSq
U i′

q , (A.8)

for arbitrary i 6= 0. Equation (17) now follows trivially. We are left with showing parts (c) and (d) of the
Theorem. To do so we will make use of the following generic one-dimensional Itô semimartingale:

Xt = X0 +
∫ t

0

budu +
∫ t

0

σudWu +
∫ t

0

∫

E

κ(δ(t, x))µ̃(du, dx) +
∫ t

0

∫

E

κ′(δ(t, x))µ(du, dx), (A.9)

where W is a Brownian motion and µ is a Poisson measure with compensator ds ⊗ λ(dx) and all other
quantities associated with the process are defined similar to the corresponding price process in (3).
Part(c). The result in part (c) follows if we can show that for arbitrary processes X1 and X2 with the same
dynamics as the generic process X in (A.9) (but with possibly different coefficients of course) it holds that

1√
∆n

[T/∆n]∑

i=1

(∆n
i X1)2(∆n

i X2)21{|∆n
i X1|<α∆$

n ,|∆n
i X1|<α∆$

n }
P−→ 0. (A.10)

First, it is convenient to introduce the following two functions g(x1, x2) = x2
1x

2
2 and

gn(x1, x2) = x2
1x

2
21{|x1|<α∆$

n ,|x2|<α∆$
n }. Second, for the generic semimartingale X we set Xc

t = X0+
∫ t

0
budu+∫ t

0
σudWu and Xd = X −Xc, with the same quantities defined similarly for X1 and X2. It follows therefore

1√
∆n

[T/∆n]∑

i=1

(∆n
i X1)2(∆n

i X2)21{|∆n
i X1|<α∆$

n ,|∆n
i X2|<α∆$

n } (A.11)

=
1√
∆n

T/∆n∑

i=1

gn(∆n
i Xc

1 ,∆n
i Xc

2) +
1√
∆n

T/∆n∑

i=1

(gn(∆n
i X1, ∆n

i X2)− gn(∆n
i Xc

1 , ∆n
i Xc

2)) .

For the first term on the right side of the above equation using the results in Barndorff-Nielsen et al. (2005)
we have that

0 ≤ 1√
∆n

T/∆n∑

i=1

gn(∆n
i Xc

1 , ∆n
i Xc

2) ≤ 1√
∆n

T/∆n∑

i=1

g(∆n
i Xc

1 , ∆n
i Xc

2) P−→ 0. (A.12)

Thus, we are left with showing

1√
∆n

T/∆n∑

i=1

(gn(∆n
i X1, ∆n

i X2)− gn(∆n
i Xc

1 ,∆n
i Xc

2)) P−→ 0. (A.13)

We prove this via several inequalities. First, it is easy to show the following algebraic inequality

|gn(x1 + y1, x2 + y2)− gn(x1, x2)| ≤ K(α∆$
n )3(|y1| ∧ (α∆$

n ) + |x1| ∧ (α∆$
n )), (A.14)

for arbitrary x1, x2, y1, y2 and K being some constant. Further, using the Burkholder-Davis-Gundy inequal-
ity (see e.g. Protter (2004)) we have

En
i−1|∆n

i Xd| ≤ K
√

∆n, (A.15)

where we use the abbreviation En
i−1 = E

(·|F(i−1)∆n

)
15. Therefore using (A.14)

1√
∆n

En
i−1|gn(∆n

i X1,∆n
i X2)− gn(∆n

i Xc
1 ,∆n

i Xc
2)| ≤ K∆3$

n , (A.16)

15For this to hold we need boundedness of the jumps as well as
∫ t

0

∫
E

κ2(δ(s, x))dsλ(dx) < ∞. We can use
a localization argument as in Jacod (2006) and then the local boundedness conditions in A1 to extend the
results to general semimartingales satisfying only the weaker conditions of A1.
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and since $ > 1
3 , the result in (A.13) follows. This completes the proof of part(c).

Part (d). For the proof of part (d) we first state and proof a result of independent interest.

