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Implied risk aversion estimates reported in the literature are strongly U-shaped. This

article explores different potential explanations for these ‘‘smile’’ patterns: (i) pre-

ference aggregation, both with and without stochastic volatility and jumps in returns,

(ii) misestimation of investors’ beliefs caused by stochastic volatility, jumps, or a Peso

problem, and (iii) heterogeneous beliefs. The results reveal that preference aggrega-

tion and misestimation of investors’ beliefs caused by stochastic volatility and jumps

are unlikely to be the explanation for the smile. Although a Peso problem can account

for the smile, the required probability of a market crash is unrealistically large.

Heterogeneous beliefs cause sizable distortions in implied risk aversion, but the

degree of heterogeneity required to explain the smile is implausibly large. (JEL:

G12, G13)

In a representative agent economy, equilibrium asset prices reflect the

agent’s preferences and beliefs. Rubinstein (1994) showed that any two of
the following imply the third: (i) the representative agent’s preferences, (ii)

his subjective probability assessments, and (iii) the state-price density.

Therefore, essentially any state-price density can be reconciled with the

distribution of asset prices by using an appropriate set of preferences for

the representative agent. Building on this insight, a number of papers

have derived estimates of the representative agent’s risk aversion from the

state-price density and the subjective probability density.

Aı̈t-Sahalia and Lo (2000), Jackwerth (2000), and Rosenberg and Engle
(2002) report implied risk aversion estimates that have similar shapes,

with some differences. They all found that implied risk aversion varies

strongly across S&P 500 index values and is U-shaped around the futures

price. Jackwerth (2000) and Rosenberg and Engle (2002) even obtained

negative risk aversion estimates for a range of index values centered

around the futures price.

The aim of this article is to explore different potential explanations for

the implied risk aversion smile by investigating the properties of implied
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risk aversion estimators in different settings within the standard con-

sumption-based framework commonly used in the implied risk aversion

literature. Before going into the details of these potential explanations, it

is worth reflecting on the advantages and limitations of this framework.

Its limitations are well known: in addition to the assumptions of standard

consumption-based asset pricing models—an exchange economy with

complete, frictionless markets, and a single consumption good—this

framework assumes that the stock index is a good proxy for the aggregate
endowment. These assumptions are restrictive. For instance, the stochas-

tic processes driving index returns and aggregate consumption are differ-

ent: stock indices exhibit stochastic volatility, whereas aggregate

consumption is almost homoskedastic [Lochstoer (2004)]. In addition,

numerous papers argue that it is necessary to relax the assumptions of

complete, frictionless markets, and a single consumption good to recon-

cile the stochastic processes driving aggregate consumption and asset

prices.1 It is therefore important to keep in mind that the conclusions
drawn below are valid only within the framework considered and that the

limitations of the standard consumption-based framework constitute

alternative potential explanations for the implied risk aversion smile.

For example, if the stock index is not a good proxy for the aggregate

endowment, then preferences inferred on the basis of stock indices will be

distorted. Similarly, market incompleteness—such as the existence of

non-tradable background risk, borrowing, and/or short-selling con-

straints—may affect individual agents’ behavior in such a way that mar-
ket prices suggest oddly behaved preferences unless the precise nature of

incompleteness is modeled explicitly and its effect on individual behavior

accounted for.2

In spite of its limitations, the standard consumption-based framework

is appealing to explore potential explanations for the implied risk aver-

sion smile. Its main advantage is that the link between the representative

agent’s preferences, his beliefs, and the state-price density naturally sug-

gests a number of potential explanations. The first possibility is that the
aggregation of investors’ heterogeneous preferences could lead to an oddly

behaved economy-wide risk aversion function. This aggregation problem

could be compounded by the presence of stochastic volatility and jumps

in returns.

1 Constantinides and Duffie (1996) resolved the empirical difficulties encountered by representative agent
consumption-based models using uninsurable labor income shocks. Lochstoer (2004) investigated the
role of heterogeneous agents and heterogeneous goods, whereas Siegel (2004) analyzed the impact of
frictions in a setting where adjusting durable good consumption is costly.

2 Although market incompleteness may cause implied risk aversion to smile, it need not do so. For
instance, Poon and Stapleton (2005) showed that with CRRA preferences, the introduction of back-
ground risk causes the pricing kernel to exhibit declining elasticity, that is, implied relative risk aversion
to be strictly decreasing.

The Review of Financial Studies / v 20 n 3 2007

860



Second, misestimation of investors’ beliefs could distort implied risk

aversion estimates. Because agents’ beliefs are unobservable, a long tradi-

tion has emerged in financial economics of estimating them using histor-

ical return distributions. As noted by Brown and Jackwerth (2004), the

problem with this approach is that such estimates are backward-looking,

whereas investor beliefs are by definition forward-looking. Accordingly,

such estimates are inaccurate whenever the return process is time vary-

ing—for instance, because of stochastic volatility and jumps—and when-
ever agents expect return realizations that are absent from historical

return realizations, that is, in the presence of a Peso problem. In addition,

beliefs estimates based on historical returns typically ignore the possibility

of heterogeneous beliefs, whose existence could distort implied risk aver-

sion estimates.

Third, misestimation of the state-price density could distort implied risk

aversion estimates. However, the estimation of state-price densities does

not suffer from the same pitfalls as the estimation of beliefs because state-
price densities are forward-looking estimates obtained from observed

forward-looking variables, namely traded option prices.3 Moreover, they

are unique market prices, irrespective of whether investors have homo-

geneous or heterogeneous beliefs or preferences.

Although the accuracy of nonparametric estimators is sometimes criti-

cized, especially in regions with few observations [Aı̈t-Sahalia and Duarte

(2003)], the state-price density estimation methodology seems unlikely to

be the cause of the implied risk aversion smile, for three reasons. First,
although they each used a somewhat different methodology, Aı̈t-Sahalia

and Lo (2000), Jackwerth (2000), and Rosenberg and Engle (2002) all

obtained similar results. Second, the most puzzling part of the implied

risk aversion patterns—the negative risk aversion estimates—arises in the

range of index values centered around the futures price, that is, in the

region where options are most liquid and the largest number of observa-

tions is available. Third, although the reliability of nonparametric esti-

mators has been questioned in the literature, Bliss and Panigirtzoglou
(2000) showed that the smoothed implied volatility smile method—which

is used in Aı̈t-Sahalia and Lo (2000)—is actually quite stable.

Because state-price density estimates are quite reliable, this article

focuses on preference aggregation and beliefs as potential explanations

for the implied risk aversion smile. More specifically, it investigates to

what extent the following factors can account for the smile within the

standard consumption-based framework:

3 Although the implied risk aversion literature uses option-based state-price density estimates, Aı̈t-Sahalia,

Wang, and Yared (2001) showed that the state-price density can also be estimated using historical index

returns and index futures prices.
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. The aggregation of heterogeneous preferences among agents, both

with and without stochastic volatility and jumps;
. Misestimation of agents’ beliefs due to stochastic volatility, jumps,

or a Peso problem; and
. Heterogeneous beliefs among agents.

The results reveal that most of the properties of individual agents’ risk

aversion functions carry over to implied risk aversion. Preference aggre-
gation therefore seems unlikely to be the explanation for the implied risk

aversion smile. This result also holds true in the presence of stochastic

volatility and jumps in returns.

Implied risk aversion estimates are found to be very sensitive to beliefs

estimates, warranting a detailed investigation of the potential causes of

beliefs estimation errors. To assess whether beliefs estimation errors

caused by stochastic volatility and jumps can explain the smile, we

computed the risk aversion function implicit in the Pan (2002) stochastic
volatility and jumps model. Although it does not smile, the resulting risk

aversion function varies strongly with the stock index level and is negative

in high-return states, suggesting that misestimation of beliefs caused by

stochastic volatility and jumps as captured in the Pan (2002) model is

unlikely to be the explanation for the smile. The beliefs misestimation

pattern implied by the formal link between beliefs estimation errors and

risk aversion estimation errors indicates that belief estimates based on

historical returns overestimate the probability of very high-return realiza-
tions and underestimate the probability of very low-return realizations—

a pattern that would typically arise in the presence of a Peso problem.

However, to reproduce the semi-parametric state-price density of Aı̈t-

Sahalia and Lo (2000), the perceived probability of a market crash must

be unrealistically large. Thus, although a Peso problem can contribute to

explaining the smile, it appears unlikely to be its only cause.

The presence of heterogeneous beliefs is shown to cause significant

distortions in implied risk aversion estimates if heterogeneity is not
accounted for explicitly in the estimation process. This result holds even

if implied risk aversion is estimated using the weighted average of inves-

tors’ beliefs. However, fitting a heterogeneous-beliefs state-price density

with three groups of investors to the semi-parametric state-price density

of Aı̈t-Sahalia and Lo (2000) reveals that two groups of pessimistic

investors with an implausibly large degree of pessimism are required to

generate the fat left tail of the empirical state-price density and explain the

implied risk aversion smile.
Thus, for plausible parameter values, none of the three potential expla-

nations considered in this article is able to account for the implied risk

aversion smile within the standard consumption-based framework com-

monly used in the implied risk aversion literature. To explain the smile, it
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therefore seems necessary to go beyond the standard consumption-based

framework and analyze the impact of factors such as market incomplete-

ness, market frictions, and the fact that the stock index may not be a good

proxy for the aggregate endowment.

The article is organized as follows. Section 1 presents the heteroge-

neous-beliefs model used in the analysis. Section 2 characterizes the

properties of implied risk aversion in different settings to explore the

three potential explanations for the implied risk aversion smile. Section
3 concludes.

1. The Model

To study the properties of implied risk aversion estimates in a setting with
heterogeneous preferences and beliefs, we consider a continuous-time

incomplete information exchange economy with a finite horizon ½0,T �.
Our economy is similar to that used by Basak (2005) in his analysis of

asset pricing with heterogeneous beliefs, and the following description is

therefore similar to the one in his article. There is a single consumption

good, and markets are complete. There is a large number of price-taking

risk-averse agents indexed by i ¼ 1,…,I . These investors may have het-

erogeneous beliefs, preferences, and endowments. This setting generalizes
the representative agent setting commonly used in the implied risk aver-

sion literature by explicitly allowing for heterogeneity among agents.

1.1 Information structure and investor beliefs

The information structure is similar to that in Basak (2005), except that

the possibility of jumps in the aggregate endowment is allowed for. The

uncertainty in the economy is represented by a probability space ð�,F ,PÞ.
The complete information filtration is denoted fF tg ¼ �ðB,NÞ, where B

is a standard Brownian motion and N a Poisson counter. Investors

commonly observe the aggregate endowment ct, which is exogenous

and bounded away from zero. However, they have incomplete (but

symmetric) information on its dynamics. The aggregate endowment

ct � 0 follows

dct ¼ �tdtþ �tdBt þ dJt, ð1Þ

where Bt is an fF tg-standard Brownian motion and Jt a fF tg-pure jump

process. Jumps have probability distribution �t and arrival intensity �t.
4

The coefficients �t, �t, �t, and �t can be random and are assumed to

4 To guarantee that financial markets with a finite number of securities remain complete even in the
presence of jumps, the jump process must satisfy Jt ¼

R t

0 �udNu, where � is predictable and �ðB,NÞ
measurable. In this case, the jump size distribution �t is the distribution of �. I am grateful to Julien
Hugonnier for pointing this out.
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satisfy appropriate regularity conditions so that all processes and expec-

tations considered below are well defined. The mean growth �t, the

volatility �t, the jump arrival intensity �t, and the jump size distribution

�t are all assumed to be fF tg adapted.

