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Abstract

A theory of choice under uncertainty is proposed which removes the com-

pleteness assumption from the Anscombe-Aumann formulation of Savage's theory

and introduces an inertia assumption. The inertia assumption is that there

is such a thing as the status quo and an alternative is accepted only if it

is preferred to the gtatus guo. This theory is ome way of giving rigorous

expression to Frank Knight's distinction between risk and uncertainty.
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INTRODUCTION

Many years ago, Frank Knight (1921) made a distinction between risk and
uncertainty. A random variable is risky if its probability distribution is
known, uncertain if its distribution is unknown. He argued that uncertainty
in this sense is very common in economic life and he based a theory of prof-
it and entrepreneurship on the idea that the function of the entrepreneur is
to undertake investments with uncertain outcome,

From the point of view of Bayesian decision theory, Knight’s distinc-
tion has no Interesting consequences. According to the Bayesian theory
decision makers act so as to maximize the expected value of their gain, no
matter whether the fluctuations faced are risky or uncertain.

However, Knight's idea does seem to have some intuitive appeal. Ells-
berg’s (1961, 1963), experiments seem to show that people are repelled by
vagueness of probabilities. Bayesian decision theory also has the following
disturbing implication. Suppose two decision makers are faced with the same
decision problem with the same objectives, constraints and information, but
with uncertain outcome. Suppose the objective function is strictly concave
and the constralnt set convex, so that the prior distribution of a Bayesian
maximizer determines a unique decision. Then, if the decision makers do not
choose the same decision, one must conclude that they have different prier
distributions and so would be willing to make bets with each other about the
outcomes. These conclusions strike me as questionable. Betting outside of
gambling casinos and race tracks is uncommon, but disagreement over coopera-
tive decisions seems to be part of every-day life. One may try to explain
the lack of betting by mutual suspicion that the other decision maker has
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secretly acquired superior information. I find this argument hard to re-
concile with the observation that people usually seem very fond of their own
decisions. Knight's ideas suggest another way to explain the absence of
bets. In the presence of uncertainty, decisions may not be determinate, and
bets may be shunned unless they are very favorable.

In this paper, I propose a rigorous formulation of Knight's somewhat
vague ideas. The.basic idea is to drop the completeness assumption from
Savage's (1954) framework and to add an assumption of inertia. (In fact, I
drop completeness from the reformulation of Savage's theory made by Anscombe
and Aumann (1963).) The completeness assumption asserts that any two lot-
teries are comparaple in the preference ordering; that is, one 1s preferred
to the other or they are equivalent in the ordering. When this axiom is
dropped, one obtains a set of subjective probability distributions rather
than a single one. One lottery is preferred to ancother if its expected
value 1is higher according to all the distributions. The idea of the inertia
assumption is that a person never accepts a lottery unless he prefers ac-
ceptance to rejection. There is a status quo with which he stays unless an
alternative is preferred. Without the inertia assumption, choices between
all incomparable alternatives would be arbitrary. 1 apply the adjective
"Knightian" to behavior consistent with the assumptions just described.

Knightian behavior seems to correspond to Knight's intuition about in-
vestor behavior. If an individual found a new investment opportunity uncer-
tain and hard to evaluate, he would be unlikely to undertake it, for he
would do so only LIf it had positive expected value for each of a large set
of probability distributions. There is a form of aversion to uncertainty

which is distinct from the usual risk aversion,



Also, Knightian behavior does not lead to the paradoxical high propen-
sity to bet mentioned earlier. Two Knightian decision makers in disagree-
ment would not be willing to bet with each other on some event unless the
minimum probability one decision maker assigned to the event exceeded the
maximum probability assigned by the other,

It is important that in Knightian decision theory one cannot predict
decisions from knowledge of preferences. The theory can say only which de-
cisions would be undominated by others and would be preferred to the sgtatus
quo. The theory would not be contradicted if a decision maker cannot be
persuaded to move from one undominated decision to another, as I shall ex-
plain presently.

The indeterminateness of decision may be viewed as a defect of the
Knightian theory, since theories should explain as much as possible. But I
suspect that indeterminateness, as well as uncertainty aversion and inertia,
may turn out to be real and important. If this is so, they will have to be
accommodated, perhaps, of course, by a better theory than the one proposed
here.

The inertia assumption prevents a Knightian decision maker from making
intransitive choices, provided the choices are between lotteries that are to
be carried out. Choices between hypothetical choices could, however, be
highly intransitive.

Yhat I call the Knightian theory is not original. There exists a size-
able literature on the subject, including papers by Aumann (1962), Smith
(1961), Walley (1981, 1982), and Williams (1974). This literature is re-
viewed in Section 7. What is mew in this paper, 1 believe, is the emphasis

on the inertia assumption. This assumption strikes me as crucial, yet I



have nowhere found it made explicit or defended.

It is perhaps unfair of me to apply Frank Knight's name to the theory
described in this paper. It is not entirely clear what he had in mind, and
there is an attractive alternative class of preferences which display uncer-
tainty aversion. These are complete preferences represented by a utility

function of the form wu(x) = min Eﬂx , where =x 1is a random variable, &
neh

is a set of probability distributions and Ew is the expectation with re-
spect to =« . Such preferences have been characterized axiomatically by
Gilboa and Schmeidler (1986). Hereafter, I will refer to them as Gilboa-
Schmeidler preferences. Such preferences are probably more convenient than
the Knightian theory of this paper for the foundation of statistics, as I
explain in Section 7. However, Gilboa-Schmeidler preferences do not lead to
the sorts of economic behavior which make Knightian behavior interesting.
For instance, unless an individual with Gilboa-Schmeidler preferences has
the same utility in all states of the world he may behave much like an in-
dividual with preferences obeying the expected utility hypothesis of Savage.
The distinction between Gilboa-Schmeidler and Knightian behavior is dis-
cussed in Section 5.

I propose the Knightian model of behavior because it helps rationalize
many economic phenomena which otherwise seem difficult to explain. Some of
these are discussed in the conclusion. The ability of the Knightian model
to explain economic phenomena does not make it true in a descriptive sense.
Only careful empirical work can establish whether the predictions of thg
Knightian theory occur with sufficient regularity that the theory may serve
as a sound basis for economic analysis. I discuss experimental work and

possible experiments in Section 6.



For good reasons, economists tend not to view empirical evidence as
sufficient reason for accepting models of individual behavior. Economists
want their models also to represent individuals as rational beings. I have
viewed my main task in writing this paper to be to convince readers that
Knightian behavior is rational, just as rational as behavior generated by
the expected utility hypothesis or by Gilboa-Schmeidler preferences.

A person is defined to be rational, I believe, if he does the best he
can, using reason and all available information, to further his own inter-
ests and values. 1 argue that Knightian behavior is rational in this sense.
However, rationality is often used loosely in another semnse, which is that
all behavior is ratiomnalizable as serving to maximize some preference. The
two senses of rational are in a way converse. The first says that when
preference exists, behavior serves it, The second says that all behavior is
generated by preferences. The second sense seems to be very umnlikely to be
true, except by definition. It does not even seem to be useful as a defini-
tion. If choice is made the definition of preference, then one is led, like
a true sophist, to the conclusion that people always do what they want to
do, even when compelled to do things by threats of vioclence. The first
sense of rationality is the one which is important for ecomomic theory, at
least as it is presently formulated. One would like to believe that people
usually act so as to serve their own economic interests, at least when these
interests are clear and do not conflict with other interests. If one iden-
tifies the two converse senses of rationality, one needlessly jeopardizes
the first sense, since the second sense is probably more likely to be re-
jected than theffirst.

sssociated with each definition of rationality is a different point of



view toward incomplete preference. The view associated with the first def-
inition of rationality is that the preference ordering is a constituent of a
model which explains some but not all behavior. Behavior mever contradicts
the ordering, but not all choices are explained by it, nor are all stated or
felt preferences. The model is not contradicted if an individual expresses
strong preferences between alternatives which he finds incomparable accord-
ing to the model. Such unexplained preferences or choices may be erratic
and intransitive, but this is no cause for concern. Such behavior does not
make the Individual irrational, since the intransitive choices are not as-
sumed to be in pursuit of some goal. The individual becomes irrational only
if one tries to infer some unchanging goals from his choices or statements.
It is because ] adopt the point of view just stated that I said earlier that
the Knightian theory is not contradicted if an individual shows a preference
for one undominated choice over another.