Lemma 2 For the process X in (A.9) assume that Assumption A1 and Assumption A2 for some s < 2 are
both satisfied. Then for some l > 2 we have

[T/∆n−kn−1]∑

i=kn+2

(∆n
i X)l (ĉ(n,−)j + ĉ(n, +)j)

P−→
∑

q:Sq≤T

(∆XSq )
l
(
σ2

Sq− + σ2
Sq

)
, (A.17)

where

ĉ(n,±)i =
1

kn∆n

π

2

∑

j∈In,±(i)

|∆n
j X||∆n

j−1X|,

and In,±(i) and kn are defined in Theorem 1.

Proof of Lemma 2: The proof parallels the proof of Theorem 4, part (b) in Ait-Sahalia and Jacod (2006),
and we follow the main steps therein. In parallel to that proof, we will prove Lemma 2 under the stronger
condition that the drift, the stochastic volatility and the jumps of the process X are bounded. The result
after this can be extended to the general case using a localization procedure as in Jacod (2006). Our proof
consists of two steps.

Step1. We denote δn
i = σ(i−1)∆n

∆n
i W . Then in this first step we show that Lemma 2 will follow if we

have proved the following

1
kn∆n

π

2

[T/∆n−kn−1]∑

i=kn+2

∑

j∈In(i)

(∆n
i X)l|δn

j ||δn
j−1| P−→

∑

q:Sq≤T

(∆XSq )
l
(
σ2

Sq− + σ2
Sq

)
, (A.18)

where In(i) = In,−(i) ∪ In,+(i). We note that this is somewhat similar to the result in Barndorff-Nielsen
et al. (2006) regarding the robustness of realized multipower variation estimators with respect to Lévytype
jumps. To establish Step 1 we first prove some preliminary results. Recall from the proof of part (c)
the abbreviation En

i−1 = E
(·|F(i−1)∆n

)
. Using the boundedness of bu, σu and δ(u, x), the following three

inequalities are straightforward,

En
i−1

∣∣∣∣
∫ i∆n

(i−1)∆n

budu

∣∣∣∣ ≤ K∆n, (A.19)

En
i−1

∣∣∣∣
∫ i∆n

(i−1)∆n

(σu − σ(i−1)∆n
)dWu

∣∣∣∣ ≤
√√√√En

i−1

(∫ i∆n

(i−1)∆n

(σu − σ(i−1)∆n
)2du

)
≤ K∆1/2

n , (A.20)

En
i−1

∣∣∣∣
∫ i∆n

(i−1)∆n

∫

E

κ′(δ(u, x))µ(du, dx)
∣∣∣∣ ≤ En

i−1

(∫ i∆n

(i−1)∆n

∫

E

|κ′(δ(u, x))|duλ(dx)

)
≤ K∆n. (A.21)

We proceed with bounding the conditional expectation of the increment of X due to the jump martingale.
First if s < 1, the jump martingale can be split into two integrals (one with respect to µ and the other
one with respect to ν) and we can then bound the conditional expectation of the jump martingale as in the
above case. Thus, assume that s > 1 and choose an arbitrary α such that s < α < 2. Then, using Jensen’s
inequality and the Burkholder-Davis-Gundy inequality we have

En
i−1

∣∣∣∣
∫ i∆n

(i−1)∆n

∫

E

κ(δ(u, x))µ̃(du, dx)
∣∣∣∣ ≤

(
En

i−1

∣∣∣∣
∫ i∆n

(i−1)∆n

∫

E

κ(δ(u, x))µ̃(du, dx)
∣∣∣∣
α
)1/α

(A.22)

≤

En

i−1

(∫ i∆n

(i−1)∆n

∫

E

κ2(δ(u, x))µ(ds, dx)

)α/2



1/α

≤
(
En

i−1

(∫ i∆n

(i−1)∆n

∫

E

|κ(δ(u, x))|αµ(ds, dx)

))1/α

≤ K∆1/α
n .
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Further (see e.g. Jacod (2006) for a proof),

En
i−1 (|∆n

i X|q) ≤ K∆q/2∧1, q ≥ 1. (A.23)

We also have the following basic algebraic inequality
∣∣∣∣|∆n

i X||∆n
i−1X| − |δn

i ||δn
i−1|

∣∣∣∣ ≤ |∆n
i X − δn

i ||∆n
i−1X − δn

i−1|
+|δn

i ||∆n
i−1X − δn

i−1|+ |∆n
i X − δn

i ||δn
i−1|.

