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KNIGHTIAN DECISION THEORY, PART II: INTERTEMPORAL PROBLEMS
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INTRODUCTION

In this paper, I apply the theory of Knightian decision to intertempor-
al problems. Knightian decision theory is described in the companion paper
"Knightian Decision Theory, Part I" (Bewley, 1986). This theory is obtained
from the usual Bayesian theory by dropping the assumption that the prefer-
ence ordering on lotteries is complete and by adding what I term an inercia
assumption. The incomplete preferences are represented by a set of personal
probabilicy distributions rather than by a single distribution. One lottery
is preferred to another if its expected utility is higher according to all
the distributions. The inertia assumption asserts that in some circumscances
one can define a status quo, which the decision maker abandons in favor of
an alcernative only if doing so leads to an improvement. The theory is
meant to apply to contexts involving Knightian uncertainty, that is, to de-
cision problems where the probabilities of various ourcomes are not known
objectively.

In this paper, I investigate how intertemporal decision theory is
affected by the shift from the Bayesian to the Knightian point of view.
Perhaps the main insight gained by this shift is that in Knightian program-
ming one can in certain circumstances achieve an undominated program in an
infinite horizon problem by making in each period only finitely many calcu-
lations. These calculations ignore distant future periods. They could also
ignore future states of low probability. If a decision maker calculated a
program in this way, his observed behavior would be similar to that of a
Herbert Simon (1955, 1959) satisficer,

Another main result is that in certain circumstances one can define an
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analogue of dynamic programming, which I term maxmin programming. This
form of programming would allow one to calculate a program deminazing z
given initial program and would be appropriate for a decision maker whe

wished to satisfy the inertia assumption.

The plan of the paper is as follows. In Section 1, I discuss brisilx

- .-

. s

the representation of Knightian preferences when there are infinite

states of nature. The infinity of states arises naturally in incarcexzgor:zl

ite horizon models.

In Section 2, I describe two types of decision problems. Tne Iirz:
type is similar to the usual Markov decision problem. In the second tite, &
distinction is made between exogenous and endogenous states. The evoluzion
of exogenous states is not affected by the actions of the decision maker.
Endogenous states evolve in response to his actions and to change in the
exogenous states. The rest of the paper analyzes only problems of the Two
types.

Section 3 contains basic and unsurprising theorems for the two types of
problem. One theorem asserts the existence of maximal programs. A program
1s maximal if no other program is preferred to it. The other theorem
asserts that any maximal program is optimal with respect to one of the per-
sonal probability distributioms.

Sections 4-6 are devoted to maxmin programming, which applies only to

the second type of problem. One can apply the usual dynamic programming to

*

Henig (1985) develops dynamic programming with rewards which are only
partially ordered. He does not define maxmin programming. I owe this ref-
erence to Donald Browm.



either type of problem simply by optimizing with respect to a fixed proba-
bility distribution. However, this technique of optimization would not
necessarily yield a program dominating a parcticular initial program.
Sections 7-9 contain the main theorems that maximal programs may be
realized by finite algorithms. These theorems are motivated by the crici-
cism of decision theory made by behavioral theorists, who claim that actual
decision makers do not make the detailed contingent plans that optimization
requires. (For a critique of this nature, see Nelson and Winter (1982).)
One answer to this criticism is that if computational costs are significant,
one should be interested only in approximately optimal programs. Such an
answer implies that detailed contingent planning should become more common
as techneological improvements reduce computational costs. Another way to
meet the behavioralist criticism is to replace optimality with Knightian
maximality. The Knightian approach implies that detailed contingent plan-
ning might not be necessary. The behavior suggested by the Knightian theory

resembles that which behavioral theorists claim to observe.

1. Representation of Preferences Given Infinitelv Manv States

Yakar Kannai (1963) extended Aumann’s representation of incomplete
preferences over lotteries to the case of infinite dimensional alternatives.
Here, I adapt his results to the context of the models in this paper.

The infinite set of states of the world is denoted 0 . Q 1is assumed

to be a compact metric space. M denotes the Borel o-field generated by the

open subsets of 0 . The set of lotteries is C(Q) , the set of continuous
functions on . If x € C() , x(w) 1is the payoff iIn utilicy in state
@ . The vector space C(Q) is given the maximum norm, |:|_, defined by




Hx”m - max{lx(w) : w € Q) , The function e € C(f1) denotes the constant
function everywhere equal to 1. If x and y belomg to C(Q) , " x>y "
means " x(w) > y(w) ," for all w in O . There is a preference ordering
on C(f1) , denoted by >>, which satisfies the following assumptions.
Assumption 1.1. x> y:> z implies x:> z , and for no x 1is x>> X .
Assumption 1.2. For all x , (y|y» x] is open.

