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This paper introduces a model in which the probability of a rare disaster varies over
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predictability. The model is set in continuous time, assumes recursive preferences and is

solved in closed-form. It is shown that recursive preferences, as well as time-variation in the

disaster probability, are key to the model’s success.



1 Introduction

The magnitude of the expected excess return on stocks relative to bonds (the equity pre-

mium) constitutes one of the major puzzles in financial economics. As Mehra and Prescott

(1985) show, the fluctuations observed in the consumption growth rate over U.S. history

predict an equity premium that is far too small, assuming reasonable levels of risk aversion.1

One proposed explanation is that the return on equities is high to compensate investors for

the risk of a rare disaster (Reitz (1988)). An open question has therefore been whether the

risk is sufficiently high, and the rare disaster sufficiently severe, to quantitatively explain the

equity premium. Recently, however, Barro (2006) shows that it is possible to explain the

equity premium using such a model when the probability of a rare disaster is calibrated to

international data on large economic declines.

While the models of Reitz (1988) and Barro (2006) advance our understanding of the eq-

uity premium, they fall short in other respects. Most importantly, these models predict that

the volatility of stock market returns equals the volatility of dividends. Numerous studies

have shown, however, that this is not the case. In fact, there is excess stock market volatility;

the volatility of stock returns far exceeds that of dividends (e.g. Shiller (1981), LeRoy and

Porter (1981), Keim and Stambaugh (1986), Campbell and Shiller (1988), Cochrane (1992),

Hodrick (1992)). While the models of Barro and Reitz address the equity premium puzzle,

they do not address this volatility puzzle.

This paper proposes two modifications to the disaster risk model of Barro (2006). First,

rather than being constant, the probability of a rare disaster is stochastic and varies over

time. Second, the representative agent, rather than having power utility preferences, has

recursive preferences. I show that such a model can generate volatility of stock returns close

to that in the data at reasonable values of the underlying parameters. Moreover, high stock

market volatility does not occur because of high volatility in all assets; the volatility of the

government bill rate remains low, as in the data.

1Campbell (2003) extends this analysis to multiple countries.
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Both time-varying disaster probabilities and recursive preferences are necessary to match

the model to the data. Time-varying disaster probabilities are important because they pro-

duce time-varying discount rates. If the probability of a rare disaster rises, the premium that

investors require to hold equities also rises. Thus the rate at which investors discount future

cash flows rises, and stock prices fall. Through this mechanism, a time-varying probability

of a rare disaster generates excess stock market volatility.

Clearly time-varying disaster probabilities are important; also important, however, are

recursive preferences. These preferences, introduced by Kreps and Porteus (1978) and Ep-

stein and Zin (1989) retain the appealing scale-invariance of power utility, but allow for

separation between the willingness to take on risk and the willingness to substitute over

time. Power utility requires that these are driven by the same parameter. As I show, power

utility implies that the response of the riskfree rate to a change in the disaster probability

exceeds the response of the equity premium. This generates the counterfactual prediction

that a high price-dividend ratios predicts a high excess return rather than a low excess re-

turn, as in the data. Increasing the agent’s willingness to substitute over time reduces the

effect of the disaster probability on the riskfree rate. With recursive preferences, this can be

accomplished without simultaneously reducing the agent’s risk aversion.

In what follows, I solve two models. First, to highlight the importance of recursive

utility, I solve a model in which the disaster probability is constant and the agent has

recursive preferences. To enable comparison with the second model, I assume continuous

time. Disaster risk is modeled by introducing a Poisson process for jumps into the standard

diffusion model for consumption growth (as in Naik and Lee (1990)) and recursive preferences

are modeled following Duffie and Epstein (1992).

The second model is the main contribution of the paper and allows for time-varying

disaster probabilities and recursive utility with unit elasticity of intertemporal substitution

(EIS). The assumption that the EIS is equal to 1 allows the model to be solved in closed form

up to a set of ordinary differential equations. A time-varying disaster probability is modeled

by allowing the intensity for jumps to follow a square-root process (Cox, Ingersoll, and Ross
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(1985)). The solution for the model reveals that allowing the probability of a disaster to

vary not only implies a time-varying equity premium, it also increases the level of the equity

premium. This is because the risk of an increase in disaster probability leads to a fall in

stock prices and therefore itself requires compensation. The dynamic nature of the model

therefore leads the equity premium to be higher than what static considerations alone would

predict.

This second model can quantitatively match high equity volatility and the predictability

of excess stock returns by the price-dividend ratio. Generating long-run predictability of

excess stock returns without generating counterfactual long-run predictability in consump-

tion or dividend growth is a central challenge for general equilibrium models of the stock

market. This model meets the challenge: while stock returns are predictable, consumption

and dividend growth can only be predicted if a disaster actually occurs. Because disasters

occur rarely, the amount of consumption predictability is quite low, just as in the data. A

second challenge for models of this type is to generate volatility in stock returns without

counterfactual volatility in the government bill rate. This model meets this challenge as well.

The model is capable of matching the low volatility of the government bill rate because of

two competing effects. When the risk of a disaster is high, rates of return fall because of

precautionary savings. However, the probability of government default (either outright or

through inflation) rises. Investors therefore require greater compensation to hold government

bills.

Several recent papers also address the potential of rare disasters to explain the aggregate

stock market. Gabaix (2009) assumes power utility for the representative agent, while also

assuming the economy is driven by a linearity-generating process (see Gabaix (2008)) that

combines the probability of a rare disaster with the degree to which dividends respond to

a consumption disaster. This combination of assumptions allows him to derive closed-form

solutions for equity prices as well as prices for other assets. In Gabaix’s numerical calibration,

only the degree to which dividends respond to the disaster varies over time. Therefore the

economic mechanism driving stock market volatility in Gabaix’s model is quite different than
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the one considered here. Barro (2009) and Martin (2008) propose models with a constant

disaster probability and recursive utility. In contrast, the model considered here focuses

on the case of time-varying disaster probabilities. Longstaff and Piazzesi (2004) propose

a model in which consumption, and the ratio between consumption and the dividend are

hit by contemporaneous downward jumps; the ratio between consumption and dividends

then reverts back to a long-run mean. They assume a constant jump probability and power

utility. In contemporaneous independent work, Gourio (2008) specifies a model in which the

probability of a disaster varies between two discrete values. He solves this model numerically

assuming recursive preferences. A different, though related, approach is taken by Veronesi

(2004), who assumes that the drift of dividends follows a Markov switching process, with a

small probability of falling into a low state. While the physical probability of a low state is

constant, the representative investor’s subjective probability is time-varying due to learning.

Veronesi assumes exponential utility; this allows for the inclusion of learning but makes it

difficult to assess the magnitude of the excess volatility generated through this mechanism.

A related literature derives asset pricing results assuming endowment processes that

include jumps, with a focus on option pricing. Liu, Pan, and Wang (2005) consider an

endowment process in which jumps occur with a constant intensity; their focus is on un-

certainty aversion but they also consider recursive utility. My model departs from theirs

in that the probability of a jump varies over time. Drechsler and Yaron (2008) show that

a model with jumps in the volatility of the consumption growth process can explain the

behavior of implied volatility and its relation to excess returns. Eraker and Shaliastovich

(2008) also model jumps in the volatility of consumption growth; they focus on fitting the

implied volatility curve. Both papers assume of EIS greater than one and derive approximate

analytical and numerical solutions. Santa-Clara and Yan (2006) consider time-varying jump

intensities, but restrict attention to a model with power utility and implications for options.

In contrast, the model considered here focuses on recursive utility and implications for the

aggregate market.

The outline of the paper is as follows. Section 2 solves a model with constant disaster
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probabilities and recursive utility with general elasticity of intertemporal substitution. The

comparative statics in this section motivate the use of recursive preferences in the more

realistic settings that follow. Section 3 solves the model with time-varying disaster risk

and unit elasticity of substitution. Section 4 discusses the calibration and simulation of the

model, and its fit to aggregate stock market data. Section 5 concludes.

2 Constant disaster risk

2.1 Model assumptions

I assume that aggregate consumption solves the following stochastic differential equation:

dCt = µCt− dt + σCt− dBt + (eZt − 1)Ct− dNt.

Here, Nt is a Poisson process with constant intensity λ. Zt is a random variable whose time-

invariant distribution ν is independent of Nt and Bt. The notation Ct− denotes lims↑t Cs,

while Ct denotes lims↓t Cs.

The model focuses on negative jumps, i.e. disasters, and for that reason Zt is assumed

to be negative. In what follows, I use the notation Eν to denote expectations of functions

of Zt taken with respect to the ν-distribution. The t subscript on Zt will be omitted when

not essential for clarity. The diffusion term µCt− dt + σCt− dBt represents the behavior of

consumption in normal times, and implies that, when no disaster takes place, log consump-

tion growth is normally distributed with mean µ− 1
2σ

2 and variance σ2. Rare disasters are

captured by the Poisson process Nt. Roughly speaking, λ is the probability of a jump over

a given unit of time.2 In what follows, we will refer to λt either as the disaster intensity or

the disaster probability depending on the context; these terms should be understood to have

2More precisely, the probability of k jumps over the course of a period τ is equal to e−λτ (λτ)k

k! , where

τ will be measured in units of years. In the calibrations that follow, the parameter λ will be set to equal

0.0170, implying a 0.0167 probability of a single jump over the course of a year, a 0.00014 probability of two

jumps, and so forth.
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the same meaning.