Investors observe ct continuously. They have the incomplete informa-

tion filtration F c
t � F t, t 2 ½0,T �, where fF c

tg denotes the filtration gen-

erated by ct, F c
t ¼ �ðcu : u � tÞ. Because of continuous observation, they

know the time and magnitude of jump realizations. They are thus able to
deduce �t from the quadratic variation of ct. However, they can only

draw inferences about �t, �t, and �t. Investors have equivalent probabil-

ity measures Pi, which are also equivalent to the complete information

measure P. They may have heterogeneous prior beliefs about �0, �0, and

�0. As they observe realizations of the aggregate endowment ct, investors

learn. They update their beliefs in a Bayesian fashion, via

�i
t ¼ Eið�tjF c

t Þ, �i
t ¼ Eið�tjF c

t Þ, and �i
t ¼ Eið�tjF c

t Þ. Because of their dif-

ferent priors, investors may draw different inferences about these para-
meters at all times. Thus, our setting is quite general, allowing for

disagreement among investors about �t, �t, and �t. As is common in

incomplete information models, disagreement among investors arises

because of different prior beliefs. In these models, although investors

learn and their perceived processes typically become more similar as

time passes, different priors are generally sufficient to guarantee disagree-

ment among investors at all times.5

We shall not provide a detailed exposition of investors’ inference
process, as it is not necessary to derive the properties of equilibrium prices

and implied risk aversion.6 For our purposes, it is sufficient to recognize

that given his initial beliefs and the inference he performs, each investor i

perceives ct to follow a process of the form

dct ¼ �i
tdtþ �tdBi

t þ dJi
t , ð2Þ

where �i
t denotes the investor-specific drift estimate, the (known) diffu-

sion parameter �t is common across investors, dBi
t ¼ dBt þ �t��i

t

�t
dt

denotes the investor-specific Brownian innovation, and dJi
t is a jump

component. Although jump realizations are common across investors,

we use the superscript i to emphasize that investors may disagree as to the

arrival rate of jumps, �i
t, and the distribution of their size, �i

t. Effectively,

each investor is endowed with the probability space ð�,F i,PiÞ and the

5 See, for example, Detemple and Murthy (1994) for a general description and Basak (2005) for a
parametric example in the Gaussian case.

6 A detailed exposition of filtering in a setting which is quite similar to that used here can be found in Platen
and Runggaldier (2005).
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filtration fF i
tg ¼ fF c

tg. Different investors i and j’s innovations are

related by

dB
j
t ¼ dBi

t þ
�i

t � �
j
t

�t

dt: ð3Þ

In our setting, at any given time t, investors thus have individual

probability measures about the realizations of ! 2 � at each future

time s, Pið!,sÞ. In what follows, we will be particularly interested in

investors’ beliefs about the distribution of the aggregate endowment c

at some future time s, given its value at current time t. We will capture
these beliefs through the conditional density function pi

t,sðcsÞ. We use the

subscripts t and s to emphasize that at any current time t, there is one

such conditional density for each future point in time s considered.

1.2 Security markets

Trading can take place continuously, and we assume that a sufficient

number of securities is available so that the market is dynamically com-

plete. Hence, there exists a (unique) state-price density process for each
investor, �i

t ¼ �ið!,tÞ, which represents the Arrow–Debreu price per unit

probability as perceived by investor i, Pi, of a unit of consumption in

state ! 2 � at time t, with the obvious property that �i
0 ¼ 1.

1.3 Investor endowments, preferences, and optimization

Each investor i lives until time T and is endowed with an endowment

stream ei
t, with

PI
i¼1 ei

t ¼ ct for all t. Because markets are complete, this

endowment stream is equivalent to an initial wealth of W i
0 ¼ Ei

R T

0
�i

te
i
tdt,

where Ei denotes expectation taken with respect to investor i’s beliefs Pi.

Each investor seeks to maximize his smooth-additive lifetime utility of

consumption conditional on his beliefs Pi,

UiðciÞ ¼ Ei

ZT

0

uiðci
t,tÞdt, ð4Þ

where the utility function uiðci
t,tÞ is assumed to be twice continuously

differentiable, strictly increasing, and strictly concave. This maximization

is subject to the constraint of budget feasibility,

Ei

ZT

0

�i
tc

i
tdt �W i

0: ð5Þ
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Using the Lagrange multiplier �i > 0 that ensures that the above

budget constraint holds at the optimum, this maximization problem

can be rewritten as the unconstrained problem

max
fcig

Ei

ZT

0

uiðci
t,tÞ � �i�

i
tc

i
t

� �
dt: ð6Þ

Maximizing time by time and state by state yields the first-order condition

ui
cðci

t,tÞ ¼ �i�
i
t, ð7Þ

which uniquely identifies the investor’s optimal consumption ci
t as a

function of his individual state-price deflator �i
t ¼ �ið!,tÞ.

1.4 Equilibrium

Under market completeness, one can view each investor as purchasing

ci
tð�i

tÞ units of the consumption good given the realized value of his

individual state-price deflator �i
t at time t. We therefore define equili-

brium in this economy as a collection of consumption processes fcig and

state-price deflator processes f�ig such that (i) individual investors’ con-

sumption processes are optimal given their individual state-price defla-

tors �i
t (which themselves depend on their beliefs Pi and state prices, both

of which are exogenous from each investor’s perspective) and (ii) markets

clear, that is,
PI

i¼1 ci
t ¼ ct at all times. In our complete markets setting,

securities market clearing is implied by goods market clearing and need

therefore not be considered separately.
As noted in Basak (2005), who used a similar equilibrium definition,

equilibrium in our setting requires that the price system perceived by

investors to clear the market at a given time and state does actually

clear the market if that state is realized at that time, that is, investors’

expectations are rational and self-fulfilled in equilibrium.

1.5 Equilibrium allocations and prices

With complete markets, any equilibrium allocation fcig, i ¼ 1,…,I , must
solve the central planning problem

max
fcig

XI

i¼1

	iE
i

ZT

0

uiðci
t,tÞdt, s.t.

XI

i¼1

ci
t � ct8t ð8Þ

for some appropriate set of weights f	ig. This expression can be rewritten as
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max
fcig

E1
XI

i¼1

	i

ZT

0

uiðci
t,tÞ
i

tdt

0
@

1
A, s.t.

XI

i¼1

ci
t � ct8t, ð9Þ

where the random variable 
i
t ¼ dPi=dP1, 
i

0 ¼ 1¢s, is the Radon-Nikodym

derivative of investor i’s beliefs with respect to investor 1s beliefs, which is

used as reference without loss of generality. The first-order conditions for a

maximum are

	i

i
tu

i
cðci

t,tÞ ¼ �t ð10Þ

for all agents i, where �t is the multiplier that ensures that the aggregate

budget constraint is met in the realized state ! at time t. Note from (10)

that each agent’s consumption is a function of aggregate consumption ct,

of 
i
t, and of �t. Hence, �t itself will be a function of ct and the


i
ts, �t ¼ �tðct,


2
t ,…,
I

t Þ, and each agent’s optimal consumption can be

written as

ci
t ¼ ci

tðct,

i
t,�tðct,


2
t ,…,
I

t ÞÞ ¼ ci
tðct,


2
t ,…,
I

t Þ: ð11Þ

Thus, individual optimal consumption depends not only on the aggregate

endowment ct but also on the Radon–Nikodym derivatives of the differ-

ent agents’ beliefs dPi with respect to agent 1s beliefs dP10s. Because 
i
t is

in general path dependent, that is, a function of !, so will be individual

agents’ consumption, ci
t ¼ ci

tð!Þ. Using the first-order condition from the

individual agent optimization, ui
cðci

t,tÞ ¼ �i�
i
t, agent i’s state-price deflator

can be expressed as a function of the aggregate endowment and the

i

ts, �i
t ¼ �i

tðct,

2
t ,…,
I

t Þ. Therefore, �i
t is a function of !, not just of ct.

This is intuitive: �i
t represents the price of a unit of consumption in state !

per unit of probability as perceived by agent i, Pi. That price itself,

however, reflects the beliefs of all agents in the economy.

For our upcoming analysis of implied risk aversion, it is useful to

consider the price at time t of a claim that pays one unit of consumption

if the aggregate endowment cs falls in some interval A at some future time

s, irrespective of the remainder of the state of the economy (in other words,
that claim is not a ‘‘pure’’ state-contingent claim). For the agent’s con-

sumption plan to be optimal, that price, denotedQt,sðAÞ, must be given by

Qt,sðAÞ ¼
1

ui
cðci

t,tÞ
Piðcs 2 AÞEi ui

cðci
sðcs,


2
s ,…,
I

s Þ,sÞjcs 2 A
� �

: ð12Þ
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In words, the equilibrium price of the claim must be proportional to the

agent’s perceived probability that cs falls in the interval A considered,

Piðcs 2 AÞ, times his expected marginal utility if this happens,

Ei ui
c ci

sð�Þ,sÞjcs 2 A
� ��

. The relationship is cast in terms of expected marginal

utility because the agent’s optimal consumption depends not only on the

aggregate endowment cs but also on the Radon–Nikodym derivatives f
i
sg.

In formal computations, we will use the state-price density

qt,sðcsÞ ¼
1

ui
cðci

t,tÞ
pi

t,sðcsÞEi ui
cðci

sðcs,

2
s ,…,
I

s Þ,sÞjcs

� �
, ð13Þ

where pi
t,sðcsÞ denotes the density of cs as perceived by agent i at time t.

Taking the logarithmic derivative of this expression with respect to cs yields

q¢t,sðcsÞ
qt,sðcsÞ

¼ pi¢t,sðcsÞ
pi

t,sðcsÞ
þ
ðd=dcsÞEi ui

cðci
sð�Þ,sÞ

��cs

� �
Ei ui

cðci
sð�Þ,sÞjcs

� � : ð14Þ

This expression provides a link between state prices qt,s, the agent’s beliefs
pi

t,s, and the rate of change of his expected marginal utility with respect to

shifts in the aggregate endowment cs. Again, the expectation is required

because under heterogeneous beliefs, there is no one-to-one correspon-

dence between individual consumption and the aggregate endowment.

1.6 Implied risk aversion

Having described equilibrium prices in this economy, we can investigate

the properties of implied risk aversion estimates. In doing so, we maintain
the assumption, conventional in the implied risk aversion literature, that

the stock index, whose price is denoted S, is a good proxy for the

aggregate endowment, and therefore let cs ¼ S. To simplify notation,

we drop time subscripts and let PiðSÞ denote agent i’s perceived distribu-

tion at time t of S at some future time s, and QðSÞ be the price at time t of

a claim that pays one unit of the consumption good if the index achieves

a certain value S at time s.

For the reasons discussed in the introduction, assume that although the
state-price density Q can be estimated accurately, individual agents’

beliefs Pi cannot. Rather, suppose that it is only possible to obtain a

single beliefs estimate P̂ðSÞ. The implied absolute risk aversion estimator

�ðSÞ is given by

�ðSÞ ¼ P̂¢ðSÞ
P̂ðSÞ

�Q¢ðSÞ
QðSÞ : ð15Þ
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Substituting (14) with cs ¼ S into (15) yields

�ðSÞ ¼ �
ðd=dSÞEi ui

cðci
sð�Þ, sÞ

��S� �
Ei ui

cðci
sð�Þ, sÞjS

� � þ P̂¢ðSÞ
P̂ðSÞ

� P¢iðSÞ
PiðSÞ

 !
: ð16Þ

Thus, the implied risk aversion estimate �ðSÞ equals minus the rate of

change in each agent’s expected marginal utility with respect to shifts in

the aggregate endowment S, plus an estimation error arising from the
fact that his beliefs cannot be estimated perfectly. Note that in our

heterogeneous-beliefs setting, there is no direct correspondence between

the agent’s risk aversion and the implied risk aversion estimate. This

suggests that implied risk aversion estimates may deviate significantly

from agents’ true preferences in the presence of heterogeneous beliefs.

The properties of the implied risk aversion error will be investigated in

detail in Section 2.3.

1.7 The special case of homogeneous beliefs

The absence of a direct correspondence between agents’ preferences and

implied risk aversion is solely driven by heterogeneity in beliefs and not by

the nature of the stochastic process followed by the aggregate endowment

(such as the presence of stochastic volatility or jumps) or by the fact that

investors have incomplete information. This section characterizes the link

between agents’ preferences and implied risk aversion estimates under

homogeneous beliefs. This relationship will be useful for the investigation
of the properties of implied risk aversion in the different homogeneous-

beliefs settings considered in Section 2.

Under homogeneous beliefs, 
i
t ¼ 1 for all i, and the equilibrium allo-

cations and prices can be determined from the simpler central planning

problem

max
fcig

E
XI

i¼1

	i

ZT

0

uiðci
t,tÞdt

0
@

1
A, s.t.

XI

i¼1

ci
t � ct8t, ð17Þ

where E denotes expectation with respect to investors’ common beliefs.

