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The primary challenge of disaster-based models, and departures from (log)normality in
general, is that it’s difficult to estimate the parameters of their distributions reliably. How
much of this kind of thing is reasonable? Options are a promising source of information, since
their prices reflect not only events that occur, but those that market participants think could
have occurred. You need a complete model, though, because the risk-neutral probabilities
implicit in a cross-section of option prices identify only the risk-neutral distribution — you
need time series evidence, too, to nail down the true distribution. The Broadie, Chernov,
and Johannes papers on equity index options seem like a good place to start, since they
estimate both the true and risk-neutral distributions. The question is what they tell us
about the probabilities of extreme events, and how these probabilities compare to those in
Barro (QJE, 2006) and Rietz (JME, 1987).

One thought (not clear yet if it’s a good one) is to compare the entropy of candidate pricing
kernels, since that’s a useful summary of their impact on expected excess returns. We sketch
some thoughts below to show how this might work.

Preliminaries

1. Alvarez-Jermann (Econometrica, 2005) results. One of the appealing features of their
paper is that it uses log returns, which are cleaner theoretically. (Lots of things cancel.) And
relative to the Hansen-Jagannathan bound, their “entropy bound” depends on higher-order
moments (see below). Like everyone else, they start with the pricing relation,

Et (mt+1rt+1) = 1,

where m is a pricing kernel and r is the (gross) return on any asset we like. Same thing
unconditionally.

Result 1 (high-return asset). Consider an economy with a given pricing kernel. The asset
with the highest expected return has return equal to its inverse.

Proof. Since the log is a concave function, the pricing relation and Jensen’s inequality imply

E log mt+1 + E log rt+1 ≤ log(1) = 0,

with equality if and only if mt+1rt+1 = 1 (the return is the inverse of the pricing kernel).
Therefore,

E log rt+1 ≤ −E log mt+1 (1)
∗Working notes, no guarantee of accuracy or sense.



as claimed: no asset has higher expected (log) return than one with return equal to the
inverse of the pricing kernel. Thus if we have a kernel, we can put a bound on the expected
returns it permits. And if we have a return, that gives us a candidate kernel (its inverse)
whose properties we can examine.

Result 2 (entropy bound on pricing kernel). Define the entropy of a positive random variable
x as

J(x) = log Ex−E log x.

Entropy is non-negative (Jensen’s inequality again) and equal to zero only if x is constant. If
log x ∼ N(κ1, κ2), then J(x) = κ2/2. More generally, J(x) picks up higher-order cumulants
of log x (if they exist); see below.

Alvarez and Jermann derive an HJ-like bound based on entropy. Let b1
t = Etmt+1 be the

price of a one-period bond and r1
t+1 = 1/b1

t its return. Then the mean log excess return
provides a lower bound on the entropy of m:

J(m) ≥ E
(
log rt+1 − log r1

t+1

)
. (2)

This is harder to show, so we won’t do it here. [Add: high-return asset hits the bound.
Actually, it’s a little more complicated if interest rates vary, but that won’t come up below.]

2. Cumulants. This is a little sloppy, but outlines a way of thinking about sources of
entropy — namely, higher-order cumulants. If we have a random variable x, then the
moment generating function (if it exists) is

g(s) = E exp(sx)

and the cumulant generating function is h(s) = log g(s). A useful expansion (conditions?)
of the cgf is

h(s) =
∞∑

j=1

κjs
j/j!, (3)

where the κjs are cumulants.

Note: (i) g(0) = 1 and h(0) = 0. (ii) κj = h(j)(0), the jth derivative of h(s) evaluated
at s = 0. (iii) The entropy of ex is h(1) − κ1 (ie, all the terms but the first one). We’re
looking for some notation for this, since it comes up a lot. h+(1)? Other ideas? (iv) The
cumulants of ax are ajκj . (v) If x is normal, then ex is lognormal and the cumulants of
x are zero after the first two. Thus departures from normality show up as nonzero values
of high-order cumulants. There are, however, no distributions that have a finite number
of cumulants greater than two. Gram-Charlier approximations are a related way to add
additional cumulants to the normal.