Following Duffie and Epstein (1992), I define the utility function Vt for the representative

agent using the following recursion:

Vt = Et

∫ ∞

t

f(Cs, Vs) ds, (1)

where

f(C, V ) =
β

1− 1
ψ

C1− 1
ψ − ((1− γ)V )

1
θ

((1− γ)V )
1
θ−1

, (2)

and θ = (1 − γ)/(1 − 1
ψ ). Note that Vt represents continuation utility, i.e. utility of the

future consumption stream. Equations (1) and (2) define the continuous-time analogue of

the utility function in Epstein and Zin (1989) and Weil (1990). The parameter β > 0 is

the rate of time preference, ψ > 0 can be interpreted as the elasticity of intertemporal

substitution and γ > 0 can be interpreted as relative risk aversion.

2.2 Solution

In what follows, I solve for asset prices using the state-price density. The advantage of this

method is that it generalizes to the case of time-varying disaster probabilities. A necessary

first step when assuming recursive utility is to solve for the value function. Accordingly,

Section 2.2.1 describes the solution for the value function. The solution for the riskfree

rate, the wealth-consumption ratio and the risk premium on the consumption claim follows

easily. Section 2.2.2 describes the solution for the price-dividend ratio for the dividend claim

and Section 2.2.3 describes the solution for the expected rate of return on government bills,

allowing for partial default.

2.2.1 The value function

The first step in solving the model is to solve for the value function, i.e. utility as a function

of wealth. Let Wt denote the wealth of the representative agent and J the value function. I

conjecture that

J(W ) =
W 1−γ

1− γ
j1−γ (3)
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for a constant j. Let St denote the value of the claim to aggregate consumption, and

conjecture that the price-dividend ratio for this claim is constant:

St

Ct
= l. (4)

The process for consumption and the conjecture (4) imply that St satisfies

dSt = µSt− dt + σSt− dBt + (eZt − 1)St−dNt. (5)

Furthermore, conjecture that the riskfree rate is a constant r. The Bellman equation for an

investor who allocates wealth between the consumption claim and the riskfree asset is

sup
α,C

{
JW (Wα(µ− r + l−1) + Wr − C) +

1

2
JWW W 2α2σ2+

λEν

[
J(W (1 + α(eZ − 1)))− J(W )

]}
+ f(C, J) = 0, (6)

where JW is the first derivative of J with respect to wealth and JWW is the second derivative.

This formula follows from an application of Ito’s Lemma to J (see Duffie (2001, Appendix F)

for Ito’s Lemma with jumps).

Substituting (3) into (6) and taking the derivative with respect to α implies the following

first order condition:

W 1−γj1−γ(µ− r + l−1)− γW 1−γj1−γασ2 +

W 1−γj1−γλEν

[
(1 + α(eZ − 1))−γ(eZ − 1)

]
= 0.

In equilibrium, α must equal 1. Therefore,

µ + l−1 − r = γσ2 − λEν

[
e−γZ(eZ − 1)

]
. (7)

Let rC denote the instantaneous expected return on the consumption claim, defined as the

drift in the price, plus the dividend, plus the expectation of the jump in the price, as a

proportion of the current price:

rC ≡ µ + l−1 + λEν [e
Z − 1].
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It follows from (7) that the instantaneous equity premium on the consumption claim is given

by

rC − r = γσ2 + λEν

[
−e−γZ(eZ − 1) + eZ − 1

]
. (8)

Equation (7) also has an interpretation: it is the instantaneous premium on the consumption

claim conditional on no disasters.

There are several noteworthy features of (8). The first term, equal to risk aversion times

consumption volatility, is the equity premium under the standard diffusion model. The

second term is therefore the compensation for the possibility of a rare disaster. Because

Z < 0, the contribution of the disaster risk term to the equity premium is positive and

increasing in the disaster intensity λ. Finally, the risk premium depends only on risk aversion,

not on the elasticity of intertemporal substitution. The risk premium, including the disaster

risk term, is therefore the same for recursive utility as for power utility, a result also found

by Liu, Pan, and Wang (2005) and Barro (2009).

In equilibrium, W = S. Therefore, the conjecture (4) is equivalent to

W

C
= l, (9)

Let fC denote the first derivative of f(C, V ) with respect to C. As shown in Appendix A.1,

the envelope condition

JW = fC (10)

together with the form of J , (3), and the conjecture that the wealth-consumption ratio is

constant, implies that

l = β−ψjψ−1. (11)

Equations for l and j follow from the Bellman equation and are given in Appendix A.1.

The equation for the riskfree rate follows from substituting the equation for l into (7).

Rearranging implies that

r = β +
1

ψ
µ − 1

2

(
γ +

γ

ψ

)
σ2 + λEν

[
−(e−γZ − 1) +

(
1− 1

θ

)
(e(1−γ)Z − 1)

]
. (12)
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The first three terms in (12) are the same as in the standard model without disaster risk

and reflect the roles of the discount rate, intertemporal smoothing and precautionary savings

respectively. The last term arises from the risk of rare disasters. To understand this term,

first consider the special case of power utility (θ = 1). Because e−γZ > 1, the riskfree rate is

decreasing in λ. An increase in the probability of a rare disaster increases the representative

investor’s desire to save, and thus lowers the riskfree rate. The greater is risk aversion, the

greater is this effect.

In the case of recursive utility, the interpretation of (12) is more complicated. To fix

ideas, assume γ > 1. For 1 − 1
θ > 0, or equivalently, γ > 1

ψ , an increase in λ has a smaller

impact on the riskfree rate for recursive utility than for power utility. That is, increasing

the agent’s willingness to substitute over time reduces the dependence of r on λ.

2.2.2 The state-price density and the dividend claim

Given the state-price density, the price of any risky asset follows from a no-arbitrage con-

dition. Duffie and Skiadas (1994) show that the state-price density πt relates to the value

function via the formula

πt = exp

{∫ t

0

fV (Cs, Vs) ds

}
fC(Ct, Vt). (13)

Let Yt denote the dividend. I model dividends as levered consumption, i.e. Yt = Cφ
t as in

Abel (1999) and Campbell (2003).3 Ito’s Lemma then implies

dYt = µY Yt− dt + φσYt− dBt + (eφZt − 1)Yt− dNt, (14)

where

µY = φµ +
1

2
φ(φ− 1)σ2.

3Richer specifications that incorporate, for example, predictability in dividend growth (e.g. Lettau and

Ludvigson (2005), Longstaff and Piazzesi (2004), Menzly, Santos, and Veronesi (2004)) could be incorporated.

I have chosen this simple form of leverage to highlight the novel implications of time-varying disaster risk.
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Let F (Yt) denote the price of the dividend claim (the argument that follows will verify that

the price is indeed a function of Yt). No arbitrage implies that

F (Yt) = Et

[∫ ∞

t

Ys
πs

πt
ds

]
. (15)

Given a jump-diffusion process xt, let Dxt denote the drift of that process, δxt the

diffusion, and J (xt) the expected jump in the process, provided that a jump occurs. As

shown in Appendix A.2, the no-arbitrage condition (15) implies that F satisfies the following:

πt(DFt) + Ft(Dπt) + Ytπt + (δπt)(δFt) + λJ (πtFt) = 0, (16)

where Ft = F (Yt). Conjecture that

F (Yt) = lY Yt (17)

for a constant lY (which, by definition, equals the price-dividend ratio on the dividend claim).

Appendix A.2 shows that substituting (17) into (16) implies

µY + l−1
Y − r = φγσ2 + λEν

[
e−γZ − 1

]
− λEν

[
e(φ−γ)Z − 1

]
. (18)

Let re denote the instantaneous expected return on the dividend claim. Analogously

to the expected return on the consumption claim, re equals the drift in the price, plus the

dividend, plus the expectation of the jump in the price, as a proportion of the current price.

The conjecture that the price-dividend ratio is a constant implies that the proportional drift

in the price is the same as the proportional drift in the dividend, and the expectation of the

proportional jump in the price is the same as the expectation of the proportional jump in

the dividend process. Therefore

re = µY + l−1
Y + λEν

[
eφZ − 1

]
. (19)

It follows from (18) and (19) that the instantaneous equity premium equals

re − r = φγσ2 + λEν

[
e−γZ

(
1− eφZ

)
+ eφZ − 1

]
. (20)
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The first term in (20) appears in the standard diffusion model and equals risk aversion

multiplied by the instantaneous covariance of the consumption process with the dividend

process. The second term accounts for jump risk. It follows from this expression that the

term multiplying λ is positive and therefore that disaster risk raises the risk premium and

is increasing in λ.4

Equations (12) and (18) imply that the price-dividend ratio equals

lY =

(
β − µY +

1

ψ
µ− 1

2

(
γ +

γ

ψ
− 2φγ

)
σ2 +

λEν

[(
1− 1

θ

) (
e(1−γ)Z − 1

)
− (e(φ−γ)Z − 1)

])−1

. (21)

The first three terms inside the outer parentheses in (21) appear in the standard diffusion

model. To understand the last term, it is useful to consider several special cases. For the

remainder of this section, I assume that γ is greater than 1.