The first-order conditions for a maximum read

	iu
i
cðci

t,tÞ ¼ �t, ð18Þ

and �t is therefore a function of the aggregate endowment ct only,

�t ¼ �tðctÞ. Accordingly, each agent’s optimal consumption is a function

of the aggregate endowment only as well, ci
t ¼ ci

tðctÞ. Using the first-order
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condition from the individual agent optimization, ui
cðci

t,tÞ ¼ �i�
i
t, the

(common) state-price deflator of all agents is also function of the aggre-

gate endowment only, that is, one has �i
t ¼ �ðct,tÞ for all i.

The state-price density qt,sðcsÞ is given by

qt,sðcsÞ ¼
1

ui
cðci

t,tÞ
pt,sðcsÞE ui

cðci
sðcsÞ,sÞjcs

� �
¼ 1

ui
cðci

tðctÞ,tÞ
pt,sðcsÞui

cðci
sðcsÞ,sÞ, ð19Þ

where pt,sðcsÞ denotes investors’ common assessment at time t of the

physical density of cs at time s and the second equality follows from the

fact that each agent’s consumption is a function of the aggregate endow-

ment cs alone. Hence, under homogeneous beliefs, cs fully describes the

state of the economy. State prices qt,sðcsÞ are a function of cs only and tie

directly to agents’ marginal utility for a given level of cs, not just to its

conditional expectation.
Taking the logarithmic derivative of this expression with respect to cs

and rearranging yields

p¢t,sðcsÞ
pt,sðcsÞ

� q¢t,sðcsÞ
qt,sðcsÞ

¼ � ui
ccðci

sðcsÞ,sÞ
ui

cðci
sðcsÞ,sÞ

dci
sðcsÞ
dcs

: ð20Þ

This expression provides the link between each agent’s degree of absolute

risk aversion �ui
ccðci

sðcsÞ,sÞ=ui
cðci

sðcsÞ,sÞ, common beliefs about the future

value of the aggregate endowment pt,sðcsÞ, and state prices qt,sðcsÞ.
These results have important implications for the properties of the

implied risk aversion estimator (15). Setting PiðSÞ ¼ PðSÞ for all i and
substituting (20) with cs ¼ S into (15), one has

�ðSÞ ¼ � ui
ccðci

s,sÞ
ui

cðci
s,sÞ

dci
s

dS
þ P̂¢ðSÞ

P̂ðSÞ
� P¢ðSÞ

PðSÞ

 !
: ð21Þ

Thus, under homogeneous beliefs, the implied risk aversion estimate �ðSÞ
is equal to each individual agent’s actual risk aversion, scaled by the
sensitivity of his consumption to shifts in the index price dci

s=dS, plus an

estimation error arising from the fact that agents’ (common) beliefs

cannot be estimated perfectly.

The sensitivity of individual agents’ consumption to shifts in the index

price dci
s=dS is unobservable. To express implied risk aversion in terms of

the observable aggregate endowment S, one can resort to an equilibrium

argument. Solving (21) for dci
s=dS, aggregating across agents, requiring
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market clearing,
PI

i¼1 dci
s=dS ¼ 1, and rearranging allows writing the

implied risk aversion estimator as

�ðSÞ ¼ 1PI
i¼1

1=ð�iðci
sÞÞ

� �þ P̂¢ðSÞ
P̂ðSÞ

� P ¢ðSÞ
PðSÞ

 !
, ð22Þ

where �iðci
sÞ � �ui

ccðci
s,sÞ=ui

cðci
s,sÞ denotes investor i’s degree of absolute

risk aversion on his optimal consumption path. Under homogeneous

beliefs, implied absolute risk aversion �ðSÞ is thus the harmonic sum of

individual investors’ absolute risk aversion plus an adjustment term that

depends on the divergence between investors’ actual and estimated

beliefs, P and P̂.

2. Properties of Implied Risk Aversion Estimators

This section investigates the properties of implied risk aversion estimators

in three different settings to explore the three potential explanations for

the implied risk aversion smile mentioned in the introduction. Section 2.1

investigates preference aggregation, Section 2.2 beliefs misestimation, and

Section 2.3 heterogeneous beliefs.

2.1 Preference aggregation
This section investigates preference aggregation as a potential explana-

tion for the implied risk aversion smile by analyzing the properties of the

implied risk aversion estimator in a special case of the framework pre-

sented above in which investors have homogeneous beliefs, and these can

be estimated accurately. In this setting, the following holds (proofs of all

propositions in this section are in Appendix A).

Proposition 1. Implied absolute risk aversion �ðSÞ is the harmonic sum of

individual agents’ absolute risk aversion on their optimal consumption path,

�iðci
sÞ,

�ðSÞ ¼ 1PI
i¼1

1=ð�iðci
sÞÞ

� � : ð23Þ

Equation (23) is the well-known result that risk tolerance is additive
across agents [Wilson (1968)]. Implied risk aversion is thus exact and

accurately reflects the economy-wide risk aversion. The obvious

Why Does Implied Risk Aversion Smile?

871



implication for empirical implied risk aversion estimates is that if all

agents are risk averse, then implied risk aversion is strictly positive.

Equation (23) also implies that if all agents have constant absolute risk

aversion (CARA) utility, then implied risk aversion displays CARA as

well.

Additional properties of individual agents’ risk aversion functions

carry over to implied risk aversion.

Proposition 2. If all agents have increasing (decreasing) absolute risk

aversion, then implied risk aversion also displays increasing (decreasing)

absolute risk aversion.

Proposition 2 implies that if all agents have CRRA utility, which
exhibits decreasing absolute risk aversion, then implied absolute risk

aversion is also decreasing. For the special case of CRRA utility, how-

ever, even stronger properties can be established on the basis of the

following result, originally derived by Benninga and Mayshar (2000) in

a somewhat different setting.

Proposition 3. Implied relative risk aversion �ðSÞ ¼ S�ðSÞ is a harmonic

weighted average of individual agents’ relative risk aversion, with

the weights in this average given by each agent’s share of aggregate

consumption,

�ðSÞ ¼ 1PI
i¼1

1=ð�iðci
sÞÞ

� �
ðci

s=SÞ
, ð24Þ

where �iðci
sÞ � �ui

ccðci
s,sÞci

s=ui
cðci

s,sÞ denotes agent i’s relative risk aversion

on his optimal consumption path.

Benninga and Mayshar (2000) also showed that if agents have hetero-

geneous, CRRA preferences, then the economy-wide relative risk aversion

will be decreasing in the aggregate endowment. This is so because as the

aggregate endowment increases, relatively less risk-averse agents’ share of

aggregate consumption increases, driving down the average in (24).

The results in this section have the following implications for

implied risk aversion estimates. First, if individual agents are risk
averse, then the negative implied risk aversion estimates reported in

Jackwerth (2000) and Rosenberg and Engle (2002) cannot be caused by

preference aggregation. Second, if agents have nonincreasing absolute

risk aversion as postulated by Arrow (1970) and supported by everyday

observation or constant relative risk aversion, then the U-shaped esti-

mates obtained by Jackwerth (2000), Aı̈t-Sahalia and Lo (2000), and

Rosenberg and Engle (2002) cannot be attributed to preference
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aggregation either.7 Third, rather than contributing to explaining the

smile, heterogeneous preferences make it (more specifically, the sizable

increase in implied risk aversion at high index levels) even more puz-

zling. To see this, suppose that some (or all) agents have increasing

relative risk aversion at high index levels. Risk sharing causes agents

with relatively low risk aversion to have a large share of aggregate

consumption at high index levels, thus driving down implied risk aver-

sion. Thus, with heterogeneous preferences, the pronounced smile pat-
terns reported in the literature could only arise if a very significant

portion of agents had strongly increasing risk aversion at high index

levels.

Summarizing, preference aggregation cannot account for the implied

risk aversion smile—if anything, the effect of risk sharing among agents

with heterogeneous preferences on implied risk aversion makes the smile

even more puzzling. This result also holds in the presence of stochastic

volatility and jumps in returns. Indeed, in this case, both prices QðSÞ and
beliefs PðSÞ reflect the presence of stochastic volatility and jumps, and

implied risk aversion estimates obtained by comparing the two accurately

reflect agents’ risk aversion.

As mentioned in the introduction, these conclusions hold true only in

the framework that we consider, that is, assuming an exchange economy

with complete, frictionless markets and a single consumption good in

which the stock index is a good proxy for the aggregate endowment. In

the context of an incomplete markets economy, for example, heteroge-
neous preferences may be important to explain the implied risk aversion

smile. It is also worth noting that given that aggregate consumption is

almost homoskedastic [Lochstoer (2004)], our framework is unlikely to be

able to generate the level of stochastic volatility present in stock indices.

Stochastic volatility and jumps could well be important to explain the

smile in the context of a more general framework allowing for market

incompleteness, for example. However, even within our framework, mis-

estimation of beliefs caused by the presence of stochastic volatility and
jumps could cause implied risk aversion to smile. This potential explana-

tion is investigated in the next section.

2.2 Misestimation of agents’ beliefs

This section investigates misestimation of agents’ beliefs as a potential

explanation for the smile. The analysis is performed in a setting in which

7 Although Aı̈t-Sahalia and Lo (2000) estimated a relative risk aversion function, it is easy to check from
their Figure 4 that their representative agent also exhibits increasing absolute risk aversion by noting that
the slope of rays drawn through the origin of their diagram and the points on their implied risk aversion
function is increasing for index values between 415 and 440, between 465 and 475, and above 500.
Rosenberg and Engle (2002) do not report risk aversion patterns directly, but the implied risk aversion
pattern implicit in their pricing kernel estimates is similar to Jackwerth’s.
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agents have homogeneous beliefs, but these beliefs cannot be estimated

accurately. A useful result for this analysis is the relationship between beliefs

misestimation and the implied risk aversion estimation error. From Section

1.7, in particular Equation (22), the following result is immediate.

Proposition 4. Suppose that agents have homogeneous beliefs P(S) but that

these are inaccurately estimated to be P̂ðSÞ. Then, implied risk aversion

�ðSÞ is given by

�ðSÞ ¼ 1PI
i¼1

ð1=ð�iðci
sÞÞÞ
þ P̂¢ðSÞ

P̂ðSÞ
� P¢ðSÞ

PðSÞ

 !

� 1PI
i¼1

ð1=ð�iðci
sÞÞÞ
þ 
ðSÞ, ð25Þ

where 
ðSÞ � ðP̂¢ðSÞ=P̂ðSÞ � P¢ðSÞ=PðSÞÞ denotes the implied risk

aversion estimation error.

Equation (25) explicitly relates the implied risk aversion estimation

error 
 to the divergence between agents’ actual and estimated beliefs, P

and P̂. Simple computations reveal that implied risk aversion estimates

are very sensitive to the underlying beliefs estimates. The implied risk

aversion literature uses beliefs estimates based on historical returns.8 As

mentioned in the introduction, such estimates will be inaccurate whenever
the return process is time varying—for instance, because of stochastic

volatility and jumps—and in the presence of a Peso problem. The remain-

der of this section considers whether these two sources of beliefs misesti-

mation can explain the implied risk aversion smile.

2.2.1 Misestimation caused by stochastic volatility and jumps. The recent

literature provides ample evidence that an accurate description of actual

asset markets needs to incorporate stochastic volatility and jumps [see,

e.g., Bates (2000), Aı̈t-Sahalia (2002), Andersen, Benzoni, and Lund

(2002), Pan (2002), Chernov et al. (2003)]. A natural approach to assess

whether beliefs misestimation caused by stochastic volatility and jumps

can explain the smile is to investigate the risk aversion patterns implicit
in stochastic volatility and jumps models that specify both P and Q, thus

ensuring that both P and Q contain the effect of stochastic volatility

and jumps.

8 Although Jackwerth (2000) tried to address this problem by varying the length of the historical sample
that he used from 2 to 10 years and showed that his results do not change significantly, the basic issue of
using historical returns to estimate beliefs remains.
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A qualification is in order. Because these risk aversion patterns are

computed in the context of a particular stochastic volatility and jumps

model, they do not allow drawing general conclusions about the

ability or inability of stochastic volatility and jumps models to explain

the implied risk aversion smile. The finding that the preferences

implicit in a given model are not well behaved has three possible

interpretations. First, it can be viewed as evidence that the assump-

tions required for these computations to be valid (complete, friction-
less markets with a single consumption good in which the stock index

is a good proxy for the aggregate endowment) are too limiting.

