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The idea ]

@ Disasters are infrequent = hard to estimate their distribution

@ Idea: infer from option prices (market prices of bets on disasters)

@ We find:

o disasters apparent in options data
@ the mechanism generating disasters is more modest than what is
assumed based on macro data
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Entropy |
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Entropy )

@ Hans-Otto Georgii (quoted by Hansen and Sargent):

When Shannon had invented his quantity and consulted
von Neumann on what to call it, von Neumann replied:
“Call it entropy. It is already in use under that name and,
besides, it will give you a great edge in debates because
nobody knows what entropy is anyway.”
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Outline ]

Preliminaries: entropy, Alvarez-Jermann bound, cumulants
Disasters in macroeconomic data

Risk-neutral probabilities

Disasters in options data

Compare the implications of the two approaches

Extensions and related work
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Alvarez-Jermann bound

@ Pricing relation
E; (mt+1rtj+1) = 1
@ Entropy: for any x > 0
L(x) = logEx—Elogx > 0
@ AJ bound (i.i.d. case)

L(m) > E(logr' —logr?)
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Cumulants ]

@ Cumulant generating function

k(s;x)

@ Cumulants are almost moments

mean
variance
skewness

(excess) kurtosis

@ If x is normal, Kj(x) =0 forj > 2

log Ee®*
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Entropy and cumulants ]
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Entropy and cumulants

@ Entropy of pricing kernel

L(m)

logm

logEe®®™ —Elogm = k(1,logm)—Kj(logm)



Entropy and cumulants )

@ Entropy of pricing kernel

L(m) = logEe™™ —Elogm = k(1,logm)—K(logm)

@ Zin’s “never a dull moment” conjecture

L(m) = Ky(logm)/2!+Ks(logm)/3! +K4(logm)/4! 4 ---

(log)normal term high-order cumulants (incl disasters)




Alvarez-Jerman bound vs.
Hansen-Jagannathan bound

@ Entropy: forx >0

@ HJ:forx >0
L(x) =logEx —Elogx >0 o(x
&) HJ(X)EQ >0
Ex
@ AJbound
@ HJ bound

L(m) > E (logr’ —logr) i
r—r

HI(m) > m

Al )

el \‘wr\ L

7164



Alvarez-Jermann bound vs.
Hansen-Jagannathan bound
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Alvarez-Jermann bound vs.
Hansen-Jagannathan bound
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Alvarez-Jermann bound vs.
Hansen-Jagannathan bound
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Disasters based on macro fundamentals |
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Macro disasters: Model ]

@ Consumption growth iid

loggi+1 =
Wigy1 ~
Zeal] ~

Y

j

@ Parameter values

Wit +Zeya

N (1, 0%)
N(i8,i%°)
0 has probability e “w /j!

@ Match mean and variance of log consumption growth
@ Average number of disasters (= 0.01), mean (6 = —0.3) and

variance (&% = 0.15%)

@ Similar to Barro, Nakamura, Steinsson, and Ursua (2009)
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Macro disasters: Deviations from normality |

@ Pricing kernel

logmirs = logB—aloggita
L(m) = logEe™™™ —Elogm =k(—a;logg)+ aki(logg)

L]
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Macro disasters: Deviations from normality |

@ Pricing kernel

logmiy; = logB—alogg:i1
L(m) = logEe™™™ —Elogm =k(—a;logg)+ aki(logg)

@ Yaron's “bazooka”
Ki(logm)/j! = Kj(logg)(—a) /j!
@ The contribution of higher-order cumulants peaks at j = O

a
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Macro disasters: Cumulants
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Macro disasters: Entropy
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Macro disasters: Entropy
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Macro disasters: Entropy
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Macro-finance and risk-neutral pricing |
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Macro-finance and risk-neutral pricing |

@ Pricing relation
q'E/S (rth) = 1,

@ where g is a price of a one-period riskless bond
@ Translating between preferences and risk-neutral probabilities

p(x)m(x) = a'p*(x)
(

)
p*(x) = p(x)m(x)/q*

A\ N
paveeiwll
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Macro-finance and risk-neutral pricing:

Examples

@ Normal log consumption growth

o Iflogg ~ A((,0?) (true distribution)
@ Then risk-neutral distribution also lognormal with
W=p—002,0*=0