I now turn to the view of incomplete preference associated with the
second definition of rationality. This view accepts all stated or revealed
preference at face value, but adds a category of incomparability to the cat-
egories of indifference and strict preference. That is, an individual may
assert that two alternatives are incomparable. Choice behavior camnot dis-
tinguish indifference from incomparability. 1In fact, if one thinks about
choice behavior one can quickly convince oneself that incomparability is an
empty category. (If an individual chooses x over y , he either will or
will not accept a small bribe to reverse his choices.) It is for this
reason, I believe, that incompleteness is oftén referred to in the litera-
ture as intransitivity of indifferencé. A disadvantage of the second view

of incompleteness is that it makes all individuals rational by definition.



The obvious way to escape from this tautology is to impose structure on
preferences, such as transitivity and monotonicity. But a strong model of
this sort is too frequently contradicted by reality, I believe. Is mot
everyday life full of incoﬁsistent choice and unresolved goal conflicts?
One could assert that only economic decisions are assumed to be rational,
but this assertion can be justified only by the first definition of ratiom-
ality.

One could also argue that the concept of preference is operational only
if it is identified with choice. However, this is not so. The Knightian
theoty makes fairly obvious testable predictions. These stem largely from
the inertia assumption.

The central problem of this paper is to make the inertia assumption
precise and to defend its rationality. The intuitive idea of the assumption
is that if a new alternative arises, an individual makes use of it only if
doing so would put him in a preferred position. "New" means previously un-
available, and rejection of a new alternative means carrying on with prev-
ious plans.

It is not immediately clear how to make sense of this idea. If one
adopts the usual point of view of decision theory, one assumes that a deci-
sion maker chooses at the beginning of his life an undominated program for
his entire lifetime decision tree. What is the status quo or initial posi-
tion in such a decision tree? If one is defined, why should the decision
maker choose only programs preferred to it? It would be equally rational to
choose a program incomparable to the initial position.

The answer to the second question is that inertia is not a consequence

of rationality. Inertia is an extra assumption which is consistent with



rationality.

I present three different versions of inertia. The first, given in
Section 2, defines new alternatives to be ones to whose appearance the deci-
sion maker had previously assigned probability zero. The initial pesition
is the position planned before the appearance of the new alternatives. The
inertia assumption applies to the decision maker’s way of reacting to new
alternatives when they arrive,

The second approach to inertia defines inertia as a property of the
undomipated program chosen at the beginning of life. It is assumed that
certain choices appearing after the initial period can be identified in a
natural way as new, even though they are anticipated. An independence as-
sumption guarantees that choices among new alternatives do not interact with
other choices. The inertia assumption is that the chosen program makes use
of new alternatives only if any program not doing so would be dominated. It
is proved that there exists an undominated program satisfying the inertia
assumption. In this sense, inertia is rational. This approach to inertia
is presented in Section 3.

Section 4 contains the third approach to inertia. This approach makes
a slight concession to bounded rationality in that it recognizes that a de-
cision maker cannot possibly formulate a lifetime plan covering all conting-
encies. The disadvantage of bounded rationality is that it makes the con-
cept of rational behavior very ambiguous. The best one can do is to imagine
what a sensible, self-interested and boundedly rational person might do. I
simply tell a plausible story in which inertia may be identified. I assume
that the decision maker continually makes approximate plans. The inertia

assumption is that these plans are abandoned only if doing .so is judged



necessary for an improvement. This picture of reality motivates a loose
definition of inertia given in Section 4. it is probably the loose defini-

tion which should be used when applying the theory.

1. STRUCTURAL THEQREMS

I here present representation theorems for incomplete preferences over
gambles. This material is not original. The proofs are contained essenti-
ally in Aumann (1962, 1964), Smith (1961), and Walley {1981). 1In spite of
all this previous work, I present my own structural theorems. None of the
sources presents the material in a way that is really suitable for my pur-
poses. The presentation here is such that the theory of von Neumann and
Morgenstern remains unchanged if the probabilities are known objectively.
Incompleteness applies only to gambles over events of unknown probability.

I follows the Anscombe-Aumann (1963) formulation of choice under un-
certainty, I have also been much influenced in chocsing assumptions by
recent papers of Myerson (1979, 1986). 1 retain essentially all of their
assumptions except completeness.

I retain these assumptions not because I believe them but because they
do have some normative justification. Esxperimental evidence seems to show
that the assumptions do not describe behavior accurately. However, if lot-
teries are repeated often and the probabilities are known, their expected
values do approximate actual outcomes. In this limited context, at least,
it would be foolish to violate the assumptions.

If probabilities aye not known, there seems to be mo normative justifi-
cation for completeness. The usual argument against incompleteness is that

haphazard choice among incomparable alternatives can be intransitive and so



10
lead to exploitation by a money pump. But any of the inertia assumptions
prevents such exploitation, as is explained in Section 5. (A money pump
occurs if a person chooses B minus a little money over A , C over B
and A over C . If this cycle were repeated, the person would lose a
little on each round.)

Incompleteness itself might be thought irrational. But from the point
of view of the first definition of rationality mentioned in the Introduc-
tion, incompleteness simply limits the criterion for defining rationality.
If a rational person is one who acts so as to achieve his objectives, a
person without cbjectives is both rational and irrational, just as any
statement is true of an empty set.1

I now turn to fhe representation theorems. In order to make clear the
structure of the theory, I first of all present the case in which utility is
linear in rewards or payoffs. The utility should be thought of as wvon
Neumann-Morgenstern utility.

The mathematical notation is as follows. S is a finite set of states

of nature. If B cC S , RB is the set of real-valued functions on B .

S S B

Identify RB with the obvious subspace of R The function HB : BT - R

is the natural projection. The symbol e, denotes the indicator function

B
of B . That is, eB(s) =1, if s e€B, and eB(s) = 0 otherwise. If
X € RS . g is the reward or utility in state s . If x and y belong
to RS . X>y means x_ 2>y , forall n, and x#y. If = isa

probability on 8§ , if B C S and x € RS , then Eﬂ[xIB] denotes the

expectation of x with respect to x , conditional on B

Aumann (1962, 1964a) has criticized the completeness assumption both
as normatively unsound and descriptively inaccurate.
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The preference ordering consists of an ordering >B on R , for each
non-empty subset B of S . The expression X >B y means x 1s preferred
to y if B 1is known to be true. I write 2 for 2g - No relation of

indifference is assumed. However, X and y are said to be eguivalent if
for all z and B, x }B z if and only if y'}g z and =z >B x if and
only if =z >B y .

X denotes a field of subsets of S of objectively known probability,
q : A~ [0,1] is the objective probability. gq 1s objective in the sense
that all observers would be conscious of g and agree to it.

The first assumption expresses the natural relation between the condi-

tional and unconditional preference orderings.

Assumption 1.1. For all non-empty subsets, B , of § and all x and ¥

in RS , x}B y 4if and only if lIBx> HBy .

The next assumption says simply that more utility is better.
Assumption 1.2. x > Ey implies xo y .

The following assumption says that P is an ordering of strict prefer-

ence.

Assumption 1.3. x> y 2> z implies xp z and for no x is x o X .
The next assumption is of only technical significance.

Assumption 1.4. For all x , (y|y$ x} is open in RS

The key structural assumption is the following one. It has an obvious

interpretation if one thinks of ax + (l-a)y as the lottery giving x with
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probability &« and y with probability l-a .

Assumption 1.5. For all x , y and z , and for all a« € (0,1)

. Yoz

if and only if ox + (l-a)y & ax + (l-a)z .

The last assumption asserts that the known probabilities of events in

A are treated as they should be.

Assumption 1.6. For all A €A, e, is equivalent to the lottery

A
q(A)eS .

Theorem 1.1. If the }3 satisfy assumptions 1.1-1.6, then there is a
closed convex set A of probabilities on S such that
(i) for all x and y and B, X >B y if and only if
E"{xlB] > Eﬂ{y|B] , for all = e€ A ,
(ii) for all A e A , n(A) - q(A) , and

(iii) for all = e A, =x(B) >0 , for all non-empty subsets, B , of

8

The proof of this theorem appears in the appendix.