It follows as an elementary consequence of the Lebesgue convergence theorem (and the boundedness of σ2)
that

E

(∫ T

0

(
σ2

u − σ2
[u/∆n]∆n

)2

du

)
−→ 0. (A.24)

Finally, we make use of the fact that ∆n
i X and ĉ(n,±)i in (A.17) are defined over non-overlapping periods

and the same holds true for ∆n
i X, δn

j and δn
j in (A.18). Together with the above inequalities (A.19)-(A.24)

this proves Step 1.
Step 2. In the second step we verify that

π

2
1

kn∆n

∑

j∈I−n,q

|δn
j−1||δn

j | P−→ σ2
iSq−,

π

2
1

kn∆n

∑

j∈I+
n,q

|δn
j−1||δn

j | P−→ σ2
iSq−, (A.25)

where as in Ait-Sahalia and Jacod (2006) we set i(n, q) = inf(i : i∆n ≥ Sq), I−n,q = {j : j 6= i(n, q), |j −
i(n, q)| ≤ kn, j < kn}, I+

n,q = {j : j 6= i(n, q), |j − i(n, q)| ≤ kn, j > kn} and recall that Sq is any sequence
of stopping times exhausting the jump times of X. Then similar to Ait-Sahalia and Jacod (2006), we also
define

Un
q =

π

2
1

kn∆n

∑

j∈I−n,q

|∆n
j−1W ||∆n

j W | tnq = inf
u∈[Sq−kn∆n,Sq)

σ2
u, Tn

q = sup
u∈[Sq−kn∆n,Sq)

σ2
u. (A.26)

Then by a standard Law of Large Numbers, we have that Un
q

a.s.−→ 1, tnq
a.s.−→ σ2

Sq− and Tn
q

a.s.−→ σ2
Sq−. Hence

the first part of (A.25) follows. The second part of (A.25) is proved analogously. This establishes Step 2.
Combining Step 1 and Step 2 along with the proof of Theorem 4, part (b) in Ait-Sahalia and Jacod

(2006) (where loosely speaking it is shown that substitution of |∆n
i X|l with the jumps |∆X|l does not change

the estimator) the claim in Lemma 2 follows. ¤
Using Lemma 2 trivially establishes part (d) of Theorem 1. The difference between V̂T and the same

estimator with β̂c
i substituted by βc

i is a sum of functions of the type (β̂c
i − βc

i )
pKn, where Kn

P−→ K for
some processes Kn and K. Therefore part (d) follows from the consistency of β̂c

i for βc
i . ¤

B Proof of Theorem 2

Part (a). Part (a) follows trivially from the following results, taking into account the restrictions on i, j
and k in defining Xij

k in (21)

V
′′1
n (Xij

k , α, $)t
P−→ (βc

i + βc
k)2

∫ t

0

σ2
0sds +

∫ t

0

(σ2
is + 1{k 6=0}σ2

ks)ds,

V
′′2
n (Xij

k , α, $)t
P−→ (βc

i − βc
k)2

∫ t

0

σ2
0sds +

∫ t

0

(σ2
is + 1{k 6=0}σ2

ks)ds,

V
′′3
n (Xij

k , α, $)t
P−→ (βc

j + βc
k)2

∫ t

0

σ2
0sds +

∫ t

0

(1{j 6=0}σ2
js + 1{k 6=0}σ2

ks)ds,

V
′′4
n (Xij

k , α, $)t
P−→ (βc

j − βc
k)2

∫ t

0

σ2
0sds +

∫ t

0

(1{j 6=0}σ2
js + 1{k 6=0}σ2

ks)ds,

Part (b). We make use of the following Lemma.
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Lemma 3 Let X be a N -dimensional Itô semimartingale, satisfying the same conditions as price process p
in Theorem 2 defined on the probability space (Ω,F ,P). Set Ct =

∫ t

0
cudu to be the second characteristic of

the semimartingale X.