Assumption 1.3. e >0 and if y <x , then z <y implies z <x .
Assumption 1.4. For all x, y and z ian C(Q) and for all a« such

that 0 <a<1, y> z if and only if ax + (l—a)y> ax + (l-a)z

Proposition 1.1. The set K = {x € C(Q) : x>> 0} 1is open and convex.
Also, x>> y if and only if x-y€ K. If y>=x €K, then y € K and

e € K.

This proposition is an easy consequence of the assumptions. Its proef
is contained in the proof of Theorem 1.1 in Bewley (1986).

The set of continuous linear functions on M() 1is rca(l) , the set
of regular, countably additive set functions on ¥ (see Dunford and
Schwartz (1957), p. 265). If pu € rca(¥) , the corresponding functiomal on
C(Q) is defined by p+x = [x(w)p(dw) , for x € M(Q) . The weak topology
on rca(Ql) 1s the weakest topology on trca(Ql) such that for each
x € C(Q) , the function carrying p € rca(l) to pex 1is continuocus. &
set function p € rea(Q) 1is called a probability measure if p(A) >0,

for all A€M and if p(Q) =1 . If p is a probability measure, then

Eux denotes fx(w)p(dm) . E#x is the expected value with respect to p .



Corollarv 1.2. There is a set 1 of probability measures in reca(l) such

that x>> y 1if and only if ETx >Ey , for all 7# eI . NI is convex and

weakly compact.

The set I is simply (x € rca(@) : «(Q) = 1 and fxd: > 0, for all
x € K} , where K 1is as in Theorem 1.1. The measures in I may be termed
personal probability measures. The corollary follows easily from the separ-
ation theorem for Banach spaces and the Banach-Alaoglu theorem (Dunford and

Schwarcz (1957), p. 417 and Schaeffer (197Q0), p. 84, respectively).

2. Two Tvoes of Decision Problem

The decision problems to be discussed are now described. A decision
problem is described by a set of observable states of the environment, sets
of possible actions, reward functions and classes of possible transition
probabilities. Throughout, it is assumed that a reward is received each
period and future rewards are discounted at rate § , where 0 < § <1 .

Tvpe I Problems. X denotes the set of states of the environment. X

is assumed to be a tree with root =x X

0 being the initial state in pez-

0
iod zero. The set of states possible in peried t 1is Xt - {x € X[x is
connected to xo by t ares) . A member of Xt is denoted by xt . For each
x € X , there is a set of possible actions, A(x)v. The reward function is
r : graph A - [0,»] , where graph A = ((x,a)lx €X, a€ A=)} . If

x € X, let I(x) = (y € X|y immediately succeeds x} and let

G(x) = {g : A(x) - I(x)} . The set of states on which personal probabili-

ties are defined is 1 = X G(x) . States in f are termed probabilicy
x€X

states in order to distinguish them from the environment states X - Give

0 the product of the discrete topologies on the G(x) and let M be the
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Borel o-field generated by this topology. Since the G(x) are finite secs,
 is compact by the Tychonoff product theorem. Since Q is metrizable,

corollary 1.2 applies, and one may assume that the set of personal probabil-

iries is a subset, I, of rca(Q)

A program is a member of A= X A(x) . A program 2 and an w € Q

xeX
together imply a unique state x_(a,w) for each peried t , where =x_(a,w)
. - - -

is defined by induction on t as follows. xo(f,w) - xo and, for all
t > 0, xt+l(§,u) - w(xt(f,u), é(xt(é’w))) . In the last equation, w(x,*)
denotes the xth component of w , which is itself z function from A(x)

to I(x) . Given a€4 and we€ O, i(a,w) denotes
- .

z Str(xt(g,w), a(x (a,2)))
t=0

I next define random programs. Give A = X A(x) the product cf the
xeX

discrete topologies on the A(x) and let A be the Borel o-field generated
by this topology. A random program is a s-additive probability measure on
A . The set of random programs is demoted I' . A may be considered to be
a subset of I in the obvious way. If ye€ T , #£(y,0) denotes
J E(a,w)1(da)

B If =€l and ve€T , E“%(7) denotes [f(y,0)7(dw) . If vy and

’

Y are random programs, then <y is said to dominate <+’ if
Eﬂf(7) > Exf(7') , for all = €I . A program is maximal if no program
dominates it. A program 7 €T 1is optimal with respect to =x € I if it

solves E £(y) = max E £(7v)
”© x
: yel

The following is assumed throughout the rest of the paper.