@ Poisson log consumption growth

@ If disasters have probability w and distribution A(8, 5?)
@ Then risk-neutral distribution has same form with

w* = wexp(—a0+ (0d)?/2),0* =6 —0ad,5 =d
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Macro-finance and risk-neutral pricing |

@ Pricing relation
L _
qE’ (rtj+1> = 1
@ Translating between preferences and risk-neutral probabilities

p(x)m(x) = q'p*(x)
p*(x) = p(x)m(x)/q*

Acdt )

L]
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Macro-finance and risk-neutral pricing |

@ Pricing relation
L _
qE’ (rtj+1> = 1
@ Translating between preferences and risk-neutral probabilities

p(x)m(x) = q'p*(x)
p*(x) = p(x)m(x)/q*
m(x) = a'p*(x)/p(x)

A

L]

16/64



Macro-finance and risk-neutral pricing |

@ Pricing relation

1
qE’ (rtj+1> = 1
@ Translating between preferences and risk-neutral probabilities

p(x)m(x) = q'p*(x)
p*(x) = p(x)m(x)/q*
m(x) = a'p*(x)/p(x)

@ Entropy

L(m) = L(p"/p) = —Elog(p*/p)

L]
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Disasters in options ]
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Disasters in options )

@ Put option (bet on low returns)
o = 9'E(b— rte+1)Jr

@ Estimate p* by varying strike price b (cross section) (Breeden
and Litzenberger, 1978)

@ Black-Scholes-Merton benchmark

@ Quote prices as implied volatilities [high price <> high vol]
@ Horizontal line if (log)normal
@ “Skew” suggests disasters
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Disasters in options: Data vs normal J
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Disasters in options: Merton model

@ Equity returns iid

e 1
logr, —logr™ = Wiy +2zi4g

wir ~ A(10%)
zialj ~ N(6,i5°)
j 0 has probability e~ /j!

AV

@ Risk-neutral distribution: the same with *s
@ Parameter values

@ Choose risk-neutral parameters to match option prices
@ Average number of disasters: W= w" = 1.5,

mean: 6 = —0.03, 6 = —0.05,

variance: & = 0.042, 2 = 0.102
@ Calibration is based on Broadie, Chernov, and Johannes (2007)

A



Calibrating option parameters
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Calibrating option parameters

0.2

0.19f

0.18}f

0.17f

0.16f

Implied Volatility (annual units)

0.15f

estimated Merton model

-0.06

-0.04 -0.02

Moneyness:

0 0.02 0.04 0.06
difference of return from zero



Calibrating option parameters
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Calibrating option parameters
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Comparing macro- and option-based models |

@ Entropy and cumulants of pricing kernel

@ Result: option-based entropy is large

@ Consumption growth implied by option prices

@ Option-based p* + power utility = p

@ Result: more modest skewness and kurtosis, tail probabilities
@ Option prices implied by consumption growth

@ Macro-based p + power utility = p*
o Compute option prices
@ Result: steeper volatility smile

@ Risk aversion implied by options

@ Result: Risk aversion declines with increase in returns
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Comparing models:
components of entropy

High-Order Cumulants

Model Entropy Variance/2 Odd Even

Macro (0 =5.38) 0.0449 0.0177 0.0173 0.0099
39% 39% 22%

Options 0.7647 0.4699 0.1130 0.1819

61% 15% 24%
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Comparing models:
one more step

@ “Levered equity”

@ Claimto c?
@ Log return logr® = Alogg + constant

@ Calibrate A to match volatility of returns

A= 0.15 / 0.035 =4.3
vol(logre) * vol(logg)

P
Ml ]
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Comparing models:
consumption implied by options
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Comparing models:
consumption implied by options

Calibration

Implied

ooog Q

5.38
0.0100
—0.3000
0.1500

10.07
1.3864
—0.0060
0.0229

AR
Ml ]
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Comparing models:
consumption implied by options

Calibration Implied

a 5.38 10.07
w 0.0100 1.3864
0 —0.3000 -0.0060
o) 0.1500 0.0229
Skew -11.02 -0.31
Excess Kurt 145.06 0.87

-0.35
1.10

)
AN

v "
LWid L
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Comparing models:
consumption implied by options