(a) We have

1√
∆n


V

′′
n (X,α, $)−




∫ •
0

c11
u du
...∫ •

0
cdd
u du





 L−(s)−→

√
2

∫ •

0

AudWu, (B.1)

where W is a N -dimensional Brownian motion defined on an extension of the original probability
space, independent from the filtration F ; Au is a N ×N matrix satisfying (cij

u )2 =
∑N

s=1 ais
u ajs

u .

(b) A consistent estimator for the asymptotic variance covariance matrix
∫ T

0
AuA′udu is given by D̂T ,

defined for i, j = 1, ..., N by,

D̂ij
T =

π2

32∆n

[T/∆n]−3∑

i=1

(
|∆n

i (Xi + Xj)∆n
i+1(X

i + Xj)∆n
i+2(X

i + Xj)∆n
i+3(X

i + Xj)|

+|∆n
i (Xi −Xj)∆n

i+1(X
i −Xj)∆n

i+2(X
i −Xj)∆n

i+3(X
i −Xj)|

−2|∆n
i (Xi + Xj)∆n

i+1(X
i + Xj)∆n

i+2(X
i −Xj)∆n

i+3(X
i −Xj)|

)
. (B.2)

Using this Lemma the proof of part (b) is easy. Set

V
′′1
n (Xij

k , α, $) =
1√
∆n

(
V
′′1
n (Xij

k , α, $)−
∫ T

0

[(βc
i + βc

k)2σ2
0u + σ2

iu + 1{k 6=0}σ2
ks]du

)
,

V
′′2
n (Xij

k , α, $) =
1√
∆n

(
V
′′2
n (Xij

k , α, $)−
∫ T

0

[(βc
i − βc

k)2σ2
0u + σ2

iu + 1{k 6=0}σ2
ks]du

)
,

V
′′3
n (Xij

k , α, $) =
1√
∆n

(
V
′′3
n (Xij

k , α, $)−
∫ T

0

[(βc
j + βc

k)2σ2
0u + 1{j 6=0}σ2

ju + 1{k 6=0}σ2
ks]du

)
,

V
′′4
n (Xij

k , α, $) =
1√
∆n

(
V
′′4
n (Xij

k , α, $)−
∫ T

0

[(βc
j − βc

k)2σ2
0u + 1{j 6=0}σ2

ju + 1{k 6=0}σ2
ks]du

)
.

Then a Delta method and the above Lemma implies that

1√
∆n




(̂
βc

i

βc
j

)
− βc

i

βc
j


 =

1
4βc

jβ
c
k

1∫ T

0
σ2

0udu

(
V
′′1
n (Xij

k , α,$)− V
′′2
n (Xij

k , α, $) (B.3)

−βc
i

βc
j

V
′′3
n (Xij

k , α,$) +
βc

i

βc
j

V
′′4
n (Xij

k , α, $)
)

+ op(1).