Assumption 2.1. For all xe€ X, if a and a’' belong to A(x) and

a» a' , then n{w|w(x,a) = w(x,a’)} =0, for all el .



If this assumption is not satisfied it may be obtained by replacing X by

£
((xo, (ao, xl), e, (a , xc))[hor all o, X, € Xn, X follows X and

t-1 n+l

ay € A(xn))

Assumpction 2.1 implies that knowledge of X, implies knowledge of all
actions taken previously. It follows that transition probabilities are
Markov. That is, for all = € I, the probability of transitionm from X
to xt+l when action a € A(xc) is taken depends only on xt,’ a ané =

The fact that transition probabilicies are Markov is a notational com-
venience, butr is otherwise of no use since states never recur. Of course,
in reality conditions do recur and as a result people learn about the prob-
ability laws governing cheir environment. All such learning is assumed ta
be incorporated in the definition of I .

Tvpe II Problems. The set X of envirommental states is now written
as S X W . The components s and w of (s,w) € S x W should be thought
of as exogenous and endogenous, respectively. S 1is assumed to be a tree
with root Sy and the set of exogenous states possible in peried ¢ is
S.=(S€ S{s is connected with Sy by t arcs) . A member of S. is denoted
by S, - W 1is assumed to be a non-empty subset of some Euclidean space

N

R" . An initial endogenous state, W is specified. Actions are assumed

0’
to be members of an Euclidean space RK . The set oﬁ possible actioms is
defined by a correspondence A : S X W = Rg . The reward function is
r : graph A - [0,@) .

The evolution of the endogenous state is determined by a function
h:Y-W, where Y = {(s,w,a)‘s €S, we W, and a € A(s',w), where s’

immediately precedes s) . Thus, if action a € A(st, wc) is taken in stace

(st, wt) , and if the succeeding exogenous state is Seel then the suc-



ceeding endogenous state is W - h(

t+1 Ver )

Serl’ Ve
The states on which personal probabilities are defined is

Q= ((s5, 57, - Y|ve, s_ €5 and s succeeds s ] . Given each S_ the

[

t+l

-]

discrete topology and X St the product of these topologies. Give ( the

t=0
@
relative topology as a subset of X St . 1 is metrizable and is compact,
t=0
-]
being a closed subset of the compact set X St . Let M be the Borel
t=0

c-field on Q generated by this topology. The set of personal probabili-
ties is a subset, I , of rca(Ql) . Because S is a tree, each w €I 1is
a Markov process on § .

The set Z = X RK may be considered to be the set of potantial pro-
SeS

grams. Given a € Z , the endogenous state in period ¢t , wt(a, s_.) , 1is
- - [

defined as follows, if it may be defined at all. The definition proceasds by

inductionon t . For t =20, _wO(g, so) -V - Suppose that wt(i, st)
has been defined and that Sl succeeds S, - If

g(st) € A(Sc’ wt(f' St)) , let wt+l(i’ st+l) - h(st+l' wt(g, St)’ é(st))
Otherwise, wt+l(i’ st+l) is not defined. A potential program, a , is
called a program if wt(g, st) is defined for all t and all S, - The
set of programs is denoted A , or by é(so, wo) if it is necessary to

indicate the dependence on the initial starte.

If a€A and w= (SO"sl’ ... ) e, cthen f(é,w) denotes
2t
tEOS r(st, wt(g, st), 3(St’ Vt(g, st))) . If a and a' are programs, a

dominates E’A if Ex%(a) > Eﬂf(é') , for all w €@ , where
Eﬂf(g) - [#(a,w)n(dw) . a 1is maximal if no program dominates it. A
program g € A 1is optimal with respect to = € I if it solves

E £(a) = max E £(a)
T Ll T -~
asa

- -



The states s, are assumed to be observable, so that at any moment one
can calculate what past and current returns would have been had one followed
an alternative program. SucH an assumption is appropriate for problems in-
volving investment in securities with published prices and dividends. It
might not be appropriate for problems invelving investment in machinery and
equipment, where one might know the return only for the type and scale of
production process actually used. Such problems might better be modeled as

problems of Type I.

3. Basic Theorems
I here state conditions under which a decision problem of either type
has a maximal program and is such that anv maximal program is optimal with

respect to some w € II .