Calibration  Implied
a 5.38 10.07
w 0.0100 1.3864
0 —0.3000 -0.0060
o 0.1500 0.0229
Skew -11.02 -0.31 -0.35
Excess Kurt 145.06 0.87 1.10
Tail prob (< —3 st dev) 0.0090 0.0086 Great Depression



Comparing models:
consumption implied by options

Calibration  Implied

a 5.38 10.07
w 0.0100 1.3864
0 —0.3000 -0.0060
o) 0.1500 0.0229
Skew -11.02 -0.31 -0.35
Excess Kurt 145.06 0.87 1.10

Tail prob (< —3 st dev) 0.0090 0.0086 Great Depression
Tail prob (< —5 st dev) 0.0079 0.0002

A v n
fj\‘,ﬁy -
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Comparing models:

options implied by macro model

Implied Volatility (annual units)
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Comparing models:
options implied by macro model

Implied Volatility (annual units)
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Comparing models: risk aversion |

@ In option model, implicit risk aversion accounts for

@ Equity premium
@ Prices of options (high entropy)

@ Form differs from power utility

@ Not constant
o Parameters imply greater aversion to adverse risks

T
Ml
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Comparing models:
risk aversion computation

@ Math
RA _alogm ~ Olog(p*/p) Ologr®
dlogg dlogre  dlogg
N——

A

whdlin ]
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Comparing models:
risk aversion computation

@ Math
RA — 76Iogm B 76Iog(p*/p) dlogr®
~ dlogg dlogre  dlogg
N——

A

@ Example: logr® ~ A((W,02) and A[(L*,0*?)

RA = [(0%/0*% —1)logr® + p— (0?/0*?)*] /0® - A

A

e \‘Wr\ L
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Comparing models:
risk aversion computation

@ Math
RA — 76Iogm B 76Iog(p*/p) dlogr®
~ dlogg dlogre  dlogg
N——
A

@ Example: logr® ~ A((W,02) and A[(L*,0*?)

RA = [(0%/0*% —1)logr® + p— (0?/0*?)*] /0® - A

@ Interpretation

o If o0 = 0%, RA s constant
e If 0 < 0%, RA decreases with logr®

i n)
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Comparing models:
risk aversion variation

35

I I I I I I I I I I I 3
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Returns
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Bottom line ]

@ Barro (2006), Longstaff and Piazzesi (2004), and Rietz (1988)

@ Disasters account for equity premium
@ Evident in macro data

@ We look at options

o Disasters evident in option prices

@ More modest than in macro data

Suggest high average risk aversion, greater aversion to bad
outcomes

Imply higher entropy than equity premium

©

©
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Open questions

@ Consumption and dividends

o Examples: Bansal and Yaron (2004), Gabaix (2009) , Longstaff
and Piazzesi (2004)

@ Source of apparent risk aversion

@ Exotic preferences

@ Heterogeneous agents

o Examples: Alvarez, Atkeson, and Kehoe (2009); Bates (2008);
Chan and Kogan (2002); Lustig and Van Nieuwerburgh (2005)

@ Time dependence

@ Short rate, predictable returns, stochastic volatility
o Examples: Drechsler and Yaron (2008), Wachter (2008)



Consumption and Dividends |

@ So, far they were perfectly correlated:
logg? = Alogg = logr® = Alogg + constant
@ Can we relax this and is it important?

logr® = Alogg -+ constant + noise

AN
paveeiwll
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Returns and consumption growth
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@ OLS (using Shiller’s data)
logr® = 3-logg + constant 4 noise

@ What is the nature of the noise term?

A=l
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Using information in options to model noise |

Implied Volatility (annual units)
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Consumption and Dividends

@ Add noise:
logg? = Alogg+w = logr® = Alogg + constant +w,
wl ~ A((0,0%%)
@ Calibration
A = 3
o = ,/0.152—(3.0.035)2 =0.1071

@ As aresult, a = 5.79 (instead of 5.38)
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Implied volatilities revisited

Implied Volatility (annual units)
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Implied volatilities revisited

Implied Volatility (annual units)
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Comparing models:
consumption implied by options

Calibration Implied Implied (w. noise)

a 5.38 10.07 11.92
(V] 0.0100 1.3864 1.3481
0 —0.3000 -0.0060 —0.0035
o 0.1500 0.0229 0.0320
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Comparing models:
consumption implied by options