3. Mehra-Prescott environment. Stationary exchange economy with Markov process for the
growth rate of consumption (= output): xt+1 = ct+1/ct. If preferences are homogeneous of
degree one, everything is a function of the growth rate.

An asset is a claim at a specific date t to a dividend stream dt+j for j ≥ 1. Some examples:
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• One-period riskfree bond. Let dt+1 = 1 (zero for future periods). Its price is b1
t =

Etmt+1 with return r1
t+1 = 1/b1

t .

• Consumption strip. Let dt+1 = ct+1 (zero for future periods). If the ratio of the price
to current consumption is qs

t , the return is rs
t+1 = xt+1/qs

t . (Barro calls this equity,
but that’s not standard usage. In his iid case it’s pretty close though.)

• Consumption stream. Let dt+j = ct+j for all j ≥ 1. If the price-dividend ratio is qc,
the return is

rc
t+1 =

xt+1(1 + qc
t+1)

qc
t

.

• Levered “equity.” Let dt+j = cλ
t+j for all j ≥ 1. If the price-dividend ratio is qe, the

return is

re
t+1 =

xλ
t+1(1 + qe

t+1)
qe
t

.

The previous asset is a special case with λ = 1. (We’ll call this equity for short; it’s
what Bansal and Yaron (JF, 2004) and many others call it.)

We’ll use power utility, so that mt+1 = βx−α
t+1. Then the pricing kernel and returns are

either loglinear or close to it, and we can trace the impact of the cumulants of log x on the
pricing kernel and asset returns.

Barro’s iid economy

Barro considers the impact of low probability disasters — roughly speaking, extreme nega-
tive skewness in consumption growth — on the equity premium when consumption growth
is iid. This is a particularly convenient starting point, because prices are constant and the
only variation in returns comes from the dividend, itself connected to consumption growth.
We work through the math to show how this affects the higher-order cumulants of returns
and the entropy of the pricing kernel.

Consider two processes for consumption growth. In the first, we specify arbitrary cumulants
for log x: κ1, κ2, etc. In the second, log x has two independent random components:

log xt = x + σvt + wt,

where {vt} ∼ NID(0, 1) and

wt =

{
0 with probability 1− p
b with probability p

The idea is that b is negative and represents a disaster. Barro lets the “jump” have a more
complicated distribution, but we’ll skip that for now. Since v and w are independent, the
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cumulant generating function is the sum of the cgfs of the components, as are the cumu-
lants. This is a standard result for Levy processes. In both cases, we denote the cumulant
generating function of log x by h(s). This gives us extremely convenient expressions for
asset returns and premiums; see the Liuren Wu and Ian Martin references at the end.

Here are some ballpark estimates of the first two cumulants for annual data: mean (κ1 =
0.018) and variance (κ2 = 0.0352). For the disaster model, we’ll use p = 0.017 and b =
−0.25. That implies κ1 = x + pb or x = κ1 − pb = 0.0222. Similarly, κ2 = σ2 + p(1− p)b2

or σ2 = [κ2 − p(1− p)b2] = 0.01342. There’s no particular logic for these parameters, other
than to allow us to see concrete examples of how disasters affect asset prices. [Comment:
This is a modest disaster/jump by Barro’s standards, but if you make it much larger, you
drive the variance of the first component below zero.] [Warning: numbers quick and dirty,
no guarantees.]

Now some asset pricing:

• Pricing kernel. The pricing kernel is m = βx−α, which has entropy J(m) = h(−α) +
ακ1. Its terms are α2κ2/2, −α3κ3/3!, α4κ4/4!, and so on. You can see positive
contributions from the variance and kurtosis of consumption growth and a negative
contribution of skewness (or, rather, negative skewness of consumption growth leads
to higher entropy of the kernel). All of these effects are magnified by α: as α rises, the
impact of higher-order cumulants increases much more. In the lognormal case with
α = 4, J(m) = α20.0352/2 = 0.0098. In the disaster version,

E log m = log βα(x + pb) = log β − 0.0720
Em = β exp(−αx + α2σ2/2) [(1− p) + p exp(−αb)] = β 0.9724.

