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I. Introduction

In the early 1960s, Mandelbrot (1963) and Fama
(1965) found that stock return distributions possess
power tails that are invariant to time aggregation and
scaling. Such findings led them to believe that these
returns should follow an a-stable distribution rather
than the commonly assumed Gaussian distribution.

As a test of the stable law, several studies inves-
tigate the stability-under-addition property of asset re-
turns. These studies find that, in most cases, asset
returns do converge to normality with time aggrega-
tion, contradicting the implication of an a-stable dis-
tribution. Examples of such studies include Teich-
moeller (1971), Officier (1972), Barnea and Downes
(1973), Brenner (1974), Hsu, Miller, and Wichern
(1974), Haggeman (1978), Fielitz and Rozelle (1983),
and Hall, Brorsen, and Irwin (1989).

Carr and Wu (2003) use options on the S&P 500
index to investigate how the risk-neutral return dis-
tribution for the equity index varies with the time
horizon. They find that the risk-neutral distribution for
the equity index return is highly nonnormal, and this
return nonnormality does not decline with increasing
time horizon, supporting the stability-under-addition
property of an a-stable distribution.

* I thank Turan Bali, Peter Carr, Xiong Chen, Jingzhi Huang,
Albert Madansky, and an anonymous referee for comments. All
remaining errors are mine. Contact the author at liuren_wu@
baruch.cuny.edu.

This article proposes a
stylized model that rec-
onciles several seemingly
conflicting findings on fi-
nancial security returns
and option prices. The
model is based on a pure
jump Lévy process,
wherein the jump arrival
rate obeys a power law
dampened by an expo-
nential function. The
model allows for differ-
ent degrees of dampening
for positive and negative
jumps and also for differ-
ent pricing for upside and
downside market risks.
Calibration of the model
to the S&P 500 index
shows that the market
charges only a moderate
premium on upward in-
dex movements but the
maximally allowable pre-
mium on downward in-
dex movements.
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These different pieces of evidence are all robust findings about the financial
market, but they seemingly contradict one another, adding fuel to the decade-
long debate on whether an a-stable distribution is a realistic modeling choice
for asset returns. An a-stable distribution captures the power law decay of
the tails of the return distribution and generates the risk-neutral stability-under-
addition property observed from the options data, but it is inconsistent with
the time series evidence that asset returns converge to normality with time
aggregation under the objective measure.

In this article, I propose a stylized model that reconciles the seemingly
conflicting pieces of evidence. The model generates power tails for asset
returns to match the evidence on the power law. To guarantee that the central
limit theorem holds under the objective measure, I dampen the power tails
by an exponential function. The dampening is sufficient to guarantee finite
return moments and the applicability of the central limit theorem but not
enough to overrule the power decay of the tails. I label this model the ex-
ponentially dampened power law (DPL).

To link the time series behavior of the asset return to its risk-neutral behavior
inferred from the options data, I propose a measure change defined by an
extended exponential martingale. The measure change allows the market to
price downside and upside risks differently. As a special example, when the
market charges the maximally allowable premium by no arbitrage on downside
risk, the dampening on the left tail of the return distribution disappears under
the risk-neutral measure. As the central limit theorem no longer applies without
the dampening on the left tail, the risk-neutral return distribution shows sta-
bility under addition, even though the objective return distribution does not.

I calibrate the model to the S&P 500 index returns and the index option
prices. The calibration exercise sheds light on the market’s distinct treatment
of downside and upside index movements. The calibration results show that,
although the market participants charge only a moderate premium on upside
movements in the equity index, they charge the maximally allowable premium
on downside index movements.

The DPL specification applies not only to the equity market but also to
currencies. The time series behaviors of equity and currency returns are similar,
but their respective options markets exhibit quite distinctive behaviors. First,
the option implied risk-neutral distribution for the equity index returns is
highly skewed to the left, but the risk-neutral distribution for currency returns
is relatively symmetric. Second, the nonnormality of the equity index return
risk-neutral distribution does not decline as option maturity increases, but the
nonnormality of the currency return inferred from the currency options market
declines steadily as predicted by the central limit theorem. Under the frame-
work of the dampened power law, these differences imply that the market
participants do not distinguish the direction of the currency movement, al-
though they distinguish the direction of the equity index movement.

The DPL specification reconciles a series of seemingly conflicting evidence
concerning financial security returns. Nevertheless, I do not regard the DPL
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as the final answer for modeling but, rather, as a springboard for more com-
prehensive modeling endeavors. As an illustration, I show how the pure jump
component underlying the DPL model can be tightly knitted with an additional
diffusion component and stochastic volatility.

The most germane to my work is the CGMY model of Carr, Geman, Madan,
and Yor (2002). Although they derive the CGMY model by extending the
variance gamma specification in Madan and Seneta (1990) and Madan, Carr,
and Chang (1998), the CGMY model follows the exponentially dampened
power law. Carr et al. consider the application of the CGMY model both in
modeling the time series property of equity returns and in pricing equity and
equity index options. Carr et al. (2003) extends the model to incorporate
stochastic volatility. Compared to their work, the key contribution of my work
in this article lies in the documentation and reconciliation of the major stylized
evidence defining the tail behavior of financial security returns. The DPL
specification is also related to the physics literature on truncated Lévy flights
(Mantegna and Stanley 1995). Boyarchenko and Levendorskii (2000) consider
option pricing under such processes.

Another contribution of this article is my distinct treatment of upside and
downside market movements for pricing. The sharp difference in the equity
index return distribution under the objective and the risk-neutral measures has
attracted great attention and curiosity from academia. Jackwerth (2000) and
Engle and Rosenberg (2002) find that, to reconcile the index return distribution
under the two measures, one may end up with some oddly shaped preferences,
with sections that are locally risk-loving rather than risk averse. Bates (2001)
tries to explain the difference in an equilibrium model. My distinct treatment
of downside and upside risks not only reconciles the difference in the asym-
metry of the index return distribution under the two measures but also explains
their different behaviors along the maturity dimension. By charging the max-
imally allowable premium on downside risk, the market participants force the
risk-neutral distribution of the index return to remain highly left-skewed even
at very long horizons.

The article is organized as follows. The next section reviews the stylized
evidence on S&P 500 index returns under both the objective measure and the
option-implied risk-neutral measure. Section III presents the DPL model that
reconciles all the stylized evidence. Section IV calibrates the model to the
S&P 500 index returns and the index options and discusses the implications
of the estimation results. Section V discusses potential model extensions and
the model’s applicability to other markets. Section VI concludes.