Second, it can mean that the particular stochastic volatility and

jumps model used to obtain the densities P and Q is misspecified,

that is, unable to adequately reconcile index return dynamics and

option prices. Finally, it can mean that the preferences required for

this reconciliation are not well behaved, that is, interpreted as evidence

that beliefs misestimation caused by stochastic volatility and jumps
cannot account for the implied risk aversion smile.

Given this qualification, a comprehensive analysis of the preferences

implicit in the numerous stochastic volatility and jumps models available

in the literature is beyond the scope of this article. This section focuses on

the implied risk aversion estimates for the Pan (2002) model, which was

selected for three reasons. First, it is quite general, allowing for both

stochastic volatility and jumps in returns.9 Second, it provides closed-

form expressions for the transforms of both P and Q. Third, it is cali-
brated on the basis of both index returns and option prices, allowing the

risk premia for both diffusion and jump risk to be estimated and making

the model appealing for an investigation of the implied risk aversion

smile, which ultimately arises from the difficulty in reconciling index

returns and option prices.

To obtain the implied risk aversion patterns for the Pan (2002) model,

we first computed the physical density P and the state-price density Q by

transform inversion using the transforms and the parameter values pro-
vided in Pan (2002) (the computations are detailed in Appendix B). In

these computations, the initial values of the short interest rate and divi-

dend yield are taken to be equal to their estimated long-term means of

0.058 and 0.025, respectively, as reported in Table 6 of Pan (2002). Five

initial volatility parameter values are used: the estimated long-term mean

of 0.0153 as well as the mean plus or minus one or two standard

9 The evidence on the need to account for jumps in volatility is mixed. Eraker, Johannes, and Polson (2003)
and Eraker (2004) considered models involving jumps in both returns and volatility and found evidence
that both types of jumps are present in the data. However, in their analysis of the suitability of a number
of alternative models for stock-price dynamics, Chernov et al. (2003) found that the improvement in
statistical fit achieved by going from a model with jumps in returns only to a model with jumps in both
returns and volatility is too small to consider the latter to be the ideal model.
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deviations [reported to be 0.0029 in Table 6 of Pan (2002)].10 The resulting

densities for time horizons of 6 months and 1 year are depicted in panels

A and B of Figure 1, respectively.

In a second step, the local relative risk aversion implied by these density

estimates is computed using �ðSÞ ¼ SðP¢ðSÞ=PðSÞ �Q¢ðSÞ=QðSÞÞ. As

can be seen in panels C and D of Figure 1, when stochastic volatility and

jumps are accounted for, implied risk aversion does not smile. However, it
exhibits considerable variation and is negative in high-return states.11
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Figure 1
State-price density, statistical density, and implied risk aversion with stochastic volatility and jumps
State-price density and statistical density obtained by inverting the transforms of the stochastic volatility
and jumps model of Pan (2002) and the corresponding implied risk aversion. The computations are
performed for time horizons of 6 months (panels A and C) and one year (panels B and D). Five initial
volatility parameter values are used: the estimated long-term mean (corresponding to the middle curve in
each set) as well as the mean plus or minus one or two standard deviations. Implied risk aversion is
remarkably consistent across these different initial values; in all five cases, it exhibits considerable
variation and is negative in high-return states.

10 A Monte Carlo analysis in which the initial volatility parameter is drawn from a normal distribution with
mean and standard deviation equal to the estimated long-term mean of volatility and the standard error
of the estimate, respectively, was also performed. The average implied risk aversion and its 95%
confidence bounds obtained in this simulation are virtually identical to the estimates corresponding to
the long-term mean and the mean plus or minus two standard deviations shown in Figure 1.

11 Further computations were performed for other time horizons between 1 month and 1 year. The implied
risk aversion patterns were similar.
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Furthermore, the implied risk aversion pattern is remarkably consistent

across initial volatility values. Thus, the Pan (2002) model does not lead

to well-behaved preferences and cannot explain the implied risk aversion

smile. Although the results in this section cannot be generalized, they

suggest that stochastic volatility and jump models have difficulties in

accounting for the smile.12

2.2.2 Beliefs estimation errors suggested by implied risk aversion. Because

misestimation of beliefs caused by stochastic volatility and jumps seems

unable to explain the implied risk aversion smile, it is natural to investigate

what beliefs estimates based on historical returns are missing. This can be

done by assuming reasonable values for agents’ actual risk aversion, com-

puting the resulting implied risk aversion estimation error, and deriving the
corresponding beliefs estimation error. Indeed, as shown in Appendix A, the

following holds.

Proposition 5. Let 
ðSÞ denote the implied risk aversion-estimation error.

Under homogeneous beliefs, investors’ beliefs P(S) and their estimate P̂ðSÞ
are related by

P̂ðSÞ
PðSÞ ¼ � exp

ZS

S


ðzÞdz

0
B@

1
CA ð26Þ

for some arbitrary reference point S and some constant � that ensures that

P(S) integrates to 1.

The density misestimation factor (26) measures the extent to which

estimated beliefs P̂ under- or overestimate agents’ actual beliefs P

based on a comparison of actual and implied risk aversion. As a

numerical illustration, suppose that implied risk aversion is quadratic

and reaches a minimum of �15 at a gross return level of 1 and a value

of zero at return levels of 0.97 and 1.03, the basic picture that emerges
from Figure 3, Panel D of Jackwerth (2000), and assume that the true

coefficient of absolute risk aversion is 4. Although it seems restrictive,

this assumption is innocuous. Similar patterns would arise with any

assumed actual risk aversion function as long as it exhibits less curva-

ture than the implied risk aversion function and the functions cross

twice. Given the strong curvature of the implied risk aversion function

12 Bates (2001) came to a similar conclusion in the context of a general equilibrium model with jumps. He
demonstrated that such a model is unable to generate negative implied risk aversion estimates. However,
he also noted that the empirical risk aversion patterns could arise if there is a disparity between the risk-
neutral distribution and the estimate of the objective distribution.
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reported by Jackwerth (2000), this would be the case for a very wide set

of investor preferences.13

Panel A of Figure 2 shows the assumed implied and actual risk

aversion functions. Panel B reports the corresponding density misesti-

mation factor (26) for � ¼ 1 and a reference level of S ¼ 1. The beliefs

estimation error pattern suggests that historical return frequency dis-

tributions underestimate agents’ assessment of the probability of very
low gross index returns (Brown and Jackwerth’s ‘‘crash-o-phobia’’),

moderately overestimate the probability of returns slightly below 1,

moderately underestimate the probability of returns slightly above 1,

and significantly overestimate the probability of very high returns. A

natural cause of this pattern is a Peso problem, as suggested, for
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Figure 2
Link between beliefs estimation errors and risk aversion estimation errors
Beliefs estimation errors can be derived from implied risk aversion and assumptions about actual risk
aversion using (26). The U-shaped implied risk aversion patterns reported in the literature (panel A)
suggest that historical return frequency distributions underestimate agents’ assessment of very low index
returns and overestimate the probability of very high index returns (panel B).

13 The value of 4 is arbitrary but not out of line with existing empirical evidence. Based on an analysis of the
demand for risky assets, Friend and Blume (1975) found that the average coefficient of relative risk
aversion is probably well in excess of one and perhaps in excess of two. Using an analysis of deductibles in
insurance contracts, Drèze (1981) found somewhat higher values. When fitting CRRA preferences to
their data, Aı̈t-Sahalia and Lo (2000) found a value of 12.7.
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example, by Aı̈t-Sahalia, Wang, and Yared (2001) and Brown and

Jackwerth (2004).

2.2.3 Can a Peso problem explain the smile? The beliefs misestimation

pattern reported in Figure 2 reveals that a Peso problem can in principle
account for the implied risk aversion smile. To assess the plausibility of

this explanation, this section estimates the frequency and magnitude of

jumps implied by the empirical state-price density.

In a setting without assumptions on investor preferences, Aı̈t-Saha-

lia, Wang, and Yared (2001) found that the incorporation of a jump

term capturing the Peso problem (with a jump size of �10% and a jump

intensity of once every three years) produces an improvement toward

reconciling the cross-sectional state-price density (estimated from
option prices) and the time-series state-price density (estimated from

index futures returns) but is not sufficient to explain the magnitude of

the dispersion of the excess skewness and excess kurtosis of the former

relative to the latter. For the case of logarithmic utility, Bates (2000)

found that a Peso problem alone cannot explain the divergence between

state-price densities and observed market returns. He showed that the

risk-neutral probability of observing at least one weekly move of 10% in

magnitude over the period 1988–1993 is 90% but that none was
observed. He noted, however, that more extreme risk aversion could

make the Peso problem explanation viable and that whether this can be

achieved under plausible levels of risk aversion is an open question.

This section quantifies the frequency and magnitude of jumps implied

by the empirical state-price density, assuming a particular functional form

for the market-wide utility function, but, in contrast to the setting ana-

lyzed by Bates (2000), treating the risk aversion coefficient as a free

parameter.14 Assume that aggregate investor preferences are of the
CRRA type,

uðSÞ ¼ S1��

1� � , ð27Þ

where � denotes the relative risk aversion coefficient. To model the

possibility of jumps, we assume that beliefs are given by a mixture of

lognormal distributions,

PðSÞ ¼ �P1ðSÞ þ ð1� �ÞP2ðSÞ: ð28Þ

14 Rubinstein (1994) showed that beliefs inferred from the state-price density and some set of (assumed)
investor preferences are not sensitive to the particular functional form of the market-wide risk aversion
function chosen.
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Heuristically, P1 can be thought of as agents’ beliefs conditional on no

jump occurring and P2 as beliefs conditional on a jump occurring, with

1� � corresponding to the probability of a jump.15

Given the assumed investor preferences, the state-price density has the

form

QðSÞ ¼ �S��PðSÞ ð29Þ

for some constant �. Beliefs are estimated as follows. First, the state-price

density is estimated using the semi-parametric approach and the data of

Aı̈t-Sahalia and Lo (2000). The data consist of 14,431 S&P 500 index

option prices for the period January 4, 1993, to December 31, 1993. The

semi-parametric approach involves regressing option implied volatility

nonparametrically on moneyness and time to expiration and estimating

the state-price density as the second derivative of the Black–Scholes

option-pricing formula with respect to the strike price, using the non-
parametric volatility estimate as an input. As recommended in their

paper, the kernel functions and bandwidth values are chosen so as to

optimize the properties of the state-price density estimator (Gaussian

kernel functions and bandwidths of 0.040 and 20.52 for moneyness and

time to expiration, respectively). The density is computed for values of S

between 300 and 600, with a step size of 0.2, yielding 1501 data points.

Equation (29) is then calibrated to the empirical density using nonlinear

least squares, yielding the parameter values � ¼ 1:0348,
� ¼ 0:5861, � ¼ 0:9158, �1 ¼ 0:0366, �2 ¼ �0:1288, �1 ¼ 0:0760, and

�2 ¼ 0:1294, where the distribution parameters are reported as annual

figures.16 Thus, relaxing Bates’ (2000) logarithmic utility assumption does

not change his basic conclusion that a Peso problem alone cannot recon-

cile the state-price density with historical index returns. Indeed, the

estimates indicate that agents’ utility is almost logarithmic, that the

expected return conditional on no jump is about 3.7%, and that condi-

tional on a jump �2.9%. Thus, to generate the fat left tail of the empirical
state-price density, agents must expect a crash of an average magnitude of

about 3.7 + 12.9=16.6% to occur with a probability of 1� � = 42.2%.

The semi-parametric density and the fitted mixture state-price density

are depicted in Figure 3 which also shows, for comparison, the Black–

Scholes state-price density that best fits the semi-parametric density.