Calibration Implied Implied (w. noise)

a 5.38 10.07 11.92
(V] 0.0100 1.3864 1.3481
0 —0.3000 -0.0060 —0.0035
o 0.1500 0.0229 0.0320

@ Initial conclusions are robust to imperfect correlation between
consumption and dividends

@ Returns and consumption seem to share a common jump
component
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Open questions

@ Consumption and dividends

o Examples: Bansal and Yaron (2004), Gabaix (2009) , Longstaff
and Piazzesi (2004)
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Sources of Entropy in
Dynamic Representative Agent Models

David Backus (NYU), Mikhail Chernov (LBS),
and Stanley Zin (NYU)

University of Glasgow | March 4, 2010

This version: March 3, 2010
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Understanding dynamic models |

@ Are dynamic features important for the disaster story?

@ More generally, how does one discern critical features of modern
dynamic models?
@ The size of equity premium is no longer an overidentifying
restriction



Market-adjusted excess returns )

Asset Class Value Momentum

US stocks 4.3% 6.1%
UK stocks 2.7% 10.8%
Euro stocks 4.2% 10.9%
Jpn stocks 11.3% 4.2%
FX 4.9% 2.7%
Bonds 0.3% 0.3%
Commaodities 6.4% 8.8%

@ Annualized alphas relative to the MSCI world equity index in
excess of the US Treasury Bill rate

@ Source: Asness, Moskowitz, and Pedersen (2009)
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Understanding dynamic models |

@ Are dynamic features important for the disaster story?

@ More generally, how does one discern critical features of modern
dynamic models?
@ The size of equity premium is no longer an overidentifying
restriction



Understanding dynamic models )

@ Are dynamic features important for the disaster story?

@ More generally, how does one discern critical features of modern
dynamic models?

@ The size of equity premium is no longer an overidentifying
restriction
@ The models are built up from different state variables
@ Which pieces are most important quantitatively?
@ We start by thinking about how risk is priced in these models

o What is the source of the evident high entropy in the data?
o We use ACE to characterize this
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AJ bound, non-i.i.d. case J

@ AJbound

L(m) > E(logr'—logr*)+ L(q")
——
non-i.i.d. piece

sl
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AJ bound, non-i.i.d. case )

@ AJ bound

L(m) > E(logr'—logr*)+ L(q")
——
non-i.i.d. piece

@ Conditional entropy:

Li(mit1) = logEimiiq —Eflogmey

@ Average conditional entropy (ACE)

L(m) = EL(Mi1)+L(E(mit1)) = ELi(migs) +L(q")
ELi(met1) > E (logr! —logr?)



Advantages of
average conditional entropy (ACE)

Transparent lower bound: expected excess return (in logs)

Alternatively, ACE measures the highest risk premium in the
economy

Conditional entropy is easy to compute; to compute ACE evaluate
conditional entropy at steady-state values

ACE is comparable across different models with different state
variables, preferences, etc.
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Key models

@ External habit

@ Recursive preferences

@ Heterogeneous preferences

o ...



A change in notation

@ aisreplaced by 1 —a

@ Example: CRRA preferences; RA=5

@ Olda =5

@ Newa = —4

A/ N \‘.,J'\Al
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External habit ]

Equations (Abel/Campbell-Cochrane/Chan-Kogan/Heaton)

U = Z u(Crajs Xt4i),
=0
u(ce,x) = (fle,x)*—1)/a.

Habit is a function of past consumption: x; = h(c'™?1),
e.g., Abel: x; = c{_1.
Dependence on habit

@ Abel: f(c,xt) = ¢t /%t

@ Campbell-Cochrane: f(ct,X) = ¢ — Xt

Pricing kernel:

Ue(Ctq1,Xe41) _p (f(Ct+17Xt+1)>G_l (fc(0t+1,Xt+1)>

Uc(Ct7Xt) f(Ct7Xt) fc(CtaXt) ,

Vel |

Mey1 =B
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Example 1:
Abel (1990) + Chan and Kogan (2002)