II. Review of Stylized Evidence

I review the stylized features of financial security returns based on two data
sets: the times series of the S&P 500 index and the European options prices
on the S&P 500 index. The time series data on the S&P 500 index are daily
from July 3, 1962, to December 31, 2001 (9,942 observations), downloaded
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from CRSP (Center for Research in Security Prices, University of Chicago).
The S&P 500 index options data are daily quotes on out-of-the-money options
from April 1999 to May 2000 across different strikes and maturities (62,950
observations). These equity index options are listed at the Chicago Board of
Options Exchange (CBOE). The quotes are collected by a major bank in New
York City, which has also supplied the matching information on the Black-
Scholes implied volatility, the spot index level, the forward price, and the
interest rate corresponding to each option quote. The option maturities range
from 5 business days to 1.8 years. Options with expiry date within a week
are deleted from the sample to avoid market microstructure effects.

A. Power Law Decay in Index Returns

An implication of the a-stable distribution is that the tail of the distribution
obeys a power law,

�aPr (FrF 1 x) p Bx ,

where r denotes a demeaned return on an asset, B is a scaling coefficient,
and a is the power coefficient of the tail, often referred to as the tail index.
Mandelbrot (1963) illustrates this power law through a double logarithm plot
of probabilities versus x on cotton price changes. If the pricePr (FrF 1 x)
change obeys a power law, the double logarithm plot will generate a straight
line for large x, and the slope of the line becomes an estimate of the power
coefficient a.

Figure 1 depicts a similar plot on the S&P 500 index log returns. I compute
the log returns at different aggregation levels: daily (circle), 5 days (cross),
20 days (square), and 60 days (diamond). The plots for these returns are
overlayed on the same figure. For ease of comparison, I standardize all returns
by their respective sample estimates of the mean and the standard deviation.
I also plot two benchmark lines based on a standard normal distribution (dash-
dotted line) and a symmetric a-stable distribution (solid line) with ,a p 1.9

(scaler), and (drift).j p 0.7 m p 0
The plots on the index returns approach a straight line at large values of

returns, indicating the presence of power tails in the return distribution. This
pattern forms a clear contrast to the curved line of the normal benchmark,
the tails of which decay exponentially. The plots for the index returns at
different aggregation levels overlap one another reasonably well, indicating
that the power law is fairly stable with respect to time aggregation. Both
features are consistent with an a-stable distribution.

Nevertheless, comparing the data scatter plots to the a-stable distribution
benchmark (solid line) reveals that the tails of index returns at very large
realizations do not look as thick as the tails of the a-stable distribution, even
though the benchmark plot uses a fairly large tail index at . Thea p 1.9
observed data points lie between the exponential decay of a normal distribution
and the power decay of an a-stable distribution.



Dampened Power Law 1449

Fig. 1.—The tail behavior of S&P 500 index returns. The plots are on S&P 500
index returns at different time horizons: daily (circle), 5 days (cross), 20 days (square),
and 60 days (diamond). All returns are standardized by their respective sample esti-
mates of the mean and the standard deviation. The two benchmark lines are from a
standard normal distribution (dash-dotted line) and a symmetric a-stable distribution
(solid line) with , (scaler), and (drift).a p 1.9 j p 0.7 m p 0

B. Applicability of the Central Limit Theorem

In testing whether an a-stable distribution governs the asset return behavior,
many empirical studies exploit the stability-under-addition property of the
stable distribution. These studies estimate the tail index parameter a using
data of different frequencies and analyze how the parameter estimates vary
across different frequency choices. Although the results are mixed, the main
finding is that the tail index estimates increase with time aggregation, a result
that is consistent with the traditional central limit theorem but contradicts the
implication of a pure a-stable distribution.

A simpler way of testing the stability of the return distribution is to measure
the skewness and kurtosis of the asset returns under different time aggregation
levels. Under the assumption of a normal distribution, both measures are zero.
Under the assumption of an a-stable distribution, neither measure is well
defined, and hence the estimates for both should exhibit instability. Therefore,
if the estimates of these moments are stable and obey the central limit theorem
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in converging to zero (normality) with time aggregation, the assumption of
an a-stable distribution is violated.

Figure 2 plots the skewness (a) and kurtosis (b) estimates for log returns
on the S&P 500 index at different time aggregation levels. The dashed lines
are estimates from the data. The solid lines are inferred from the central limit
theorem on independently and identically distributed returns with finite var-
iance. Returns on the S&P 500 index comply well with the central limit
theorem: although the daily return distribution exhibits moderate skewness
and large kurtosis, the absolute magnitudes of both statistics decline rapidly
with time aggregation.

Compared to the benchmark plot for independently and identically distrib-
uted returns (the solid line), nonnormalities in the data decay slightly slower.
A slower decay can occur when the return and/or return volatility is serially
correlated. Overall, the steady decline in absolute magnitudes of the skewness
and kurtosis estimates supports the applicability of the central limit theorem
but contradicts the assumption of an a-stable distribution.

C. Distinct Behaviors of the Risk-Neutral Distribution

The previous subsections use the time series data to infer the properties of
the return distribution under the objective measure. This subsection exploits
the cross sections of the options data to analyze the return distribution under
the risk-neutral measure.

Practitioners in the options market often summarize the information using
the Black and Scholes (1973) implied volatility of the options. Under the
normal return distribution assumption of the Black-Scholes model, this implied
volatility should be a fixed number across option strike prices or some mea-
sures of moneyness. In reality, the implied volatility often exhibits a smile or
smirk pattern across moneyness as a direct result of conditional nonnormality
in the risk-neutral distribution of the underlying asset return. The slope of the
implied volatility smirk reflects asymmetry in the risk-neutral distribution of
the underlying return, and the curvature of the smirk reflects the fat tails
(leptokurtosis) of this distribution (Backus, Foresi, and Wu 1997).

Figure 3 plots the average shapes of the option implied volatility against
a standard measure of moneyness for the S&P 500 index. This moneyness
measure is defined as the logarithm of the strike price over the forward,
normalized by volatility and the square root of maturity. Panel a plots the
nonparametrically smoothed implied volatility surface across both maturity
and moneyness. Panel b plots the two-dimensional slices of the implied vol-
atility smirk at different maturities.