In the light of Theorem 1.1, one may define an indifference relation on

RS by x ~g ¥ if and only if Ew[xlB] - En[le] , for all n e 4 .
Clearly, if X 2e ¥ EB z , then x.2$ z . However, the statement
"ox E‘B y " does not imply " x {B y ." The ordering 2 1is complete on the

set of x in Rs such that x is measurable with respect to A, .

One may define > to be complete if for all x € RS , the closure of
{y e Rsly S Xxor xp>y) is all of RY | Clearly, o is complete if and
only if A consists of a singleton and so the expected utility hypothesis

applies.
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T now turn to the case in which preferences are for lotteries over
consequences, so that one must infer the existence of a von Neumann-

Morgenstern utility function. Let X be a finite set of consequences. Let

A be the set of probability distributions in X . Identify x € X with

the probability measure SX € A which assigns probability one te x . For
' B B s B

a non-empty subset B of S, let A = I A and let I : A" = A Dbe

sep

. ; . . : B ;
the natural projection. Fix x%¥ € X and identify X e A~ with the vector

;=4S . . ; . .
X" € A7 defined by As As , if s e B, and AS SX* , 1f s & B |

With this identification, AB is thought of as a subset of AS . AS is

given the usual topology as a subset of a Euclidean space.
Preferences are expressed by orderings >B on AS , where B waries

over the non-empty subsets of 8 . An ordering :>B is said to be complete

if for each X € AS , As equals the closure of (A >B A oor A >B 2t

.

1f >B is complete, X ~p X' means neither )‘>B X nor A’ >B X . In-
difference is not the same as the notion of equivalence, defined earlier.
The field X of subsets of § and the probability q :. X~ [0,1] are

as before.

Three additional assumptions are needed. Let
8

Adiag - {) € ASIAS = A_,, for all s and 5]

Assumption 1.7. The restriction of 2 to AS. is the same for all
{s} diag

s €8 .

Assumption 1.8, For all s €5 , >[5} is complete.

Assumption 1.9. For any s , le}ks} 6 , for some x and x' in X .

xt

Assumptions 1.2, 1.4 and 1.6 are now replaced by the following.
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Assumption 1.2a. A S A’' if 2 E{s] A", for all s and A:>{S) A, for

some s

Assumptien 1.4a. For all X , (A'|x" & A} and {A'|2x* € 1) are open in
As.

Assumption 1.6a. For any Ae€X and any A and A’ in A, the vector
Al € AS defined by Als = q(A)X + (1 - q(a))x" , for all s , is equiva-

lent to the vector X, defined by 2

- i ) A = X'
5 92g A, 1If s €A and )

2s
if s g A .

Think of assumptions 1.1, 1.3 and 1.5 as applying to the )>B defined
on AS rather than RS

If u:X-+R and X e AS R EAu € RS denotes the vector whose sth

component is 2 (®Wulx)
5
xeX

Theorem 1.2. 1If the >B satisfy assumptions 1.1, 1.2a, 1.3, 1l.4a, 1.5,
l.6a, and 1.7-1.9, then there exists a function u : X+ R and a closed
convex set A& of probabilities in S such that

(i) for all X, A’ and B, 2 >B A" if and only if

Eﬂ_[EAulB] > EH[EA,uIB] , for all me a4,
(i) for all A ek, m(A) = q(A) , for all ne A, and
(1ii) for all e A, #(B) >0, for all non-empty subsets B of

S .

The proof of this theorem appears in the appendix,
A result of this sort apparently appears in a book being written by
Walley. (I have seen a manuscript of only the introduction, Walley (1984).)

Theorems 1.1 and 1.2 are given only in order to show that Knightian
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behavior is consistent with very strong notions of rationality. From a
descriptive point of wview, many of the restrictions imposed are not desir-
able. The assumptions essential for the Knightian theory are an inertia
assumption and the structural assumptions given below., Assume that payoffs

5

are in utilicy and let 8, R” , and so on be as before.

Structural Assumption 1.10. For each non-empty subset B of S , there is
a preference ordering >B on R° such that x }B vy if and only if
x >S HBy . The ordering >S is transitive and inreflexive and is mono-

tone in the sense that x >S y whenever x >y

Structural Assumption 1.11. There is & set A of probabilities on § such
that if 1()3 y , then Ew[x—yIB] >0, for all e A . Also,

#(BY >0, for all « € A and for all non-empty subsets B of 3

Notice that it is not assumed that x:}h y - whenever Eﬂ[x—y!B] >0,
for all =« . This implication seems to be of little interest for economic

applications,

The "fatness" of A is a measure of the Knightian uncertainty about

events in S

2. DBEHAVIORAI, ASSUMPTIONS

I now present assumptions relating behavior to preferences. These as-
sumptions are a version of the inertia assumption and the obvious assumption
that decision makers make undominated choices. In order to express the
inertia assumption rigorously, it is necessary to define a decision problem.

Let the periods of time be t =0, 1, ..., T . The description of the
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environment at time t is e, € Et , Where Et is a finite set and EO
is a singleton. The state or event at time ¢t is st - (eo, el, s et)
T
s denotes E. X E, x ... X E and § = US is the event tree. S 1is
t 0 1 t £=0 t

ordered naturally by succession, That is,

- - cees € . If
Seen (egs «-vs @y @ 4y ony i) succeeds s = (e, )
e are wri tively, it is implied that s
Ser Seqre v S, @are written comsecu Yy P t+1
succeeds S and sc on. TFor each s € 8, A(s) denotes the set of
actions available in state s . Assume that each A(s) 1is finite. A

deterministic program is a function a giving the action g(s) € A(s) ,
for each s € § . If actions are determined by a program a , then the
reward in state sp is r(g(so), é(sl), cee é(sT); sT) = t(a, sT) . Re-
wards are assumed to be measured in utility.

I now describe how programs.are compared. It is assumed that the
states s may be endogenous. That is, their evolution may be influenced

by actions. The underlying set of states of nature,  , may be described

as follows. For each t =0, 1, ..., T-1 , 1let Et - [(st, at)|st € St and
a_ € A(st)) . Let ﬂt - [wt : Et -+ St+1|wt(st, at) succeeds S for all
s, and at] . Then, O = no b ﬂl X ... X QT—l . A deterministic program a

and an w € § together determine a sequence of successive states in § ,
call it (sy, s (a,w), ..., s;(8,w))

Assume that the decision maker’s preferences satisfy the assumptions of
Theorem 1.1. Since ( 1is finite, that theorem applies. Let A be the

closed convex set of evaluating probabilities on QG . If € A and a is

a2 deterministic program, let E £(a) = I x(w)®(a, s.(a,w))
T wel = T=

The list of objects (8, A, r, Q, A) defines a decision problem, which

I call P .
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A random program is a probability distribution over the set of
deterministic programs. Random programs are denoted by v and determinis-
tic ones by a . Deterministic programs may, of course, be thought of as
special cases of random ones. If a decision maker uses a random program
¥ , he chooses a deterministic program a according to the probability

distribution +« and then uses action g(s) in each state s at which he

arrives.
For a program =+ , t(v, sT) denotes I y(a)f(a, sp) - A program «y
a
dominates program «' if E”f(v) > Eﬂf(y') , for all = € Ao , where
Eﬂf(y) -3 7(§)Eﬂf(3) . A program is undominated if no program dominates

a

—

it. Because S and the A(s) are finite, an undominated program exists,
The sets S and A(s) may be assumed to be infinite, provided enough as-
sumptions are made to guarantee that undominated programs exist.

A new decision problem is said to occur by surprise at time t if a
state sé occurs which does not belong to 5 and if associated with SE
there is a decision problem P(sé) = (8', A", r', I', A') , where the set
S' 1is a tree with elements (sé, vy si) . It is assumed that state sé
and problem P(Sé) were not anticipated by the decision maker. If he had
thought of the possibility that they might occur, he had assigned the possi-
bility probability zero. Assume that to every state sé € §' there
naturally corresponds a state f(s;) € § . By "naturally," I mean that the
description of the environment corresponding to sé contains all that is in
the description of the environment corresponding to f(sﬁ) . A program a
for the decision problem P 1is said to apply to P(s) if

a(f(s')) € A'(s') , for all s' € S’ . Suppose the decision maker is

following program a for P when a new problem P(sé) eccurs by surprise.
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If a applies to P(sé) , then the decision maker is said to adopt a new
program <y for P(sé) if -« does not equal the program for P(Sé)
defined by a .

The behavioral assumptions are the following.

Maximality Assumption. In any decision problem, the decision maker’s

actions are determined by an undominated program.

