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We assess the role of time-dependence in generating entropy in the pricing kernel. Examples:
stochastic volatility, jumps, and so on. All of this is done in the familiar exchange econ-
omy with Kreps-Porteus/Epstein-Zin/Weil preferences. Solutions are based on loglinear
approximations, whose mechanics build on a long line of earlier research.

Facts about entropy

We focus on the entropy of the pricing kernel. The entropy of a positive random variable x
is

L(x) = log Ex− E log x.

Our interest stems from the Alvarez-Jermann bound on the entropy of the pricing kernel:

L(m) ≥ E(log rj − log r1) + L(q1),

where r1 is the (gross) return on a one-period bond, q1 = 1/r1 is its price, and rj is the
return on any other asset.

Some facts about the entropy of the pricing kernel:

• Entropy. The equity premium gives us a lower bound on L(m) of around 0.05. Alvarez
and Jermann (Econometrica, 2005, Table I, column 1) report 0.0664 for the postwar
period. The prewar period is a little lower, but other assets can give larger numbers.

• Conditional entropy. Entropy can be decomposed into

L(m) = ELt(mt+1) + L(Etmt+1) = ELt(mt+1) + L(q1).

With annual data, AJ estimate L(q1) to be around 0.0005, with monthly data slightly
less (Table I, column 3). This is about two orders of magnitude smaller than the equity
premium, so it’s small change. Evidently most of L(m) comes from ELt(mt+1). The
result is similar to Cochrane and Hansen (Macro Annual, 1992, Section 2.7), who
show that the variance of the conditional mean of the pricing kernel is much smaller
than the mean of the conditional variance.

Note, too, that if we combine this with the AJ bound, we get

ELt(mt+1) ≥ E(log rj − log r1),

which is easier to compute in many models. The bottom line in any case is that the
action is in conditional entropy.

∗Working notes, no guarantee of accuracy or sense.



• Dynamics. We’re looking for a result that says the pricing kernel is negatively autocor-
related if the mean yield curve is upward sloping. Here’s a sketch of a version based
on entropy, more work needed. Let yn

t = −n−1 log qn
t be the yield on an n-period

bond. Then we’re looking for something like: If Ey2 > Ey1 (upward-sloping mean
yield curve), then L(mtmt+1) < 2L(m) (negative autocorrelation). A one-period bond
implies

Lt(mt+1) = log Etmt+1 − Et log mt+1 = −y1
t − Et log mt+1

L(m) = −Ey1 −E log m + L(q1).

Similarly, a two-period bond leads to

Lt(mt+1mt+2) = log Et(mt+1mt+2)−Et log(mt+1mt+2)
L(mt+1mt+2) = −2Ey2 − 2E log m + L(q2).

That gives us

2L(m)− L(mt+1mt+2) = 2E(y2 − y1) + [2L(q1)− L(q2)].

Both terms are positive in the data (entropy of bond prices should increase less than
proportionately with maturity). Second term small in any case. Also: can kill off last
term using mean conditional entropy; extends naturally to other maturities.

[extend to bond returns?]

Theory

Consumption (= output). We specify a stationary process for the growth rate xt = ct/ct−1.
Asset prices then depend on whatever state variables show up in the x process.

Preferences. Define “utility from data t on” recursively with the time aggregator,

Ut = [(1− β)cρ
t + βµt(Ut+1)ρ]1/ρ

, (1)

and certainty equivalent function,

µt(Ut+1) =
[
Et(Uα

t+1)
]1/α

.

Here ρ < 1 captures time preference (the intertemporal elasticity of substitution is 1/(1−ρ))
and α < 1 captures risk aversion (the coefficient of relative risk aversion is 1−α). Additive
utility is a special case with α = ρ.

Both the time aggregator and certainty equivalent function are homogeneous of degree one,
which allows us to scale everything by current consumption. If we define scaled utility
ut = Ut/ct, equation (1) becomes

ut = [(1− β) + βµt(xt+1ut+1)ρ]1/ρ .
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A loglinear approximation is

log ut = ρ−1 log [(1− β) + βµt(xt+1ut+1)ρ]

= ρ−1 log
[
(1− β) + βeρ log µt(xt+1ut+1)

]

≈ b0 + b1 log µt(xt+1ut+1). (2)

The last line is a first-order approximation of log ut in log µt around the point log µt = log µ,
with

b1 = βeρ log µ/[(1− β) + βeρ log µ]
b0 = ρ−1 log[(1− β) + βeρ log µ]− b1 log µ.