Ass tions Applving to Both Tvpes of Problem

Assumption 3.1. The reward function r : graph A = [0,») is bounded.
Assumption 3.2. I 1is non-empty, convex and weakly compact.

Assumption Applying to Type I Problems
Assumption 3.3. For each x € X, I(x) and A(x) are finite non-empty

sets.

Assumptions Applying to Type II Problems

Assumption 3.4. Each s € § has a finite and non-empty set of immediate
successors. W 1is a closed, convex and subset of RN with non-empty in-
terior. For all (s,w) € S x W , A(s,w) is a non-empty compact subset of

RK
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If s€S and s = Sy let Y(s) = ((s',w,a) € Y|s’' = s} , where Y
is as defined in Section 2. For n =1, ..., N, let hn be the nth
component of h .

Assumption 3.5. For all s € S, grach A(s,+) 1s convex and closed and
r(s,*) : graph A(s,-) = [0,®) 1is concave and continucus. For s = sy and
for n=1, ..., N, hn(s,-) : Y(s) = W 1is concave and continuous.
Assumption 3.6. If w and w'  Dbelong to W and w >w, then

A(s,w) D A(s,w’) for all s . For all s and a and for n=1, , N,
the functions of w , r(s,w,a) and hn(s,w,a) , are non-decreasing.

Throughout the rest of che paper, it is assumed that the above assump-
tions apply to the respective types of problems. The following theorems

apply to either type of problem.

Theorem 3.1. A maximal program exists.

Theorem 3.2. A program is maximal if and only if it is optimal with respect

to some w €I .

Proof of Theorem 3.1 for Tvpe I Problems

As in the previous section, for each x € X , let A(x) have the dis-

crete topology and let A = X A(x) have the product topology. Since each
xeX

A(x) 1s finite by assumption 3.3, A(X) 1is compact and so by the Tychonoff
product theorem A is compact.
Since by assumption 3.1, r is bounded, the function £ : AXxQ

- [0,0) 1is continuous with respect to the product of the topologies on 4

and Q . Since A x Q is compact, f 1is uniformly continuous. (The
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topologies on A and Q are metrizable, so that uniform continuity may be
defined.) Therefore, for any = € I , the function ETf A= [0,0) is
continuous. Since A is compact, ET% achieves its maximum. Any program

achieving the maximum is maximal in the sense of being undominated. Q.E.D.

Proof of Theorem 3.1 for Tveoe II Problems

Give the set of potential programs, Z = X RK , the product of the
SES
K : .
usual topologies on each copy of R . Give A the relative topology as a
subset of Z . It is routine to verify that A is non-empty and compact.

It is not hard to verify that % : A X Q -~ [0,®) is continuous. As in

the previous proof, it follows that there exists a maximal program. Q.E.D.

Proof of Theorem 3.2 for Tvoe 1 Problems

Clearly, any program optimal with respect to some =x € I is maximal.
In order to prove the converse, it must be shown that if ¥ € I' is maximal,
there exists =z € I such that E;f(;) > E;f(v) , forall yeT.

let D= (£(v,*) : @ = [0O,»)|yeTl) cc(@ . D 1is convex, for if 1,
and 1, belong to T' and 0 <a <1, then @Yy + (l—a)‘y2 € D and
Blay, + (1ma)7,) = af(yy) + (1~e)2(7,)

Let K = (x € C()|E -x > E 2(7), for all x € I} . K is convex and
has non-empty interior with respect to the maximum norm on C(Q)

Since v is maximal and @I is non-empty, DN K=~ ¢ . By the separ-
ation theorem for Banach spaces, there exists = € C(Q) such that 7 = 0
and [(x(w) = y(w))7x(dw) >0, for all x €K and yeD . It follows
that #(Q) > 0 , so that one may assume ;(0) =1 . Also, if Eﬂx >0,
for all n €I , then E;x >0 . Since U is weakly compact, it follows

easily that el . Clearly, E;f(;) > E;i(7) , for all 4 €T . Q.E.D.
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Proof of Theorem 3.2 for Tvoe 11 Problems

The following lemma is easy to verify.

Lemma 3.3. Let a' and a" belong to 4 and 0<a<1l. Let a be
defined by a(s) = ea’(s) + (l-2)a"(s) , for all se€S5 . Then, ac€A
and wt(é, St) > awt(g , st) + (l-a)wt(é , St) , for all t and all s,

and f(a,w) > ef(a’, w) + (l—a)f(é", w) , forall wen.