Inertia Assumption. If any decision problem occurs by surprise, the deci-

sion maker changes his program only if the new program dominates the old one

in the new problem.

These assumptions imply that if a series of surprise problem changes
occur, then each time a change occurs the decision maker chooses an undom-
inated program which differs from his previous program only if the new pro-
gram dominates the old one. The inertia assumption implies that the initial
point with which new alternatives are compared is planned behavior.

It might seem that inertia implies irrationality, for people can be
truly surprised only if they assign probability zero to events which in fact
do occur., However, there is nothing necessarily irrational in making as-
sumptions about reality which turn out to be false. Such assumptions are

irrational only if there is good reason to doubt them.
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3. INERTIA AND INDEPENDENCE

I now present a version of the inertia assumption in which the arrival
of new alternatives is anticipated, but they are used only if doing so is
necessary in order to achieve an undominated program. The new actions are
assumed to be distinguished from old ones in a natural way. In order to ex-

press this distinction within the model of the previous section, assume that

there are finite sets AO’ Al' A AT such that

A(st) - A0 b Al X ... X At , for all Se and t . The actions in At are
new at time t . If a 1is a deterministic program, g(st) may be written
as (go(st), c e Et(st)) , where gn(st) € An , for all mn . The program

a, is called the tth component program of a .

Assume also that there are functions g Iy ceen I such that
+ rl(gl(sl), ey gl(sT); ST) + ...+ rT(éT(sT); ST) . The function
rt(gt(st), N gt(sT); sT) is written as rt(gt, sT) , 8o that

T

£(a, s..) = E £ _(a_, s.)

T =0 t=t* 7T

It is assumed that for each t > 0 , there is a point Ot € At such
that rt(Ot, cey Ot; sT) = 0 , for all ap - The action 0t corresponds
to not using At . The tth component program gt is defined by
Qt(sn) - 0t , Ffor all s, with n> t .

It will be assumed that the decision maker uses a special kind of pro-

gram, which I call a behavioral program., Let Z be the set of all

zZ = e , S where e 8§ and s ve., & are actions
e = (g r i1y S¢) o Se ne 4y o |

in preceding states. That is a € A(sn) , for all n , where the s

Precede st . For each zt , the‘subproblem
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P(zt) - (S(st), A, ', ﬂ(zt), A(zt)) is the decision problem obtained by
restricting the original problem P to the state s  and its successors.

P(zt) may depend on all the components of z, because actions taken before

S, influence rewards. The states of P(ao, ceer B 9y st) are

S(st) - (s € S|s =~ s _ors succeeds st] . The rewards for a deterministic
program a' for P(st) are r'(é'(st), ey g'(sT); sT)

- r(ao, R L 2'(St), ey g’(sT); sT) . The set of states over which
probabilities are defined is O(ao, R T St)

= (v € let(aO' cr BL_qo w) =- sT} where st(ao, v Bl _qo w) 1is the
state at time t determined by agr ceea 8y and w . The set of eval-
uating probabilities is A(ao, ey B g st)

- [w[-|ﬁ(a0, cr 8L g st)]|n € Q1) . Clearly, P(zo) = P(so) = P |, where

P 1is the entire decision problem.

A behavioral program S specifies for each z, € Z a probability dis-
tribution ﬁ(zt) over the tth component programs a, for P(zt) . A
decision maker using a behavioral program S selects a tth component pro-
gram, =a_ , for P(zt) according to the probability distribution ﬁ(zt)
The program a, determines his choice of actions in A until time T . A

behavioral program therefore determines actions at every state. If g 1is a

behavioral program and x € A , then Eﬂf(ﬁ) is defined in the obvious
way. It i1s not hard to see that for any behavioral program g , there
exists a random program +v such that wa(ﬂ) - Eﬁf(7) , for all = e A .

For any z, € Z, let ﬂ(zt) be the behavioral program for P(zt)
defined by g8 . If ﬁ(zt) is not the zero program gt , let ﬂo(zt) be
the behavioral program for P(zt) which is the same as 5(zt)' except that

the tth component program is 0,
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A behavioral program g is said to have the inertia preoperty if for

; . th
every z_ either ﬁ(zt) is the ¢t component zero program, O

O > for
P(zt) or ﬁ(zt) dominates ﬂo(zt) in P(zt) . That is, the decision

maker uses actions in At only if doing so is advantageous from the point

of view of time ¢t .

Inertia Assumptjon. The decision maker chooses a behavioral program with

the inertia property.

Trivial examples show that no undominated program may have the inertia
property. However, such programs do exist if an independence assumption is
made. Before proceeding, I must define independence. Let In , for
n=1, ..., N, be partitions of @ . For such n , let A(Zn)
= {wn|wn is the restriction to the field generated by‘In of some 7 € A}

The partitions In are said to be mutually independent with respect to A

if given any T € ACPn) , for mn=1, ..., N, there exists m € A such
N N

that w(nzlAn) - nElwn(An) , for any sets Al, e AN ,  such that

An € Pn , for all n . (It does not follow that the partitions Pn' are

mutually independent in the usual sense with respect to every =« € A .)
Functions Byr - By defined on €1 are independent if the partitions
they generate are independent.

I now define the independence assumption. Let A be the set of all
deterministic programs a . In the independence assumption about to be
stated, consider ft as the function h : O -+ (g : A+ (~wo,@)} defined by
h(w)(g) - %t(ét’ ST(E'“)) . Similarly, comsider s, as the function

h:0- (g: A~S) defined by h(w)(a) = st(g,w)
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Independence Assumgtion. The functions fo, ey fT are mutually indepen-
dent with respect to A , and, for ali t , the functions ft and S,
are independent with respect to A . Finally, for all t , 1if we Iis
such that #n(w) > 0 for some x € A, then ft(gt, sT(E,w)) does not de-
pend on a , for n = t , where a to the nth component program of
a .

The following assumption is also needed.

3 ! ’
Separation Assumption. For each Sp and ST in ST such that Sp s Sy o

there exists t and a tth component program a, such that

* (8, sp) # T (e, sp)

Theorem 3.1. If the above assumptions are satisfied, then there exists a

behavioral program which is undominated and has the inertia property.

This theorem is proved in the appendix.

The assumptions of this theorem may no doubt be weakened, but some in-

dependence assumption seems necessary.

4, INERTIA AND INCOMPLETE PLANNING

One might like to make use of the inertia assumption in settings where
the decision maker would have gained had he anticipated that a particular
new alternative might appear and probably would have assigned its appearance
positive probability, had he considered the matter previously. For these

reasons, one might define inertia loosely as follows.
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Looge Inertia Assumptjon. If the decision maker has not previously planned
how to react to particular new alternatives, he does not make use of them
unless doing so leads to an improvement from the point of view of the moment

when he becomes aware of their existence.

If the stricter version of inertia given in Seection 2 is walid frem a
descriptive point of view, then the above version is probably valid as well.
The question to be dealt with is whether the looser version corresponds to
rational behavior.

One might be tempted to argue that in the presence of uncertainty, an
undominated program may be achieved even if one does not plan for events of
low probability. Thus, it would be rational not to plan for new alterna-
tives, if their appearance was thought unlikely. ThisAintuicion is wvalid in
some cases. However, that it is not always valid is demonstrated by the

following example.

Example. There are three periods, labeled 0, 1 and 2. The problem is to
distribute purchasing power between periods 0 and 2. The utility function
for expenditures, x , in each period is log(l+x) . Utility is enjoyed
only in periods 0 and 2. Income is earned in period 2. There are two
states in period 2, states L and H . Income is 3 in state L and 5 in
state H . The individual may borrow in period 0 at no interest. The loan
must be repaid in period 2. There is uncertainty about the state in period
2. In periods 0 and 1, the individual believes that the probability of
state L , o lies in the interval [1/6, 1/3). Insurance against state

1 may be offered in period 1. 1If insurance is offered, two units of ac-

count in state L may be had in exchange for one in state H . At time 0,
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the individual believes that insurance will be offered with probability

a>0, where o is small.

Suppose that the individual ignores the possibility that insurance may

be offered. If we solve max{log(l + xo) + log(l + sz)

%o
+ {1 - wL)log(l + xZH)] , subject to Xop, = 3 - xo and Xoy = 5 - Xy o
and with Ty 1/3 , one obtains Xg = 2, Xoy ™ 1, Xon = 3 . This is

therefore an undominated program provided the possibility of insurance is
ignored. TIf this program is used and insurance becomes available in period
1, then buying insurance in period 1 would not lead to a preferred position.
For suppose that a > 0 wunits of insurance in state 1L were purchased.