That gives us J(m) = 0.0132, which doesn’t leave much room for an equity premium.

• Riskfree rate. The price of a one-period riskfree bond in this economy is b1 = Em =
E(βx−α). With arbitrary cumulants, the log of the riskfree rate is

log r1 = − log b1 = − log β −
∞∑

j=1

(−α)jκj/j! = − log β − h(−α).

You can see, for example, that negative skewness and positive kurtosis in consumption
growth both lower the riskfree rate. For the lognormal model, we get

log r1 = − log β + ακ1 − α2κ2/2 = − log β + 0.0622.

(You can see that this is too high; we’d need a discount factor above one to get it
down.) For the disaster model, log r1 = − log β + 0.0588, so it brings the riskfree
rate down a little. Neither leaves much room for a risk premium, since the difference
with −E log m is 0.0098 in the lognormal case and 0.0134 in the disaster case. Both
premiums hit the entropy bound exactly, which reflects (in part) the constant interest
rate.
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• Consumption strip. The price is qs = E(βx1−α), so log qs = log β + h(1 − α). The
expected return is E log rs = E log x− log qs, so the expected excess return is

E log rs − log r1 = κ1 − h(1− α) + h(−α) =
∞∑

j=2

[(−α)j − (1− α)j ]κj/j!.

In the lognormal case, this is (2α− 1)κ2/2 = 0.0043 (43 bps!). You can see that this
is not only small, it’s less than half the largest premium possible.

The formula illustrates the impact of high-order cumulants. The coefficient of the
skewness term is 3α(1− α)− 1 < 0, so negative skewness makes the expected excess
return higher. The coefficient of the kurtosis term is positive as long as α > 1, so that
makes a positive contribution as well. We see their impact in the disaster case. The
price is

qs = E(βx1−α)
= β exp[(1− α)x + (1− α)2σ2/2)] (1− p + p exp[(1− α)b]) = 0.9540.

and the (log) return is

E log rs = E log x− log qs = κ1 − log qs = − log β + 0.0651.

That gives us a premium of 0.0064, larger than the lognormal model, but still small
— and, again, well below the bound.

• Levered equity. In the iid case, the price is constant and satisfies

qe/(1 + qe) = E
(
βx−αxλ

)
.

You can see immediately that high-return asset has λ = α (Alvarez-Jermann Result
1). The “price ratio” in general is

log [qe/(1 + qe)] = log β + h(λ− α),

so the expected return is

E log re = λE log x− log [qe/(1 + qe)]
= λκ1 − log β − h(λ− α).

The expected excess return is

E log re − log r1 = (λ− α)κ1 − h(λ− α) + h(−α).

Holding the pricing kernel fixed (hence α), the first two terms are minus the entropy
of xλ−α, which hits a max of zero at λ = α. The excess return in this case is h(−α)
(need to kill off the initial term??).

• Risk-neutral probabilities ... Work these out, show how options work.
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Related papers

Stan Zin’s paper: “Are behavioral asset-pricing models structural?” JME, 2002. The
highlight is the section heading, “Never a dull moment.”

Liuren Wu’s papers on cumulants in jump models. One example is “Dampened power law,”
J Bus, 2006. He also recommends Polimenis, “Skewness Correction for Asset Pricing,”
SSRN, 2006.