The proof now proceeds as for Type I problems with D defined to be

(x € €(0)[x < E(a), for some a € &) . Q.E.D.
4, Recursivity in Problems of Tvpe IT

I now describe a special assumption om II , which applies to problems
of type II. First of all, the following minor assumption is needed.
Assumption 4.1. TFor all se€S, n{(s) >0, forall eIl .

For each s € S, 1let I(s) be the set of immediate successors of
s . If s, €S and eI, let “T(st+llst) be the probability accord-
Aing tc x of Serl conditional on the occurrence of S, - Let
HT(S) - {xT(-Is)Ix € I} . ( "T" stands for "transition.”) By assumption

4.1, HT(s) is a well-defined, closed convex set of probabilities on
I(s) . Let F: D~ xIO(s) be the map defined by F(x) = m.(+|s) for
seS s T

all ses.
Definition 4.2. N 1is recursive if the map F 1is subjective.

This assumption plays the same role in maxmin programming as the Markov
assumption in the usual dynamic programming. However, it is not a general-

ization of independence, as is the usual Markov assumption. If it were
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believed that the factors influencing transition from s, to s ., were
independent of S, o for all t , then the sets HT(S:) should, for each
i ual to . i 7
t , be independent of S, and, say, equal t HTt Also, if T € IITt ,
for all t , then there should be x €Il such that xT(~[s_) - for
[
all s and t . However, if =x_ € HT“ , for each s and t , it does
t St T t
not . . .
follow that there is =x € I such that xT(-[st) el S for all ¢
t
and s.» SO that I 1is not recursive.

Nevertheless, even if the s, are independent in the sense just de-
scribed, 1 may contain a recursive subset, so that recursivity may be usad
for some purposes, such as the result of Section 9 below. If the sets IITt
are sufficiently large, then I <contains a recursive subsez. (In the ex-
treme case in which each nTt consists of all possible transition probabil-

ities, II consists of all regular, countably additive probability measures

on M . The set of all such probability measures is certainly recursive.)

5. Maxmin Programming for Probiems of Tvpe IT

In order to describe maxmin programming, some additional notation is
needed. For any (st, w) € SXW and any t , there 1s a decision sub-
problem P(st, w) with initial state (st, w) . The tree of exogenous

states for P(st, w) is S(st) = (s € Sls - s _ors follows st} . The set

of personal probabilities for P(st, w) is H(st) = {m[e

st]]ﬂ € I} . The

probability measures in H(st) are defined on the measurable subsets of

Q(st) , where Q(st) -~ (W - (so, S{s - ) € let - St} . Let é(st, w)
be the set of programs for P(st, w) . 1f ae é(sc, w) , lgt
Wt+n(st’ w, a, st+n) be defined just as wt(g, st) was defined in Section

2. That is, wt(st, w, a, st) =w and w w, a,

t+n+l(st’ - St+n+l)



- , W , W s, w, a, inally,
h(st+n+l t+n(st' w; _a_‘) St+n)i é(st+n t+n( t 3 St+n))) F_‘L'\ ‘,l'
i , W - S., ... ) € Q(s , t f , &,
if ae€ ;A(st ) and w (so, 1 ) ( c) le r(st, v, &, w)
©
n
- s , W s_, w, a,
nEOS r(st+n, wc+n(sc' V. 2 st+n)' 5( t+n t+n( t 2 st+n)))
- w (a, s_), a , where
If aea, let R(a, s) =r(s,, w(a s), als)) 2
wt(a, st) is as defined in Section 2. Also, if w e O(st) , let
A @
- a where =(s ., 8,, ..., S_, 8 , e
R(a, Ser w) nZOSU'RHn(_, st+n) ! re o ( 0 1 T t+l )

The value function for maxmin programming is defined relative to a

fixed program g € A, the value function being
V(a,s,w) = max min E [#(a) - R(a,s)] . Clearly, V(a, s., w.) >0
~ - -~ =7 70 0’ =
acA(s,w) nwel(s)
and E is maximal if and only if V(é, Sy wo) =0 . Also, if E is

maximal, then V(E, S wt(g, st)) =0, for all s

Theorem 5.1. V(a) is well-defined and satisfies the equation V(a, S_, W)
T ————— - - [

- max [r(s_.w,a) -R(a,s ) +§ min E V(a,

a, s_4, his_ ,,v,a))]
aeA(st,w) KGHT(St) ks t+l t+l

Proof. It is first shown that V(g,s,w) is well-defined. Because II(s)

is weakly compact and f(g) - ﬁ(g,s) € C(Q(s)) , the minimum over I(s)
exists. As in the proof of theorem 3.1, the function

S é(s,w) X 0(s) - [0,=) 1is continuous and é(s,w) and Q(s) are compact
and metrizable. It follows that £ is uniformly continuous and so

min E £(a) 1is continuous with respect to a . Hence, the maximum over
n<ll(s)

a exists in the definition of V .