First consider the consumption claim, corresponding to φ = 1. In this case, the disaster

risk term inside of the parentheses in (21) reduces to λEν

[
−1

θe
(1−γ)Z

]
. The term in the

exponent is positive under the maintained assumption that γ > 1, so λEν

[
−1

θe
(1−γ)Z

]
takes

the sign opposite to that of θ. It follows that the price-dividend ratio decreases in the

probability of a disaster if and only if θ < 0, i.e. if and only if the EIS is greater than 1.

This observation is also made by Barro (2009).

Next consider the case of unit EIS. In the limit as the EIS approaches one, 1 − 1/θ ap-

proaches 1 and the disaster risk term inside the parentheses approaches λEν

[
e(1−γ)Z − e(φ−γ)Z

]
.

Because Z < 0, this expression is positive if and only if φ > 1. Therefore the price-dividend

ratio decreases in λ if and only if equity is levered, i.e. if φ > 1.

Finally consider power utility, for which θ = 1. The disaster risk term reduces to

λEν

[
1− e(φ−γ)Z

]
, which is positive if and only if φ > γ. Therefore, for power utility, the

price-dividend ratio decreases in the disaster probability if and only if leverage exceeds risk

aversion.
4Note that eφZ is between 0 and 1. Therefore eφZ +

(
1− eφZ

)
e−γZ is a weighted average of e−γZ > 1

and 1, and is therefore greater than 1.
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This last point suggests that the power utility model might encounter difficulties in a

dynamic setting in which λ is allowed to vary. For values of risk aversion exceeding leverage,

a low price-dividend ratio would indicate that disaster risk is low and the equity premium

is low as well. When risk aversion exceeds leverage, the price-dividend ratio would predict

excess returns with a positive, not a negative sign, contradicting the data. Moreover, the

riskfree rate would be more volatile than the equity premium in such a model.

Equation (21) suggests that recursive utility can help solve this problem. For γ > 1,

1 − 1
θ > 0 if and only if γ > 1

ψ . Assuming parameter values in these ranges, the disaster

risk term in (21) arising from recursive utility, λEν

[(
1− 1

θ

)
(e(1−γ)Z − 1)

]
, is positive. This

term therefore leads the price-dividend ratio to increase less, or possibly to decrease, in the

disaster probability.

The net effect of an increase in the disaster probability on the price-dividend ratio reflects

the interplay between the effects on the equity premium, on expected future cash flows, and

on the riskfree rate. As shown above, the equity premium is increasing in λ regardless of the

choice of parameters (provided, of course, that γ and φ are positive). Increasing λ decreases

future expected cash flows; this effect is relatively small because the probability of a rare

disaster is low, and unlike the effect on the equity premium or riskfree rate, it is not amplified

by the curvature in the utility function. Finally, the riskfree rate is decreasing in λ for power

utility. It is also decreasing for recursive utility provided that θ > 0. For power preferences

with γ > φ, the riskfree rate effect dominates the other two effects, and the price-dividend

ratio increases in the probability of a disaster. For recursive preferences, it is possible for

this effect to reverse because the riskfree rate effect is weaker.

2.2.3 Risk of default

As discussed in Barro (2006), disasters often coincide with at least a partial default on gov-

ernment securities. This point is of empirical relevance if one tries to match the behavior of

the riskfree asset to the rate of return on government securities in the data. I therefore allow

for partial default on government debt, and consider the rate of return on this defaultable
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security.

Let Lt be the price process for government liabilities and assume that

dLt

Lt
= rL dt +

(
eZL,t − 1

)
dNt,

where rL is the “face value” of government debt (i.e. the amount investors receive if there is

no default), ZL,t is a random variable whose distribution will be described shortly and Nt is

the same Poisson process that drives the consumption process. Assume that, in event of a

disaster, there will be a default on government liabilities with probability q. I follow Barro

(2006) and assume that in the event of default, the percent loss is equal to the percent fall

in consumption. Therefore,

ZL,t =





Zt with probability q

0 otherwise

Arguments similar to those used to price the dividend claim imply that

rL = r + λEν

[
e−γZ − 1

]
− λ

(
(1− q)Eν

[
e−γZ − 1

]
+ qEν

[
e(1−γ)Z − 1

])
. (22)

Let rb denote the instantaneous expected return on government debt. Then

rb = rL + λqEν

[
eZ − 1

]
, (23)

with rL given in (22). The instantaneous equity premium relative to the government bill

rate is therefore (20), plus r, minus (23):

re − rb = φγσ2 + λEν

[
eφZ − e(φ−γ)Z + (1− q)

(
e−γZ − 1

)
+ q(e(1−γ)Z − eZ)

]
.

While the the presence of default for government debt affects the equity premium, it

does not affect the price-dividend ratio (21), nor for that matter the total expected return

on equities. It only affects how this expected return is decomposed into the equity premium

and the government bill rate. Much of the discussion in Section 2.2.2 therefore is unaffected

by default. That is, the problems with the power utility model, namely that the price-

dividend ratio increases rather than increases in λ, cannot be solved by allowing default on

government bills.
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Of course, the possibility of default does affect the government bill rate. The premium

attached to government bills is increasing in λ; the greater the risk of disaster, the greater

the risk of default, and the more compensation investors require to hold bills. On the other

hand, the riskfree rate is decreasing in λ for a wide range of parameter values. These effects

offset each other, so that the expected return on government debt varies less with λ than

the riskfree rate.

3 Time-varying disaster risk

Now consider the case in which the disaster intensity λ is not constant, but rather follows

the process

dλt = κ(λ̄− λt) dt + σλ

√
λt dBλ,t.

For analytical convenience, the Brownian motion Bλ,t is assumed to be independent of Bt,

the Brownian motion driving the consumption and dividend processes. Given that the risk

of disasters has a much greater impact on the equity premium than does diffusion risk, this

assumption is unlikely to significantly affect the results.

Figure 1 plots the probability density function for λt, assuming the parameter values

discussed below. The unconditional mean of the process is λ̄ and is calibrated to 0.017 per

annum (see Barro (2006)). The distribution is highly skewed; there is a long right tail of

high values for λ. The skewness arises on account of the square root term. A high realization

of λt makes the process more volatile, and thus high values are more likely than they would

be under a standard auto-regressive process. Thus the model implies that there are times

when “rare” disasters can occur with high probability, but that these times are themselves

unlikely.

Further assume that the EIS is equal to 1. This has the advantage of leading to closed-

form solutions. Moreover, independent empirical evidence suggests that this value is not

unreasonable. Duffie and Epstein (1992) show that, for the limiting case of ψ = 1, preferences
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can be expressed using the aggregator

f(C, V ) = β(1− γ)V

(
log C − 1

1− γ
log((1− γ)V )

)
. (24)

The model for consumption and dividends is the same as in the previous section, except that

the disaster intensity is time-varying.

3.1 The value function

I follow the blueprint of the solution in the constant disaster risk case, first solving for the

value function and the wealth-consumption ratio. These will allow the state-price density to

be expressed in terms of the model’s primitives.

Conjecture that the value function takes the form

J(λ, W ) = I(λ)
W 1−γ

1− γ
, (25)

where I is a function of λ that will be derived in this section. Also conjecture that the

price-dividend ratio for the claim to aggregate consumption is a constant l, as in (4). The

price of the consumption claim therefore follows the process given by (5) with time-varying

disaster intensity λt. Let rt denote the riskfree rate. The Bellman equation for an investor

who allocates wealth between the consumption claim and the riskfree asset is therefore

sup
αt,Ct

{
JW Wtαt(µ− rt + l−1) + JW Wtrt − JW Ct + Jλκ(λ̄− λt)+

1

2
JWW W 2

t α2
t σ

2 +
1

2
Jλλσ

2
λλt + λtEν

[
J(Wt(1 + αt(e

Zt − 1)), λt)− J(Wt, λt)
]}

+ f(Ct, J) = 0, (26)

where Jλ denotes the first derivative of J with respect to λ and Jλλ the second derivative of

J with respect to λ.

Reasoning identical to that in Section 2.2.1 implies that, in equilibrium,

µ− rt + l−1 = γσ2 − λtEν

[
e−γZ(eZ − 1)

]
. (27)
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Let rC
t denote the instantaneous expected return on the consumption claim. As in Sec-

tion 2.2.1, this is defined as the drift in the price, plus the dividend, plus the expected jump

in the price, all as a proportion of the current price:

rC
t ≡ µ + l−1 + λtEν

[
eZ − 1

]
.

It then follows from (27) that the instantaneous equity premium on the consumption claim

is given by

rC
t − rt = γσ2 + λtEν

[
−e−γZ(eZ − 1) + eZ − 1

]
. (28)

Equation (27) gives the instantaneous premium conditional on no disasters. Both terms

reduce to their counterparts in Section 2.2.1 for constant λt. Because the EIS equals one,

the dynamic nature of the model does not effect the premium for the consumption claim.

The value of the wealth-consumption ratio follows from the equilibrium condition W = S

(and therefore W/C = l), and the envelope condition (10). Note that

fC(C, V ) = β(1− γ)
V

C
. (29)

At the optimum, V is given by (25). The envelope condition therefore implies

I(λ)W−γ = β(1− γ)I(λ)
W 1−γ

1− γ

1

l−1W
.

Solving for l yields l = β−1, which equals the limit of (A.7) as ψ approaches one. The

equation for the riskfree rate follows from (27):

rt = µ + β − γσ2 + λtEν

[
e−γZ

(
eZ − 1

)]
, (30)

For λt constant, this equation reduces to (12) in the case of ψ = 1.