At a fixed maturity level, the implied volatility smirk is highly skewed to
the left, implying a highly asymmetric risk-neutral distribution for the equity
index return. Across maturities, the slope of the implied volatility smirk does
not flatten as maturity increases. This maturity pattern indicates that the index
return distribution under the risk-neutral measure remains highly asymmetric
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Fig. 2.—Applicability of the central limit theorem to S&P 500 index returns. Dashed
lines are estimates of skewness (a) and kurtosis (b) of the log returns on the S&P 500
index at different time aggregation levels (from 1 to 20 days). The solid lines are
implied by the central limit theorem on independently and identically distributed returns
with finite variance.
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Fig. 3.—Implied volatility smirks for S&P 500 index options. I obtain the implied
volatility surface (a) via nonparametric smoothing of daily closing implied volatility
quotes on S&P 500 index options from April 4, 1999, to May 31, 2000 (62,950
observations). The nonparemetric estimation employs independent Gaussian kernels
with bandwidths 0.2209 and 0.0715 along the moneyness and maturity dimension,
respectively. Maturity is in years. Moneyness is defined as , where�d { ln (K/F)/j t

is the average of all implied volatility quotes, K is the strike price and Fj p 27.4%
is the forward price. b, A two-dimensional slice of the implied volatility smirks at
maturities of 1 month (solid line), 6 months (dashed line), and 12 months (dash-dotted
line), respectively.
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Fig. 4.—Probability density of standardized returns on the S&P 500 index. The
solid line is the nonparametrically estimated density of the standardized returns over
a 25-business-day horizon on S&P 500 index. The dashed line is the risk-neutral
conditional density computed from option prices on S&P 500 index with 1-month
maturity. The dotted line is a standard normal benchmark.

as the time horizon increases. The stability-under-addition property holds un-
der the risk-neutral measure and up to the observable horizon of 2 years.1

This stability-under-addition feature under the risk-neutral measure forms a
sharp contrast to the behavior of the time series return distribution, which
shows rapidly declining nonnormality with increasing time aggregation.

Another distinct feature of the risk-neutral distribution for the equity index
return is that it is much more skewed to the left than the return distribution
under the objective measure. Figure 4 compares the nonparametrically esti-
mated probability density function of the 1-month equity index return (solid
line) with the 1-month conditional density inferred from the index options
data (dashed line). Refer to Aı̈t-Sahalia and Lo (1998) for the details on the
nonparametric estimation of the risk-neutral density from the options data.
Figure 4 plots both densities in terms of standardized return. The dotted line
represents a standard normal distribution benchmark. Compared to the normal
benchmark, both the risk-neutral and the objective densities on the S&P 500

1. More recently, Foresi and Wu (2005) find that the same maturity pattern holds for all major
equity indexes in the world and for time-to-maturities up to 5 years.
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index returns are more spiked in the middle and have thicker left tails. Nev-
ertheless, the right tail of the risk-neutral distribution is much thinner than
the right tail of the objective distribution and is even thinner than that of the
normal benchmark. Thus, the risk-neutral distribution of the equity index
return is much more skewed to the left than its objective counterpart.

A successful model for the equity index process should be able to reconcile
the stylized evidence documented in this section. The model should generate
a return distribution under the objective measure that exhibits power tails but
nevertheless obeys the central limit theorem. Meanwhile, the model should
also generate a risk-neutral distribution that is much more skewed to the left
than its objective counterpart and that preserves stability across different time
horizons.

III. A Stylized Model

In this section, I propose a stylized model that reconciles all the above stylized
evidence on the equity index returns under both the objective measure and
the risk-neutral measure. The model is as stylized as the evidence. The purpose
of developing such a stylized model is to gain better understanding on the
tail behavior of asset return innovations and to gain insights on the economic
underpinnings of the distribution differences under the objective and the risk-
neutral measures. The stylized model can also be used as a springboard and
a key component in more comprehensive modeling endeavors.

A. The Dampened Power Law (DPL)

Let X be a one-dimensional pure jump Lévy process defined on a probability
space . I use to capture the uncertainty of the economy and model(Q, F, P) Xt

the price of an asset as an exponential affine function of ,S Xt t

S p S exp [mt � X � k(1)t], (1)t 0 t

where m denotes the instantaneous drift of the asset price process and isk(1)
a convexity adjustment of so that the term forms a P-X exp [X � k(1)t]t t

martingale. This adjustment term can be derived from the cumulant exponent
of ,Xt

1
sXtk(s) { log �[e ], s � D, (2)

t

where denotes the expectation operator under measure P and denotes�[7] D
the subset of the real space where is well defined. The cumulant exponentk(s)
of a pure jump Lévy process can be computed via the Lévy-Khinchine theorem
(Bertoin 1996),

sxk(s) p [e � 1 � sh(x)]n(x)dx, (3)�
0�
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where is the Lévy density of the pure jump Lévy process , which isn(x) Xt

defined on (the real line excluding zero) and controls the arrival rate of0�

jumps of size x. The function denotes a truncation function0 0h(x) : � r �

used to analyze the jump properties around the singular point of zero jump
size. It can be any function that is bounded, with compact support, and satisfies

in a neighborhood of zero (Jacod and Shiryaev 1987). The speci-h(x) p x
fication of the Lévy density controls the key feature of the model.

Definition 1 (Dampened Power Law [DPL]). The arrival rate of jumps
of size x in asset returns follows a power law, dampened by an exponential
function:

�b FxF �a�1�g e FxF x 1 0�n(x) p (4)�b FxF �a�1�{g e FxF x ! 0,�

with the parameters , , .�a � (0, 2] b g � �� �

By setting and hence without exponential dampening, the Lévyb p 0�

density uniquely determines an a-stable Lévy motion that generates the a-
stable distribution proposed by Mandelbrot (1963) and Fama (1965). The
arrival rate of jumps of size x decays in power law. The difference in andg�

determines the asymmetry of the a-stable distribution.2 As a special ex-g�

ample, Carr and Wu (2003) set so that they only allow negative jumpsg p 0�

in their model.
With strictly positive dampening , the exponential functions �b FxF�b 1 0 e�

and in equation (4) dampen the Lévy density so that the arrival rate�b FxF�e
of jumps decays faster as the absolute jump size increases. I label theFxF b�

dampening coefficients and say that the asset return innovation obeys theXt

dampened power law.
Carr et al. (2002) consider a similar specification for the Lévy measure but

with the constraint of . They regard the specification as an extensiong p g� �

to the variance gamma model of Madan et al. (1998) and Madan and Seneta
(1990), where and thus the return distribution does not have a powera p 0
component. If we set , the specification in equation (4) captures aa p �1
double-exponential specification, as in Kou (2002). However, my focus in this
article is on models with a power decay and, hence, a strictly positive a.