The recursion equation for V follows from the following equarionms.



V(a, s_, W) = max min E [£(a) - R(a, s_)]
- t T - - t
éeé(st,W) xeﬂ(st)

- max (r(st, w, i(st)) - Rt(g, st) + min z ﬂ(st+1) min
EEé(St,w) xEHT(st) st+l T eﬂ(st+l)
E_,[E(a) - r(s_, w, a(s)) = R(a, s_ )]
- max {r(s_, Ww_, a) — R(a, s.) + min z n(s )
t’ ot A - t+l
aEA(st,w) xEHT(st) st+l
max min E ,(%(a) - R(a, st+l)])
ieé(st+l’h(st+l’w'a)) x'eﬂ(s:+l)
- max (r(s_, w, a) = R (E, s )+ min E V(E, s , h(s y W, a))]
t c=" Tt x ="' T+l t+l
aEA(st,w) xéﬂr(st)
The first and last equations follow from the definition of V . The

second equation follows from the definition of f(é) and R(E, st) and the

recursivity of @I . The third equation should be obvious. Q.E.D.

It is not hard to obtain an analogue of the policy improvement method
using V . 1In order to do so, it is necessary to characterize V as the
unique fixed point of the obviogs contraction mapping. Give S X W the
product of the discrete topology on S and the usual topology on W as a
subset of RN . Let Cb(S X W) be the set of all continuous bounded fuq;-
tions on S xW . If wve cb(s Xx W), let H(g)v bé the function on

S x W defined by H(E)v(s , W) = max [t(s_, W, a) = R (a, s )
- t t '~ t
aeA(st,w)

+ § min E v(s
xeﬂT(st)

H(g) : Cb(S X W = cb(s X W) 1is a contraction with respect to this supremum

e+1’ w, a))] . Then, H(g)v € cb(s X W) , and

norm on Cb(S X W) . The next theorem is an immediate comsequence of the

contraction mapping theorem and theorem 5.1.



Theorem 5.2. V(g) is the unique fixed point of H(é) and so belongs to
C,(Sx W) . If vec (sxW , them H(3)v converges uniforaly to ¥(3)

as n goes to infinity. V(a,s,w) 1is a concave function of w

th

or e:zch

a and s

Once V(a) is kmown, it is possible to describe how to compute a

such that min E [f(a) - £(a)] = V(a, s., w.) . The program a mustT, Zor
ceq - =7 70" 0 -
i a - a A
each Se o solve the equation V(g, st, wt(g,st)) r(st, wt(g,st), -(s:f
- Rt(é,st) + § min E_V(a, Seel h(st+l’ wt(i, st), g(st))) . Since

*
n€l(s.)
A(St’ wt(g, st)) is compact and V(E) is conrinuocus, this equation hes z
solution, provided wt(i, St) is known. Since wo(i, so) - wo is knowm.
one can build up é(st) by induction om t , starting from t =0
It is now possible to describe the analogue of the policy improvement

method. The improvement step proceeds as follows. Suppose one is given

m

program a - Compute V(En) . It V(in, Sy wo) -0, a is maximzl and
no improvement is possible. 1If V(gn, g wo) >0, let a4 be such
min Eﬂ[r(én‘i‘l) - r(_a_'n)] - v(in' so: wo)
nell

If one starts with an arbitrary ag then successive application of
the improvement step yields a sequence 2y Ay oeee If this sequence

continues indefinitely, it has a limit point, since A 1is compact. Let a

be either the last member of the sequence or a limit point.

Theorem 5.3. a 1is maximal and dominates 3, unless

o

= a

0

The improvement method just described is not, of course, an algorithm,
for it may not be possible to carry out any of the steps exactly. However,
the method suggests how to obtain an approximately maximal program dominat-

ing a given program, for each of the steps can be carried out approzimatasly.
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Proof of Theorem 5.3. If a = a fof some n , then V(a, Sg wo) =0,
so that g is maximal. Suppose that g is a limic point of 3y 2y,
For each n , let ¢, = min Eﬁ[r(§n+l) - r(gn)] . For all n , € >0
N w<ll
and I € < min Eﬂ[r(EN+l) - r(éo)] . Since the right-hand-side of this
n=0 el
inequality is bounded, lim e 0.
n—=

For each n , let fn : A(so, wo) - (==, @) be defined by

f (a) = r(s., wo, a) = R (3 , Sa) + 6 min E V(a_,
n o] o] 0'=n' "0 “enr(so) T n

Similarly, let £ be defined by the same formula with a, replaced by E .