Finally, to solve for I(λ), I substitute (25) and the optimal policy functions into (26).

Algebraic computations in Appendix B.1 verify that (25) is a solution to (26), with I given

by

I(λ) = ea+bλ, (31)
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where

a =
1− γ

β

(
µ− 1

2
γσ2

)
+ (1− γ) log β + b

κλ̄

β
,

b =
κ + β

σ2
λ

−

√(
κ + β

σ2
λ

)2

− 2
Eν [e(1−γ)Z − 1]

σ2
λ

.

Unlike the value function for the model with constant disaster risk, the value function

given by (25) and (31) depends on λt. In the calibration below, b > 0 and γ > 1. Therefore an

increase in disaster risk reduces utility for the representative agent. As the following section

shows, the price of the dividend claim falls when the disaster probability rises. The agent

requires compensation for this risk (because utility is recursive, marginal utility depends on

the value function), and thus time-varying disaster risk increases the equity premium.

3.2 Risk of default

The calculation for the government bill rate is similar to the corresponding calculation in

the case of constant disaster risk. The face value of the government bill is given by

rL
t = rt + λtEν

[
e−γZt − 1

]
− λt

(
(1− q)Eν

[
e−γZt − 1

]
+ qEν

[
e(1−γ)Zt − 1

])
.

This is also the expected return, conditional on no disasters occurring. The instantaneous

expected return on government debt is

rb
t = rL

t + λtqEν

[
eZ − 1

]
. (32)

Figure 3 shows the face value of government debt, rL
t , the instantaneous expected return

on government debt rb
t and the riskfree rate rt as a function of λt. Because of the required

compensation for default, rL
t lies above rt. The expected return lies between the two because

the actual cash flow that investors receive from the government bill will be below rL
t if default

occurs.

All three rates decrease in λt because, at these parameter values, a higher λt induces a

greater desire to save. However, rL
t and rb

t are less sensitive to changes in λ than rt because
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of an opposing effect: the greater is λt, the greater is the risk of default, and therefore the

greater the return investors demand for holding the government bill. Because of a small cash

flow effect, rb
t decreases more than rL

t , but still less than rt.

3.3 The dividend claim

Given the value function, it is possible to compute the process for the state-price density, and

therefore to price any risky asset using the no-arbitrage condition. The state-price density

πt is given by (13) for both the constant disaster risk model and the time-varying disaster

risk model. However, the processes Ct and Vt are different.

As in Section 2.2.2, I derive the price of the dividend claim for dividends Yt = Cφ
t . Yt

follows the process (14), where the intensity λ varies over time. I conjecture that the price

of this claim can be written as a function F of λt and Yt. As shown in Appendix B.2, the

no-arbitrage condition (15) implies that

πt(DFt) + Ft(Dπt) + Ytπt + (δπt)
%(δFt) + λtJ (πtFt) = 0, (33)

where Ft = F (λt, Yt). Because there are two (independent) sources of uncertainty, the

diffusion terms δFt and δπt are 2× 1 vectors.

In Appendix B.2, I show that (33) is solved by a function of the form

F (λ, Y ) = G(λ)Y (34)

where

G(λ) =

∫ ∞

0

exp {aφ(t) + bφ(t)λ} dt, (35)

and where aφ and bφ satisfy the ordinary differential equations

a′φ(t) = µY − µ− β + γσ2 − γσ2φ + κλ̄bφ(t) (36)

b′φ(t) =
1

2
σ2

λbφ(t)
2 + (bσ2

λ − κ)bφ(t) + Eν

[
e(φ−γ)Z − e(1−γ)Z

]
(37)

with boundary conditions aφ(0) = bφ(0) = 0.
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The price of the claim to total dividends can be understood as the integral of prices

of claims to dividends at single points in time. The function aφ(t) represents the effect

of maturity on the price of these claims for λt equal to zero. Equation (36) shows that

as maturity increases, aφ is incremented by the value of expected dividend growth and

decremented by the values of the riskfree rate and the equity premium when λt = 0. The

final term in (36) represents the effect of future changes in λt on the price. It depends on

the effect of λt on the price (represented by bφ(t)), on the average value of λt (λ̄) and on κ,

the speed at which λt reverts to this average value.

The function bφ(t) represents the effect of maturity interacted with λt. The term Eν [e(φ−γ)Z−

e(1−γ)Z ] in (37) summarizes the effect of λ on the price-dividend ratio in the static model for

ψ = 1 (see (21)); that is, it represents a combination of the equity premium, riskfree rate,

and cash flow effect. The term bσ2
λbφ(t) is an additional component of the equity premium in

the dynamic model, and will be discussed further below. The remaining two terms, 1
2σ

2
λbφ(t)2

and −κbφ(t) represent the effect of future changes in λt on the price. The former is a Jensen’s

inequality term; all else equal, a more volatile equity premium increases the price-dividend

ratio. The latter represents the fact that, if λt is high in the present, λt is likely to decrease

in the future on account of mean reversion.

Figure 2 shows aφ(t) and bφ(t) as functions of time for parameter values described below.

The top panel shows that aφ asymptotes to a decreasing linear function. The fact that this

is decreasing is necessary for convergence if λt varies over time.5 The asymptote is linear

because bφ(t) asymptotes to a constant. The figure also shows that bφ(t) is negative, and

thus the price-dividend ratio is decreasing in λt. Thus the equity premium effect, together

with the cash flow effect, dominates the riskfree rate effect at these parameter values. The

magnitude of bφ(t) increases in t. This is a duration effect. The further out in time the cash

flows occur, the more the price of the claim varies with the discount rate.

As discussed in Section 2.2, the instantaneous expected return is defined as the drift in

the price (as a proportion), plus the dividend yield, plus the expected jump in in the price

5When λt does not vary over time, then convergence requires that aφ(t) + bφ(t)λ̄ is decreasing.
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(as a proportion). For this more general model, this implies

re
t ≡

1

Ft
(DFt + Yt + λtJ (Ft)) . (38)

Equation (33) can be rearranged to give a convenient characterization of the risk premium.

No-arbitrage implies that the riskfree rate is characterized by

rt = −Dπt

πt
− λt

J (πt)

πt
. (39)

Combining (33), (38) and (39) implies a useful characterization of the equity premium:

re
t − rt = −

(
δπt

πt

)% (
δFt

Ft

)
− λt

(
J (Ftπt)

Ftπt
− J (Ft)

Ft
− J (πt)

πt

)
.

The first term represents the portion of the equity premium that is compensation for diffusion

risk (which includes time-varying λt), while the second represents the portion from jump risk.

The second term can be understood as the jump equivalent of a covariance. The greater the

covariance of the price Ft with the marginal utility process πt, the more the asset provides

a hedge and the lower is the risk premium.

To write this equation in terms of the model primitives, first note that Ito’s Lemma

applied to the state-price density implies that

δπt

πt
=



 −γσ

bσλ

√
λt



 . (40)

The negative of the first element of the vector (40) is the price of diffusion risk, where the

negative of the second element is the price of risk associated with time-varying λt. Second,

note that Ito’s Lemma applied to Ft = F (λt, Yt) implies that

δFt =



 YtG(λt)φσ

YtG′(λt)σλ

√
λt



 . (41)

Further calculations in Appendix B.2 show that

re
t − rt = φγσ2 − λt

G′

G
bσ2

λ + λtEν

[
e−γZ(1− eφZ) + eφZ − 1

]
. (42)
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The first term is identical to its counterpart in the static model and equals risk aversion

multiplied by the instantaneous covariance with consumption. The second term is new to

the dynamic model. This is the risk premium due to time-variation in disaster risk. Because

bφ is negative, G′ is also negative. Moreover, b is positive, so this term represents a positive

contribution to the equity premium. Finally, the last term represents the portion of the

equity premium arising from disaster risk itself. It takes the same form as its counterpart in

the static model of Section 2, except, of course, that it varies over time.

The instantaneous equity premium relative to the government bill rate is equal to (42)

plus rt, minus rb
t .

re − rb = φγσ2 − λt
G′

G
bσ2

λ +

λtEν

[
eφZ − e(φ−γ)Z + (1− q)

(
e−γZ − 1

)
+ q(e(1−γ)Z − eZ)

]
. (43)

This instantaneous equity premium is shown in Figure 4 (solid line). The difference between

the dashed line and the solid line represents the hedging component of the equity premium,

namely −bλtσ2
λ

G′

G , and shows that this term is large in magnitude. The dashed line represents

the equity premium in the standard diffusion model without disaster risk and is negligible

compared with the disaster risk component. Figure 4 shows that the equity premium is

increasing with the disaster risk probability.6

Equation (43) and Figure 4 show that the return required for holding equity increases

with the probability of a disaster. How does it depend on a more traditional measure of risk,

namely the equity volatility? Instantaneous volatility can be computed directly from (41):

(
(δFt)

% (δFt)
) 1

2

Ft
=

(
φ2σ2 +

(
G′(λt)

G(λt)

)2

σ2
λλt

) 1
2

Figure 5 shows that volatility is an increasing and concave function of the disaster probability.

When the probability of a disaster is close to zero, the variance in the disaster probability

6It is also not hard to show that the total expected return is increasing with the disaster probability.