The exponential dampening dramatically alters the fundamental properties
of the return innovation . Without dampening, follows an a-stable dis-X Xt t

tribution and only moments of order less than a are well defined. Given
, the variance of the return is not finite, and hence the classic centrala ! 2

limit theorem does not apply. With strictly positive dampening ( ), theb 1 0�

following proposition states that the moments of of all finite orders areXt

finite.
Proposition 1. Given the Lévy density in equation (4), with strictly

2. In principle, the power a can also be different for the two sides of the distribution, but I
follow convention in introducing asymmetry only through . Refer to Zolotarev (1986), Janickig�

and Weron (1994), and Samorodnitsky and Taqqu (1994) for details on a-stable distributions.
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positive dampening and with , the cumulant exponent of(b 1 0) a ( 1 X� 1

is

a ak(s) p G(�a)g [(b � s) � b ]� � �

a a� G(�a)g [(b � s) � b ] � sC(h), (5)� � �

where is an immaterial constant that depends on the exact form of theC(h)
truncation function but will be eventually cancelled out with the convexityh(x)
adjustment term in the asset price specification. The jth cumulant is given by

�k(s)
a�1 a�1k { p G(1 � a)[g (b ) � g (b ) ] � C(h), (6)1 � � � �F�s sp0

j� k(s)
a�j j a�jk { p G( j � a)[g (b ) � (�1) g (b ) ], j p 2, 3, … ,j � � � �j F�s sp0

(7)

which is finite for all j as long as . When either or ,b 1 0 b p 0 b p 0� � �

only moments of order less than are finite.a ≤ 2
I leave the proof in appendix A. The cumulant exponent takes a different

form for the special case of , the results of which are in appendix B.a p 1
The other special case is when , that is, the variance gamma model; Ia p 0
refer interested readers to Madan and Seneta (1990) and Madan et al. (1998)
for details. For ease of exposition, I will base the discussions in this article
on the general case with .a ( 1

The return innovation has finite moments of all orders as long as theXt

dampening coefficients on both sides of the distribution are strictly positive.
Without dampening on either side, the variance of the asset return does not
exist, and hence the central limit theorem does not apply.

For asset pricing, we are concerned not only with the finiteness of moments
of the asset return but also with the finiteness of moments of the asset price.
For example, if the conditional mean (first moment) of the asset price were
not finite under the risk-neutral measure, there would not exist a martingale
measure with a finite interest rate. The no-arbitrage condition might then be
violated, a concern originally raised by Merton (1976) on the applicability of
a-stable distributions in modeling asset returns. Under the DPL specification,
the dampening coefficients also determine the existence of price(b , b )� �

moments.
Proposition 2. With , the cumulant exponent of X is wellg , g 1 0� �

defined on .s � (�b , b )� �

By the definition of the cumulant function, this means that the conditional
price moments are finite within the orders of . Thus, under the(�b , b )� �
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specification in equation (1), for the convexity adjustment term to bek(1)
finite and with , the dampening coefficient on the positive jumps, ,g 1 0 b� �

must be no less than one. The proof for this proposition follows the proof of
proposition 1 in appendices A and B.

B. The Market Price of Jump Risk

Consistent with the separate parameterization on the arrival rate of negative
and positive jumps, I also allow market participants to have different risk
attitudes toward positive and negative jumps. For example, for a security with
an aggregate long position in the market, such as an equity index, downside
and upside jumps generate quite different impacts on people’s wealth. Thus,
it is very likely that the market treats the downside jumps as “hazards” and
upside jumps as “potentials” and charges different premiums on jumps of
different directions. In contrast, for a process underlying a net zero position,
such as an exchange rate process, jumps of both directions are more likely
to be treated equally. My separate treatment of downside and upside risks
allows the data to determine whether or not the market discriminates asset
price movement of different directions.

Formally, corresponding to an instantaneous interest rate r, I define a new
measure Q that is absolutely continuous with respect to the objective measure
P. Under this measure Q, asset prices discounted by the bank account defined
on r become martingales. No arbitrage guarantees the existence of at least
one such measure, often referred to as the risk-neutral measure. I propose that
the following extended exponential martingale defines the measure change
from P to Q:

dQ
� �{ exp [�l X � tk (�l )] exp [�l X � tk (�l )], (8)� t � � � t � �FdP t

where and are independent processes consisting only of the positive� �X X
and negative jumps of X, respectively, with . Accordingly,� �X p X � X k�

and are the cumulant exponents of and , respectively, with� �k X X k p�

. My extension to the standard exponential martingale lies in thek � k� �

different parameterizations and for positive and negative jumps, re-l l� �

spectively. The literature refers to l as the market price of risk. Under my
extension, is the market price of upside jump risk and is the marketl l� �

price of downside jump risk.
Applications of exponential martingales for measure changes, normally

without the separate treatment for positive and negative jumps, have been
considered in Madan and Milne (1991), Gerber and Shiu (1994), Eberlein
and Keller (1995), Kallsen and Shiryaev (2002), and Carr and Wu (2004).
Kallsen (2000) considers its link to exponential utility maximization. Miyahara
(1999) and Chan (1999) consider its link to the relative entropy minimization.

Given the specification of the Lévy density of in equation (4) undern(x) Xt
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measure P and the measure change defined in equation (8), the Lévy density
of under measure Q becomes3Xt

�l x �(b �l )FxF �a�1� � �e n(x) p g e FxF x 1 0Q �n (x) p (9)�l x �(b �l )FxF �a�1� � �{e n(x) p g e FxF x ! 0.�

If I further define and , it becomes obvious thatQ Qb { b � l b { b � l� � � � � �

also obeys an exponentially dampened power law under the risk-neutralXt

measure Q. The dampening coefficients for positive and negative jumps under
the risk-neutral measure are and , respectively.Q Qb b� �

By analogy to proposition 1, with , the cumulant exponent ofa ( 1 Xt

under the new measure Q is

Q Q a Q ak (s) p G(�a)g [(b � s) � (b ) ]� � �

Q a Q a Q� G(�a)g [(b � s) � (b ) ] � sC (h), (10)� � �

which is finite for . Furthermore, the jth cumulant of underQ Qs � (�b , b ) X� � 1

measure Q is

Q a�1 Q a�1 Qk p G(1 � a)[g (b ) � g (b ) ] � C (h), (11)1 � � � �

Q a�j j Q a�jk p G( j � a)[g (b ) � (�1) g (b ) ], j p 2, 3, … , (12)j � � � �

which is finite for all as long as . When eitherQ Qj p 1, 2, … b ( 0 b p� �

or , only moments of order less thanQb � l p 0 b p b � l p 0 a ≤� � � � �

are finite.2
Under this risk-neutral measure Q, the asset price becomesSt

Q(r�q)t�X �tk (1)tS p S e , (13)t 0

where is given in (10) and q is the dividend yield. No arbitrage dictatesQk (1)
that the instantaneous drift is under the risk-neutral measure. The(r � q)
market risk premium on the asset return is given by

Qm � (r � q) p k(1) � k (1).

The exponential martingale has an asymmetric flavor in its definition of
market price of risk even if . In particular, a positive marketl p l p l� �

price of risk l fattens the left tail of the asset return (negative jumps) but
thins the right tail (positive jumps) of the asset return under the risk-neutral
measure. This asymmetry generates the difference between and Qk(1) k (1)
and hence the risk premium in return. Thus, starting at a symmetric distribution
under the objective measure P, the risk-neutral density of the return distribution
becomes skewed to the left when the market price of risk l is positive and
of the same magnitude on jumps of both directions.