Sl' h(sl, Wy a))

Notice that €& fn(§n+l(so)) = max fn(a) ., for all =n .
aci
There is a subsequence in(k) , k=1, 2, ... such thac

iiz én(k)(s) = a(s) , for al} s . Then, ii: fn(k)(a) = f(a) , for all a.

Suppose that g is net maximal. Then, V(g, So wo) >0, so that

1
f(a) > 0, for some a . Therefore, En(k) > fn(k)(s) > Ef(a) , for k

sufficiently large. This contradicts lim Cn(k) = 0 . This proves that a
koo -
is maximal.
It remains to be shown that g dominates 3 when g “a, - If

_ _ N-1

a=2a, for some N , then min E"[r(g) - r(éo)] > Z £ >0, so that
ncll n=0

a dominates a, , If a = lim a , for some subsequence n(k) , then

< b=y = ko -n(k)

min E [£(a) - £(an)] = lim min E (£(a ) — £(an)] , and for all k such

el 0 ko el ¥ =n(k) 0

that n(k) >0, nin Ex[r(én(k)) - r(io)] > £g > a . Q.E.D.

nell
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6. TFirst Order Conditions for Tvpe II Problems

Subgradients of the maxmin value function give rise to first order com-

ditions just as they do in the usual dynamic programming.

Theorem 6.1. A program a is maximal if and only if for each S. there

N . -
ist . at, £ 1
exists p(st) € R+ and xT( [st) € HT(St) such thaz, for al 5

rt

n p(st) is a subgradient of V(a, s_, w) at w=1+w_(a, s)) and

t’ T t

2) a(s_) solves max [x(s
aEA(st,wt(g,st))

- w_(ar s )1 a)
[ c - C

+ 8 Yeh(s w.(a, s), a))]

ExT(.]st)(p(st+l t+l’

The following example should clarify the meaning of the theorem. The

example represents the saving problem of an immortal consumer.

Example. Let W= [0,=) , A(s,w) = [0,w] , r(st, W, a) = u(st, a) , and

h(st+l' w, a) = (1 + R(s:+l))(w-a) + y(s ), _where y(st+l) >0, for

t+l

all Sty - Also, w 1is wealth, a 1is consumption and w-a is saving.

R(s_..) 1is the real interest rate on saving, and u 1is the utility funec-

t+1l

tion.

A program a is maximal if and only if for each S, there exists

A(sc) such that for all S,

du . - )
1) Ez(st’ é(st)) < A(st) , with equality if E(St) >0, and

2) A(s)) €M(s) , amd XM(s) £ X(s) if a(s) <w.(a, s) , where
A(s ) = ¢ min E_ ., ((1 +R(s__4))A(s__,)) , and
t “T('Ist)enr(st) L ]st) e+l t+l

A(sQ) = (1 + R(s_ 1 )A(s 1))

§ max Eﬂ (“S )
ﬂT(-[st)eHT(st) T t
The numbers K(st) and A(sc) are, respectively, upper and lower marginal

utilicies of saving.
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Proof of Theorem. Suppose that a is maximal. By theorem 3.2, there is

x € I such that a solves max E %(3') . As in Section 4, for each Se
) a'&r

let xT(-lst) € HT(st) for the transition probability defined by = . For

each (s,w) € § xW , let Vﬂ(s,w) - max(ETQ(g')]g’ € A(s,w)) . By the

usual firstc order conditions-for a concave programming problem, there exists

N
£ - 1
for each S, o p(st) € R+ such that for all S.
1) p(st) is a subgradient of Vﬂ(st, w) at w = wt(é' st) and
2) é(st) solves max [r(st, wt(é, st), a)

aEA(st.wt(g,st))

+ §E

o St)(p<st+l)°h<sc+1' v (a, s), a))]

(.
That p(s_) 1is a subgradient of V(E' S w) at w=w_(a, st) follows

from the following inequalities,

P(s )e(w - w(a, s)) 2V (s.. W) =V (s, ¥ (a s))

- max E [f(g‘) - i(g. Sc)]
E'Eé(st,w)

v

max min E_,(%(a') - 1;(51 s
g'eé(st,w) ﬂ'en(st) T

V(a, s, w) = V(a, s, w) - V(a, s, wt(g. s.))