Thus both the expected excess return and the expected total return will move in the opposite direction of

the price-dividend ratio, just as in the data.
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is also very small. Thus the volatility is close to that of the dividend claim in non-disaster

periods (φσ). As the risk of a rare disaster increases, so does the volatility of the disaster

process. The increase in risk rises (approximately) with the square root of λ. Because the

equity price falls when the disaster probability increases, the model is consistent with the

“leverage effect” found by Black (1976), Schwert (1989) and Nelson (1991).

The above equations show that an increase in the equity premium is accompanied by an

increase in volatility. The net effect of a change in λ on the Sharpe ratio (the equity premium

divided by the volatility) is shown in Figure 6. Bad times, interpreted in this model as times

with high probability of disaster, are times when the investors demand a higher risk-return

tradeoff than usual. Harvey (1989) and subsequent papers report empirical evidence that

the Sharpe ratio indeed varies countercyclically. Like the model of Campbell and Cochrane

(1999), this model is consistent with this evidence.

The time-varying disaster risk model generates a countercyclical Sharpe ratio through

two mechanisms. First, the value function varies with λt: when disaster risk is high, investors

require a greater return on all assets with prices negatively correlated with λ. The component

of the equity premium associated with time-varying λt thus rises linearly with λ while the

volatility rises only with the square root. Second, the component of the equity premium

corresponding to disaster risk itself (the last term in (43)) has no counterpart in volatility.

This term compensates equity investors for negative events that are not captured by the

standard deviation of returns.

4 Calibration and Simulation

This section first describes the calibration of the time-varying disaster risk model and results

from simulated data. I then compare these results with those obtained from a model with

constant disaster risk.
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4.1 Calibration

Table 1 describes the parameters in the main case. Most parameters are set to values

considered by Barro (2006) to highlight this model’s novel implications. In the model,

time is measured in units of years and parameter values should be interpreted accordingly.

The drift rate µ is calibrated so that in normal periods, the expected growth rate of log

consumption is 2.5% per annum.7 The standard deviation of log consumption σ is 2% per

annum. These parameters are chosen as in Barro to match postwar data in G7 countries.

The average disaster intensity is λ̄, set equal to 0.017. The decline in consumption when a

disaster does occur, Zt, is calibrated to the empirical distribution of large declines in GDP.8

The probability of default given disaster, q, is set equal to 0.4. These values are calculated

by Barro based on data for 35 countries over the period 1900–2000.

Leverage, φ, is set equal to 2.8. This is slightly lower than the value used by Bansal

and Yaron (2004) in their calibrated model of the equity premium. Given the high ratio

of dividend volatility to consumption volatility, this value is conservative. Barro considers

values of risk aversion equal to 3 and 4 and values of the rate of time preference equal to 0.02

and 0.03. I choose risk aversion equal to 3 and rate of time preference equal to 0.02 because,

given other parameter choices, these deliver the closest match to the equity premium and

the riskfree rate in the present model.

The novel parameters are the EIS ψ, the mean reversion of the disaster intensity, κ,

7The value µ = 2.52% reflects an adjustment for Jensen’s inequality.
8In recent work, Constantinides (2008) and Julliard and Ghosh (2008) argue that Barro overestimates the

effect of rare disasters because he uses GDP data (which includes investments which have historically been

more volatile than consumption) and because the entire GDP decline is assumed to occur instantaneously.

However, Barro and Ursua (2009) show that similar results obtain when using a novel dataset on consumption

rather than GDP data, while Barro (2006) shows that calibrating the model over different time periods

produces only slight differences in the results. Moreover, Barro’s calculated equity premium (and thus the

equity premium in this paper) may be biased downward because the calculation assumes that consumption

cannot possibly decline by more than has been observed in the past. Even a small probability that a disaster

could be worse than those observed up to this point would substantially raise the implied equity premium.
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and the volatility parameter for the disaster intensity, σλ. The EIS is set equal to 1 for

tractability. A number of studies have concluded that reasonable values for this parameter

lie in a range close to one, or slightly lower than 1 (e.g. Vissing-Jørgensen (2002)). Mean

reversion κ is chosen to match the autocorrelation of the price-dividend ratio in annual U.S.

data. Because λt is the single state variable, the autocorrelation of price-dividend ratio

implied by the model will approximately equal the autocorrelation of λt. Setting κ equal

to 0.142 generates an autocorrelation for the price-dividend ratio equal to 0.865, its value

in the data. The volatility parameter σλ is chosen to be 0.09; this generates a reasonable

level of volatility in stock returns. The volatility of the government bill rate, the amount of

predictability in excess returns and in consumption growth serve as independent checks on

the reasonableness of the parameters.9

4.2 Results for the time-varying disaster risk model

Table 2 describes moments from a simulation of the model as well as moments from annual

U.S. data. Annual U.S. data on riskfree rates, consumption, dividends and stock returns

come from Robert Shiller’s website. Data are from 1890 to 2004 and are described in detail

in Shiller (1989, Chap. 26). Returns and dividends are for the S&P 500 index. The riskfree

rate is the return on six-month commercial paper purchased in January and rolled over in

July. All variables are deflated using the consumer price index.

The model is discretized using an Euler approximation (e.g. Lord, Koekkoek, and van

Dijk (2006)) and simulated at a monthly frequency for 50,000 years; simulating the model

at higher frequencies produces negligible differences in the results.10 The monthly results

are then compounded to an annual frequency to compare with the annual data set. Two

types of moments are reported. The first type (referred to as “population” in the tables) are

9Also note that the constant disaster risk model is not able to match the relative volatility of dividends

and returns for any choice of parameters.
10The discrete-time approximation requires setting λt to equal zero in the square root when it is negative.

However, this occurs in less than 1% of the simulated draws.
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calculated based on all years in the simulation. The second type (referred to as “conditional”

in the tables) are calculated after first eliminating years in which one or more disasters took

place. This second type therefore conditions on no disasters occurring. Neither corresponds

exactly to U.S. data, and for this reason, the data should be viewed as an approximate

benchmark.

Table 2 shows that the model generates a realistic equity premium. In population, the

equity premium is 5.6%, while, conditional on no disasters, the equity premium is 6.4%.

In the historical data it is 6.0%. The expected return on the government bill is 2.5% in

population, 2.8% conditional on no disasters, and 2.0% in the data. The model predicts

equity volatility of 18.4% per annum in population and 16.4% conditional on no disasters.

The observed volatility is 18.5%. The Sharpe ratio is 0.31 in population, 0.38 conditional on

no disasters and 0.32 in the data (the Sharpe ratio is substantially higher over the postwar

period that in the long data set).

The model is able to generate reasonable volatility for the stock market without gen-

erating excessive volatility for the government bill or for consumption and dividends. The

volatility of the government bill is 3.6% in population, much of which is due to realized dis-

asters; it is 2.7% conditional on no disasters. This compares with a volatility of 5.9% in the

data. Given that interest rate volatility in the data arises largely from unexpected inflation

that is not captured by the model, the data volatility should be viewed as an upper bound

on reasonable model volatility.

The volatilities for consumption and dividends predicted by the model for periods of no

disasters are also below their data counterparts. Conditional on no disasters, consumption

volatility is 2.0%, compared with 3.6% in the data. Dividend volatility is 5.6%, compared

with 11.5% in the data. Including rare disasters in the data simulated from the model has a

large effect on dividend volatility. When the rare disasters are included, dividend volatility is

17.2%. The difference between the effect of including rare disasters on returns as compared

with the effect on fundamentals is striking. Unlike dividends, returns exhibit a relatively

small difference in volatility when calculated with and without rare disasters: 18.4% versus
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16.4%. This is because a large amount of the volatility in returns arises from variation in the

equity premium. Risk premia are equally variable regardless of whether disasters actually

occur in the simulated data or not.

The model also generates excess return predictability, as shown in Table 3. I regress long-

horizon excess returns (the log return on equity minus the log return on the government bill)

on the price-dividend ratio in simulated data. I calculate this regression for returns measured

over horizons ranging from 1 to 10 years. Table 3 reports results for the entire simulated

data set (“population moments”) for periods in the simulation in which no disasters occur

(“conditional moments”) and for the historical sample.

Panel A of Table 3 shows population moments from simulated data. The coefficients on

the price-dividend ratio are negative: a high price-dividend ratio corresponds to low disaster

risk and therefore predicts low future expected returns on stocks relative to bonds. The R2

for the long-horizon regression is 4% at a horizon of 1 year, rising to 14% at a horizon of

10 years. Panel B reports conditional moments. The conditional R2s are larger: 16% at a

horizon of 1 year, rising to 56% at a horizon of 10 years. The unconditional R2 values are

much lower because, when a disaster occurs, nearly all of the unexpected return is due to

the shock to cash flows.

The data moments fall in between the population and conditional moments. As demon-

strated in a number of studies (e.g. Campbell and Shiller (1988), Cochrane (1992), Fama

and French (1989), Keim and Stambaugh (1986)) and replicated in this sample, high price-

dividend ratios predict low excess returns. While returns exhibit predictability over a wide

range of sample periods, the high persistence of the price-dividend ratio leads sample statis-

tics to be unstable (see, for example, Lettau and Wachter (2007) for calculations of long-

horizon predictability using this data set but for differing sample periods), and unusually

low when calculated over recent years. For this reason, the R2 statistics in the data should

be viewed as an approximate benchmark.