Applying Lemma 3 to the process Xij
k we have

Avar
(
V
′′1
n (Xij

k , α,$)
)

= 2
∫ T

0

[(βc
i + βc

k)2σ2
0u + σ2

iu + 1{k 6=0}σ2
ks]

2du,

Avar
(
V
′′2
n (Xij

k , α,$)
)

= 2
∫ T

0

[(βc
i − βc

k)2σ2
0u + σ2

iu + 1{k 6=0}σ2
ks]

2du,

Avar
(
V
′′3
n (Xij

k , α, $)
)

= 2
∫ T

0

[(βc
j + βc

k)2σ2
0u + 1{j 6=0}σ2

ju + 1{k 6=0}σ2
ks]

2du,
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Avar
(
V
′′4
n (Xij

k , α, $)
)

= 2
∫ T

0

[(βc
j − βc

k)2σ2
0u + 1{j 6=0}σ2

ju + 1{k 6=0}σ2
ks]

2du,

Acov
(
V
′′1
n (Xij

k , α,$), V
′′2
n (Xij

k , α,$)
)

= 2
∫ T

0

[((βc
i )

2 − (βc
k)2)σ2

0u + σ2
iu − 1{k 6=0}σ2

ku]2du,

Acov
(
V
′′1
n (Xij

k , α, $), V
′′3
n (Xij

k , α, $)
)

= 2
∫ T

0

[(βc
i + βc

k)(βc
j + βc

k)σ2
0u + 1{k 6=0}σ2

ku]2du,

Acov
(
V
′′1
n (Xij

k , α, $), V
′′4
n (Xij

k , α, $)
)

= 2
∫ T

0

[(βc
i + βc

k)(βc
j − βc

k)σ2
0u − 1{k 6=0}σ2

ku]2du,

Acov
(
V
′′2
n (Xij

k , α, $), V
′′3
n (Xij

k , α, $)
)

= 2
∫ T

0

[(βc
i − βc

k)(βc
j + βc

k)σ2
0u − 1{k 6=0}σ2

ku]2du,

Acov
(
V
′′2
n (Xij

k , α, $), V
′′4
n (Xij

k , α, $)
)

= 2
∫ T

0

[(βc
i − βc

k)(βc
j − βc

k)σ2
0u + 1{k 6=0}σ2

ku]2du,

Acov
(
V
′′3
n (Xij

k , α,$), V
′′4
n (Xij

k , α, $)
)

= 2
∫ T

0

[((βc
j )

2 − (βc
k)2)σ2

0u + 1{j 6=0}σ2
ju − 1{k 6=0}σ2

ku]2du.

Combining everything yields the result in (24).

Part (c). For the case when β̂c
i

βc
j

is replaced with βc
i

βc
j

in K̂T , part (c) of the Theorem follows from general
results about realized multipower variation in Barndorff-Nielsen et al. (2005) (the presence of jumps does
not affect the limit). As shown exactly in the proof of Theorem 1, part (d), the substitution of a consistent
estimator for βc

i

βc
j

does not alter the results. ¤

C Proof of Lemma 3

Lemma 3, part (a) is essentially a multivariate extension of Theorem 2.11 in Jacod (2006), and our proof
follows the same steps as in the proof of that Theorem. For ease of reference, we largely preserve the same
notation as in Jacod (2006).

First, we have trivially

V1 :=




∑[t/∆n]
i=1 gn(∆n

i X1)
...∑[t/∆n]

i=1 gn(∆n
i XN )


 ≤ V

′′
n (X, α,$)t ≤ V2 :=




∑[t/∆n]
i=1 gn(∆n

i X1)
...∑[t/∆n]

i=1 gn(∆n
i XN )


 , (C.1)

where
gn(x) = x2ψ(x/α∆$

n ) and gn(x) = x2ψ(2
√

Nx/α∆$
n ), (C.2)

for any ψ(x) which is C∞ and satisfies 1{|x|≤1} ≤ ψ(x) ≤ 1{|x|≤2}. The inequalities in (C.1) should be
interpreted component-by-component. To prove the Lemma, we need to show the result for V1 and V2 and
also that 1√

∆n
||V1 − V2|| u.c.p.−→ 0.