15 This specification of agents’ beliefs is exact under the assumptions that (i) the index price has dynamics
dSt ¼ �Stdtþ �StdBt þ kStdqt, where q is a Poisson counter, (ii) the jump size k is lognormally
distributed, and (iii) there is at most one jump over the estimation horizon considered [Ball and Torous
(1983; 1985), Jondeau and Rockinger (2000)]. Because we are concerned with a Peso problem, where
jumps are infrequent, this latter assumption is reasonable.

16 Note that, as one would expect, the standard deviation of returns conditional on a jump occurring over
the period, �2, is much higher than that conditional on no jump occurring, �1.
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Although the mixture density—for contrast to the Black–Scholes density—

captures the essential features of the empirical density pretty well, especially

its thick left tail, the required crash probability of 42.2% seems implausibly

large: as noted by Bates (2000), if the true probability of a market crash
were that high, then crashes would show up frequently in the data and

there would be no reason to expect that historical returns underestimate the

probability of their occurrence. Thus, although a Peso problem can con-

tribute to explaining the smile, it appears unlikely to be its only cause.

2.3 Heterogeneous beliefs

The recent literature provides evidence that heterogeneous beliefs play an

important role for equilibrium prices. For example, Anderson, Ghysels,
and Juergens (2005) showed that heterogeneous beliefs among inves-

tors—as measured by the dispersion of analysts’ earnings forecasts—is a

priced risk factor and a good out-of-sample predictor of future returns
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A Peso problem: constant relative risk aversion (CRRA) state-price density with a mixture of lognormal
distributions
Fitting the state-price density with beliefs given by a mixture of lognormal distributions (29) closely
reproduces the semi-parametrically estimated state-price density of Aı̈t-Sahalia and Lo (2000). The
Black–Scholes state-price density, on the other hand, misses some salient features of the data.
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and return volatility. It is therefore natural to investigate the conse-

quences of heterogeneity for implied risk aversion estimates.

Recall from the discussion in Section 1.6 [in particular Equation (16)]

that under heterogeneous beliefs, there is no direct correspondence between

individual agents’ actual risk aversion and implied risk aversion. Hence, in

principle, implied risk aversion can have almost any shape and may differ

significantly from agents’ actual preferences. Although (16) reveals that the

implied risk aversion pattern depends on agents’ true preferences, on the
nature of the heterogeneity in beliefs among them, and on how estimated

beliefs P̂ compare to individual agents’ actual beliefs Pi, it is difficult to

determine the precise impact of these three factors in the general case, that

is, without making any assumptions on investor beliefs and preferences.

This section uses the special case of CRRA preferences to disentangle these

three components, allowing to gain additional insights into how the presence

of heterogeneous beliefs causes implied risk aversion to deviate from agents’

preferences. A simple parametric example is then used to assess the magni-
tude of the distortion in implied risk aversion caused by heterogeneous

beliefs. This analysis reveals that if heterogeneous beliefs are not accounted

for explicitly, implied risk aversion and preferences may differ significantly. A

further specialization to the logarithmic utility case is then used to derive the

distortion in implied risk aversion caused by heterogeneous beliefs in closed

form, allowing its properties to be investigated. Finally, a heterogeneous-

beliefs state-price density is calibrated to the data to assess the degree of

heterogeneity suggested by the empirical state-price density and the plausi-
bility of the heterogeneous beliefs explanation for the smile.

2.3.1 A simple CRRA framework. To set the stage for the subsequent

analysis, let ct denote the aggregate endowment, and suppose that there

are I groups of investors indexed by i ¼ 1,…,I . Assume that these
investors have identical CRRA preferences with relative risk aversion �,

uiðci
t,tÞ ¼

ci
t

� �1��

1� � : ð30Þ

Let f	ig denote the initial weights of the individual groups in the econ-

omy. For ease of presentation and without loss of generality, we let

group 1 be the reference group for our analysis and set 	1 ¼ 1. Then,

the central planning problem with heterogeneous beliefs (9) becomes

max
fcig

E1

ZT

0

c1
t

� �1��

1� � þ
XI

i¼2

	i

i
t

ci
t

� �1��

1� �

 !
dt, s.t.

XI

i¼1

ci
t ¼ ct8t, ð31Þ
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where 
i
t ¼ dPi=dP1, 
i

0 ¼ 1 denotes the Radon–Nikodym derivative of

group i agents’ beliefs with respect to the beliefs of the reference group 1.

Maximizing time by time and state by state, the equilibrium consumption

of the individual groups is given by [see, e.g., Basak (2005), and Buraschi

and Jiltsov (2005), for the case of two groups]

c1
t ¼ ct

1

1þ
PI
i¼2

	i
i
t

� �1=�
ð32Þ

and

c
j
t ¼ ct

	j

j
t

� �1=�

1þ
PI
i¼2

	i
i
t

� �1=�
, j 6¼ 1: ð33Þ

Using (13), the state-price density is given by

qt,sðcsÞ ¼
ct

cs

� ��
p1

t,sðcsÞE1
t

1þ
PI
i¼2

ð	i

i
sÞ

1=�

1þ
PI
i¼2

ð	i
i
tÞ

1=�

0
BBB@

1
CCCA
�����cs

0
BBB@

1
CCCA, ð34Þ

where p1
t,sðcsÞ denotes the density of the aggregate endowment at time

s as perceived by group 1 agents at time t. Hence, the state-price

density qt,sðcsÞ is completely specified once the distribution of cs and
that of the 
i

ss conditional on cs from group 1 agents’ perspective are

known.

2.3.2 The implied risk aversion error caused by heterogeneous beliefs. Let
p̂t,sðcsÞ denote the estimated beliefs used in the implied risk aversion estima-

tion process. To determine the relationship between agents’ preferences and

implied risk aversion, substitute the state-price density (34) into the implied

risk aversion estimator �ðcsÞ ¼ p̂t,s¢ðcsÞ=p̂t,sðcsÞ � qt,s¢ðcsÞ=qt,sðcsÞ to

obtain17

17 As in previous sections of the article, this analysis assumes that the stock index is a good proxy for the
aggregate endowment, cs ¼ S. In this section, to avoid going back and forth between notation in S and
in cs, we formulate all results in terms of cs.

Why Does Implied Risk Aversion Smile?

883



�ðcsÞ ¼
�

cs

þ p̂¢t,sðcsÞ
p̂t,sðcsÞ

�
p1¢

t,sðcsÞ
p1

t,sðcsÞ

 !
þ

d
dcs

E1
t 1þ

PI
i¼2

ð	i

i
sÞ

1=�

� ����cs

 !

E1
t 1þ

PI
i¼2

ð	i
i
sÞ

1=�

� ����cs

 ! : ð35Þ

Thus, under CRRA preferences and heterogeneous beliefs, implied abso-

lute risk aversion is the sum of three components: (i) agents’ actual

absolute risk aversion, �=cs, (ii) an implied risk aversion estimation

error driven by the divergence between estimated beliefs and the actual

beliefs of the reference group 1, p̂¢t,sðcsÞ=p̂t,sðcsÞ � pt,s1¢ðcsÞ=p1
t,sðcsÞ, and

(iii) a term that captures the distortion in implied risk aversion intro-

duced by the presence of heterogeneous beliefs. Observe that this distor-
tion itself depends on investors’ relative risk aversion �; this is so because

preferences affect the way that heterogeneous beliefs impact equilibrium

prices. Because of the third term in (35), in the presence of heterogeneous

beliefs, implied risk aversion estimates will differ from agents’ true pre-

ferences even if the beliefs of the reference group 1 are estimated accu-

rately, p̂t,sðcsÞ ¼ p1
t,sðcsÞ.

In fact, unless the effect of heterogeneity is modeled explicitly,

implied risk aversion will not reflect true preferences even if all

groups’ beliefs are estimated accurately and implied risk aversion is

estimated on the basis of average beliefs weighted using

	i

i
t, �pt,sðcsÞ ¼ p1

t,sðcsÞ þ
PI

i¼2 	i

i
tp

i
t,sðcsÞ

� �
= 1þ

PI
i¼2 	i


i
t

� �
.18 To see

this, note that the (homogeneous-beliefs) state-price density obtained

in this fashion, �qt,sðcsÞ, reads

qt,sðcsÞ ¼
ct

cs

� ��
pt,sðcsÞ ¼

ct

cs

� �� p1
t,sðcsÞ þ

PI
i¼2

	i

i
tp

i
t,sðcsÞ

1þ
PI
i¼2

	i
i
t

ð36Þ

and differs from the actual density under heterogeneous beliefs (34). Most

would agree that obtaining such average beliefs estimates would be a

significant achievement for any empiricist. Yet, contrasting (34) and
(36) reveals that knowledge of these average beliefs would not be suffi-

cient to be able to accurately infer investors’ preferences from implied risk

aversion estimates—heterogeneity must be accounted for explicitly.

18 Although the initial weights of the different groups are given by f	ig, their effective weights at time t are
f	i


i
tg. It is therefore appropriate to weight beliefs using 	i


i
t rather than 	i .
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2.3.3 The sensitivity of implied risk aversion to heterogeneous beliefs. Further

insights into the pattern and magnitude of the distortion in implied risk

aversion caused by the presence of heterogeneous beliefs can be

obtained by specifying the aggregate endowment process and agents’

beliefs more precisely. Assume that the aggregate endowment has

dynamics

dct

ct

¼ �tdtþ �dBt, ð37Þ

where the drift �t follows

d�t ¼ ��dB
�
t : ð38Þ

Suppose that the different groups of investors do not observe the drift but

estimate it based on their prior information and the path of the aggregate

endowment. Each group i starts with a drift estimate �i
0 and rationally

revises this estimate using

d�i
t ¼

Vt

�
dBi

t, ð39Þ

where Vt is the variance of the estimate of �t and

dBi
t ¼

1

�

dct

ct

� �i
tdt

� �
ð40Þ

denotes the investor-specific Brownian innovation. For simplicity,

assume further that the estimation variance Vt is equal to its long-run

mean, V ¼ ���.

As shown in Appendix C, given the assumed processes, group i

agents perceive cs to be lognormal with Ei
tðlnðcsÞÞ ¼ �i

c and

Vari
tðlnðcsÞÞ ¼ �2

c . Moreover, group 1 agents perceive 
i
s to be lognor-

mal with E1
t ðlnð
i

sÞÞ ¼ lnð
i
tÞ þ �
i , Var1

t ðlnð
i
sÞÞ ¼ �2


i and

Cov1
t ðlnðcsÞ, lnð
i

sÞÞ ¼ �c
i . Hence, using the fact that for any two groups

i and j, lnð
i
sÞ and lnð
j

sÞ are perfectly correlated with correlation coeffi-

cient �
i
j ¼ signð��i
t ��j

tÞ, where ��i
t � ð�1

t � �i
tÞ=� denotes the normalized

divergence in beliefs about �t between group i and group 1 at time t,

and letting �c
i � �c
i=ð�c�
iÞ, the state-price density (34) can be com-
puted as
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qt,sðcsÞ ¼
ct

cs

� �� exp � ðlnðcsÞ��1
c Þ

2

2�2
c

� �
cs�c

ffiffiffiffiffiffi
2�
p

Z1
�1

exp � z2

2

� �
ffiffiffiffiffiffi
2�
p

	
1þ

PI
i¼2

	i

i
t exp �
i þ �c
i

�2
c
ðlnðcsÞ � �1

cÞ þ signð�i
tÞ�
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

c
 i

q
z

� �� �1=�

1þ
PI
i¼2

ð	i
i
tÞ

1=�

0
BBB@

1
CCCA
�

dz:

ð41Þ

Given the values of the model parameters �, f	ig f�i
tg, � and V and

initial values ct and f
i
tg, all the parameters in (41) are known, and the

state-price density can be obtained by numerically integrating out z.