Evaluating the gain with T 1/6 , one finds that it is at most

a
—Z'§<0.

Suppose now that at time 0 the individual took into account the possi-
bility that insurance might become available. Suppose he changed his pro-
gram by borrowing & > 0 more and buying e > 0 units of insurance in

period 1 if it became available. The derivative of his gain with respect to

e at ¢ =0 |is

1 1{3 1 1 1
°[§ - - "L)z{a]] * “““)[3 A T C “;)z] '

which is positive for any « > 0 and any 7 € [L/6, 1/3] . Thus, if
¢ > 0 1is small, this change leads to an unambiguous gain. It is not ra-
tional to ignore the possibility that insurance may become available, no

matter how small « may be.

If one had chosen the initial program by maximizing with respect to
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some ;< 1/3 , then it would have been rational to plan not to buy insur-
ance, if a were sufficiently small. This observation might tempt one to
restrict attention to undominated programs which were optimal with Trespect
to some intermediate prior distribution (in the relative interior of A 3.
However, such a restriction would conflict with the inertia assumption. 1In
a general decision problem with an initial point, the only undominated pro-
gram dominating the initial point may be one which is optimal with respect
to a prior distribution near to the boundary of the set A of prior distri-
butions.

One is thus pushed toward bounded rationality in looking for arguments
to defend the rationality of the loose inertia assumption. Bounded
rationality certainly makes sense in the context of lifetime decision plan-
ning. It is obviously impossible to specify in advance a complete lifetime
decision problem. FPowerful computers would not help overcome this limita-
tion, since the limiting factor is imagination, not computational capacity.

If complete forward planning is impossible, it makes sense to change
one’'s mind from time to time and not to act according to plan. Inertia is
the refusal to change plans unless doing so leads to an improvement.

The disadvantage of bounded rationality is that the concept of ration-
ality itself becomes ambiguous. 1In trying to describe rational behavior,
the best one can do is to imagine what a wise person might do in trying to
advance his own interests. Such a person might well show inertia. Inertia
may sound conservative and boring, but it can simplify life by reducing the
frequency of changes in plans and by eliminating from consideration new al-
ternatives which may arise. There seems to be little more that one can say.

Some insight may be gained into the meaning of the loose inertia as-
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sumption by trying to express it slightly more formally in the context of
bounded rationality. Suppose the deci;ion maker is faced with a decision
problem (S, A, r, @, A) of the sort described in Section 2, If the prob-
lem were much too large and complex to be solved completely, a sensible
decision maker might organize his thinking by solving a simple approximation
to the problem at each stage Se - Let M(st) - (S', A', ', ', A") be
the approximating model used in state s, - We can imagine that the

decision maker could achieve coherence between current and future behavior

by specifying a function fs at state s _ . The function fs would
t t
assign to any model M(st+n) , for n>0, a program for M(st+n) . The
program fS (M(st)) should be maximal in M(st) . This program would
=
determine action at state s, - The fs could correspond to rules of
t

thumb or standardized procedures for reacting to situatioms. Of course,

fs could also simply specify the program maximal with respect to some
t

fixed prior distribution, if one could be specified in advance.

Inertia Assumption. If fs (M(st+1)) is maximal in M(s then

t+1) '

fs = fs . Otherwise, fS (M(st+1)) dominates fs (M(s in

))
t+1 t t+1 t t+l

M(st+1)
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5. DIAGRAMMATIC TLLUSTRATION

The relation between the Savage and Knightian theories may be seen
easily in a diagrammatic representation of the case with two states. Let
S = {1,2} and-label the abscissa and ordinate with the payoffs, T, and
r, , in states 1 and 2, respectively. Payoffs are in units of utility. 1In
the Savage case, the preference ordering is represented by indifference
curves which are parallel straight lines with slope ~«1(l - ﬂl)_l ., where

7, 1s the subjective probability of state 1. L5y is defined by the rela-

1
tion (ﬂl, wl) ~ (1,0) . (See Figure 1.)

('1’ '1)

FIGURE 1

According to the Knightian theory of Theorem 1.1, preferences are
defined by two families of parallel straight lines with slopes

and —51(1 - 51)—1 , respectively, where 0O < x, < ;1 < 1

- - -1
-ﬂl(l - wl)



A point y is preferred to x if and only if y is above the two lines

through x . The preference ordering is complete if and only if SN

(See Figure 2.) 1If the Knightian theory is that of assumptions 1.10 and

1.11, then one can assert only that if y is preferred to x , then y

lies above the two lines through x .

2
A
4
® //
(;i, ;i),,—”””’
/
oY
X
: - 5

FIGURE 2
The numbers ;1 and gz, may be thought of as upper and lower proba-

bilities for state 1, respectively, ;1 is defined by (a,a) S (1,0) if

28
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and only if a > ;1 <) is defined by (a,a) < (1,0) if and only if
a < T . That is, the decision maker is willing to receive $Sa in exchange
for §1 in state 1 if and only if a > El - Similarly, he is willing to give
$a in exchange for $1 in state 1 if and only if a < z - For any ¢ > 0 ,
Ty — € and ;1 + ¢ are possible bidding and asking prices, respectively,
for $1 in state 1. If <acg T

1 1 then (a,0) and (1,0) are not com-

parable. Similar definitions may be given for upper and lower probabilities

for state 2, ;2 and T, . respectively., They satisfy ;2 =1 - gl and
m,=l-m
Notice that if X > 0 and X, < 0, then x>0 if and only if

1%+ ;sz >0 . Gains are weighted by the upper probability and losses by
the lower probability. This conservative weighting of gains and losses re-
sults in uncertainty aversion,

When there are only two states, preferences are defined entirely by
upper and lower probabilities. When there are more than two states, it may
not be possible to derive preferences from upper and lower probabilities,
for the set A of subjective probabilities may be "round."

According to the inertia assumption of Sectionm 2, if x in Figure 2 is
the initial point, then a point such as y would be chosen instead of x ,
if y were offered by surprise as an alternative to x . A point such as
z would not be chosen over x . After y is chosen, it becomes the new
initial point. Thus, the inertia assumption would prevent intransitive
choices among successive surprise alternatives. However, if various altern-
atives were offered in some sequence which was foreseen or at least thought
possible, some successive choices might be intransitive. However, the maxi-

mality or undominatedness of the program guiding these choices would prevent
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the occurrence of a money pump. If either of the other two versions of
inertia are assumed, a money pump is impossible for the same reasons.

According to the inertia assumption of Section 3, the initial point
necessarily plays a role in choice only if the events 1l and 2 are indepen-
dent of all else of significance in the decision maker's life. If they are
independent of the rest of his life, then we can say only that any choices
made must be preferred to zero. It will not necessarily be the case that
each choice becomes the new initial point.

If a set, such as C in Figure 3, is made available and if the initial
point is zero, then any point on the boundary of C Dbetween A anq B

could be chosen. Two decision makers with the same preferences might choose

Y

FIGURE 3
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different points along this frontier. The inertia assumptions of Section 1
or 3 imply that once a choice was made, the decision maker would not want to
move to another point along the frontier AB . Two decision makers making
different choices would not want to make side bets with each other unless an
upper probability of one decision maker were less than the corresponding
lower probability of the other decision maker,

Uncertainty aversion could discourage mutual insurance. Let the re-
wards r_ now be measured in units of one commodity and suppose that util-
ity is concave in r, - Then, the Edgeworth box diagram for the case of two
states and two traders could be as in Figure 4. Assume that the initial en-
dowment peint, w , 1is also the initial point. The sets of points preferred

and P, , respectively. Even if
1 2 P Y

\ L

to the initial point are denoted P

A

F1GURE 4
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endowments were very asymmetric and the preferences of the traders were the
same, there might be no trade in insurance. Nevertheless, the equilibrium
would be Pareto optimal. I now compare the interpretation of Knight pre-
sented in this paper with the competing one of Gilboa and Schmeidler (1986)
mentioned in the Introduction. Recall that Gilboa-Schmeidler preferences
are complete and represented by the utility function of the form

u(x) = min E“x . Here, x : S = (—,@) is a gamble over a set of states S
nEA

with rewards in utility, and A is a set of probability distributions over
S . These preferences display uncertainty aversion since preferred sets are
convex., However, these preferences otherwise have implications quite dif-
ferent from those described in Section 1. People with Gilboa-Schmeidler

preferences would be very apt to buy insurance. The Edgeworth box diagram

Y

FIGURE 5
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corresponding to Figure 4 would be as in Figure 5. Trades in the shadowed
area Pareto dominate the initial endowment point.