Since needs to be nonnegative for the Lévy density to beQb p b � l� � �

well defined, to exclude arbitrage, the market price on downside jumps is

3. Refer to Küchler and Sørensen (1997) for measure changes under exponential martingales.
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bounded from above at . That is, even if the market is extremelyl ≤ b ≤ 0� �

averse to downward jumps, under no arbitrage, the maximum premium that
can be charged on the downward jumps is .l p b� �

Remark 1 (Unique Feature of S&P 500 Index Options). For S&P 500
index options, if and the market charges the maximum premiuml p b� �

allowable by no arbitrage on downside index jumps, the left tail of the risk-
neutral distribution of the index return follows a power law with no dampening.

With , return variance and higher moments are infinite. Hence, thel p b� �

central limit theorem does not apply to the asset return under measure Q.
Therefore, by modeling asset returns with the exponentially dampened

power law, I can reconcile all the stylized findings documented in Section II.
With exponential dampening, asset returns can both have power tails and obey
the central limit theorem in converging to normality with time aggregation.
Furthermore, when the market charges the maximally allowable premium on
downside index movement, the left tail of the risk-neutral return on the index
is no longer dampened and hence the central limit theorem no longer applies,
consistent with the observation from the index options market.

IV. Calibration Exercises

To gain further insights on the model and gauge the market attitudes toward
downside and upside movements in the equity index, I calibrate the DPL
model to both the time series of the S&P 500 index returns and the cross
section of the option prices on S&P 500 index. The model parameters vector
is given by . I calibrate two versions of the model,Q lV p [m, a, g , b , b ]� � �

one being unconstrained, the other with the constraint and henceQb p 0�

, under the null hypothesis that the market charges the maximallyl p b� �

allowable premium on downward index movement. Performance comparisons
between the two versions of the model shed light on whether the market
charges the maximum premium on the downside index movement.

A. Data and Estimation

The data sources for the equity index returns and the equity index options
are described in Section II. For the time series data, to increase the stability
of the numerical algorithm, I calibrate the models to standardized log returns,
that is, returns that are demeaned and normalized by its sample standard
deviation. Furthermore, due to the telescopic property of the log returns, an
arithmetic sample average would present a noisy estimate of the mean return
that only depends upon the first and the last observation. Instead, I estimate
the mean return by regressing log price on time t,

ln S p a � bt � e,t

where , with T being the number of daily observations, andt p [1 : T ]/252
the estimate for b is an estimate for the mean annualized log return. Based
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on other model parameter estimates and the model specification in (1), the
estimate for the instantaneous drift of the index is given by

ˆm p b � k � k(1),1

where the is the first cumulant of and is the cumulant exponent ofk X k(1)1 1

X. Recall that X defines the uncertainty of the economy and is described by
the DPL Lévy density in equation (4).

To facilitate estimation, I also normalize the option prices as the forward
option price in percentages of the forward underlying price,

rtP(k, t)e
p(k, t) p 100 # ,

F

where denotes the out-of-money option midquote at moneyness k andP(k, t)
maturity t. The moneyness in this case is defined as . Under thek { ln K/F
Lévy assumption, this normalized option price at each fixed moneyness and
maturity should be identical across different dates. Thus, I can estimate the
mean value and variance of the normalized option price at each moneyness
and maturity via nonparametric regression.

I use the fast Fourier transform (FFT) method of Carr and Madan (1999)
to compute model price for the options based on the characteristic function
of the log return. Since this FFT algorithm generates option prices at fixed
moneyness with equal intervals at each maturity, options at observed maturities
are used for the estimation. But at each maturity, I sample the options data
with a fixed moneyness interval of , within the moneyness rangeDk p 0.03068

. This moneyness range excludes approxi-k p ln K/F p (�0.3988, 0.1841)
mately 16% deep out-of-money options (approximately 8% calls and 8% puts)
which I deem as too illiquid to contain useful information. I apply linear
interpolation to obtain the option prices at the fixed moneyness grids, resulting
in a maximum of 20 strike points at each maturity. For the interpolation to
work with sufficient precision, I require that there be at least five data points
at each date and maturity. I also refrain from extrapolating by only retaining
option prices at fixed moneyness intervals that are within the data range.
Visual inspection indicates that at each date and maturity, the quotes are so
close to each other along the moneyness line that interpolation can be done
with little error, irrespective of the interpolation methods. In total, the pro-
cedure generates 35,038 option sample data points used for estimation.

With the above data set, I estimate the models using a maximum likelihood
method. Under the Lévy specification, stock returns are independently and
identically distributed under both the objective measure P and the risk-neutral
measure Q. I exploit this property to expedite the likelihood calculation. First,
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given the cumulant exponent expressions in (5) and (10), the characteristic
functions of the stock returns over horizon , are given byt, s p ln (S /S )t t 0

ius iu[m�k(1)]t�tk(iu)tJ(u) { �[e ] p e ,
Q QQ Q ius iu[r�q�k (1)]t�tk (iu)tJ (u) { � [e ] p e , (14)

under measures P and Q, respectively. Second, given the characteristic func-
tion of the log returns under measure P, I apply the fast Fourier transform to
efficiently compute the probability density at a fine grid of return levels. The
log likelihood value of the time series return data can thus be readily computed
from these densities.

The likelihood for the option prices is computed by assuming that the option
pricing errors are normally distributed. Given the Lévy specification, the nor-
malized option price of the index, , should be the same across differentp(k, t)
days at fixed moneyness and maturity levels. Thus, a mean estimate of the
option price at each moneyness and maturity reflects its “true” value, and the
variance estimate reflects the variance of the pricing error. Assuming that the
pricing errors are independently, normally distributed with distinct variance
at different moneyness and maturity, I construct the log likelihood function
based on the normalized option price as

21 [p(k, t) � p(k, t; V)]ˆl(k, t) p � ln [2pV(k, t)] � ,ˆ2 2V(k, t)

where is the normalized option price at moneyness k and maturity t,p(k, t)
is the corresponding model value with parameter vector V, andp(k, t; V)

denotes the variance estimate of the pricing error at moneyness k andV̂(k, t)
maturity t. Under the Lévy specification and given the Fourier transform of
the risk-neutral return in equation (14), the model value canQJ (u) p(k, t; V)
be computed via the fast Fourier transform method by setting S p F p

and . Finally, since option quotes are observed at varying100 r p q p 0
moneyness and maturities, I use nonparametric regression to estimate the
sample variance, , of the normalized option quotes at each fixed mo-V̂(k, t)
neyness and maturity level. I apply independent Gaussian kernels for the
nonparametric regression, with bandwidths at 0.1386 and 0.2862 along the
moneyness and maturity dimension, respectively.