The approximation is exact when ρ = 0, in which case b0 = 0 and b1 = β. Note: this is the
only source of approximation in what follows, everything else is exact. Note, too: b0 and b1

are not free parameters.

Pricing kernel. With these preferences, the pricing kernel (marginal rate of substitution) is

mt+1 = β(ct+1/ct)ρ−1 [Ut+1/µt(Ut+1)]
α−ρ

= βxρ−1
t+1 [xt+1ut+1/µt(xt+1ut+1)]

α−ρ . (3)

This has a nice loglinear structure, too, as long as x and u do.

Example: Bansal-Yaron

Consider asset pricing with a univariate loglinear consumption growth process plus stochas-
tic volatility:

log xt = x +
∞∑

j=0

χjv
1/2
t−1w1t−j = x + χ(L)v1/2

t−1w1t

vt = (1− ϕv)v + ϕvvt−1 + σvw2t,

where {(w1t, w2t)} ∼ NID(0, I).

Value function. Given this process, we can derive an approximate value function that is
loglinear in the state: volatility v and the history of shocks w1.

• Guess a loglinear value function:

log ut = u +
∞∑

j=0

ωjw1t−j + ωvvt

with parameters to be determined.
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• Given the guess, compute the log of xt+1ut+1 and its certainty equivalent:

log(xt+1ut+1) = x + u + (χ0 + ω0)v
1/2
t w1t+1 +

∞∑

j=0

(χj+1 + ωj+1)v
1/2
t−j−1w1t−j

+ ωv[(1− ϕv)v + ϕvvt + σvw2t+1]
log µt(xt+1ut+1) = x + u + ωv(1− ϕv)v + α(ωvσv)2/2

+
∞∑

j=0

(χj+1 + ωj+1)v
1/2
t−j−1w1t−j + [α(χ0 + ω0)2/2 + ωvϕv]vt.

• Solve the “Bellman equation” for the parameters. If we substitute the parameters
into (2) and collect terms, we get

constant : u = b0 + b1

[
x + u + ωv(1− ϕv)v + α(ωvσv)2/2

]

w1t−j : ωj = b1(χj+1 + ωj+1)
vt : ωv = b1[α(χ0 + ω0)2/2 + ωvϕv].

The first equation defines u; we’ll ignore it, although ultimately it’s needed to com-
pute b1. The second leads to a forward-looking geometric sum familiar to readers of
Sargent’s books. Iterating forward, we have (for each j ≥ 0)

ωj =
∞∑

i=1

bi
1χj+i ≡ Xj+1

χj + ωj = χj + Xj+1 =
∞∑

i=0

bi
1χj+i = Xj/b1.

The upper case Xjs are geometric sums reflecting the impact of innovations to current
consumption growth on future utility. They summarize the Bansal-Yaron “predictable
component” in the sense that if xt is iid, Xj = 0 for j ≥ 1. Hansen would write
χ0 + ω0 = χ0 + X1 = χ(b1). That implies

ωv = (1− b1ϕv)−1b1αχ(b1)2/2.

Note that the dynamics of consumption growth (represented here by χ(b1)) affect the
impact of volatility on utility. So does the persistence of volatility.

Pricing kernel. One component is

log(xt+1ut+1)− log µt(xt+1ut+1) = χ(b1)v
1/2
t w1t+1 + ωvσvw2t+1

− (α/2)(ωvσv)2 − (α/2)χ(b1)2vt.

If we substitute into (3), we get the pricing kernel

log mt+1 = log β + (ρ− 1)x− (α− ρ)(α/2)(ωvσv)2

+ [(ρ− 1)χ0 + (α− ρ)χ(b1)]v
1/2
t w1t+1 + (α− ρ)(ωvσv)w2t+1

+ (ρ− 1)
∞∑

j=0

χj+1v
1/2
t−j−1w1t−j − (α− ρ)(α/2)χ(b1)2vt.
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In the iid case, χ(b1) = χ0. Otherwise, there’s an additional role for the “persistent com-
ponent.”