Ian Martin, a Harvard PhD student who is going to Stanford, refers to two related papers on
his website, one on cumulants, the other on using option prices to infer disaster probabilities.
We might want to track them down. See

http://www.people.fas.harvard.edu/~iwmartin/papers.html

Random thoughts on what to do next

1. One idea is to come up with simple summaries of models that we can compare. One
possibility is the entropy of the pricing kernel. Even better, graph the components of
entropy: κ2, 2, κ3/3!, etc. Then we could compare (say) the kernel in Barro’s paper with
that in the estimated model of Broadie, Chernov, and Johannes. We’ll have to think about
whether that makes sense. Our guess is that if a model has too much entropy, some assets
will be priced incorrectly. We could develop this further, perhaps looking at options. Or
we could think about representative agent models that approximate the estimated model.
In short, we’ll have to think about the point of this project.

2. We could also look at equity returns. Compute mean gross return, mean log return,
entropy of return, standard deviation of log return, “excess entropy” due to higher cu-
mulants. Set log mt = − log re

t+1 (it prices equity right) and compute entropy and excess
entropy. This should give us some idea what equity returns imply, although it has the same
weakness as macro data: extreme events don’t happen very often. Still, it’s interesting to
contrast equity returns with consumption growth.

3. Look at options. In Barro’s example, we’d guess that the highest-return asset has a
significantly higher return that his equity strips. In that sense, his model is too much of
a good thing. Where does that show up? One guess is out of the money calls, which are
more sensitive to the underlying than the underlying itself. Does his model overvalue them?
Should we look at equity options more generally?

4. Does Barro report the distribution of contractions he uses in his paper? Might be there,
but we haven’t found it.

Possible outline

1. Intro. The challenge of the disaster line of work is that they’re infrequent, so it’s
hard to estimate their distribution reliably. We use options, which price events that
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need not occur. The challenge here is to distinguish between true and risk-neutral
probabilities...

Punchline?

2. Barro’s disasters. Show how this works.

3.
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Appendix: Old notes on true and risk-neutral distributions

Notes from June 2007. Show how we connect pricing kernel representation to so-called P
and Q measures. This started with a comment by Liuren Wu.

Moments of risk-neutral distributions

Risk-neutral probabilities. Let everything be a function of the state z: the pricing kernel is
m(z), the true probability p(z), and the return is r(z). The fundamental pricing relation is

∑
z

m(z)p(z)r(z) = E (mr) = 1.

If we define the risk-neutral probabilities

p∗(z) = m(z)p(z)/E(m),

the pricing relation becomes

E(m)
∑
z

p∗(z)r(z) = E(m)E∗(r).

In general, p∗ can be anything: we can use m to transform p into any distribution we want.

Cumulant generating functions. Consider a random variable q(z). Its cgf is

k(s) = log

(∑
z

p(z) exp[sq(z)]

)
= log E exp(sq).

Cumulants follow from derivatives of k evaluated at s = 0. Similarly, the cgf using the
risk-neutral probabilities is

k∗(s) = log

(∑
z

p∗(z) exp[sq(z)]

)
= log E∗ exp(sq).

Again, there’s no necessary connection between k and k∗.

Representative agent with power utility. Let x(z) be the log of consumption growth. Then
the pricing kernel (=mrs) is

m(z) = β exp[−αx(z)].

Now let’s compare true and risk-neutral probabilities. The true probabilities are what-
ever we want; let’s say they imply the cgf for x: k(s) = log E[exp(sx)]. The risk-neutral
probabilities are

p∗(z) = m(z)p(z)/E(m) =
β exp[−αx(z)]p(z)

β exp[−k(−α)]
= exp[−αx(z)− k(−α)]p(z).

The cgf for the risk-neutral probabilities is therefore

k∗(s) = log E∗ exp(sx) = log E exp[(s− α)x− k(s)] = k(s− α)− k(−α).

Only the first term matters for the cumulants; ie, k(s− α).