The aggregate likelihood function ( ) is then constructed as a summationL
of the log likelihood from the time series returns and the log likelihood from
the cross section of options. The model parameters are estimated by maxi-
mizing the aggregate likelihood value.

B. Model Parameter Estimates

Table 1 presents the model parameter estimates, together with their standard
errors and p-values. Given the extremely large sample used for the estimation,
the standard errors for most model parameters are very small, and so are their
p-values. Panel A of table 1 contains the estimates for the unconstrained model.
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TABLE 1 Parameter Estimates of the DPL Model

Model
Parameters

A. Unconstrained B. Constrained

Estimates SE p-Value Estimates SE p-Value

m .0776 .0001 .0000 .0777 .0001 .0000
a 1.4892 .0000 .0000 1.4942 .0000 .0000
g� .0024 .0000 .0000 .0024 .0000 .0000
g� .0315 .0000 .0000 .0311 .0000 .0000
b� 1.0015 .0000 .0000 1.0015 .0000 .0000
b� 12.9788 .0000 .0000 12.9436 .0000 .0000

Qb� 5.2306 .6282 .0000 5.2479 .4684 .0000
Qb� .0067 .0226 .7656 0 . . . . . .

4L(#10 ) �6.77767 �6.77772

Note.—Entries report the estimates, standard errors, and p-values of the model parameters. Panel A presents
the estimates for the unconstrained model, panel B for the model with the constraint . The models areQb p 0�

calibrated to both the time series of daily return data on S&P 500 index from July 3, 1962, to December 31,
2001 (9,942 observations), and the large cross section of S&P 500 index option prices from April 1999 to
May 2000 (290 business days, 35,038 observations). The calibration is based on the maximum likelihood
method. The last row reports the aggregate log likelihood values for the two models.

The tail index a is 1.4892, close to literature estimates on pure a-stable models
without dampening. The scaling coefficients control the asymmetry of theg�

distribution in the absence of exponential dampening. The scale estimate on
positive jumps, , is more than 10 times smaller than the scaleg p 0.0024�

estimate on negative jumps, . Without dampening or with sym-g p 0.0315�

metric dampening, this different scaling generates negative skewness in the
return distribution.

Now we look at the dampening coefficients on both tails under theb�

objective measure. These dampening coefficients influence the tail behavior
of the return distribution under the objective measure. The dampening co-
efficient on the right tail is fairly moderate at , just barely enoughb p 1.0015�

to guarantee the existence of the first price moment. The dampening on the
left tail is much stronger at . Since the scaling coefficient onb p 12.9788�

positive jumps is much smaller than the scaling coefficient on negativeg�

jumps , the lighter dampening counteracts with the smaller scaling on theg�

right tail to make it similar to the left tail, which has a larger scaling coefficient
but is also dampened more heavily. The net result of the interactions between
dampening and scaling is a relatively symmetric return distribution under the
objective measure (see the solid line in fig. 4).

The estimates for the risk-neutral dampening coefficients look dramatically
different from their objective-measure counterparts. Under the risk-neutral
measure, positive jumps are dampened much more heavily than under the
objective measure (5.2306 for versus 1.0015 for ). This heavy damp-Qb b� �

ening, combined with the small scaling ( ), makes the right tail very thing�

under the risk-neutral measure. In contrast, the dampening on the left tail of
the risk-neutral distribution is negligible, with the estimate for very closeQb�

to zero at 0.0067. This is dramatically different from the heavy dampening
under the objective measure ( ). This negligible dampening, to-b p 12.9788�
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gether with the large scaling parameter generates a very fat left tail forg�

the risk-neutral return distribution, supporting the evidence in figure 4 (the
dashed line).

The estimate for is the only estimate that has a large p-value (0.7656)Qb�

and, hence, is not significantly different from zero. With at zero andQb�

therefore no dampening on the left tail, the index return exhibits infinite
variance under the risk-neutral measure. The classic central limit theorem no
longer applies, and the return nonnormality persists as option maturity in-
creases. Thus, we achieve stability under time aggregation on the model-
generated implied volatility smirk across different maturities, in line with the
observation in figure 3.

The differences between the dampening coefficients under the risk-neutral
measure and the objective measure capture the market price of risk. The market
price of upside jump risk is .Ql p b � b p 5.2306 � 1.0015 p 4.2291� � �

The positive estimate implies a thinner right tail under the risk-neutrall�

measure than under the objective measure. It represents a discounting of the
positive index movement to compensate for uncertainty.

The market price of downward jump risk is Ql p b � b p� � �

. The positive estimate implies a thicker left12.9788 � 0.0067 p 12.9721 l�

tail under the risk-neutral measure than under the objective measure. It rep-
resents a premium charged against the downward index movement. The fact
that both estimates are positive indicates that market participants treat un-
anticipated shocks in both directions as risks and charge a risk premium for
both directions of shocks. Furthermore, the different magnitudes of andl�

indicate that the market’s risk attitudes toward the two directions of indexl�

movements are different. The market charges a much higher price (12.9721)
for downward index movements than for upward movements (4.2291). Indeed,
the premium charged on the downward index movement approaches the max-
imum value allowable by no arbitrage because the estimate for is no longerQb�

significantly different from zero.
Panel B of table 1 reports the parameter estimates of a restricted version

of the DPL model where the market price of downside risk is set to the
maximum that is allowable by no arbitrage: and, hence, .Ql p b b p 0� � �

A significant degeneration of model performance would reject this hypothesis.
Compared to the unrestricted model in panel A, the likelihood value of this
restricted version is not much smaller. A likelihood ratio test between the two
models, , generates a p-value of 0.3076, implying that2x (1) p 2(L � L )A B

the unrestricted version (A) of the model does not significantly outperform
the restricted version (B). The estimates for other model parameters are also
very similar under the two models. Therefore, the null hypothesis isQb p 0�

in compliance with the data: the market charges the maximally allowable
premium on downside index movements.
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V. Further Applications and Extensions

I have reviewed the stylized evidence and calibrated the models using data
on the S&P 500 index. In this section, I show that the DPL specification is
equally applicable to the currency market. Furthermore, by focusing on the
tail behavior of asset returns, I have thus far ignored evidence on stochastic
volatility and the presence of a diffusive component. I address such model
extensions in this section.

A. Applicability of the DPL to the Currency Market

Power tails are not a unique feature of the equity market. Similar tail behavior
has also been observed for currency returns (Calvet and Fisher 2002). Such
evidence suggests that the DPL specification could also be applicable to the
currency market.