@ Preferences: f(ct,X;) = ¢t /X
@ Chan and Kogan have extended the habit formulation:

logxet1 = (L—@) Y @logee—i = Glogx: + (1 — @)logc
i=0

@ Relative (log) consumption

logs; = log(ct/x) = @logs;—1 +log gy

@ Pricing kernel:

logme1s = logB+ (o —1)logge+1 — otlog(Xe+1/Xt)
logB+ (a0 —1)loggi+1 — (1 — @)logs;

47164



ACE: Abel-Chan-Kogan )

@ Pricing kernel:
logm¢11 =log B+ (a0 —1)loggi+1 — (1 — @) logs

@ Conditional entropy: Ly(m; 1) = log E;e"°9™M+1 — Elogmy 1

logEe ™+ = logB+k(a—1;logg) —a(1l— @)logs(= —logr')
Eflogmips = logB+ (o —1)Ky(logg) —a(1—@)logs;
Le(miy1) = k(a—1;logg) — (a—1)Ky(logg)

@ ACE: ELi(m¢41) =k(a —1;logg) — (o — 1)Ky (logg)
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ACE: Abel-Chan-Kogan )

@ Pricing kernel:

logm¢11 =log B+ (a0 —1)loggi+1 — (1 — @) logs

@ Conditional entropy: Ly(m; 1) = log E;e"°9™M+1 — Elogmy 1

logEe ™+ = logB+k(a—1;logg) —a(1l— @)logs(= —logr')
Eflogmips = logB+ (o —1)Ky(logg) —a(1—@)logs;
Le(miy1) = k(a—1;logg) — (a—1)Ky(logg)

@ ACE: ELi(m¢41) =k(a —1;logg) — (o — 1)Ky (logg)
@ Itis exactly the same as in the CRRA case
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Example 2: Campbell and Cochrane (1999) |

@ Preferences: f(c¢,x¢) = ¢t — X

@ Campbell and Cochrane specify (log) surplus consumption ratio
directly:

logst = log[(ct —x¢)/ct]
logss = @(logsi—1 —logs)+ A(logsi—1)(logg: — Ki(logg)).

i n)
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Example 2: Campbell and Cochrane (1999) |

@ Preferences: f(c¢,x¢) = ¢t — X
@ Campbell and Cochrane specify (log) surplus consumption ratio
directly:

logst = log[(ct —x¢)/ct]
logss = @(logsi—1 —logs)+ A(logsi—1)(logg: — Ki(logg)).

@ Compare to relative (log) consumption in Chan and Kogan

logs; = log(ct/x) = @logs;—1 +log gy



Example 2: Campbell and Cochrane (1999) |

@ Preferences: f(c¢,x¢) = ¢t — X
@ Campbell and Cochrane specify (log) surplus consumption ratio
directly:

logst = log[(ct —x¢)/ct]
logss = @(logsi—1 —logs)+ A(logsi—1)(logg: — Ki(logg)).

@ Compare to relative (log) consumption in Chan and Kogan

logs; = log(ct/x) = @logs;—1 +log gy



Example 2: Campbell and Cochrane (1999) |

@ Preferences: f(c¢,x¢) = ¢t — X
@ Campbell and Cochrane specify (log) surplus consumption ratio
directly:

logst = log[(ct —x¢)/ct]
logss = @(logsi—1 —logs)+ A(logsi—1)(logg: — Ki(logg)).

@ Pricing kernel:

logB+ (0 —1)loggt 41+ (o —1)log(st+1/st)
= logB— (o —1)A(logst)Ky(logg)

( 1)(1+A(logst))log gt+1

(o —1)(¢—1)(logs; — logs)

logmgq

o—
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Example 2: Campbell and Cochrane (1999) |

@ Preferences: f(c¢,x¢) = ¢t — X

@ Pricing kernel:

logmi1y = logB+ (a—1)loggits + (o — 1)log(st+1/st)
= logP — (o —1)A(logs;)Ky(logg)
+ (o —1)(1+A(logst))l0g gr+1
+ (a—1)(¢—1)(logs; —logs)
@ Conditional entropy:
Li(mi+1) = k((a—1)(1+A(logst));logg)

— (o —=1)(1+A(logst))ki(logg)
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Additional assumptions )