Another potential source of variation in returns is variation in expected future consump-

tion growth. According to the model, a low price-dividend ratio indicates not only that the
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equity premium is likely to be high in the future, but also that consumption growth is likely

to be low because of the increased probability of a disaster. However, a number of studies

(e.g. Campbell (2003), Cochrane (1994), Hall (1988), Lettau and Ludvigson (2001)) have

found that consumption growth exhibits little predictability at long horizons, a finding repli-

cated in Panel B of Table 4. It is therefore of interest to quantify the amount of consumption

growth predictability implied by the model.

Table 4 reports the results of running long-horizon regressions of consumption growth on

the price-dividend ratio in data simulated from the model and in historical data. Panel A

shows the population moments implied by the model. The model does imply some pre-

dictability in consumption growth, but the effect is very small. The R2 values never rise

above 6%, even at long horizons. This predictability arises entirely from the realization of

a rare disaster. When these rare disasters are conditioned out, there is zero predictability

because consumption follows a random walk (in simulated data, the coefficient values are

less than .001 and the R2 values are less than .0001). Thus the model accounts for both

the predictability in long-horizon returns and the absence of predictability in consumption

growth.

4.3 Comparison with the constant disaster risk model

It is instructive to contrast the results in the previous section with results when the proba-

bility of a rare disaster does not vary over time. Table 5 calculates moments corresponding

to those in Table 2 for the constant disaster risk model. The long-horizon regressions in

Tables 3 and 4 are not repeated because, when disaster risk is constant, the predictability

coefficients and R2 statistics are zero at all horizons. The first calibration (results reported

in Panel A) corresponds to the parameters in Barro (2006), and replicates the results in

that paper.11 The second calibration (results reported in Panel B) alters these parameters

slightly: rather than assuming power utility, the EIS is set to 1. This highlights the role

11The model for leverage in this paper differs slightly from Barro’s. However, the effects of the differences

are second-order.
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of recursive utility when nothing else changes. The third calibration (results reported in

Panel C) maintains the assumptions of the second set, but raises leverage from 1.5 to 2.8.

This shows the effect of an increase in leverage when nothing else changes.

As Panel A shows, the power utility model with constant disaster probabilities is capable

of replicating the equity premium in the data, and reconciling it with a low riskfree rate.

This model is not, however, capable of replicating the volatility of the stock market. Stock

return volatility is about equal to dividend volatility.12 That is, the conditional volatility of

stock returns is 3.3%. This compares with a volatility of 18.5% in the data. The population

volatility of stock returns is 6.7%, still far below the data volatility. As a consequence, the

Sharpe ratio predicted by the model is 1.83 (conditional on no disasters), much higher than

the observed value (0.32).

Panel B demonstrates the effect of recursive utility. This simulation is identical to the

above, except the EIS is set equal to 1, the value from the base case. As this simulation

verifies, recursive utility makes little difference to the equity premium. The volatility of stock

returns and the Sharpe ratio are also nearly the same. However, the government bill rate is

substantially lower: 1.7% per annum rather than 3.9%. The reason is that the inverse of the

EIS multiplies the growth rate of the economy in the formula for the riskfree rate. Because

growth is positive, power utility, with an EIS of 0.25, generates a higher riskfree rate than

recursive utility with an EIS of 1.

Panel C demonstrates the effect of increasing leverage from 1.5 to 2.8. Not surprisingly,

raising leverage increases the volatility of log dividends. However, this does not generate

nearly enough volatility in either the conditional or full population to match the volatility of

returns in the data. These results contrast with the model that incorporates both recursive

utility and time-varying disaster risk, which can generate a realistic amount of stock market

volatility.

12Stock market volatility and dividend volatility are not exactly equal because the table reports the

volatility of stock returns measured in levels, while dividends are measured in logs. The volatility of log

returns is identical to the volatility of log dividends for both population and conditional moments.
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5 Conclusion

This paper has shown that a continuous-time endowment model in which there is time-

varying risk of a rare disaster can explain many features of the aggregate stock market.

Besides explaining the equity premium without assuming a high value of risk aversion, it

can also explain the high level of stock market volatility. The volatility of the government

bill rate remains low because of a tradeoff between an increased desire to save due to an

increase in the disaster probability and a simultaneous increase in the risk of default. The

model therefore offers a novel explanation of volatility in the aggregate stock market that is

consistent with other macroeconomic data. Moreover, the model accounts for economically

significant excess return predictability found in the data, as well as the lack of long-run

consumption growth predictability. Finally, the model can be solved in closed form, allowing

for straightforward computation and for potential extensions. While this paper has focused

on the aggregate stock market, the model could be extended to price additional asset classes,

such as long-term government bonds, options and exchange rates.
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Appendix

A Constant disaster risk model

A.1 Value function

The envelope condition (10) can be used to derive the relation between l (the wealth-

consumption ratio) and j (the constant in the value function) in (11). Equation (3) implies

JW (W (C)) = (W (C))−γj1−γ

= (lC)−γ j1−γ. (A.1)

Moreover,

fC(C, V ) =
βC− 1

ψ

((1− γ)V )
1
θ−1

, (A.2)

where it follows from (4) that

V (C) = J(W (C)) =
(lC)1−γ

1− γ
j1−γ. (A.3)

Substituting (A.3) into (A.2) implies

fC(C, V (C)) = βC− 1
ψ C(1− 1

θ )(lj)(1− 1
θ )(1−γ)

= βC−γ(lj)
1
ψ−γ. (A.4)

Equating (A.4) with (A.1) and solving for l implies (11).

Given (11), the expression for j follows from the fact that V (C(W )) = J(W ), and so

f(C(W ), J(W )) =
β

1− 1
ψ

W 1−γ l
1
ψ−1 − j1− 1

ψ

jγ− 1
ψ

. (A.5)

Substituting into the Bellman equation (6) and dividing through by W 1−γ yields:

(
µ− 1

2
γσ2 + λ(1− γ)−1Eν

[
e(1−γ)Z − 1

])
j1−γ +

β

1− 1
ψ

βψ−1j(1− 1
ψ )(1−ψ) − j1− 1

ψ

jγ− 1
ψ

= 0,

and therefore

µ− 1

2
γσ2 + λ(1− γ)−1Eν

[
e(1−γ)Z − 1

]
− β

1− 1
ψ

+
βψ

1− 1
ψ

j1−ψ = 0,
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Rearranging implies

j =

[(
−µ +

1

2
γσ2 − λ(1− γ)−1Eν

[
e(1−γ)Z − 1

]
+

β

1− 1
ψ

)
1− 1

ψ

βψ

] 1
1−ψ

, (A.6)

and therefore that the wealth-consumption ratio l equals:

l =

(
−µ +

1

2
γσ2 − λ(1− γ)−1Eν

[
e(1−γ)Z − 1

]
+

β

1− 1
ψ

)−1 (
1− 1

ψ

)−1

. (A.7)

A.2 Dividend claim

By Ito’s Lemma,

d(Ftπt) + Ytπt dt = πt(DFt) dt + Ft(Dπt) dt + Ytπt dt +

πt(δFt) dBt + Ft(δπt) dBt + (δπt)(δFt) dt +

λJ (πtFt) dt + ((πtFt − πt−Ft−)dNt − λJ (πtFt)) dt, (A.8)

Under mild regularity conditions (see Duffie, Pan, and Singleton (2000)), the no-arbitrage

condition (15) implies that the instantaneous expectation of (A.8) is equal to zero. This

establishes (16).

Ito’s Lemma applied to (13) implies that the diffusion term for the state-price density is

given by

δπt =
πt

fC
δfC

= − πt

fC
βγC−γ−1(lj)

1
ψ−γCσ

= −πtγσ, (A.9)

where the second line follows from (A.4). No-arbitrage implies that the drift of the state-price

density must equal

Dπt = −rπt − λJ (πt).

Let

Ht = exp

{∫ t

0

fV (Cs, Vs) ds

}
. (A.10)
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Then

J (πt) = HtEν

[
fC(CeZt , V (CeZt))− fC(C, V (C))

]

= HtEν

[
β(CeZt)−γ(lj)

1
ψ−γ − βC−γ(lj)

1
ψ−γ

]

= πtEν

[
e−γZt − 1

]
. (A.11)

By Ito’s Lemma,

DFt = FY µY Yt +
1

2
FY Y Ytφ

2σ2 = lY µY Yt (A.12)

δFt = FY φσYt = lY φσYt (A.13)

Finally,

J (πtFt) = HtEν

[
fC(CeZt , V (CeZt))F (Yte

φZt)− fC(C, V (C))F (Yt)
]

= πtEν

[
e−γZtF (Yte

φZt)− F (Yt)
]

(A.14)

= lY Eν
[
e(φ−γ)Z − 1

]
πtYt (A.15)

Substituting (A.9 – A.15) into (16) verifies the conjecture (17), for lY defined implicitly by

(18).