If two decision makers with the same Gilboa-Schmeidler preferences were
offered a set C as in Figure 3, then they would choose the same point. If
two Gilboa-Schmeidler decision makers choose different points from C , they
would be willing to make side bets with each other after the choices were
made, as is illustrated in Figure 6. The decision maker with the solid in-
difference curves would choose point A . The decision maker with dotted

indifference curves would choose point B .
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6. RELATION TO EXPERTMENTAL EVIDENCE

The expected utility hypothesis seems to be rejected systematically by
experimental evidence. (Surveys of the experimental literature on the sub-
ject may be found in Machina (1982, 1983) and Schoemaker (1982).) Since the
von Neumann-Morgenstern theory is a special case of the Knightian theory of
Theorems 1.1 and 1.2, that theory is rejected too. However, the essence of
the Knightian theory has little to do with the expected utility hypothesis.
The Knightian theory is captured by the inertia assumption and structural
assumptions 1.10 and 1.11. These do not imply the expected utility hypo-
thesis. But they do imply the essential phenomena of uncertainty aversion
and inertia. These phenomena may have some chance of being verified exper-
imentally.

It is perhaps encouraging that the essential phenomena have little to
do explicitly with probabilities or the calculus of probabilities. Proba-
bilicy is foreign to most people’s everyday experience. It requires train-
ing, after all, simply to get used to the elementary concepts of expected
value, independence and conditioning. Since lotteries with known probabil-
ities are encountered rarely by most people, the law of large numbers does
not justify the axioms of von Neumann-Morgenstern. Because decision making
under Knightian uncertainty is a large part of life, there may be some
grounds for hope that people react more systematically to it than they do to
lotteries with explicit probabilities.

One of the implications of inertia and uncertainty aversion is that bid
prices for insurance of an uncertain eveﬁt may be systematically less than
asking prices, even if the insured event results in a loss to the bidder and

not to the asker or selier. Many explanations may be given for this bid-ask
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spread. Game and information theoretic explanations may be found in Leamer
(1985a). Still ancother explanation may be found in Einhorn and Hogarth
(1985).2 The same paper reports experimental work which tends to confirm
the existence of bid-ask spreads on insurance of an event of vague probabil-
ity, even when the event causes a loss to the bidder.

One might imagine that Ellsberg’s (1961) experiments lend support to
the Knightian theory. However, the choices among the alternatives he offer-
ed would be indeterminate according to the theory presented here, so that
his experiments neither confirm nor contradict the theory. Ellsberg’'s
(1961, 1963) experiments are, however, consistent with preferences of the
Gilboa-Schmeidler type discussed in the previous section. This fact is an
advantage of such preferences., These preferences, however, would not ex-
plain a gap between bid and ask prices for insurance against a loss suffered
by the bidder,

One can imagine simple experiments designed to test the Knightian
theory. For instance, subjects could be shown a photograph of someone whose
age 1s verifiable but unknown to the subject. The subject could be offered
a sequence of lotteries whose outcome would depend on the true age. Once a
lottery was accepted, each new lottery should be offered as an alternative
to the one previously accepted. The sequence of choices offered should not
depend on choices made, and this fact should be made clear to the subject.
The last lottery accepted should be paid off at the end of the session when
the true age was revealed, Some of the payocffs must be negative. In order

to induce participation, it might be necessary to pay a fixed sum in

21 owe this reference to Sidney Winter.
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addition. Payoffs should be large enough to interest the subjects but so
small that utility could be assumed to be linear in payoffs.

Structural assumptions 1.10 and 1.11 and the loose inertia assumption
of Section 4 imply that if any lottery is chosen, it should have a positive
worth according to a set of prior probability distributions. Also, if new
lotteries were accepted in succession, each should be at least as valuable
as the previously accepted one according to the same probability distribu-
tions. The experiment could determine whether behavior was consistent with
these assertions,

If the strict inertia assumption of Section 2 is assumed, one could as-
sert only that each lottery chosen should have positive value according to
all the prior probability distributions. One could not assert that each new
alternative chosen should dominate the previous choice, for one could not
assure that each new alternative was a surprise. The subject would surely
expect a sequence of alternatives to be offered. Hence, behavior in the ex-
periment would be largely as predicted by the Gilboa-Schmeidler theory.

Only if choices seemed to be irregular or indeterminate could one assert
that the experimental results favored the Knightian theory over that of
Gilboa-Schmeidler.

It could be difficult to design an experiment which could distinguish
clearly Gilboa-Schmeidler preferences from incomplete preferences obeying
the strict inertia assumption of Section 2. It is hard to imagine how one
could generate true surprise so as to manipulate the initial position. It
seems that one would have to take the initial positions as given and seek
subjects with different initial positions with respect to some events. For

instance, one could offer to buy or sell small but real insurance contracts
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on some event of vague probability from which certain subjects would suffer
financially. An example would be job loss. The object would be to deter-
mine if potential sufferers were willing to pay as much as non-sufferers
were willing to accept for such contracts. Clearly, any such experiment

would be fraught with ambiguities.

7. RELATED LITERATURE

There are twc bodies of literature very closely related to what has
been presented here, one in economics and done chiefly by Robert Aumamn, and
another in statistics.

Robert Aumann (1962, 1964a, b) studied the representation of incomplete
preferences on what he called mixture spaces. Among other things, he gave
conditions on an ordering such that a linear utility function u represents
it in the sense that )<>> y implies u(x) > u(y) . His work is described
in Fishburn (1970), Chapter 9, and has been extended to infinite dimensional
spaces by Kannai (1963). None of these authors related the work to Knight-
ian uncertainty. The typical interpretation made of this work by economists
seems to be that incompleteness is consistent with the expected utility
hypothesis. (See, for example, Yaari (1985).) The representation theorems
of Section 1 in this paper are essentially interpretations of Aumann’s
theorems.

The body of literature in statistics consists of papers by Smith
(1961), Williams (1976) and Walley (1981, 1982, 1984). Smith, among other
things, presents in an informal way Theorem 1.1 of this paper. His work is
formalized and elaborated in the papers by Williams and Walley. All these

authors are interested mainly in upper and lower probabilities as tools of
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statistical analysis. These may be derived as follows from preferences
obeying Theorem 1.1. If A c S, the upper probability of 5 1is
p(A) = (x(A)|r € A} . The lower probability of A is
p(A) = E(S\A) - min(w(A)Iﬂ € A) . Because of the authors’ interest in prob-
abilities, their presentation is not in a form convenient for economic in-
terpretation, so that I could not replace the structural theorems of Sec-
tion 1 by citations of their work. These authors tend to focus on the set
K= ({x€ Rs|x;> 0} rather than on the entire preference ordering. The set

K is referred to as the set of desirable or acceptable gambles. Assump-

tions are made such that K is a convex cone not intersecting
RE = {x € Rslx < 0) or such that the convex hull of K does not intersect
RE . It is taken for granted that no gamble would be accepted unless it

were preferred to zero. Thus, the inertia assumption is implicit. In fact,
the authors in statistics seem not to make any use of the incompleteness of
preferences., Williams {(1974) does not even mention incompleteness. It seems
to me that Gilboa-Schmeidler preferences are the most appropriate foundation
for the use in statistics of upper and lower probability.3 A normatively
sound theory of choice should be enough for the foundations of statistics.
Why should statisticians care about the descriptive accuracy of the theory
of choice they use? Why saddle statistics with the ambiguities associated
with incomplete preferences?

There is a large statistical literature on upper and lower probabili-
ties, which I do not cite. 1T mention, however, that there is a philosophi-

- cal literature which uses upper and lower probabilities to characterize

3Leonid Hurwicz (1951) has made such a suggestion.
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beliefs and discusses how a rational person ought to relate his beliefs to
information or evidence. General sources in this area are Levi (1980, 1984)
and Shafer (1978). Leamer (1985b) has argued that upper and lower probabil-

ities should be used to present econometric conclusions.