@ To compute ACE, we have to specify A and logg

@ Conditional volatility of the consumption surplus ratio

A(logst) = %\/1_([)_1?/(31_0() \/1—2(logs; —logs) — 1

o In discrete time, there is an upper bound on logs; to ensure
positivity of A
@ In continuous time, this bound never binds so we will ignore it
@ In Campbell and Cochrane, b = 0 to ensure a constant logr?
@ Consumption growth is i.i.d.
@ Case 1. 10gQi+1 = Wis1, Wit ~ A(M, 02) _
o Case 2. 10901 = Wii1 — Zt41, Zt41]j ~ Gamma(j,071),j = w
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ACE: Campbell and Cochrane, Case 1 |

@ Conditional entropy:

Li(meta) = ((@—1)(@—1) —b)/2+b(log s — logs)

® ACE: EL((mi11) = (0 — 1)(@— 1) — b)/2

A/ \r ij \‘.,J'\Al
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ACE: Campbell and Cochrane, Case 1

@ Conditional entropy:
Le(mey1) = ((0—1)(@—1) —b)/2+b(logs; —logs)

@ ACE: ELi(mi11) = ((a —1)(@—1) —b)/2
@ All authorsuse a = —1
@ ACE for different calibrations (quarterly)

AR
Ml ]
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ACE: Campbell and Cochrane, Case 1

@ Conditional entropy:
Le(mey1) = ((0—1)(@—1) —b)/2+b(logs; —logs)

@ ACE: ELt(mt+1) = ((0( — 1)((p— 1) — b)/2
@ Allauthorsuse a = —1

@ ACE for different calibrations (quarterly)

@ Campbell and Cochrane (1999): ¢=0.97,b = 0;
EL¢(m¢4+1) = 0.0300 (0.120 annual)

A y n
J RAARWITN
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ACE: Campbell and Cochrane, Case 1

@ Conditional entropy:

Li(meta) = ((@—1)(@—1) —b)/2+b(log s — logs)

@ ACE: ELt(mt+1) = ((0( — 1)((p— 1) — b)/2
@ Allauthorsuse a = —1

@ ACE for different calibrations (quarterly)

@ Campbell and Cochrane (1999): ¢=0.97,b = 0;
EL¢(m¢4+1) = 0.0300 (0.120 annual)

@ Wachter (2006): ¢=0.97, b = 0.011;
EL¢(m¢+1) = 0.0245 (0.098 annual)



ACE: Campbell and Cochrane, Case 1

@ Conditional entropy:
Le(mey1) = ((0—1)(@—1) —b)/2+b(logs; —logs)

@ ACE: EL(mi1) = (0 — 1)(9—1) —b)/2
@ All authorsuse a = —1
@ ACE for different calibrations (quarterly)
@ Campbell and Cochrane (1999): ¢=0.97,b = 0;
EL¢(m¢4+1) = 0.0300 (0.120 annual)
@ Wachter (2006): ¢=0.97, b = 0.011;
EL¢(m¢+1) = 0.0245 (0.098 annual)
@ Verdelhan (2009): ¢@=0.99, b = —0.011;
EL¢(m¢+1) = 0.0155 (0.062 annual)
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ACE: Campbell and Cochrane, Case 2 |

@ Conditional entropy:
(a—1)(1+A(logst))wd

+ (14 (a—1)(1+A(logst))0) * —1)w
+ ((a—1)(¢—1)—b)/2+b(logs; —logs)

Le(Mis1)

@ ACE: use log-linearization around logs
EL(mi1) = d?/(1+d)+((0—1)(9—1)—b)/2
0
d = —V{a—1)(e-1)-b
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ACE: Campbell and Cochrane, Case 2 |

@ Conditional entropy:

Li(miya) = (a—1)(1+A(logs))wd
+ (14 (a—1)(1+A(logs:))8) * — 1)w
+ ((@a—1)(¢—1)—b)/2+b(logs; —logs)
@ ACE: use log-linearization around logs
EL(ma) = wd?/(1+d)+((a—1)(9—1)—b)/2
= V@1 15

@ Calibration as above + vol of logg + jump parameters:
e 02=(0.035)?/4 — wh?
@ BNSU: w=0.01/4,08=0.15
o BCM: w=1.3864/4,0 =0.0229
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ACE: Campbell and Cochrane, Case 2

