Disasters Implied by Equity Index Options

David Backus¹ Mikhail Chernov² Ian Martin³

¹NYU Stern and NBER

²London Business School and CEPR

³Stanford GSB and NBER

NBER SI Asset Pricing July 9-10, 2009

The idea

- Disasters are infrequent ⇒ hard to estimate their distribution
- Idea: infer from option prices (market prices of bets on disasters)
- We find:
 - disasters apparent in options data
 - disasters are more modest than what we see in macro data

Outline

- Preliminaries: entropy, Alvarez-Jermann bound, cumulants
- Disasters in macroeconomic data
- Risk-neutral probabilities
- Disasters in options data
- Compare the implications of the two approaches

Alvarez-Jermann bound

Pricing relation

$$E_t\left(m_{t+1}r_{t+1}^j\right) = 1$$

• Entropy: for any x > 0

$$L(x) \equiv \log Ex - E \log x \geq 0$$

AJ bound

$$L(m) \geq E(\log r^j - \log r^1)$$

Cumulants

Cumulant generating function

$$k(s;x) = \log Ee^{sx} = \sum_{i=1}^{\infty} \kappa_j(x)s^j/j!$$

Cumulants are almost moments

$$\begin{array}{rcl} \text{mean} & = & \kappa_1(x) \\ \text{variance} & = & \kappa_2(x) \\ \text{skewness} & = & \kappa_3(x)/\kappa_2^{3/2}(x) \\ \text{(excess) kurtosis} & = & \kappa_4(x)/\kappa_2^2(x) \end{array}$$

• If x is normal, $\kappa_j(x) = 0$ for j > 2

Entropy and cumulants

Entropy and cumulants

Entropy of pricing kernel

$$L(m) = \log Ee^{\log m} - E\log m = k(1, \log m) - \kappa_1(\log m)$$

Entropy and cumulants

Entropy of pricing kernel

$$L(m) = \log E e^{\log m} - E \log m = k(1, \log m) - \kappa_1(\log m)$$

Zin's "never a dull moment" conjecture

$$L(m) = \underbrace{\kappa_2(\log m)/2!}_{\text{(log)normal term}} + \underbrace{\kappa_3(\log m)/3! + \kappa_4(\log m)/4! + \cdots}_{\text{high-order cumulants (incl disasters)}}$$

Disasters based on macro fundamentals

Macro disasters: Model

Consumption growth iid

- Parameter values
 - Match mean and variance of log consumption growth
 - Average number of disasters ($\omega=0.01$), mean ($\theta=-0.3$) and variance ($\delta^2=0.15^2$)
 - Similar to Barro, Nakamura, Steinsson, and Ursua (2009)

Macro disasters: Deviations from normality

Pricing kernel

$$\log m_{t+1} = \log \beta - \alpha \log g_{t+1}$$

Macro disasters: Deviations from normality

Pricing kernel

$$\log m_{t+1} = \log \beta - \alpha \log g_{t+1}$$

Yaron's "bazooka"

$$\kappa_j(\log m)/j! = \kappa_j(\log g)(-\alpha)^j/j!$$

• The contribution of higher-order cumulants peaks at $j = \alpha$

$$\frac{\alpha^j}{j!} = \frac{\alpha}{1} \cdot \frac{\alpha}{2} \cdot \ldots \cdot \frac{\alpha}{j-1} \cdot \frac{\alpha}{j}$$

Macro disasters: Cumulants

Macro disasters: Entropy

Macro disasters: Entropy

Pricing relation

$$q^1 E_t^* \left(r_{t+1}^j \right) = 1,$$

- where q^1 is a price of a one-period riskless bond
- Translating between preferences and risk-neutral probabilities

$$p(x)m(x) = q^{1}p^{*}(x)$$

$$p^{*}(x) = p(x)m(x)/q^{1}$$

Macro-finance and risk-neutral pricing: Examples

- Normal log consumption growth
 - If $\log g \sim \mathcal{N}(\mu, \sigma^2)$ (true distribution)
 - Then risk-neutral distribution also lognormal with $u^* = u \alpha \sigma^2$, $\sigma^* = \sigma$
- Poisson log consumption growth
 - If disasters have probability ω and distribution $\mathcal{N}(\theta, \delta^2)$
 - Then risk-neutral distribution has same form with $\omega^* = \omega \exp(-\alpha\theta + (\alpha\delta)^2/2), \theta^* = \theta \alpha\delta^2, \delta^* = \delta$