To assess the magnitude of the distortion in implied risk aversion
caused by heterogeneous beliefs, consider a numerical example based on

(41). Suppose that there are only two groups, that ct ¼ 1, 
2
t ¼ 1, 	2 ¼ 1

(implying that the weights of both groups are equal), � ¼ 2, � ¼ 0:1, and

V ¼ 0:01 and that the degree of heterogeneity in beliefs is small: group 1

agents believe the expected return to be �1 ¼ 0:05, whereas group 2

agents consider it to be slightly lower, �2 ¼ 0:04. Panel A of Figure 4

shows the beliefs of both groups, p1
t,sðcsÞ and p2

t,sðcsÞ, average beliefs
�pt,sðcsÞ ¼ ð p1

t,sðcsÞ þ 	2

2
t p2

t,sðcsÞÞ=ð1þ 	2

2
t Þ, and the heterogeneous-

beliefs state-price density qt,sðcsÞ. Panel B depicts the implied relative

risk aversion estimates �ðcsÞ ¼ csð p̂t,s¢ðcsÞ=p̂t,sðcsÞ � qt,s¢ðcsÞ=qt,sðcsÞÞ
obtained using either group’s beliefs or average beliefs, that is, without

accounting explicitly for the effect of heterogeneous beliefs. Observe that

in spite of the small degree of heterogeneity assumed in this example,

when implied risk aversion is estimated based on either group’s beliefs, it

is significantly distorted away from agents’ (assumed) true relative risk

aversion of 2. When it is estimated based on the more optimistic group
1’s beliefs, implied risk aversion exceeds the actual one, with values of

about 2.3. Conversely, when it is estimated based on the more pessimistic

group 2’s beliefs, it lies below the actual one, with values of about 1.5.

When it is estimated based on average beliefs, however, implied risk

aversion is quite close to true risk aversion.

Figure 5 reports the results of similar computations for a setting with

large heterogeneity in beliefs. The parameter values are the same as

those used for Figure 4, except that group 2 agents believe expected
returns to be �2 ¼ �0:1. As in Figure 4, panel A shows the beliefs of

both groups, average beliefs, and the state-price density, whereas panel

B depicts implied relative risk aversion obtained using either group’s

beliefs or average beliefs. In this setting with high heterogeneity, implied

risk aversion is significantly distorted away from agents’ (assumed) true

relative risk aversion of 2 not only when it is estimated using either

group’s beliefs but also when it is estimated using average beliefs.
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Estimating implied risk aversion based on the more optimistic group 1’s

beliefs would induce one to infer a risk aversion exceeding the actual

one, with values ranging from 4 to about 10. Estimating it using the

more pessimistic group 2’s beliefs would induce one to underestimate

risk aversion to such an extent that investors appear to be risk loving,

with a (local) relative risk aversion coefficient ranging from about �8 to

�2. Finally, estimating implied risk aversion using average beliefs
would induce one to conclude that investors are risk averse in some

return states and risk loving in others, with a risk aversion coefficient

ranging from �2 to about 4. None of these estimates come close to

matching investors’ actual risk aversion of 2.

The fact that the simple examples in Figures 4 and 5 do not

reproduce the implied risk aversion smile found in the literature should

not be interpreted as meaning that heterogeneous beliefs are unable to
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Figure 4
Heterogeneous beliefs and implied risk aversion—small heterogeneity
Panel A shows the beliefs of both groups of investors, average beliefs, and the state-price density under hetero-
geneous beliefs (41) for the parameter values ct ¼ 1, 
2

t ¼ 1, 	2 ¼ 1, � ¼ 2, �1 ¼ 0:05, �2 ¼ 0:04, � ¼ 0:1,
and V ¼ 0:01. Panel B reports the implied relative risk aversion estimated using either group’s beliefs or
average beliefs. When implied relative risk aversion is estimated based on either group’s beliefs, it is
significantly distorted away from agents’ true relative risk aversion (2 in this example) by the
presence of heterogeneous beliefs, even though the degree of heterogeneity in beliefs is small.
When it is estimated based on average beliefs, however, implied risk aversion is quite close to
true risk aversion.
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account for it. Indeed, these implied risk aversion patterns are com-

puted under fairly restrictive assumptions, not just about investor

preferences, but especially about estimated beliefs. Of course, there is

no reason to expect that estimated beliefs have anything to do with

either group’s beliefs or with average beliefs. The point of Figures 4

and 5 is that heterogeneous beliefs, if not accounted for explicitly, can

cause implied risk aversion estimates to deviate significantly from
actual preferences even if the beliefs of the different groups are esti-

mated accurately.

2.3.4 Closed-form expressions for the implied risk aversion estimation

error. In the special case of logarithmic utility ð� ¼ 1Þ, the implied

risk aversion estimation error can be computed in closed form both

when implied risk aversion is estimated using some group’s beliefs and

using average beliefs, thus allowing a more detailed investigation of its
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Figure 5
Heterogeneous beliefs and implied risk aversion—large heterogeneity
Panel A shows the beliefs of both groups of investors, average beliefs, and the state-price density under hetero-
geneous beliefs (41) for the parameter values ct ¼ 1, 
2

t ¼ 1, 	2 ¼ 1, � ¼ 2, �1 ¼ 0:05, �2 ¼ �0:1, � ¼ 0:1,
and V ¼ 0:01. Panel B reveals that implied relative risk aversion is significantly distorted away from agents’ true
relative risk aversion (2 in this example) by the presence of heterogeneous beliefs. This happens regardless of
whether it is estimated using either group’s beliefs or average beliefs.
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properties. Indeed, with logarithmic preferences, the integral in (41) can

be evaluated algebraically, and the state-price density is given by

qt,sðcsÞ ¼
ct

cs

p1
t,sðcsÞ

1þ
PI
i¼2

	i

i
t exp

�c
i

�2
c
ðlnðcsÞ � �1

cÞ � 1
2

�2

c
i

�2
c

� �

1þ
PI
i¼2

	i
i
t

,

ð42Þ

where p1
t,sðcsÞ ¼ expð�ðlnðcsÞ��1

cÞ
2=ð2�2

cÞÞ
cs�c

ffiffiffiffi
2�
p denotes group 1 agents’ beliefs, and

we have used the fact that expð�
i þ �2

i=2Þ ¼ 1 because 
i is an exponen-

tial martingale.19

The implied risk aversion obtained using group 1 agents’ beliefs, that is,
by setting p̂t,sðcsÞ ¼ p1

t,sðcsÞ, is given by

�ðcsÞ ¼
1

cs

�
d ln 1þ

PI
i¼2

	i

i
t exp

�c
i

�2
c
ðlnðcsÞ � �1

cÞ � 1
2

�2

c
i

�2
c
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dcs

¼ 1

cs

� 1

cs�2
c

PI
i¼2

�c
i	i

i
t exp

�c
i

�2
c
ðlnðcsÞ � �1

cÞ � 1
2

�2

c
i

�2
c

� �

1þ
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	i
i
t exp

�c
i

�2
c
ðlnðcsÞ � �1

cÞ � 1
2

�2

c
i

�2
c

� � :
ð43Þ

Because agents’ true risk aversion is 1=cs, the implied risk aversion

estimation error is the second term appearing in each line of (43). This

error has the following properties. First, because a weighted sum of
exponentials has at most one minimum, the first line in (43) implies

that the error is monotonic in the aggregate endowment cs. Thus, under

logarithmic preferences and heterogeneous lognormal beliefs, if implied

risk aversion is estimated on the basis of some (in fact, any) investor’s

beliefs, heterogeneous beliefs cannot cause implied risk aversion to smile.

Second, the error is strictly decreasing and its sign depends on whether

the reference group (on whose beliefs the implied risk aversion estimate is

based) is the most optimistic or pessimistic in the economy or has inter-
mediate beliefs. To see this, observe that the sign of the error is the

opposite of that of
PI

i¼2 �c
i	i

i
t exp

�c
i

�2
c
ðlnðcsÞ � �1

cÞ � 1
2

�2

c
i

�2
c

� �
, which

19 An alternative way to derive (42) is to set � ¼ 1 in (34) and compute the state-price density based on the

expression qt,sðcsÞ ¼ ct

cs
p1

t,sðcsÞE1
t

1þ
PI

i¼2
	i


i
s

1þ
PI

i¼2
	i


i
t

��cs

� �
using the fact that p1

t,sðcsÞ is a lognormal density and

that, conditional on cs, lnð
i
sÞ is normally distributed with mean lnð
i

tÞ þ �
 i þ �c
i

�2
c
ðlnðcsÞ � �1

c Þ and

variance �2

i ð1� �2

c
i Þ, so that Etð
i
sjcsÞ ¼ 
i

t exp �
 i þ �c
i

�2
c
½lnðcsÞ � �1

c � þ 1� �2
c
i

� � �2


i

2

� �
.
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itself depends on the sign of the �c
i s, the covariances between the

aggregate endowment and the density processes. From (C16) in

Appendix C, the sign of �c
i is the opposite of that of

��i
t ¼ ð�1

t � �i
tÞ=�. Hence, if implied risk aversion is estimated based

on the most optimistic group’s beliefs (i.e., if the reference group 1 is

the most optimistic group in the economy), then ��i
t > 0 for all

i, �c
i < 0 for all i, and implied risk aversion exceeds true risk aversion

for all values of the aggregate endowment. In addition, the error tends
to 0 for large values of cs and is therefore strictly decreasing. Con-

versely, if implied risk aversion is estimated using the most pessimistic

group’s beliefs, it understates true risk aversion for all values of cs,

tends to 0 for small values of cs, and is therefore strictly decreasing as

well. Finally, if group 1 is neither the most optimistic nor the most

pessimistic, the error is positive for some values of the aggregate

endowment and negative for others. More precisely, because the

terms with �c
i > 0 tend to 0 for small values of cs and those with

�c
i < 0 do so for large values of cs, the error is positive for small cs and

negative for large cs, that is, is again strictly decreasing.

Figure 6 illustrates these findings in a setting with three groups of inves-

tors. Panel A shows the beliefs of the three groups, average beliefs, and the

state-price density under heterogeneous beliefs (42) for the parameter values

ct ¼ 1, 
2
t ¼ 
3

t ¼ 1, 	2 ¼ 	3 ¼ 1, � ¼ 1, �1 ¼ 0:05, �2 ¼ �0:1, �3 ¼ 0:20,

� ¼ 0:1, and V ¼ 0:01. Panel B shows that implied relative risk aversion
exceeds true risk aversion when it is estimated based on the most optimistic

group 3’s beliefs and is lower than true risk aversion when it is estimated using

the most pessimistic group 2’s beliefs. When it is estimated based on the

intermediate group 1’s beliefs, implied risk aversion overstates true risk aver-

sion for small values of the aggregate endowment and understates it for large

ones. In all three cases, the implied risk aversion error is strictly decreasing.
Consider now the properties of implied risk aversion when it is

estimated using average beliefs, that is, setting

p̂t,sðcsÞ ¼ ð p1
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PI
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i
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The implied risk aversion error can be decomposed into two components.

The first is the error that would arise if implied risk aversion was esti-

mated based on the reference group 1’s beliefs. The second is an error

caused by the divergence between group 1’s and average beliefs. Although
both components have a similar formulaic structure, their properties are

exactly opposite, both in terms of sign and slope. For example, if group 1

is the most optimistic, then the error that would arise if implied risk

aversion was estimated based on group 1’s beliefs is positive and mono-

tone decreasing, whereas the error corresponding to the difference

between group 1’s and average beliefs is negative and monotone increas-

ing. Similarly, if group 1 is the most pessimistic, the first component is

negative and monotone decreasing, whereas the second is positive and
monotone increasing. Finally, if group 1 has intermediate beliefs, the first

component is monotone decreasing, with positive values for low cs and
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(B) Implied Risk Aversion
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Figure 6
Heterogeneous beliefs and implied risk aversion—logarithmic utility, three groups
Panel A shows the beliefs of the three groups of investors, average beliefs, and the state-price
density under heterogeneous beliefs (42) for the parameter values ct ¼ 1, 
2

t ¼ 
3
t ¼ 1, 	2 ¼ 	3 ¼ 1,

� ¼ 1, �1 ¼ 0:05, �2 ¼ �0:1, �3 ¼ 0:20, � ¼ 0:1, and V ¼ 0:01. Panel B shows that implied relative risk
aversion exceeds true risk aversion when it is estimated based on the most optimistic group 3’s beliefs and
is lower than true risk aversion when it is estimated using the most pessimistic group 2’s beliefs. When it is
estimated based on the intermediate group 1’s beliefs, it overstates true risk aversion for small values of the
aggregate endowment and understates it for large ones.
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negative ones for large cs, whereas the second is monotone increasing,

with negative values for low cs and positive ones for large cs. The net

effect of both components is difficult to ascertain algebraically. In the

example considered in Figure 6, for instance, the second component

dominates the first one, so that overall, the implied risk aversion error

is monotone increasing, with negative values for low cs and positive ones

for high cs.