J

Calibration ACE  ACE (casel) ACE jumps
CC +BNSU 0.0341 0.0300 0.0041
W+ BNSU  0.0281 0.0245 0.0036
V + BNSU 0.0181 0.0155 0.0026
CC+BCM  0.0883 0.0300 0.0583
W + BCM 0.0737 0.0245 0.0492
V + BCM 0.0487 0.0155 0.0332
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Time dependence via external habit ]

@ No time-dependence in consumption growth

@ Nevertheless: habit with varying volatility may have a substantial
impact on the entropy of the pricing kernel

@ Could be relevant for option prices (Du, 2008)

T
Ml
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Recursive preferences: traditional version |

@ Equations (Kreps-Porteus/Epstein-Zin/Weil)

U = [(1-B)e!+Br(Uira)P] P
He(Uir) = (EtUta—l—l)l/G
ES = 1/(1-p)
CRRA = 1—-aqa
a = p = additive preferences

AR
Ml ]
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Recursive preferences: pricing kernel |

@ Scale problem by c; (u; = Ui/ct, Gt+1 = Ct+1/Ct)
wo= [(1—B)+Bu(gi1uis1)?]P

@ Pricing kernel (mrs)

p-1 a—p
_ Ci+1 U1
e B< Ct ) (M(Ut+1)>

_ ngl( Ot+1Ut41 >G_p
tH He (9t+1Ue41)

A

L]
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Loglinear approximation |

@ Loglinear approximation

loguy = P *log[(1—PB)+Br(Gt+1uis1)?]
p—l log [(1 _ B) + Bep|09llt(gt+1ut+1)]

bo + by log b (Gt 41Ut +1)-

Q

@ Exactifp=0:bg=0,b; =

@ Solve by guess and verify

i n)
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Example 1: Bansal-Yaron ]

@ Consumption growth

loggr = g+Y(L)v 2wy
vi = V+V(L)wy
(W1t7W2t) ~ NlD(O,I)

@ Guess value function

loguy = u+ u)g(L)vtlffwlt + W, (L)wyy
@ Solution includes

Wpo+Yo = y(bl)zzbilyi
=

wo = bi(a/2)y(b)?v(bs)

i n)
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ACE: Bansal-Yaron ]

@ Pricing kernel

logmeys = logB+(p—1)g—(a—p)(a/2)wd,
+ (P~ DIVL) /v 2w — (@ — p)(a/2)y(bs )P
+[(P—1)Yo + (& — P)y(b) vy Wi
+ (0 — P)uoWar 11

@ Conditional entropy
L(mit1) = [(P— 1Yo+ (o —p)y(ba)]?vi/2 4 (o — p)*ay /2
@ ACE (Bansal, Kiku, Yaron, 2007; monthly)

0.0218 = 0.0065+0.0153
0.0026 = 0.0026+0.0000ifp=a
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Example 2: Wachter ]

@ Consumption growth

loggr = g+0Owy+2z
A = (1-0)A+dA 1+ 0w
(wy,wat) ~ NID(O,1)
zli ~ N(8,i%)
i 0 has jump intensity A;_1

Y

@ Guess value function
logu;y = U+ W
@ Solution includes

W, = (1 . b1¢)—lbl [ea9+(a5)2/2 . 1] /(X

A v
il
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ACE: Wachter ]

@ Pricing kernel

logmi1s = logB+(p—1)x — (o —p)(a/2)[0* + (w03 )?]
_)\( ab+(ad)?/2 1)/01
+ (0 = 1)(OWit41 + Ze11) + (0 — P)(WAON W2t 41

@ Conditional entropy (monthly)

L(mas) = (a—1)%0%/2+ (00— p)*(@0))?/2
Y {[e(a—1)9+(071)262/2 1] (a— 1)9}

@ ACE (monthly)

0.0100 0.0001 +- 0.0087 +- 0.0012
0.0013 = 0.0001+ 0.0000+0.0012 ifp=a
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Time dependence via recursive preferences |

@ Little time-dependence in pricing kernel

@ Nevertheless: interaction of (modest) dynamics in consumption
growth and recursive preferences can have a substantial impact
on the entropy of the pricing kernel

@ Not clear it's relevant to option prices, but it's a route to magnify
the impact of disasters on excess returns
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