8. CONCLUSTION

Even though one cannot be sure that uncertainty aversion and inertia
are facts of 1ife, one can speculate about their role in economic 1life. I
intend to indulge in such speculations in future papers for I believe that
Knightian decision theory may explain many puzzling economic phenomena, I
here sketch some possible insights.

One of the comsequences of the incompleteness of preferences and uncer-
tainty aversion is that uncertainty can make very simple programs be undomi-
nated. Apparently excessively simple economic behavior becomes rational
when seen from a Knightian point of view. Examples of such behavior are the
use of mark-up pricing rules in retail firms (see Cyert and March (1963),
Chapter 7 and Baumol and Stewart (1%71)), and the frequent lack of diversi-
fication of individual investment portfolios (see Blume and Friend (1978)).
The same arguments can rationalize the behavioral routines discussed in
Nelson and Winter’s (1982) theory of the firm.

As has already been mentioned in Section 5, uncertainty aversion and
inertia can explain reluctance to buy or sell insurance when the probability
of loss is ambiguous. . Thus, Knightian behavior may explain the absence of
many markets for insurance and forward contracts.

Uncertainty aversion and inertia can be used to give a rigorous presen-

tation of Knight’'s theory of the entrepreneur in terms of a general
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equilibrium model. The entrepreneurs are those with fatter cones of prefer-
ences or smaller sets of subjective probabilities.

Knightian decision theory may also offer a possible solution to the
vexing question of how to explain wage rigidity, layoffs, and rigid long-
term contracts in general. In fact, I was led to Knightian decision theory
by exasperation and defeat in trying to deal with these questions using the
concepts of asymmetric information and risk aversion.

I try to give an intuitive explanation of the connection between wage
contracts and Knightian decision theory. I believe that this explanation
has something in common with the ideas of Oliver Williamson (1975, 1985).

Imagine the employees of a firm and the firm’'s owners as being locked
in a long-term relationship, with the employees being capable of collective
action. Leave aside the question of where that capacity comes from. (One
can resort to the theory of repeated games in order to make strikes subgame
perfect.) Suppose the employees and owners have already agreed on a criter-
ion for fair division of.the benefits of their relationship. Imagine that
the business prospects of the firm and the value marginal products of labor
and capital are hard to assess. Suppose the two sides have the same objec-
tive information about all relevant matters. If they did not have the same
information, one would imagine that it would be to their mutual advantage to
share it, since in models of bargaining asymmetric information leads to a
Pareto loss. In the context of a long-term relationship, there ought to be
little reluctance to share information, since it should be possible to pun-
ish either side for taking unfair advantage of shared information. Because
of the Knightian uncertainty, it would not necessarily be clear what the

agreed-on criterion of fairness implied, even though there was no asymmetric



41
information about observables. Even if the two sides were honest, they
could disagree and no outsider would be able to say who was right. Because
of the ambiguity, there would be room for posturing and falsification of
one’s opinioen.

1f the only issue at stake were fairness, an arbiter might be used, if
one could be found who understand the complex business situation. But more
than fairness might be at issue, for if the wage were too high in the opin-
ion of the owners, then they might be discouraged from investing in the
firm, which would in turn be against the interests of the employees. But,
again, there may be vagueness about the relation between investment and the
wage.

This vagueness cannot be resolved by arbitration, for it is important
that the wage be acceptable to the owners. The vagueness must be resolved
by bargaining. But bargaining is meaningless without some loss that can be
imposed to prevent posturing by either side. The role of strikes, lock-
outs, and other bargaining costs may be to prevent posturing and to achieve
incentive compatibility in the bargaining process. There is asymmetric in-
formation about each side’s judgment as to an appropriate ocutcome.

The greater the vagueness, the greater the potential punishments needed
and the more likely it is that they will be imposed. Thus, bargaining costs
increase with vagueness. For this reason, it is valuable to have contracts
be simple; simpler contracts being easier to evaluate. Simplicity may imply
wage rigidity and lack of indexation.

The fact that contracts are long-term may be explained by bargaining
costs resulting from ambiguity. Suppose one had weekly bargaining for week-

ly contracts. The incentive for posturing might be as large in bargaining
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for short-term contracts as for long-term ones. Business conditions and
opinions about them probably change slowly. Therefore, if one side could
succeed in conveying a false impression of its own opinion, this success
would be of value in many future periods. For instance, if the owners once
persuaded their employees that low wages were necessary for the health of
the firm, the workers would be likely to stay convinced for some time.

Thus, the costs of bargaining for each short-term contract could be as high
as the costs of bargaining for a long-term contract. It could, therefore,
be advantageous to have long-term contracts. The same argument can apply,
of course, to any model with bargaining costs which result from asymmetric
information.

In the presence of vagueness, bargaining costs could also be reduced by
resolving disagreements according to some commonly recognized formula. For
instance, the current wage could be the previous one plus some adjustment
for changes in productivity and the cost of living. Such an argument can

explain wage rigidity from contract to contract.
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AFPPENDIX
Proof of Theorem 1.1
et K= (x € RS|x & 0} . I show that for x and y in S ., X P>y

if and only if x -y € K. By assumption 1.5, for all x , y and z in
R® and ae (0,1) , y&z if and only if (l-a)x + ay S (l-a)x + az
Letting x = 0 , one obtains y & z if and.only ay & az . Hence,
y—zg 0=z -2 if and only if X%E > E%E , which by assumption 1.5 is
true if and only if y %> z .

I next show that K is a convex, open cone containing
Ri\{O} = {x € RSIx >0} . K 1is convex, for suppose that x and y belong
to K and e e (0,1) . ax + (l-e)y ® ox , by assumption 1.5, since
ye 0. Since xS 0, ax$> 0 . Hence, by transitivity ax + (l-2)y > 0
of ax + (l-e)y € K. K 1is a cone, for let xe€¥ and ¢t >0 . 1If
t<1l, txe€X by what has already been proved. If t > 1 ,
X = t_l(tx) € K only if tx € K, by what has been proved. By assumption
1.2, K contains Ri\{O} . By assumption 1.4, K 1is open. By assumption
1.3, 0¢K.

By the Minkowski separation theorem, the set
A= (nx : 85> [0,1]|Z T 1l and =n»x > 0, for all x € K} 1is non-empty and

s

K= (x¢g€ Rs|w-x >0, for 211 7 € A} . Consider the m in A to be prob-

ability measures on §

If B is a non-empty subset of § , ep € K and so #(B) = meep >0,

for gll =~ e a .

This proves part (iii) of the theorem.
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By assumption 1.1, for x and y in RS and B a non-empty subset
of S, x>y if and only if I'x & Iy , which is true if and only if
EW[XIB] > Eﬂ[le] , for all = € 4 . This proves part (i) of the theorem.
In order to prove part (ii), let A €& and let & >0 be arbitrarily
small. By assumptions 1.2 and 1.6, (q(A) + :)eS > e, , SO that for all
€A, 0<m((qCA) + e)es - eA) = q(A) + ¢ - n(a) . Similarly,

(q(A) - c)es <e so that =(A) > q(A) — ¢ . Therefore, ={A) = q(A)

A. ’
Q.E.D.
" Proof of Theorem 1.2
It follows from assumption 1.5 that
A.1) if A> X and if 0<a< B8<1, then
Bx + (1-8)YA' } al + (l-a)X’
By assumption 1.7, the orderings }15} ., for s €5, induce & unique
order }0 on A . By assumption 1.1, }0 satisfies assumptions 1.3, 1.4a,

1.5 and 1.9, Hence, statement A.1l applies to }0 . By assumption 1.8, >0
is complete. Let ~o Pe the indifference relation associated with }0 .
Since statement A.1l and assumptions 1.3 and 1.4a apply to }0 , the rela-
tion 20 is transitive,

Let x and x in X is such that x 50 X 50 X, for all x e X ,

By assumption 1.5 x 50 A SO x , for all e A . By assumption 1.9,

X <b X . By statement A.1 and assumption 1.4a, for each XA & A, there is
a unique u(A) € [0,1] such that u(AM)x + (1 - u{d)ix “0 A . From assump-
tion 1.5, it follows that if 0 < a < 1 » then u(a) + (l-a)ir') = au(d) +