We can make the following decomposition

1√
∆n


V2 −




∫ •
0

c11
u du
...∫ •

0
cNN
u du





 = A1 + A2 + A3, (C.3)
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A1
t =

√
∆n

[t/∆n]∑

i=1




(βn,1
i )2 − c11

i/n

...
(βn,N

i )2 − cNN
i/n


 , (C.4)

A2
t =

√
∆n

[t/∆n]∑

i=1



En

i−1gn(∆n
i X1/

√
∆n)

...
En

i−1gn(∆n
i XN/

√
∆n)


− 1√

∆n




∫ t

0
c11
u du
...∫ t

0
cNN
u du


 , (C.5)

A3
t =

[t/∆n]∑

i=1

(
ζn
i − En

i−1(ζ
n
i )

)
, ζn

i =
√

∆n




gn(∆n
i X1)− (βn,1

i )2
...

gn(∆n
i XN )− (βn,N

i )2


 , (C.6)

where βn
i = σ(i−1)∆n

∆n
i W/

√
∆n; W is the Brownian motion with respect to which the continuous (local)

martingale part of X is defined; σu is a square root of cu (and therefore σuσ
′
u = cu); and as in the proof of

Lemma 2, En
i−1 is a shorthand for the conditional expectation with respect to the filtration F(i−1)∆n

.
Using Theorem 2.3. in Barndorff-Nielsen et al. (2005) we have

A1 L−(s)−→
√

2
∫ •

0

AudWu. (C.7)

Therefore we are left with showing
A2 u.c.p.−→ 0 A3 u.c.p.−→ 0. (C.8)

However, this result is established in Jacod (2006) componentwise and hence we are done. Finally, the same
decomposition as in (C.3) holds true for V1

1√
∆n


V1 −




∫ •
0

c11
u du
...∫ •

0
cNN
u du





 = A

1
+ A

2
+ A

3
, (C.9)

with A
i
defined as Ai for i = 1, 2, 3 with gn(·) replaced by gn(·). Thus 1√

∆n
||V1−V2|| = ||A2+A3−A

2−A
3||,

and using (C.8) (and analogous results for A
2

and A
3
) we have 1√

∆n
||V1 − V2|| u.c.p.−→ 0. ¤
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Table 1: Average Monthly Betas