B Time-varying disaster risk model

B.1 Value function

Substituting the optimal policies α = 1 and W = lC into the Bellman equation (26) implies

JW Wtµ + Jλκ(λ̄− λt) +
1

2
JWW W 2

t σ2 +
1

2
Jλλσ

2
λλt +

λtEν

[
J(Wte

Zt , λt)− J(Wt, λt)
]
+ f(Ct, J) = 0. (B.1)

Using (25), the last term can be rewritten as follows:

f(C(W ), J(λ, W )) = βI(λ)W 1−γ

(
log(βW )− 1

1− γ
log(I(λ)W 1−γ)

)

= βI(λ)W 1−γ

(
log β − log I(λ)

1− γ

)
. (B.2)
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Substituting (25) and (B.2) into (B.1) and dividing through by W 1−γ implies

I(λt)µ + I ′(λt)(1− γ)−1κ(λ̄− λt)−
1

2
γI(λt)σ

2 +
1

2
(1− γ)−1I ′′(λt)σ

2
λλt

+ (1− γ)−1I(λt)λtEν

[
e(1−γ)Z − 1

]

+ βI(λt)

(
log β − log I(λ)

1− γ

)
= 0. (B.3)

Conjecture that I(λ) is given by (31), implying that I ′(λ) = bI(λ) and I ′′(λ) = b2I(λ).

Substituting into (B.3), I find

µ + b(1− γ)−1κ(λ̄− λt)−
1

2
γσ2 +

1

2
b2σ2

λλt(1− γ)−1 +

(1− γ)−1λtEν

[
e(1−γ)Z − 1

]
+ β

(
log β − (1− γ)−1(a + bλt)

)
= 0.

Collecting terms in λt results in the following quadratic equation for b:

1

2
σ2

λb
2 − (κ + β)b + Eν

[
e(1−γ)Z − 1

]
= 0,

indicating two possible solutions

b+ =
κ + β

σ2
λ

+

√(
κ + β

σ2
λ

)2

− 2
Eν [e(1−γ)Z − 1]

σ2
λ

, (B.4)

and

b− =
κ + β

σ2
λ

−

√(
κ + β

σ2
λ

)2

− 2
Eν [e(1−γ)Z − 1]

σ2
λ

. (B.5)

Collecting constant terms results in the following characterization of a in terms of b:

a =
1− γ

β

(
µ− 1

2
γσ2

)
+ (1− γ) log β + b

κλ̄

β
. (B.6)

Following Tauchen (2005), I choose the negative root, i.e. b = b−. The resulting solution has

the desirable property of approaching a well-defined limit as σλ approaches 0, as shown in

Appendix B.3. However, given the parameter choices in Table 1, the discriminant is of the

order of 10−5, and therefore the asset pricing implications of this choice are negligible.
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B.2 Dividend claim

Applying Ito’s Lemma to the product F (λ, Y )π in the case of time-varying disaster risk

yields

d(Ftπt) + Ytπt dt = πt(DFt) dt + Ft(Dπt) dt + Ytπt dt +

πt(δFt)
% [dBt dBλ,t]

% + Ft(δπt)
% [dBt dBλ,t]

% + (δπt)
%(δFt) dt +

λJ (πtFt) dt + ((πtFt − πt−Ft−)dNt − λJ (πtFt)) dt, (B.7)

where I have used the fact that Bt and Bλ,t are independent. Equation (33) then follows

from the argument given in Appendix A.2.

The following argument derives a differential equation for G using (33). First the drift,

diffusion and jump terms for the state-price density are derived. As in the case of constant

disaster risk, Ito’s Lemma applied to (13) implies that the diffusion term for the state-price

density is given by

δπt =
πt

fC
δfC

It follows from (25) that continuation utility equals

V (λ, C) = J(λ, W (C)) = J(λ, lC) = l1−γI(λ)
C1−γ

1− γ
.

Therefore, by (29),

fC(C, V (λ, C)) = βl1−γI(λ)C−γ = βγI(λ)C−γ (B.8)

It follows from Ito’s Lemma that

δfC

fC
=



 −γσ

bσλ

√
λt





and therefore

δπt

πt
=



 −γσ

bσλ

√
λt



 . (B.9)
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No-arbitrage implies that the drift of the state-price density is given by

Dπt = −rtπt − λJ (πt). (B.10)

Defining Ht as in (A.10), it from (13) that

J (πt) = HtEν

[
fC(Cte

Zt , V (λt, Cte
Zt))− fC(Ct, V (λt, Ct))

]

= Htβ
γI(λt)Eν

[
C−γ

t e−γZt − C−γ
t

]

= πtEν

[
e−γZt − 1

]
. (B.11)

The calculation is completed by substituting (30) in for rt.

Next the drift, diffusion and jump terms for F are calculated. It follows from (34) and

Ito’s Lemma that

δFt =



 YtG(λt)φσ

YtG′(λt)σλ

√
λt



 , (B.12)

DFt = G(λt)YtµY + G′(λt)Ytκ(λ̄− λt) +
1

2
G′′(λt)Ytσ

2
λλt, (B.13)

J (Ft) = FtEν

[
eφZ − 1

]
. (B.14)

Finally,

J (πtFt) = HtG(λt)Eν

[
fC(CeZ , V (λt, CeZ))Yte

φZ − fC(Ct, V (λt, Ct))Yt

]

= HtG(λt)YtEν

[
βγI(λt)C

−γ
t e(φ−γ)Zt − βγI(λt)C

−γ
t

]

= πtFtEν

[
e(φ−γ)Z − 1

]
. (B.15)

Substituting (B.9 – B.15) into (33) implies

GµY + G′κ(λ̄− λt) +
1

2
G′′σ2

λλt −G
(
µ + β − γσ2 + λtEν

[
e−γZ

(
eZ − 1

)])

−GλtEν

[
e−γZ − 1

]
+ 1−Gγσ2φ + G′bσ2

λλt

+ GλtEν

[
e(φ−γ)Z − 1

]
= 0. (B.16)
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To derive the ordinary differential equations (36) and (37), note that the conjecture (35)

implies

G′(λt) =

∫ ∞

0

exp {aφ(s) + bφ(s)λt} bφ(s) ds (B.17)

G′′(λt) =

∫ ∞

0

exp {aφ(s) + bφ(s)λt} bφ(s)
2 ds. (B.18)

The solution must satisfy the boundary conditions aφ(0) = bφ(0) = 0 and

lim
t→∞

exp {aφ(t) + bφ(t)λt} = 0 ∀λt > 0.

It follows from the boundary conditions and integration by parts that13

−
∫ ∞

0

exp {aφ(s) + bφ(s)λt} (a′φ(s) + b′φ(s)λt) ds = 1. (B.19)

It follows from (35), (B.17), (B.18) and (B.19) that each term in (B.16) takes the form

of an integral of exp {aφ(s) + bφ(s)} multiplied by an expression that is linear in λt. Equa-

tion (35) can therefore be solved by setting the terms within the integral equal to zero, or

equivalently, solving

µY + bφ(s)κ(λ̄− λt) +
1

2
b2
φ(s)σ

2
λλt − µ− β + γσ2 − λtEν

[
e−γZ(eZ − 1)

]

− λtEν

[
e−γZ − 1

]
− a′φ(s)− b′φ(s)λt − γσ2φ + bφ(s)bσ

2
λλt

+ λtEν

[
e(φ−γ)Z − 1

]
= 0. (B.20)

Collection constant terms implies (36); collecting linear terms implies (37). Thus the price

of the dividend claim is characterized by (34), where G is given by (35), and aφ and bφ are

characterized by (36) and (37) respectively, with aφ(0) = bφ(0) = 0.

13The details of this calculation are as follows. Let h1(s) = exp {aφ(s) + bφ(s)λt} and h2(s) = 1. Integra-

tion by parts implies
∫ ∞

0
h1(s)h′2(s) ds = lim

s→∞
(h1(s)h2(s))− h1(0)h2(0)−

∫ ∞

0
h′1(s)h2(s) ds,

where the the left hand side of the above is identically zero.

36



B.3 Limiting behavior

This section evaluates the solution in the limit as σλ approaches zero. When λ is equal to its

long-run mean, the limit is shown to equal the solution to the constant disaster risk model.

Choosing the solution corresponding to the negative root for b, (B.5), it follows that

b =
κ + β

σ2
λ

−

√(
κ + β

σ2
λ

)2

− 2
Eν [e(1−γ)Z − 1]

σ2
λ

.

To evaluate b in the limit, consider a function g(x) of the form

g(x) = c1 −
√

c2
1 + c2x,

where c1 and c2 are nonzero constants. Because g(0) = 0,

lim
x→0

g(x)

x
= g′(0) = −1

2
c−1
1 c2.

Now let c1 = κ + β and c2 = −2Eν

[
e(1−γ)Z − 1

]
. Then b can be written as

b =
1

σ2
λ

(
c1 −

√
c2
1 + c2σ2

λ

)
.

It follows that

lim
σλ→0

b = −1

2
c−1
1 c2 =

Eν

[
e(1−γ)Z − 1

]

κ + β
. (B.21)

Combining (B.21) with (B.6), it follows that

lim
σλ→0

(a + bλ̄) =
1− γ

β

(
µ− 1

2
γσ2

)
+ (1− γ) log β + λ̄

Eν

[
e(1−γ)Z − 1

]

β
.

Therefore

lim
σλ→0

J(λ̄, W ) = exp

{
1− γ

β

(
µ− 1

2
γσ2

)
+ (1− γ) log β + λ̄

Eν

[
e(1−γ)Z − 1

]

β

}
W 1−γ

1− γ
.