Its conditional entropy is (since everything is conditionally normal) one-half the conditional
variance:

Lt(mt+1) = [(ρ− 1)χ0 + (α− ρ)χ(b1)]2vt/2 + (α− ρ)2(ωvσv)2/2
= [(ρ− 1)χ0 + (α− ρ)χ(b1)]2vt/2 + (α− ρ)2χ(b1)4[ασv/(1− b1ϕv)]2/2.

Mean conditional entropy follows from substituting v for vt.

Calibration. Here’s a quick and dirty set of monthly numbers, based loosely on Bansal and
Yaron. There are two pieces: the dynamics of consumption growth (the χs in our notation)
and the process for volatility. We streamline the first into a univariate process, because it’s
easier to illustrate the role of dynamics that way.

Consumption growth. The Bansal-Yaron growth rate process is the sum of an AR(1) and
white noise. It implies, using their notation,

Var(x) = σ2
v + (ϕeσv)2/(1− ρ2)

Cov(xt, xt−1) = ρ(ϕeσv)2/(1− ρ2)
Corr(xt, xt−1) = Cov(xt, xt−1)/Var(x).

With input from their Table I (ρ = 0.979, σv = 0.0078, ϕe = 0.044), the unconditional
standard deviation is 0.0080 and the first autocorrelation is ρ(1) = 0.0436.

We construct an ARMA(1,1) with the same autocovariances. The essential parameters are
(χ0, χ1, ϕ), with the rest of the MA coefficients defined by χj+1 = ϕχj = ϕjχ1 for j ≥ 1. If
we define b = χ1/χ0, this implies

Var(x) = χ2
0 + χ2

1/(1− ϕ2) = χ2
0

[
1 + b2/(1− ϕ2)

]

Cov(xt, xt−1) = χ0χ1 + ϕχ2
1/(1− ϕ2) = χ2

0

[
b + ϕb2/(1− ϕ2)

]

Corr(xt, xt−1) =
b + ϕb2/(1− ϕ2)
1 + b2/(1− ϕ2)

.

We set ϕ = 0.979 (BY’s ρ). We choose b to match the autocorrelation ρ(1), which gives us
a quadratic in b:

b2[ϕ− ρ(1)] + (1− ϕ2)b− ρ(1)(1− ϕ2) = 0.

We choose the “+” root (needed to get invertible MA?):

b =
−(1− ϕ2)2 +

{
(1− ϕ2) + 4[ϕ− ρ(1)](1− ϕ2)ρ(1)

}1/2

2[ϕ− ρ(1)]
= 0.0271.

To match the first autocorrelation, we set χ0 = 1 (a normalization) and χ1 = 0.0271. These
imply χ(b1) = 2.1311 (using the BY value b1 = 0.997).
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Volatility. The mean conditional variance of x is v = 0.00792, the autocorrelation ϕv = 0.987
(ν1 in Table IV), and the innovation volatility σv = 0.23× 10−5 (σw in the table).

Preferences. We set α = −9 (so that the CRRA is 10) and ρ = 1/3 (so that the IES is 1.5).
With the other parameters, that implies ωv = −1280.

Entropy. With these parameters, the two components of entropy are

[(ρ− 1)χ0 + (α− ρ)χ(b1)]2v/2 = 0.0112
(α− ρ)2(ωvσv)2/2 = 0.0004.

Evidently volatility has a minor role here. Total entropy is 0.0116. (Remember, this is
monthly.)

The Bansal, Kiku, and Yaron (2007, “A note...”) numbers make volatility more important.
See BBK (Table IV) or Beeler and Campbell (2009, NBER 14788, Table I). With b1 = 0.9989
(the discount factor, the first-order approximation), we get entropy of

ELt(mt+1) = 0.0065 + 0.0153 = 0.0218.

This is pretty sensitive to the choice of b1, but the basic idea must be right: by making
volatility more persistent, we’ve increased its impact on utility and therefore on asset pricing.
This despite shrinking χ(b1) to 1.77. How much depends on the dynamics and recursive
preferences? If we set ρ = α, the second component is zero and the first falls to 0.0026. So
we’re getting a lot of action from the dynamics.

[All these computations in entropy_BansalYaron.m.]