Stock β̄c
i β̄d

i

Abbott Laboratories (ABT) 0.7643 [0.7460; 0.7826] 0.9097 [0.8887; 0.9306]
AIG (AIG) 0.9337 [0.9166; 0.9508] 1.0172 [1.0008; 1.0335]
American Express (AXP) 1.0216 [1.0040; 1.0392] 1.1887 [1.1712; 1.2060]
Bank of America (BAC) 0.8196 [0.8043; 0.8350] 0.8969 [0.8816; 0.9123]
BellSouth(BLS) 0.9435 [0.9240; 0.9630] 1.1123 [1.0920; 1.1325]
Bristol-Myers (BMY) 0.7992 [0.7790; 0.8194] 0.9743 [0.9525; 0.9961]
Citigroup (C) 1.1106 [1.0954; 1.1257] 1.1719 [1.1570; 1.1867]
Genentech (DNA) 0.9915 [0.9588; 1.0243] 1.4055 [1.3742; 1.4368]
Fannie Mae (FNM) 0.6853 [0.6657; 0.7049] 0.9571 [0.9363; 0.9780]
General Electric (GE) 1.0922 [1.0769; 1.1074] 1.1598 [1.1448; 1.1748]
Goldman Sachs (GS) 1.0996 [1.0806; 1.1187] 1.1377 [1.1179; 1.1576]
The Home Depot (HD) 1.0837 [1.0644; 1.1030] 1.2432 [1.2234; 1.2630]
IBM (IBM) 0.9809 [0.9609; 0.9900] 0.9903 [0.9760; 1.0047]
Johnson & Johnson (JNJ) 0.6354 [0.6212; 0.6495] 0.7959 [0.7823; 0.8096]
JP Morgan Chase (JPM) 1.1690 [1.1490; 1.1889] 1.2267 [1.2072; 1.2462]
Coca Cola (KO) 0.7040 [0.6885; 0.7194] 0.8346 [0.8192; 0.8501]
Eli Lilly (LLY) 0.7620 [0.7436; 0.7804] 0.9528 [0.9336; 0.9719]
Lowe’s Companies (LOW) 1.0312 [1.0101; 1.0523] 1.2666 [1.2433; 1.2900]
Mcdonald’s (MCD) 0.7993 [0.7786; 0.8200] 1.0112 [0.9902; 1.0322]
Medtronic (MDT) 0.6841 [0.6668; 0.7013] 0.8686 [0.8495; 0.8876]
Merrill Lynch (MER) 1.2344 [1.2127; 1.2562] 1.2457 [1.2237; 1.2677]
3M Co. (MMM) 0.8057 [0.7908; 0.8206] 0.9118 [0.8971; 0.9265]
Altria Group (MO) 0.6326 [0.6128; 0.6524] 0.8505 [0.8321; 0.8690]
Motorola (MOT) 1.4497 [1.4204; 1.4789] 1.5442 [1.5137; 1.5747]
Merck & Co. (MRK) 0.7767 [0.7552; 0.7983] 0.8927 [0.8700; 0.9155]
Nokia (NOK) 1.2119 [1.1878; 1.2359] 1.1983 [1.1770; 1.2195]
Pepsico (PEP) 0.6306 [0.6163; 0.6449] 0.7722 [0.7575; 0.7870]
Pfizer Inc. (PFE) 0.8359 [0.8180; 0.8538] 0.9781 [0.9536; 1.0027]
Procter & Gamble Co. (PG) 0.6113 [0.5966; 0.6261] 0.7107 [0.6952; 0.7261]
Schlumberger Limited (SLB) 0.7012 [0.6758; 0.7267] 1.0561 [1.0312; 1.0810]
Target (TGT) 1.1038 [1.0815; 1.1261] 1.2853 [1.2631; 1.3075]
Texas Instruments (TXN) 1.8551 [1.8252; 1.8851] 1.8538 [1.8230; 1.8847]
Tyco International (TYC) 1.0953 [1.0662; 1.1244] 1.3320 [1.2967; 1.3673]
UPS (UPS) 0.5533 [0.5409; 0.5657] 0.7093 [0.6958; 0.7227]
United Technologies (UTX) 0.8856 [0.8679; 0.9032] 1.0449 [1.0261; 1.0638]
Verizon (VZ) 0.8751 [0.8572; 0.8929] 1.0239 [1.0050; 1.0429]
Wachovia (WB) 0.9017 [0.8857; 0.9176] 1.0451 [1.0289; 1.0613]
Wells Fargo & Co. 0.7402 [0.7268; 0.7536] 0.9022 [0.8885; 0.9160]
WalMart (WMT) 0.9396 [0.9236; 0.9555] 1.0292 [1.0134; 1.0450]
Exxon Mobil (XOM) 0.8173 [0.8010; 0.8336] 0.8988 [0.8832; 0.9145]

25-th quantile 0.7511 0.9005
50-th quantile 0.8803 1.0206
75-th quantile 1.0879 1.1935