(1-2)u(X’') . Hence, u(i) - I A{x)ulx)
xexX

If X e AS , let U\ € As be the vector defined by



UA) = uw{d 6=+ (L —u(r ))6 , for all s e s .
s s’ ' x s’ "x

emma. If A and XA’ belong to a5 , then X A if and only if

Uy > vy
Proof. Suppose that X > A' . By assumptions 1.2a and l.4a and statement

A.1, it is possible to choose X" g AS such that A" > X' and
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AS 2{5} A; , for all s , and As >{s} A; , for some s . By assumption
1.2a, U(X) > A" . Therefore, U(A) > A’ . A similar argument proves that
U)oU)
The same sort of argument proves that A A’ if U(X) > U(A")
Q.E.D.
The proof of Theorem 1.1 may now be applied to the orderings >B re-
stricted to [U(A)IA [ AS} , which is isomorphic to a subset of RS . The

proof must be modified slightly because now utility levels vary over e, 13

whereas in Theorem 1.1 they wvaried over (—=,=)

Proof of Theorem 3.1

For any t , let ‘St = {S(st) s} STlst € St} be the partition of §

T
generated by information available at time t . Let Pt be the partition
of ST generated by T - That is, Pt is generated by the function h :

T
h : ST - {g: O At =+ (—~»,@)} defined by h(sT)(at, ey aT)

n=t
= rt(at, ey aT; sT) . For n=1¢, ..., T, let 'rtn be the partition
[E[for some E’ E,Sn, E = U{E" e.PtlE" N E’ = @} . ’Etn represents informa
tion about the function r, available at time n . Clearly, ‘PtT - It .

By the independence of S and ft assumed in the independence assumptio

n,
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_ i . it
Itt {Sp} . Since 2t,n+1 refines Itn , for all =n , the partitions
Etr’ 2t,t+1' e EtT from a tree. Call this tree T% )

Let P_ be the (T-t+1) -period decision problem (Tt, Ao, Tl QL A

defined as follows. At(E) - A, for every E € IE . If E € PtT and

f M -
a € An , for n=1¢t, ..., T, then rt(at, cees Aql E)
T-1
rt(at, ceen A sT) , for some S € E . QT - nEtntn , where
- - T ! . F
Q= le:Z = St+1} and I! {(En, an)lEn‘EEItn and a € A or
w' € ﬂé and for a program a for Pt , let ET(E, w') be a unique member
of :Bt reached if a 1is used and the state of nature is ' . The mapping

from w' to the function ET(-, w') 1s one to one.

Observe that any deterministic program a_ for P_ may also be

-~ t

thought of as defined on U S_, and so may be thought of as a tth com-

_ n>t
ponent program for the decision problem P . That is, if n == t , think of
a,  as assigning action ét(E(sn)) to Sn € Sn , Where E(sn) is the mem-
ber of B containing s

tn n

1 now define the sets A_ . Let @' = {w € 0ffor all t,

ft(gt, sT(g,w)) does not depend on a . for n » t} . By the independence
assumption, #(Q') =1, for all we€ A . For each t , let ?& be the
partition of {I' generated by the function ft . By the independence
assumption, the partitions Ié are independent with respect to A . Let

ACPL) - {wtlnt is the restriction of n to the field generated by Ié, where
x € A} . The partition ?é may be identified with ar . That is, E € 2&
corresponds to the w' & QE satisfying sT(g,w) € ET(Et, w') , for all

deterministic programs a, for P

a, - where w 1s any element of E , and

a= (EO' cees ET) is any program for the decision problem P satisfying
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- _ , . .o . ,
a_=a . Let A, A(Pt) , Where Et is identified with nt .

The following notation is applied to the problem Pt . If a is a de-
) - = ) r -
terministic program for Pt and ET € Et . then rt(g, ET) ré(E(Et),
- E(ET); ET) . If wme At , then Eﬂrt(g) - w,zn'w(w )rt(f' ET(E’ ©'))
t

A

- o ]
If 4 is a random program for Pt , then rt(v, ET) and Enrt(y) are

defined in the obvious ways. The functions § should not be confused with

’
t
the functions ft defined in Section 3.

I now choose a behavioral program for the decision problem P . First

of all, I select an undominated pProgram ;t for each Pt . If the zero

program Ot is undominated in Pt , let ;t =0

. 0ot { ¥
o, Otherwise, let Te be

any undominated program for Pt which dominates Qt . If a, is in the

support of « then a, may be thought of as a tth component program

t ?
for the problem P as well. It is therefore also a tth component program
for any subproblem P(zt) , where P(zt) is defined as in Section 3.

Thus, ;t defines a random tth component program for each P(zt) . Let

A be the behavioral program defined by ﬁ(zt) = 5 for all z. . It

t ’

must be shown that B satisfies the inertia assumption and is maximal.
I first show that g has the inertia property. Suppose that

= - . .
Te Qt , so that T dominates gt in Pt Let z, € Z and let ﬂ(zt)
A

and ﬁo(zt) be as in the definition of the inertia property. Let =x € A

and let T_ be the restriction of = to the field generated by :Eé .

Then, E [£(8(z)) - £(By(z)) |z, occurs] - Ewt[f"(;r) - #)1 >0,

provided z, occurs with positive probability.

I now show that for each ¢t , there is ;t € At such that for any

_ 8 SR 2 el
random program - for Pt , Eﬂtrt(y) < E"trt(yt) . Let Ct be the convex

hull of (h(g) : ﬂé -+ (—w,W)Ié is a deterministice program for Pt} , where
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A

h(a)(w') = #(a, Ex(a, w')) . Let K_= (x: 0y~ (=,®)|Ex>E (7)),

for all n € At] . Since ;t is maximal for P Kt ) Ct = @& . There-

t ’

fore, by the Minkowski separation theorem, there is m € At such that
- . < B— ' (~ ,
E;tx > Eﬂtc , for all x € Kt and ¢ € Qt . Hence, Eﬂtc Ewtrt(qt)

for all c¢ &€ Ct .

By the independence assumption, there is = € A such that the restric-

tion of 7 to the field generated by :Bé is ;t , for each t and the

partitions P., ..., Ié of @’ are mutually independent under =«

. . 4 . .
I now show that S is undominated. I must show that if v 1is any

random program for P , then E;f(v) < E;f(ﬁ) . Glearly, it is sufficient
to show that E;f(g) < E;%(ﬁ) » for any deterministic program a . Let
T
a = (EO, vy ET) be fixed. Clearly, E;r(g) = E;rt(g) , where
t=0 T
E;rt(g) = X w(u)rt(gt, sT(E,w)) . Also, E;r(ﬁ) - 3 E;rt(yt)
T wel! t=0 -
- I E- fé(;t) . Therefore, it is sufficient to prove that
t=0 "t
_a _ &y -
Eﬂrt(g) < Eﬂtrt{yt) , for any t .

Let t be fixed and let ,2& be the partition of Q' defined earlier.

Let Iz be the join of the partitions fE; , for mw t . Then,

B (@) - 2 T m@AnBE[E(a)|anB] . Let AeP® ana Be® . By
Tt~ c Tt~ t t
BeP, AcP_
the separation assumption, sT(g,w) is the same for all we AnNnB . Let
SAnB sT(g,w) , for any w & AN B . By the independence property of =« ,

n(A|B) = x(A n B)(Etcs))‘l = n(A) . Therefore,

E-f (a) = £ =w (B) T m(A)E (a_, s, .)
n L'— BEP;:t AGIE t~t ANB

aWhat follows is really an application of Blackwell's (1964) principle
of irrelevant information. (See Whittle (1983), p. 6.)
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For A E:Pg » define the deterministic program a, for P, as fol-
lows. Let ET EEIt . By the separation assumption, there is a unique
Sp € ET n [sT(g,w)|w € A) . If En is the member of ?tn which precedes
ET . let EA(En) - Et(sn) , where s precedes So oo for n=1¢t, ..., T .

Recall that i, may be identified with ?;é . If w' =B e:et': = Q. , then

rt(EA’ ET(EA, @w')) = rt(gt, SAnB) It now follows that

z cr(A)rt(gt, SAnB) » considered as a function from ﬂt -rEt to (~=,@) |,
AEP t
belongs to the set Ct defined earlier when defining ;é . Therefore, by

the defining property of = , E- ¢ > Z x (B)Z m(A)? (a_, s
g Property & p (Yt) > ' t( J c (A) t(~t AﬂB)
t BeP AEP
A jod t
= E;rt(a) + 4s was to be proved.
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