Example: Wachter

Here’s a similar approach to Wachter (2009, “Time-varying risk of rare disasters”). Let log
consumption growth be

log xt = x + σwt + zt,

where {wt} ∼ NID(0, 1) and {zt} is a Poisson mixture of normals with intensity λt−1 and
distribution N(θ, δ2). The jump intensity is AR(1):

λt = (1− ϕ)λ + ϕλt−1 + τvt

with {vt} ∼ NID(0, 1). [Comment. We use a linear process rather than a square root process
for the same reason as above: with the square root, we can still find an approximate value
function of the same form, but the value function parameter for that state variable then
solves a quadratic equation, which is a little less transparent than the linear equation we
get this way.]

Value function. Look for one that’s loglinear in λt.
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• Guess a value function of the form

log ut = u + ωλt.

• Given the guess, compute the log of xt+1ut+1 and its certainty equivalent:

log(xt+1ut+1) = x + u + ω(1− ϕ)λ + ωϕλt + σwt+1 + zt+1 + ωτvt+1

log µt(xt+1ut+1) = x + u + ω(1− ϕ)λ + ωϕλt + (α/2)[σ2 + (ωτ)2] + λt(eαθ+(αδ)2/2 − 1)/α.

[Check last term.]

• Solve the Bellman equation for ω:

ω = b1[ωϕ + (eαθ+(αδ)2/2 − 1)/α] = (1− b1ϕ)−1b1(eαθ+(αδ)2/2 − 1)/α.

Pricing kernel and entropy. The “long-run risk” component is

log(xt+1ut+1)− log µt(xt+1ut+1) = σwt+1 + zt+1 + ωτvt+1 − (α/2)[σ2 + (ωτ)2]− λt(eαθ+(αδ)2/2 − 1)/α

If we substitute into (3), we get the pricing kernel

log mt+1 = log β + (ρ− 1)x− (α− ρ)(α/2)[σ2 + (ωτ)2]

+ (α− 1)(σwt+1 + zt+1) + (α− ρ)[ωτvt+1 − λt(eαθ+(αδ)2/2 − 1)/α.

Its entropy is

Lt(mt+1) = (α− 1)2σ2/2 + λt

{
[e(α−1)θ+(α−1)2δ2/2 − 1]− (α− 1)θ

}
+ (α− ρ)2(ωτ)2/2.

The mean: replace λt with λ. Note that the last term is the only one in which recursive
preferences or the dynamics of λt matter. The other terms would be the same in an iid
setting with power utility.

Calibration. The mapping between our parameters and Wachter’s with numbers from her
Table I, adapted to a time interval h = 1/12 (monthly):

α = 1− γ = −2
ρ = 1− 1/IES = 0
σ = 0.02h1/2 = 0.0058
λ = 0.017h = 0.0014
τ = σλλ1/2h1/2 = 0.978× 10−3

ϕ = e−κh = 0.9882
b1 = e−βh = 0.9983.

Remarks: (i) IES is one (ρ = 0), in which case the Bellman equation is exact and b1 is
the discount factor. (ii) Jump parameters are θ = −0.3 and δ = 0.15 (Backus, Chernov,
and Martin, “Disasters in options”). (Wachter bases the jump distribution “on the empir-
ical distribution” documented by Barro. This is similar, probably a little more modest.)
(iii) Together, these parameters imply ω = 67.45.
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Entropy. The three components (same order as above) are 0.0001, 0.0012, and 0.0087, for
a total of 0.0100. Most of the entropy comes from the dynamics via recursive preferences
(last term). If we set ρ = α, the contributions are 0.0001, 0.0012, and 0.0000 (only the last
one changes).

[All these computations in entropy_Wachter.m.]

This suggests some variations. Namely:

• Wachter with dynamics in consumption growth. Suppose we use

log xt = x + χ(L)(σwt + zt).

Conjecture: dynamics affect the impact of jumps, just as they did with volatility in
Bansal-Yaron. This has a similar flavor to Drechsler and Yaron.

• Wachter with jumps in the λ process. Note that we have control (through α− ρ) on
the weight on vt+1 in the pricing kernel. Conjecture: this gives us another route for
high-order cumulants in the pricing kernel.

• Santa-Clara and Yan (2008, “Crashes”). Different process for jumps.
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