2.3.5 Heterogeneity suggested by empirical state-price densities. The

above analysis reveals that heterogeneous beliefs affect the state-price

density in nontrivial forms and can cause sizable distortions in implied

risk aversion estimates. This section quantifies the degree of heteroge-

neity suggested by the empirical state-price density to assess the plau-
sibility of the heterogeneous beliefs explanation for the implied risk

aversion smile.

The analysis is performed by fitting the heterogeneous-beliefs den-

sity (41) with three groups of investors to the empirical semi-

parametric state-price density estimated by Aı̈t-Sahalia and Lo

(2000). As in the calibration of the mixture density in Figure 3, the

empirical density is computed for values of S between 300 and 600, with

a step size of 0.2, yielding 1501 data points, and the calibration perfo-
rmed using nonlinear least squares. The estimated parameter values are

	2 ¼ 0:1182,	3 ¼ 0:0157, � ¼ 2:9824, �1 ¼ 0:0792, �2 ¼ �0:2262, �3 ¼
� 0:5650, � ¼ 0:0672, and V ¼ 1:019E� 4, where distribution para-

meters are again reported in annual terms. These estimates suggest that

a fraction 1=ð1þ 	2 þ 	3Þ ¼ 0:8819 of agents estimates expected returns

on the index to be about 7.9%, a fraction 	2=ð1þ 	2 þ 	3Þ ¼ 0:1043 of

pessimistic agents estimates them to be about �23%, and a fraction

	3=ð1þ 	2 þ 	3Þ ¼ 0:0138 of extremely pessimistic agents estimates

them to be about �56%. Thus, to generate the fat left tail of the

empirical state-price density, an extremely large degree of pessimism is
required.

The fitted heterogeneous-beliefs state-price density is depicted in Figure 7,

which also shows, for comparison, the Black–Scholes state-price density

that best fits the semi-parametric density. In contrast to the Black–

Scholes density, the heterogeneous-beliefs density fits the empirical

density almost perfectly, even in the left tail. Figure 8 shows the implied

risk aversion estimates that would be obtained by comparing the hetero-

geneous-beliefs density and either group’s beliefs or average beliefs in a
format similar to Figures 4–6. Observe that although they do not exhibit

a straight smile, the implied risk aversion estimates are significantly

negative for a wide range of index values and exhibit considerable

variation across index values. Moreover, throughout the range of
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index values considered, implied risk aversion differs significantly from
agents’ estimated degree of relative risk aversion if heterogeneous beliefs

are taken into account, � ¼ 2:9824. However, the extreme degree of

pessimism required to generate the empirical state-price density casts

doubts on the plausibility of the heterogeneous beliefs explanation for

the implied risk aversion smile.

To understand why an extremely large level of pessimism is necessary

to generate the empirical state-price density and explain the implied risk

aversion smile, it is useful to consider the results obtained when fitting a
homogeneous-beliefs state-price density in which agents’ beliefs are given

by a mixture of three lognormal densities (which amounts to allowing for

two different kinds of jumps), P ¼ ð1� �2 � �3ÞP1 þ �2P2 þ �3P3. Per-

forming this estimation yields an almost perfect fit and the parameter values
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Figure 7
Constant relative risk aversion (CRRA) state-price density with heterogeneous beliefs
Calibrating the heterogeneous-beliefs state-price density (41) with three groups of investors with lognor-
mal beliefs to the semi-parametrically estimated state-price density of Aı̈t-Sahalia and Lo (2000) yields an
almost perfect fit. The Black–Scholes state-price density, on the other hand, misses some salient features
of the data. The figure also shows the homogeneous-beliefs state-price density obtained using the average
beliefs of the three groups.
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�2 ¼ 0:3917, �3 ¼ 0:2076, � ¼ 0:5802, �1 ¼ 0:0604, �2 ¼ �0:0637, �3 ¼
�0:2152, �1 ¼ 0:0662, �2 ¼ 0:0909, and �3 ¼ 0:1555:20

Observe that the fitted mixture homogeneous-beliefs density has return

standard deviations for the jump cases (�2 and �3) that far exceed the

standard deviation in the case of no jump, �1. These high standard

deviations allow the mixture density to capture the fat left tail of the

empirical state-price density. In contrast, the heterogeneous-beliefs den-

sity does not have different standard deviations available to do so—in the
heterogeneous-beliefs model considered above, the standard deviation of

returns as perceived by each group is identical. To capture the fat left
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(B) Implied Risk Aversion
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Figure 8
Constant relative risk aversion (CRRA) state-price density with heterogeneous beliefs: density and implied
risk aversion estimates Panel A shows the beliefs of the three groups of investors, average beliefs, and the
state-price density under heterogeneous beliefs obtained by fitting the heterogeneous-beliefs state-price
density (41) with three groups of investors to the semi-parametrically estimated density of Aı̈t-Sahalia and
Lo (2000). Panel B shows that implied relative risk aversion is distorted away from agents’ degree of
relative risk aversion (estimated to be 2.98 in this example) by the presence of heterogeneous beliefs. This
happens regardless of whether it is estimated using either group’s beliefs or average beliefs.

20 These results suggest a probability of 39% of jumps of an average magnitude of �12% and a probability
of 21% of jumps of an average magnitude of over �27%. Thus, mixing three densities instead of two does
not change the conclusion from Section 2.2.3 that the crash probabilities required to generate the
empirical state-price density are implausibly high–in this case, the probability of no crash is less than
40%.

The Review of Financial Studies / v 20 n 3 2007

894



tail of the empirical state-price density, the heterogeneous-beliefs den-

sity therefore needs to use the additional source of risk it has avail-

able—the variability in the Radon–Nikodym derivatives 
i. As shown in

Appendix C, the standard deviation of 
i is proportional to the diver-

gence in beliefs between the different groups. The sizable difference in

standard deviations between the jump and the no-jump cases for the

fitted mixture density therefore translates to a high degree of pessimism

for the estimated heterogeneous-beliefs density. To quantify the impact
of the variability in the Radon–Nikodym derivatives on the state-price

density, Figure 7 also reports the homogeneous-beliefs state-price den-

sity obtained using the average beliefs of the three groups. Observe that

the difference between this density and the heterogeneous-beliefs den-

sity—which measures the impact of the variability in the Radon–Niko-

dym derivatives—is sizable.

Thus, an extreme degree of pessimism is required to generate the

empirical state-price density because our heterogeneous-beliefs model
assumes a lognormal setting in which the standard deviation perceived

by each group is the same. In addition, because actual asset returns

exhibit stochastic volatility and jumps, the model attributes the portion

of the excess skewness and kurtosis in the empirical state-price density

that is actually caused by stochastic volatility and jumps to heterogeneous

beliefs. Presumably, a heterogeneous-beliefs model allowing for different

perceived standard deviations among agents and for beliefs that are not

lognormal by introducing stochastic volatility and jumps in returns would
produce a more plausible degree of pessimism.

3. Conclusion

This article explores different potential explanations for the implied risk
aversion smile by investigating the properties of implied risk aversion

estimators in different settings within the standard consumption-based

framework commonly used in the implied risk aversion literature. Three

potential explanations are investigated: (i) the aggregation of heteroge-

neous preferences among agents, both with and without stochastic vola-

tility and jumps, (ii) misestimation of investors’ beliefs due to stochastic

volatility, jumps, or a Peso problem, and (iii) heterogeneous beliefs.

The analysis reveals that if agents’ beliefs are homogeneous and can be
estimated accurately, implied risk aversion inherits most of the properties

of agents’ utility functions. More specifically, if all agents are risk averse,

then implied risk aversion is strictly positive. Moreover, if all agents

exhibit constant (decreasing, increasing) absolute risk aversion, so does

implied risk aversion. Preference aggregation therefore seems unlikely to

be the explanation for the smile. This result also holds true in the presence

of stochastic volatility and jumps in returns.
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Analyzing misestimation of investors’ beliefs as a potential expla-

nation reveals that implied risk aversion estimates are very sensitive

to beliefs estimation errors. Misestimation of beliefs caused by sto-

chastic volatility and jumps as captured in the Pan (2002) model

seems unlikely to be able to account for the smile. The beliefs misesti-

mation patterns that can be inferred from the implied risk aversion

estimates found in the literature suggest a Peso problem explanation.

However, the perceived probability of a market crash required to gen-
erate the fat left tail of the empirical state-price density appears unrea-

sonably high.

Heterogeneous beliefs cause significant distortions in implied risk aver-

sion estimates if heterogeneity is not accounted for explicitly in the

estimation process. However, fitting a simple model with three groups

of CRRA investors with heterogeneous, lognormal beliefs to the empiri-

cal state-price density reveals that two groups of pessimistic investors with

an implausibly large degree of pessimism are required to explain the
implied risk aversion smile.

Thus, for plausible parameter values, none of the three potential

explanations considered in the article is able to account for the

implied risk aversion smile within the standard consumption-based

framework. To explain the smile, it therefore seems necessary to go

beyond the standard consumption-based framework and analyze the

impact of factors such as market incompleteness, market frictions,

and the fact that the stock index may not be a good proxy for the
aggregate endowment.

Appendix A: Proof of Propositions

Proof of Proposition 1. With homogeneous beliefs and accurate estimation,

P̂¢ðSÞ=P̂ðSÞ ¼ P¢ðSÞ=PðSÞ. Substitution in the implied risk aversion estimator (22) yields (23).

Proof of Proposition 2. Differentiating (23) with respect to S yields

�¢ðSÞ ¼ �

PI
i¼1

� �¢iðci
sÞ

�2
i
ðci

sÞ
dci

s

dS

PI
i¼1

1
�iðci

sÞ

� �2
¼

PI
i¼1

�¢iðci
sÞ

�2
i
ðci

sÞ
dci

s

dS

PI
i¼1

1
�iðci

sÞ

� �2
¼ �2ðSÞ

XI

i¼1

�¢iðci
sÞ

�2
i ðci

sÞ
dci

s

dS
: ðA1Þ

Because all agents are risk averse and have homogeneous beliefs, risk sharing among them

implies that dci
s=dS > 0 for all i. Therefore, (A1) is positive whenever �i¢ðci

sÞ > 0 for all i and

negative whenever �i¢ðci
sÞ < 0 for all i, establishing the result.

Proof of Proposition 3. Relative risk aversion is given by �ðSÞ ¼ S�ðSÞ. Using (23) then

yields
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�ðSÞ ¼ S
1PI

i¼1

1
�ui

ccðci
s ,sÞ=ui

cðci
s ,sÞ

¼ 1PI
i¼1

1
�ui

ccðci
s ,sÞci

s=ui
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s ,sÞ
ci

s

S

¼ 1PI
i¼1

1
�iðci

sÞ
ci

s

S

, ðA2Þ

where �iðci
sÞ � �ui

ccðci
s,sÞci

s=ui
cðci

s,sÞ denotes agent i’s relative risk aversion on his optimal

consumption path.

Proof of Proposition 5. Rewriting (25) as

d lnðP̂ðSÞÞ
dS

¼ d lnðPðSÞÞ
dS

þ 
ðSÞ ðA3Þ

yields, for an arbitrary reference point S,

ln
P̂ðSÞ
P̂ðSÞ

 !
¼ ln

PðSÞ
PðSÞ

� �
þ
ZS

S


ðzÞdz ðA4Þ

or

P̂ðSÞ
PðSÞ ¼

P̂ðSÞ
PðSÞ exp

ZS

S


ðzÞdz

0
B@

1
CA ¼ � exp

ZS

S


ðzÞdz

0
B@

1
CA ðA5Þ

with � � P̂ðSÞ=PðSÞ a constant that ensures that PðSÞ integrates to 1.