(B.22)

I now evaluate the solution for the constant disaster risk model in the limit as ψ ap-

proaches 1. It suffices to show that j1−γ approaches the exponential term in (B.22). Let

A = −µ +
1

2
γσ2 − λ(1− γ)−1Eν

[
e(1−γ)Z − 1

]
. (B.23)
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Then, by (A.6),

j =

[(
A +

β

1− 1
ψ

)
1− 1

ψ

βψ

] 1
1−ψ

=

[
A

(
1− 1

ψ

)
β−ψ + β1−ψ

] 1
1−ψ

=

[
Aβ−1

(
1− 1

ψ

)
+ 1

] 1
1−ψ

β

= exp

{
− 1

ψ
log

([
Aβ−1

(
1− 1

ψ

)
+ 1

] 1

1− 1
ψ

)
+ log β

}
.

From the definition of the exponential, it follows that

lim
ψ→1

[
Aβ−1

(
1− 1

ψ

)
+ 1

] 1

1− 1
ψ = exp

{
Aβ−1

}
.

Since both this limit and the limit of 1/ψ are well-defined as ψ approaches 1, I conclude that

lim
ψ→1

j = exp
{
−β−1A + log β

}
.

and thus

lim
ψ→1

j1−γ = exp
{
−(1− γ)β−1A + (1− γ) log β

}
.

Substituting in (B.23) for A results in the exponential term in (B.22).
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Table 1: Parameters for the time-varying disaster risk model

Panel A: Cash flow parameters

Average growth in consumption (normal times) µ 0.0252

Volatility of consumption growth (normal times) σ 0.020

Leverage φ 2.8

Average probability of a rare disaster λ̄ 0.017

Mean reversion κ 0.142

Volatility parameter σλ 0.09

Probability of default given disaster q 0.40

Panel B: Preference parameters

Rate of time preference β 0.02

Relative risk aversion γ 3.0

Elasticity of intertemporal substitution ψ 1.0

Notes: The table shows parameter values for the time-varying disaster risk model. The

process for the disaster intensity is given by

dλt = κ(λ̄− λt) dt + σλ

√
λt dBλ,t.

The consumption (endowment) process is given by

dCt = µCt dt + σCt dBt + (eZt − 1)Ct− dNt,

where Nt is a Poisson process with intensity λt, and Zt is calibrated to the distribution of

large declines in GDP in the data. The dividend Yt equals Cφ
t . The representative agent has

recursive utility defined by Vt = Et

∫∞
t f(Cs, Vs) ds, with normalized aggregator

f(C, V ) = β(1− γ)V

[
log C − 1

1− γ
log((1− γ)V )

]
.

Parameter values are in annual terms.
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Table 2: Population moments from simulated data and sample moments from the historical

time series

Model U.S. Data

Population Conditional

E[Rb] 2.49 2.74 2.01

σ(Rb) 3.59 2.13 5.91

E[Re −Rb] 5.56 6.38 5.97

σ(Re) 18.41 16.37 18.48

Sharpe Ratio 0.31 0.38 0.32

σ(∆c) 6.15 1.99 3.56

σ(∆y) 17.23 5.56 11.51

Notes: The time-varying disaster risk model is simulated at a monthly frequency and simu-

lated data are aggregated to an annual frequency. Moments are calculated using the annual

data and (except for the Sharpe ratio) expressed in percentage terms. The second column

reports population moments from simulated data. The third column reports moments from

simulated data that are calculated over years in which a disaster did not occur. The last col-

umn reports sample moments from annual U.S. data from 1890 to 2004. Rb denotes the gross

return on the government bond, Re the gross equity return, ∆c growth in log consumption

and ∆y growth in log dividends.
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Table 3: Long-horizon regressions: Excess returns

Horizon in years

1 2 4 6 8 10

Panel A: Model – Population moments

β1 -0.15 -0.28 -0.48 -0.59 -0.75 -0.83

R2 0.04 0.07 0.10 0.11 0.14 0.14

Panel B: Model – Conditional moments

β1 -0.23 -0.43 -0.75 -0.96 -1.15 -1.27

R2 0.16 0.28 0.44 0.51 0.56 0.56

Panel B: U.S. Data

β1 -0.09 -0.14 -0.36 -0.48 -0.73 -0.98

t-stat -2.04 -1.84 -2.91 -2.69 -3.22 -3.75

R2 0.04 0.04 0.12 0.12 0.17 0.23

Notes: Excess returns are regressed on the lagged price-dividend ratio in data simulated from

the model and in annual data from 1890 to 2004. Specifically, the table reports coefficients

β1, R2 statistics and, for the sample, Newey-West t-statistics for regressions

h∑

i=1

log(Re
t+i)− log(Rb

t+i) = β0 + β1(pt − yt) + εt,

where Re
t+i and Rb

t+i are, respectively, the return on the aggregate market and the return

on the government bill between t + i − 1 and t + i and pt − yt is the log price-dividend

ratio on the aggregated market. The time-varying disaster risk model is simulated at a

monthly frequency and simulated data are aggregated to an annual frequency. Panel A

reports population moments from simulated data. Panel B reports moments from simulated

data that are calculated over years in which a disaster does not take place (for a horizon of

2, for example, all 2-year periods in which a disaster takes place are eliminated). Panel C

reports sample moments.
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Table 4: Long-horizon regressions: Consumption growth

Horizon in years

1 2 4 6 8 10

Panel A: Model – Population moments

β1 0.03 0.06 0.10 0.15 0.16 0.19

R2 0.02 0.03 0.05 0.06 0.05 0.06

Panel B: U.S. Data

β1 0.003 -0.001 -0.007 0.002 0.006 0.040

t-stat 0.45 -0.06 -0.38 0.08 0.16 0.82

R2 0.0011 0.0000 0.0013 0.0001 0.0004 0.0129

Notes: Growth in aggregate consumption is regressed on the lagged price-dividend ratio

in data simulated from the model and in annual data from 1890 to 2004. Specifically, the

table reports coefficients β1, R2 statistics and, for the sample, Newey-West t-statistics for

regressions
h∑

i=1

∆ct+i = β0 + β1(pt − yt) + εt,

where ∆ct+i is log growth in aggregate consumption between periods t + i − 1 and t + i

and pt − yt is the log price-dividend ratio on the aggregated market. The time-varying

disaster risk model is simulated at a monthly frequency and simulated data are aggregated

to an annual frequency. Panel A reports population moments from simulated data. Panel B

reports sample moments. The conditional moments, namely the slope coefficient and the R2

calculated over periods in the simulation without disasters, are equal to zero.
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Table 5: Moments implied by the constant disaster risk model

Population Conditional

Panel A: φ = 1.5, β = .03, γ = 4, ψ = 1/4

E[Rb] 3.66 3.85

σ(Rb) 2.52 0

E[Re −Rb] 5.52 6.04

σ(Re) 6.75 3.29

Sharpe Ratio 0.95 1.83

σ(∆y) 8.67 3.00

Panel B: φ = 1.5, β = .03, γ = 4, ψ = 1

E[Rb] 1.46 1.66

σ(Rb) 2.64 0

E[Re −Rb] 5.40 5.91

σ(Re) 6.69 3.23

Sharpe Ratio 0.95 1.83

σ(∆y) 8.80 3.00

Panel C: φ = 2.8, β = .03, γ = 4, ψ = 1

E[Rb] 1.44 1.66

σ(Rb) 2.74 0

E[Re −Rb] 7.89 8.79

σ(Re) 10.62 6.19

Sharpe Ratio 0.83 1.42

σ(∆y) 16.59 5.60

Notes: The constant disaster risk model is simulated at a monthly frequency and simulated

data are aggregated to an annual frequency. Moments are calculated based on annual data

and (except for the Sharpe ratio) expressed in percentage terms. All panels assume that

consumption growth is i.i.d., namely that σλ = 0 and λt = λ̄. Other parameters (unless

otherwise noted) are as in Table 1. The volatility of log consumption growth equals 5.67%

per year in population and 2% per year conditional on no disasters.
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Figure 1: Distribution of λt
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Notes: This figure shows the probability density function for λt, the time-varying intensity

(per year) of a disaster. Parameter values are given in Table 1. The solid line is located at

the unconditional mean λ̄ = 0.017.
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Figure 2: Components of the price-dividend ratio in the time-varying disaster risk model
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Notes: The upper panel shows aφ as a function of horizon t; the lower panel shows bφ as

a function of t. These are components of the solution for the price-dividend ratio in the

time-varying disaster risk model. Parameter values are given in Table 1.
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Figure 3: Government bill return in the time-varying disaster risk model
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Notes: This figure shows rb, the instantaneous expected return on a government bill; rL, the

instantaneous expected return on the bill conditional on no default and r, the rate of return

on a default-free security as functions of the disaster intensity λ. All returns are in annual

terms.
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Figure 4: Decomposition of the equity premium in the time-varying disaster risk model
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Notes: The solid line shows the instantaneous equity premium (the expected excess return

on equity less the expected return on the government note), the dashed line shows the equity

premium minus the term accounting for the investor’s desire to hedge changes in the disaster

probability and the dotted line shows the what the equity premium would be if disaster risk

were zero.
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Figure 5: Equity volatility in the time-varying disaster risk model

0 0.01 0.02 0.03 0.04 0.05 0.06
0.05

0.1

0.15

0.2

0.25

0.3

vo
la

til
ity

λ

Notes: The figure shows instantaneous equity return volatility as a function of the disaster

probability λt. All quantities are in annual terms.
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Figure 6: Sharpe ratio in the time-varying disaster risk model
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Notes: This figure shows the instantaneous equity premium over the government bill divided

by the instantaneous equity return volatility (the Sharpe ratio) as a function of disaster

probability λt. All quantities are in annual terms.
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