Table 2: Tests for Equality of Betas

Stock T c
i,m T c

i,q T c
i,y T d

i,m T d
i,q T d

i,y

Abbott Laboratories (ABT) 101.6 69.8 42.0 2402.3 264.3 20.8
AIG (AIG) 131.9 40.1 257.2 2092.4 583.7 221.7
American Express (AXP) 125.0 82.6 310.5 8545.2 993.0 187.4
Bank of America (BAC) 198.4 133.9 13.1 10474 867.2 11.2
BellSouth(BLS) 108.8 147.3 249.1 7444.2 476.7 111.5
Bristol-Myers (BMY) 116.6 75.1 45.1 1159.9 358.2 128.4
Citigroup (C) 222.4 81.6 106.5 1916.6 710.0 3.5
Genentech (DNA) 131.2 88.1 7.4 2224.7 723.8 96.3
Fannie Mae (FNM) 148.3 37.1 41.8 1166.5 641.1 12.3
General Electric (GE) 116.1 111.3 57.3 6843.7 787.0 22.4
Goldman Sachs (GS) 269.7 146.1 16.7 4295 759.6 182.5
The Home Depot (HD) 213.1 156.6 4.6 1337.9 755.0 14.9
IBM (IBM) 172.3 106.0 22.8 831.9 1079.3 105.3
Johnson & Johnson (JNJ) 170.1 95.3 144.5 1873.0 552.2 69.8
JP Morgan Chase (JPM) 154.3 98.7 156.0 5970.3 333.2 20.0
Coca Cola (KO) 120.5 91.6 16.5 6151.3 570.9 5.1
Eli Lilly (LLY) 135.9 58.8 189.8 1927.9 381.2 45.0
Lowe’s Companies (LOW) 260.5 143.1 6.5 4124.4 1238.8 0.2
Mcdonald’s (MCD) 135.5 35.0 21.0 1562.5 472.1 17.9
Medtronic (MDT) 92.5 31.1 3.8 2123.6 612.7 17.7
Merrill Lynch (MER) 230.9 63.5 21.1 24846 755.5 30.6
3M Co. (MMM) 127.1 83.6 9.5 2019.2 968.3 190.6
Altria Group (MO) 86.0 122.3 2.6 4901.2 313.5 7.1
Motorola (MOT) 142.0 65.8 38.0 3857.5 769.7 55.6
Merck & Co. (MRK) 108.0 78.4 130.0 7540.3 112.4 54.3
Nokia (NOK) 177.2 150.6 59.4 1168.4 602.8 5.9
Pepsico (PEP) 107.8 166.3 105.4 3125.3 443.4 3.3
Pfizer Inc. (PFE) 180.4 71.9 48.0 1814.3 490.3 97.5
Procter & Gamble Co. (PG) 129.5 60.8 15.9 1238.4 292.4 124.4
Schlumberger Limited (SLB) 115.2 71.3 22.1 3526.7 169.8 70.6
Target (TGT) 199.3 90.4 16.3 1129.7 1426.3 11.9
Texas Instruments (TXN) 190.5 117.2 82.2 1870.6 972.9 17.1
Tyco International (TYC) 184.6 86.3 207.1 11466.0 379.7 179.0
UPS (UPS) 158.2 54.7 144.4 1309.1 733.8 139.9
United Technologies (UTX) 152.0 66.9 19.3 1309.6 779.1 15.8
Verizon (VZ) 137.5 71.6 165.0 8462.9 567.8 149.8
Wachovia (WB) 210.7 71.3 204.5 10531.0 678.2 18.9
Wells Fargo & Co. 139.4 53.5 42.7 1423.7 594.9 119.7
WalMart (WMT) 225.8 126.6 3.2 2561.0 1343.0 48.3
Exxon Mobil (XOM) 163.9 94.5 50.1 2243.7 865.6 32.5

χ2 95-th quantile 43.8 18.3 6.0 37.7 18.3 6.0
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Figure 1: Quarterly, monthly and daily continuous betas for IBM.
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Figure 2: Quarterly, monthly and daily jump betas for IBM.
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Figure 3: Quarterly, monthly and daily continuous betas for Genentech.
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Figure 4: Quarterly, monthly and daily jump betas for Genentech.
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Figure 5: Monthly continuous and jump betas for IBM and Genentech.
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Figure 6: 95% confidence intervals for monthly IBM betas.
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Figure 7: 95% confidence intervals for monthly Genentech betas.
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Lee, S. and P. Mykland (2007). Jumps in Financial Markets: A New Nonparametric Test and Jump Dy-
namics. Review of Financial Studies 20, forthcoming.

Mancini, C. (2001). Disentangling the Jumps of the Diffusion in a Geometric Jumping Brownian Motion.
Giornale dell’Instituto Italiano degli Attuari LXIV, 19–47.

Mancini, C. (2006). Estimating the Integrated Volatility in Stochastic Volatility Models with Lévy-type
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