Pricing relation

$$q^1 E_t^* \left(r_{t+1}^j \right) = 1,$$

Translating between preferences and risk-neutral probabilities

$$p(x)m(x) = q^{1}p^{*}(x)$$

$$p^{*}(x) = p(x)m(x)/q^{1}$$

Pricing relation

$$q^1 E_t^* \left(r_{t+1}^j \right) = 1,$$

Translating between preferences and risk-neutral probabilities

$$p(x)m(x) = q^{1}p^{*}(x)$$

$$p^{*}(x) = p(x)m(x)/q^{1}$$

$$m(x) = q^{1}p^{*}(x)/p(x)$$

Pricing relation

$$q^1 E_t^* \left(r_{t+1}^j \right) = 1,$$

Translating between preferences and risk-neutral probabilities

$$p(x)m(x) = q^{1}p^{*}(x)$$

$$p^{*}(x) = p(x)m(x)/q^{1}$$

$$m(x) = q^{1}p^{*}(x)/p(x)$$

Entropy

$$L(m) = L(p^*/p) = -E\log(p^*/p)$$

Disasters in options

Disasters in options

Put option (bet on low returns)

$$q_t^p = q^1 E_t^* (b - r_{t+1}^e)^+$$

- Estimate p* by varying strike price b (cross section)
- Black-Scholes-Merton benchmark
 - Quote prices as implied volatilities [high price ⇔ high vol]
 - Horizontal line if (log)normal
 - "Skew" suggests disasters

Disasters in options: Data vs normal benchmark

Disasters in options: Merton model

Equity returns iid

$$\log r_{t+1}^e - \log r^1 = w_{t+1} + z_{t+1}$$
 $w_{t+1} \sim \mathcal{N}(\mu, \sigma^2)$ $z_{t+1}|j \sim \mathcal{N}(j\theta, j\delta^2)$ $j \geq 0$ has probability $e^{-\omega}\omega^j/j!$

- Risk-neutral distribution: the same with *s
- Parameter values
 - Choose risk-neutral parameters to match option prices
 - Average number of disasters ($\omega^* = 1.5$), mean ($\theta^* = -0.05$) and variance ($\delta^{*2} = 0.01^2$)
 - Calibration is based on Broadie, Chernov, and Johannes (2007)

Comparing macro- and option-based models

- Entropy and cumulants of pricing kernel
 - Result: option-based entropy is large
- Consumption growth implied by option prices
 - Option-based p^* + power utility $\Rightarrow p$
 - Result: more modest skewness and kurtosis, tail probabilities
- Option prices implied by consumption growth
 - Macro-based p + power utility $\Rightarrow p^*$
 - Compute option prices
 - Result: steeper volatility smile

Comparing models: components of entropy

			High-Order Cumulants	
Model	Entropy	Variance/2	Odd	Even
Macro ($\alpha = 5.38$)	0.0449	0.0177	0.0173	0.0099
Options	0.7647	39% 0.4699 61%	39% 0.1130 15%	22% 0.1819 24%

	Calibration	Implied
α	5.38	10.07
ω	0.0100	1.3864
θ	-0.3000	-0.0060
δ	0.1500	0.0229

	Calibration	Implied
α	5.38	10.07
ω	0.0100	1.3864
θ	-0.3000	-0.0060
δ	0.1500	0.0229
Skew	-11.02	-0.31
Excess Kurt	145.06	0.87

	Calibration	Implied
α	5.38	10.07
ω	0.0100	1.3864
θ	-0.3000	-0.0060
δ	0.1500	0.0229
Skew	-11.02	-0.31
Excess Kurt	145.06	0.87
Tail prob (≤ -3 st dev)	0.0090	0.0086

	Calibration	Implied
α	5.38	10.07
ω	0.0100	1.3864
θ	-0.3000	-0.0060
δ	0.1500	0.0229
Skew	-11.02	-0.31
Excess Kurt	145.06	0.87
Tail prob (≤ -3 st dev)	0.0090	0.0086
Tail prob (≤ -5 st dev)	0.0079	0.0002

Comparing models: options implied by macro model

Comparing models: options implied by macro model

Comparing models: risk aversion

- In option model, implicit risk aversion accounts for
 - Equity premium
 - Prices of options (high entropy)
- Form differs from power utility
 - Not constant
 - Parameters imply greater aversion to adverse risks

Comparing models: risk aversion

- In option model, implicit risk aversion accounts for
 - Equity premium
 - Prices of options (high entropy)
- Form differs from power utility
 - Not constant
 - Parameters imply greater aversion to adverse risks
- Computation

$$RA = -\frac{\partial \log m}{\partial \log g} = -\frac{\partial \log(p^*/p)}{\partial \log r^e} \cdot \frac{\partial \log r^e}{\partial \log g}$$

Bottom line

- Barro and Rietz
 - Disasters account for equity premium
 - Evident in macro data
- Options
 - Disasters evident in option prices
 - More modest than in macro data
 - Imply higher entropy than equity premium
 - Suggest high average risk aversion, greater aversion to bad outcomes

Open questions

- Time dependence
 - Short rate, predictable returns, stochastic volatility
 - Examples: Drechsler and Yaron (2008), Wachter (2008)
- Consumption and dividends
 - Examples: Gabaix (2009), Longstaff and Piazzesi (2004)
- Source of apparent risk aversion
 - Exotic preferences
 - Heterogeneous agents
 - Examples: Alvarez, Atkeson, and Kehoe (2009); Bates (2008);
 Du (2008); Lustig and Van Nieuwerburgh (2005)