This translates into properties of returns if the latter are related to x. Typically, the return
on the “market” is exp(x), or something like that, so properties of x translate into properties
of the (log of the) market return.
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Liuren’s notes

Your example,

ln mt+1 = β − αεt+1

ln Rt+1 = rt+1 = µ + εt+1

I agree with you that we can use exp (−rf ) = Et [mt+1] to determine the short rate and use
1 = Et [mt+1Rt+1] to determine the risk premium (mean). So let’s say we did these exercise
and know what β and µ is already (so we can ignore them now). For simplicity, I assume
zero rates, then 1 = Et (mt+1) and β = −k (−α) where k (c) is the cumulant exponent of
εt+1 so that

Et [mt+1] = exp (β) exp (k (−α)) = 1.

The cumulant exponent is defined by

k (s) = lnEt [exp (sε)] .

In math jargon, I call exp (−αε− k (−α)) an exponential martingale. It defines the measure
change as follows.

Consider a generic time-(t + 1) state-coningent payoff function π (εt+1) . I write it as a
function of εt+1 because εt+1 is the only risk we have here. You can think of an option or
something for the payoff. Then, we can write its time-t value as

Vt = EP
t [mt+1π (εt+1)] .

where the expectation is under P (statistical measure). Alternatively, we assume there is a
Q probabiliyty measure such that

Vt = EQ
t [π (εt+1)] .

Compare the two equations, we have
∫

π (ε) exp (−αε− k (−α)) fP (ε) dε =
∫

π (ε) fQ (ε) dε,

where fP and fQ are the probability density functions. You can see that the two density
functions are linked by,

fQ = exp (−αε− k (−α)) fP (ε) .

First, fQ is obviously still a density function: It is positive and integrates to 1 because
Et [exp (−αε− k (−α))] = 1.

Second, with positive α, the exponential function exp (−αε) intuitively make the left tail
thicker and the right tail thinner and hence makes the distribution more negatively skewed,
except under the very special normal distribution case. In that case, it only changes the
mean, not the tail. For example, if fP (ε) is symmetric α−stable distribution, then the
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exponential function would make the distribution ”dampened” alpha stable under Q and
negatively skewed.

More generally, let’s assume the following cumulant exponent under P :

k (s) =
1
2
s2 +

1
6
γ1s

3 +
1
24

γ2s
4

so that ε has zero mean, unit variance, skewness γ1 and kurtosis γ2 under P–You are very
familar with this expansion stuff. I assume no higher cumulants for simplicity. Now let’s
try to solve its cumulant function under Q

kQ (s) = lnEQ
t [exp (sε)]

= lnEP
t [exp (−αε− k (−α)) + sε]

= k (s− α)− k (−α)

=
1
2

(s− α)2 +
1
6
γ1 (s− α)3 +

1
24

γ2 (s− α)4 − 1
2

(α)2 +
1
6
γ1 (−α)3 +

1
24

γ2 (−α)4

Taking derivatives, we get all the cumulants under Q. The mean is

cQ
1 = k′Q (s)

∣∣∣
s=0

= (s− α) +
1
2
γ1 (s− α)2 +

1
6
γ2 (s− α)3

= −α +
1
2
γ1α

2 − 1
6
γ2α

3.

The variance is

cQ
2 = k′′Q (s)

∣∣∣
s=0

= 1 + γ1 (s− α) +
1
2
γ2 (s− α)2

= 1− γ1α +
1
2
γ2α

2

Note that the varance increases under the risk-neutral measure if the statistical distribution
is negatively skewed. This partly explains the ”variance risk premia”: Risk-neutral variance
is higher than historical variance.

Now let’s go to the skewness part:

cQ
3 = k′′′Q (s)

∣∣∣
s=0

= γ1 + γ2 (s− α)
= γ1 − γ2α,

which says that even if the statistical distribution is symmetric (γ1 = 0), the risk-
neutral distribution is negatively skewed as long as (1) risk aversion is positive
(α > 0)and (2) the statistical distribution has fat tail (γ2 > 0).

In my example, the fourth cumulant does not change because c5 = 0, but ...

See various papers on Liuren Wu’s home page:
http://faculty.baruch.cuny.edu/lwu/
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