Appendix B: Computation of P and Q using Pan’s (2002) Model

Pan (2002) adopted the Bates (2000) stochastic volatility and jumps model to characterize

the index return and volatility dynamics. Letting rt denote the riskless interest rate (assumed

to follow a square-root process with long-run mean �r, mean-reversion rate 	r, and volatility

coefficient �r), qt the dividend yield (with long-run mean �q, mean-reversion rate 	q, and

volatility coefficient �q), the index price St and volatility Vt under the physical measure P

are assumed to follow:

dSt ¼ rt � qt þ �sVt þ �Vtð�� �*Þ½ �Stdtþ
ffiffiffiffiffi
Vt

p
StdB1

t þ dZt � �St�Vtdt ðB1Þ

dVt ¼ 	vð�v� VtÞdtþ �v

ffiffiffiffiffi
Vt

p
�dB1

t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
dB2

t

� �
, ðB2Þ

where dB1
t and dB2

t are independent standard Brownian motions and Z is a pure jump

process. Jumps are assumed to arrive with a stochastic intensity �Vt. Conditional on a

jump occurring, the logarithm of the relative jump size is assumed to be normally

distributed with mean �J ¼ lnð1þ �Þ � �2
J=2 and variance �2

J . Hence, the last term in
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(B1), �St�Vtdt, compensates for the change in instantaneous expected index returns

introduced by Z. The volatility process has long-run mean �v, mean-reversion rate 	v,

and volatility coefficient �v, and the Brownian shocks to price S and volatility V are

correlated with constant coefficient �.

Under the risk-neutral measure Q, the dynamics of rt and qt are assumed to be the same

as under P, but the dynamics of St and Vt follow

dSt ¼ ðrt � qtÞStdtþ
ffiffiffiffiffi
Vt

p
StdB1

t ðQÞ þ dZ
Q
t � �*St�Vtdt ðB3Þ

dVt ¼ ½	vð�v� VtÞ þ �vVt�dtþ �v

ffiffiffiffiffi
Vt

p
�dB1

t ðQÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
dB2

t ðQÞ
� �

, ðB4Þ

where dB1
t ðQÞ and dB2

t ðQÞ are independent standard Brownian motions under Q and ZQ is a

pure jump process under Q. Jumps are assumed to arrive with a stochastic intensity �Vt that

is the same as under P; in other words, there is no risk premium for jump timing uncer-

tainty. Conditional on a jump occurring, the logarithm of the relative jump size under Q is

assumed to be normally distributed with mean �*
J ¼ lnð1þ �*Þ � �2

J=2 and variance �2
J . The

volatility process has mean-reversion rate 	*
v ¼ 	v � �v, long-run mean �v* ¼ 	v�v=	

*
v , and

volatility coefficient �v.

Thus, the model allows for three risk premia: the risk premium for ‘‘Brownian’’

return risk, �sVt, that for jump return risk, �Vtð�� �*Þ, and that for volatility risk,

�vVt.

In this setting, from Appendices B and D in Pan (2002), given initial values of the interest

rate, r, the dividend yield, q, and volatility, v, and a time horizon � ¼ s� t, the time-t

conditional transform of lnðSsÞ under P is given by:

 ðc; v,r,q,�Þ ¼ expð�rðcÞ þ �qðcÞ þ �vðcÞ þ �rðcÞrþ �qðcÞqþ �vðcÞvÞ, ðB5Þ

where, letting �r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2

r þ 2ð1� cÞ�2
r

p
, �q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2

q þ 2c�2
q

q
,

a ¼ cð1� cÞ � 2� exp c�J þ c2 �
2
J

2

� �
� 1� c�*

� �
� 2c�s, ðB6Þ

b ¼ �v�c� 	v and �v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a�2

v

p
, one has21

�r ¼ �
	r�r

�2
r

ð�r � 	rÞ� þ 2 ln 1� ð�r � 	rÞ
1� expð��r�Þ

2�r

� �� �
ðB7Þ

21 The expression for �v in Pan (2002) contains an additional term, �0 ðexpðc�J þ c2�2
j =2Þ � 1� c�*Þ,

capturing the effect of a jump arrival intensity of the form �0 þ �1Vt. The calibrated model, however,
uses the intensity specification �Vt. The transforms reproduced here are those that apply in this special
case.

The Review of Financial Studies / v 20 n 3 2007

898



�q ¼ �
	q�q

�2
q

ð�q � 	qÞ� þ 2 ln 1� ð�q � 	qÞ
1� expð��q�Þ

2�q
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ðB8Þ

�v ¼ �
	v�v

�2
v

ð�v þ bÞ� þ 2 ln 1� ð�v þ bÞ 1� expð��v�Þ
2�v

� �� �
ðB9Þ

�r ¼ �
2ð1� cÞð1� expð��r�ÞÞ

2�r � ð�r � 	rÞð1� expð��r�ÞÞ
ðB10Þ

�q ¼ �
2cð1� expð��q�ÞÞ

2�q � ð�q � 	qÞð1� expð��q�ÞÞ
ðB11Þ

�v ¼ �
að1� expð��v�ÞÞ

2�v � ð�v þ bÞð1� expð��v�ÞÞ
: ðB12Þ

Given the values of the parameters 	r ¼ 0:20, �r ¼ 0:058, �r ¼ 0:0415, 	q ¼ 0:24,

�q ¼ 0:025, �q ¼ 0:0269 reported in Table 6 of Pan (2002) and the values

	v ¼ 6:4, �v ¼ 0:0153, �v ¼ 0:30, � ¼ �0:53, �s ¼ 3:6, � ¼ 12:3, � ¼ �0:008, �* ¼ �0:192,

and �J ¼ 0:0387 reported in Table 3, and selecting initial values for r, q and v and the time

horizon � considered, the density of Ss under P can be obtained by numerical integration:

PðS; v,r,q,�Þ ¼ 1

2�

Z1
�1

 ðiz; v,r,q,�Þ expð�izSÞdz: ðB13Þ

An analogous procedure is used to obtain the density under Q. From Pan’s (2002)

Appendix B, the transform under Q has a similar form as under P, except that some of

the parameters used are the risk-neutral counterparts of those under P. Specifically, one has

 *ðc; v,r,q,�Þ ¼ exp �rðcÞ þ �qðcÞ þ �*
vðcÞ þ �rðcÞrþ �qðcÞqþ �*

v ðcÞv
� �

, ðB14Þ

where �r, �q, �r, and �q are defined as under P and, letting 	*
v ¼ 	v � �v, �v* ¼ 	v�v=	

*
v ,

a* ¼ cð1� cÞ � 2� ðexpðc�*
J þ c2�2

J=2Þ � 1� c�*Þ, b* ¼ �v�c� 	*
v , and �*

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb*Þ2 þ a*�2

v

q
,

one has

�*
v ¼ �

	*
v�v

*

�2
v

ð�*
v þ b*Þ� þ 2 ln 1� ð�*

v þ b*Þ 1� expð��*
v �Þ

2�*
v

� �� �
ðB15Þ

�*
v ¼ �

a*ð1� expð��*
v �ÞÞ

2�*
v � ð�*

v þ b*Þð1� expð��*
v �ÞÞ

: ðB16Þ
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Using the parameter values above and the additional value �v ¼ 3:1 reported in Table 3 of

Pan (2002), the density of Ss under Q for initial values r, q, v, and a time horizon � can again

be obtained by numerical integration:

QðS; v,r,q,�Þ ¼ 1

2�

Z1
�1

 *ðiz,v,r,q,�Þ expð�izSÞdz: ðB17Þ

Appendix C: Joint Distribution of ct and the 
i
ts

The computations in this section follow the approach used in Buraschi and Jiltsov (2005),

who perform analogous computations in a slightly different setting.

The distribution of cs conditional on ct as perceived by agent i can be computed by

noting that agent i perceives ct to have dynamics

dct

ct

¼ �i
tdtþ �dBi

t, ðC1Þ

where dBi
t is a Brownian innovation. Therefore,

d lnðctÞ ¼ �i
t �

�2

2

� �
dtþ �dBi

t: ðC2Þ

Because

d�i
t ¼

V

�
dBi

t, ðC3Þ

one has

�i
s ¼ �i

t þ
Zs

t

V

�
dBi

u ¼ �i
t þ

V

�
ðBi

u � Bi
tÞ: ðC4Þ

Hence,

lnðcsÞ ¼ lnðctÞ þ
Zs

t

�i
u �

�2

2

� �
duþ �

Zs

t

dBi
u

¼ lnðctÞ þ
Zs

t

�i
t þ

V

�
ðBi

u � Bi
tÞ �

�2

2

� �
duþ �

Zs

t

dBi
u

¼ lnðctÞ þ �i
t �

�2

2

� �
ðs� tÞ þ V

�

Zs

t

ðBi
u � Bi

tÞduþ �ðBi
s � Bi

tÞ: ðC5Þ

Thus, conditional on lnðctÞ, agent i perceives lnðcsÞ to be normally distributed with

expectation
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E i
tðlnðcsÞÞ ¼ lnðctÞ þ �i

t �
�2

2

� �
ðs� tÞ � �i

c ðC6Þ

and variance

Vari
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2
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c : ðC7Þ

To determine the distribution of the density processes f
i
sg from agent 1’s perspective,

observe that because

dBi
t ¼

1

�

dct

ct

� �i
tdt

� �
ðC8Þ

the Brownian innovations of group i and the reference group 1 are related by

dBi
t ¼ dB1

t þ
�1

t � �i
t

�
dt ¼ dB1

t þ �i
tdt, ðC9Þ

where ��i
t � ð�1

t � �i
tÞ=� denotes the normalized divergence in beliefs about �t between both

groups. Because ��i
t has dynamics

d�i
t ¼

d�1
t � d�i

t

�
¼ V

�2

�i
t � �1

t

�
dt ¼ � V

�2
�i

tdt, ðC10Þ

it is a deterministic function of time given by

�i
s ¼ �i

t exp � V

�2
ðs� tÞ

� �
: ðC11Þ

By Girsanov’s theorem, the density process for group i, 
 i
t , follows

d
i
t


i
t

¼ ��i
tdB1

t : ðC12Þ

Why Does Implied Risk Aversion Smile?

901



Hence,

lnð
i
sÞ ¼ lnð
i

tÞ �
Zs

t

�i
udB1

u �
1

2

Zs

t

ð�i
uÞ

2
du

¼ lnð
i
tÞ � �i

t

Zs

t

exp � V

�2
ðu� tÞ

� �
dB1

u �
1

2
ð�i

tÞ
2

Zs

t

exp � 2V

�2
ðu� tÞ

� �
du: ðC13Þ

Thus, conditional on lnð
i
tÞ, agent 1 perceives lnð
 i

sÞ to be normally distributed with mean

E1
t ðlnð
i

sÞÞ ¼ lnð
i
tÞ �

1

2
ð�i

tÞ
2

Zs

t

exp � 2V

�2
ðu� tÞ

� �
du

¼ lnð
i
tÞ �

1

2
ð�i

tÞ
2 �

2

2V
1� exp � 2V

�2
ðs� tÞ

� �� �
� lnð
i

tÞ þ �
i ðC14Þ

and variance

Var1
t ðlnð
i

sÞÞ ¼ ð�i
tÞ

2

Zs

t

exp � 2V

�2
ðu� tÞ

� �
du

¼ ð�i
tÞ

2 �
2

2V
1� exp � 2V

�2
ðs� tÞ

� �� �
� �2


i : ðC15Þ

The covariance between lnð
i
sÞ and lnð
j

tÞ as perceived by agent 1 at time t is given by

Cov1
t ðlnð
i

sÞ, lnð
j
sÞÞ ¼

Zs

t

�i
u�

j
udu ¼ �i

t�
j
t

Zs

t

exp � 2V

�2
ðu� tÞ

� �
du

¼ �i
t�

j
t

�2

2V
1� exp � 2V

�2
ðs� tÞ

� �� �
ðC16Þ

with the consequence that the correlation between lnð
i
sÞ and lnð
j

sÞ is perfect but can be

either positive or negative, depending on whether ��i
t and ��j

t have similar signs or not, that is,

�
i
j ¼ signð��i
t ��j

tÞ.
Finally, the covariance between lnðcsÞ and lnð
i

sÞ as perceived by agent 1 at time t is given by

Cov1
t ðlnðcsÞ, lnð
i

sÞÞ ¼ �
Zs

t

��i
udu ¼ ���i

t

Zs

t

exp � V

�2
ðu� tÞ

� �
du

¼ ��i
t

�3

V
1� exp � V

�2
ðs� tÞ

� �� �
� �c
i : ðC17Þ
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