Currency options exhibit different behaviors from that of the equity index
options. For comparison, figure 5 plots the nonparametrically smoothed im-
plied volatility surface and its two-dimensional slices on European options
on Deutsche mark. The options are listed at the Philadelphia Stock Exchange
(PHLX) and are downloaded from WRDS (Wharton Research Data Services).
The options are daily closing quotes from September 2, 1987, to December
19, 1997. The data set also contains the corresponding spot price of the
currency, along with the strike and maturity information. Domestic and foreign
interest rates are based on the corresponding LIBOR rates, downloaded from
Datastream. I check the no-arbitrage bounds and compute the Black-Scholes
implied volatility for each option quote. The cleaned-up data set has 12,465
option quotes. The smoothed implied volatility surface in figure 5 is from
this cleaned data set.

Compared to the average implied volatility surface on the equity index in
figure 3, figure 5 shows two sharp differences for the implied volatility surface
on currency options. First, in contrast to the highly skewed feature of the
implied volatility smirk for the equity index options, the implied volatility
smile for the currency options is relatively symmetric. This symmetric smile
implies a relatively symmetric risk-neutral distribution for the currency returns.
Second, although the implied volatility smirk on the index options does not
flatten as option maturity increases, the implied volatility smile on the currency
options flattens steadily with increasing maturity. Therefore, the conditional
nonnormality on the risk-neutral distribution of the currency return declines
steadily as the conditioning horizon increases.

The DPL model can accommodate both differences by a judicious choice
of the market prices of downside and upside risks . The relatively sym-(l )�

metric nature of the currency return distribution under both the objective
measure and the risk-neutral measure implies similar dampening and scaling
coefficients for both upward and downward currency movements under both
measures. Furthermore, as long as the dampening coefficients are strictly
positive and similar for both tails, the conditional return nonnormality will
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Fig. 5.—Implied volatility smiles for European options on Deutsche mark. I obtain
the implied volatility surface in panel a via nonparametric smoothing of daily closing
implied volatilities on European options on Deutsche mark from September 2, 1987,
to December 19, 1997 (12,465 observations). Maturity is in years. Moneyness is defined
as , where is the average of all implied volatility quotes,�d { ln (K/F)/j t j p 11.58%
K is the strike price, and F is the forward price. Panel b is a two-dimensional slice
of the implied volatility smirks at maturities of 1 month (solid line), 3 months (dashed
line), and 6 months (dash-dotted line), respectively.
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decline with the conditioning horizon, as implied by the central limit theorem.
A line for future research is to calibrate the DPL model to the currency time
series returns and the currency option prices and to investigate the differences
between the parameter estimates from the currency market and those from
the equity market.

B. The Presence of a Diffusion Component and Stochastic Volatility

The proposition of a pure jump Lévy process, the DPL, is consistent with
this article’s focus on the tails of the return distribution. Naturally, the DPL
model should not be regarded as the final answer to modeling financial asset
returns but, rather, as an organic component of a more sophisticated model
that may also include a diffusion component and stochastic volatility.

Recent empirical studies on the S&P 500 index returns and index options
have come to three major findings. First, the index return process contains
both a diffusion component and a jump component. Second, return volatilities
are stochastic and are correlated with the return innovation, that is, the so-
called leverage effect (Black 1976). Finally, stochastic volatility can come
from both diffusions and jumps (Bates 2000; Pan 2002; Huang and Wu 2004).
As an illustration, I propose an extended model structure that accommodates
all the above pieces of evidence, with DPL being the centerpiece of the jump
component specification.

Under the objective measure P, I propose the following process for the
asset price movement:

1 2 d j
jS p S exp [mt � jW � j T � X � k(1)T ], (15)dt 0 T t T tt t2

where m is the instantaneous drift of the asset price, j is a positive constant,
is a standard Brownian motion, and denotes the DPL jump component,W Xt t

as specified by the Lévy density in equation (4). The vector d j lT { [T , T ]t t t

denotes a stochastic time change applied to the two Lévy components andWt

. By definition, the time change is an increasing, right-continuous processX Tt t

with left limits satisfying the usual regularity conditions.
I further restrict to be continuous and differentiable with respect to t. InTt

particular, let

d j lv(t) { [v (t), v (t)] p �T /�t. (16)t

Then, is proportional to the instantaneous variance of the diffusion com-dv (t)
ponent, and is proportional to the arrival rate of the jump component.jv (t)
Following Carr and Wu (2004), I label as the instantaneous activity ratev(t)
and let the two activity rates follow separate stochastic processes. The fol-
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lowing specifications for the activity rate processes represent a reasonable and
parsimonious choice:

d d d d d�dv (t) p k [1 � v (t)]dt � j v (t)dZ ,v t

j j j j �
jdv (t) p k [1 � v (t)]dt � j dX ,v Tt

where Z denotes another standard Brownian motion, correlated with W by
, and denotes the negative jumps in .�rdt p �[dZ dW ] X Xt t t t

This specification tightly knits the three key elements of the asset price
behavior into one framework, with denoting the diffusion component,W Xt t

the jump component, and the two sources of stochastic volatility. Thev(t)
leverage effect is incorporated via both jumps and diffusion. Leverage via
diffusion is captured by a negative correlation r between the two Brownian
motions W and Z. Leverage via jumps is captured by the synchronous move-
ment of the negative jumps in returns and positive jumps in volatility. The
notation implies that whenever the return innovation jumps downward,�

j�X XT tt

the volatility innovation jumps upward. An analogous specification can be
assumed under the risk-neutral measure. Under this specification, I can derive
the characteristic function of the asset return following the method proposed
in Carr and Wu (2004). A line of future research is to investigate the empirical
estimation and performance of such stochastic volatility models in capturing
the behaviors of different financial markets.

VI. Concluding Remarks

I propose a stylized model that can reconcile a series of seemingly conflicting
findings on financial security returns and option prices. The model is based
on a pure jump Lévy process, wherein the arrival rate of jumps obeys a power
law dampened by an exponential function. The power law specification ac-
commodates the historical evidence on a-stable tails observed on the returns
of many financial assets. The exponential dampening generates finite return
variance such that the return nonnormality declines with time aggregation as
a result of the classic central limit theorem. This property answers the more
recent criticism and empirical evidence against the traditional a-stable spec-
ification. Furthermore, by applying an extended exponential martingale for
measure change, I allow the risk premiums for upside and downside asset
price movements to be different. When the risk premium on the downside
movement approaches the maximum value allowable by no arbitrage, the
dampening on the left tail disappears under the risk-neutral measure. Return
variance becomes infinite under such a measure, and the classic central limit
theorem no longer applies, thus complying with the evidence on the equity
index options.

I calibrate the model to S&P 500 index returns and index option prices.
The model parameter estimates confirm my conjecture that the market par-
ticipants’ risk attitudes toward upside and downside index movements are



1468 Journal of Business

quite different. The market participants only charge a moderate premium for
upward index movements, but they charge the maximally allowable premium
on downward index movements.

As examples for further applications and extensions, I show how the model
can also be applied to the currency market. I also show how this stylized
model can be extended to accommodate a diffusion component, separate
sources of stochastic volatility, and the leverage effect. Further research can
be devoted to investigate the empirical performance of this extended model
in capturing the behavior of returns on different financial assets.

Appendix A

Proof of Propositions 1 and 2

I apply the Lévy-Khinchine theorem to the DPL Lévy density,

�

sx �b x �a�1�k(s) p [e � 1 � sh(x)]g e x dx� �
0

0

sx b x �a�1�� [e � 1 � sh(x)]g e FxF dx� �
��

p k (s) � k (s).� �

To perform the integration, I need to choose a truncation function. It is convenient to
choose , which satisfies all the necessary properties for a truncationh(x) p xI !FxF 1

function.
The cumulant exponent for positive jumps is

�

sx �b x �a�1�k (s) p g (e � 1 � sxI )e x dx!� �� FxF 1
0

� �p I � I ,1 2

with

�

� sx �b x �a�1�I p g (e � 1 � sx)e x dx,1 ��
0

�

� �b x �a�1�I p g (sx � sxI )e x dx.!2 �� FxF 1
0
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For , I first Taylor expand the exponential function and then integrate term by term,�I1

�� 1
� m �b x �a�1�I p g (sx) e x dx�1 � �m!mp2 0

�� 1
m m�a�1 �b x�p g s (x) e dx (A1)�� �m!mp2 0

� 1
m �(m�a)p g s b G(m � a)�� �m!mp2

� m1 s
ap g b G(m � a). (A2)�� � ( )m! bmp2 �

From (A1) to (A2), I apply the gamma function

�

�x t�1G(t) p e x dx, t 1 0.�
0

The series in (A2) is a real-valued, convergent series as long as . Assuming thats ! b�

this is the case and that , I can consolidate the series expansion into the following:a ( 1

as s
� aI p g b a � 1 � 1 � G(�a)1 � � ( )[ ]b b� �

a a a�1p g G(�a)[(b � s) � b � sab ].� � � �

For the second part, I have

�

� �a �b x a�1�I p g sx e dx p sg b G(1 � a, b ).2 �� � � �
1

Combining and generates� �I I1 2

� �k (s) p I � I� 1 2

a a a�1 a�1p g G(�a)[(b � s) � b � sab ] � sg b G(1 � a, b )� � � � � � �

a ap g G(�a)[(b � s) � b ] � sC ,� � � �

with

a�1C p g b [G(�a)a � G(1 � a, b )].� � � �

The convexity adjustment term for the upside jump is

a ak (1) p g G(�a)[(b � 1) � b ] � C .� � � � �

It is obvious that the linear drift term will be cancelled out in the convexity-adjustedC�

jump process . Hence, is immaterial for my analysis and model�X � tk(1) Ct �

estimation.
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Now I turn to the cumulant exponent for negative jumps

0

sx �b FxF �a�1�k (s) p g (e � 1 � sxI )e FxF dx!� �� FxF 1
��

�

�sx �b x �a�1 � ��p g (e � 1 � sxI )e x dx p I � I .!�� FxF 1 1 2
0

The two integrals can be derived analogously,

�

� �sx �b x �a�1�I p g (e � 1 � sx)e x dx1 ��
0

�� 1
m �b x �a�1�p g (�sx) e x dx�� �m!mp2 0

�� 1
m m�a�1 �b x�p g (�s) (x) e dx�� �m!mp2 0

� m1 s
ap g b � G(m � a). (A3)�� � ( )m! bmp2 �

For the series to be convergent and real valued, I need . Assuming that thiss 1 �b�

is true and that , I havea ( 1

� a a a�1I p g G(�a)[(b � s) � b � sb a].1 � � � �

The second integral is

�

� �a �b x a�1�I p �g sx e dx p �sg b G(1 � a, b ).2 �� � � �
1

Therefore,

a ak (s) p g G(�a)[(b � s) � b ] � sC ,� � � � �

with the immaterial linear term

a�1C p �g b [G(�a)a � G(1 � a, b )].� � � �

Combining the cumulants for negative and positive jumps together, I have

a a a ak(s) p g G(�a)[(b � s) � b ] � g G(�a)[(b � s) � b ] � sC, (A4)� � � � � �

with , under the assumption that and , , orC p C � C a ( 1 s ! b s 1 �b s �� � � �

. Equation (2) proves equation (5) in proposition 1. The assumptions on s(�b , b )� �

are necessary for the cumulant exponent to be convergent. Hence, proposition 2 is
also proved.
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The cumulants of can be obtained by progressively evaluating the derivativeX1

:j jk p [� k(s)]/�s Fj sp0

a�1 a�1k p G(�a)g [�a(b � s) ] � G(�a)g [a(b � s) ] � C1 � � � �

a�1 a�1p G(1 � a)[g (b ) � g (b ) ] � C,� � � �

a�j j a�jk p G( j � a)[g (b � s) � (�1) g (b � s) ]j � � � �

a�j j a�jp G( j � a)[g (b ) � (�1) g (b ) ], j p 2, 3, … .� � � �

When , the terms and are finite at only whena�j a�ja � j ! 0 (b � s) (b � s) s p 0� �

, . Therefore, moments of order higher than a are finite only when bothb b ( 0� �

dampening coefficients are strictly positive. When either one is zero, cumulants(b , b )� �

are finite only up to order a.

Appendix B

The Special Case of a p 1

When , . The series in (A2) and (A3) converge to differenta p 1 G(m � a) p (m � 2)!
representations:

� m(s/b )��I p g b p g [s � (b � s) ln (1 � s/b )], (B1)�1 � � � � �m(m � 1)mp2

� m(�s/b )��I p g b p g [�s � (b � s) ln (1 � s/b )]. (B2)�1 � � � � �m(m � 1)mp2

Hence,

k (s) p g (b � s) ln (1 � s/b ) � sg [1 � G(0, b )],� � � � � �

k (s) p g (b � s) ln (1 � s/b ) � sg [1 � G(0, b )],� � � � � �

and

k(s) p g (b � s) ln (1 � s/b ) � g (b � s) ln (1 � s/b ) � sC,� � � � � �

with

C p g [1 � G(0, b )] � g [1 � G(0, b )].� � � �

Given the cumulant exponent, I can again derive the cumulants by progressively
evaluating the derivative ,k p [�k(s)]/�sFj sp0

k p �g � g � C,1 � �

�( j�1) j �( j�1)k p ( j � 2)!g b � (�1) ( j � 2)!g b , j p 2, 3, … ,j � � � �

which are finite for all j as long as .b 1 0�
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