This completes the proof that the conditions of the theorem are necessary
for maximality.
Now assume that conditions 1 and 2 of the theorem apply. Fix s. € S

and let a’ € é(st, wt(é’ s )) . Then,

t
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min E (£(a’) - R(a, s_, w (2, s))]
xEH(st)

<rls,, w (3, s), a'(s)) =~ x(s,, w.(a s), als)))

-+ SEﬂT('lSt)V(E’ St+l, h(st-i'-l, Wt(.a._' st), i'(st)))
Srls., vwla, s), a'(s)) - t(s, v (3, s), als))
+ SEﬂT<,lst)[V(§, Searr Blsg g ¥ (3, s, a(s))

+ P(s ) (B(s gy w (3, s, a'(s)) = (s . w(a s, als)))]

< 6E

(e

V(a, s , W (a, 5_.4))
T st) - t+l t+l = t+1

The second and third inequalities above follow from conditions 1 and 2,

respectively. It now follows from the definition of V(i) that

V(é, Seo wt(g, st)) < SE"T('lst)V(i' Sii1 wt+l(3’ st+l)) . Since the
numbers V(a, S wc(é, st)) , for S, € S , are non-negative and bounded,
it must be that V{(a, Sg wo) =~ 0 . Hence, a is maximal. Q.E.D.

7. Recursivity in Problems of Type 1
In order to define recursivity for problems of type I, I assume the

| foliowing.

Assumption 7.1. TFor all t and X, € Xt , there is a program a € A such

that x(w[xt(g,w) -x) >0, forall nel.

By assumption 2.1, x{w[xt(g,w) - xt) is independent of a . Define w(xt)
to be ﬂ(w‘xt(a,w) - xt} for some a € A such that this gquantity is posi-

tive. Also if a € A(x) , let m.(x a) = mlo|x _(2,w) = x_ and

t+llxt’

-1 , . .
w(xt, a) = xt+1)(ﬂ(xt)) , where a 1is some program such that
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n{wlxt(é,w) -x)>0. Again by assumption 2.1, the transition probability

. ) . - (. -
”T(xt+llxt’ a) is well-defined. Let w_( , from

T xt) be the function, £

A(Xt) to the sat of probability measures on I(xt) defined by
fla) = nT(-]xt, a) . For each x & X, lec HT(x) - (nT(-lx) e I

Finally, let F : I~ x I(x) be defined by F(m) = x(«]%)
xeX :

Definition 7.2. U is recursive if F 1s subjective.

Just as in the case of problems of type II, I may contain a recursive
subset even if it itself is not recursive.

There is an alternative definition of recursivity which is very similar

to that of Section 4. Let Ot = X G{xX), and, for t >0, let
xeX
t
St - ((wo, cees wt_l)}wn € Dn, for all n} . Letting g be an arbitrary
-]
point, one can define, in an obvious way, § = {so} U ou St to be a tree
=l
with root sy - One could define U to be recursive if it weres recursive

relative to § in the sense of definition 4.2. This definition of recurs-
ivity is not useful because one cannot cbserve the Se in § . If one
could observe the s, » one could use this definition of recursivity to

define maxmin programming. WNeither of the alternative definitions of re-

cursivity implies the other.



8. Maximalitv bv Avoroximation in Problems of Tvpe 1

The object of this section is to show that under certain conditions one
may realize a maximal program for a type I problem by making a finite compu-
tation at each state at which one arrives. The intuition behind the resul:z
is that if one does not know how to evaluate precisely probabilicies of
future events, then it is pointless to carry contingent planning beyond &
certain level of detail.

Assume that assumptions 2.1 and 7.1 apply. More notation is required
in order to describe two additional assumptions. Let I(x,a) be the set of
those immediate successors of x which occur with positive probabilicy if
action a € A(x) 1is tsken. By assumption 7.1, I(x,a) is well-defined.

I(x,a)

Let A be the set of all probability measures on I(x,a) and let

ax) = x  Al®®

This set contains HT(X) . Give A(x) the usuzl
acA(x)

topology as a subset of a Euclidean space.

Assumption 8.1. For all x , HT<X) has non-empty interior in the topology

of A(R)

This assumption asserts that the decision maker is uncertainty averse and is
uncertain about all possible random events.

For each x € X there is a decision subproblem, P(x) , with initial
state x ., This subproblem is defined much as P(st, w) 1is defined at the
beginning of Section 5. The notation applying to P(x) is like that of

Section 5. The set of states is X(X) = {x'lx' equals or follows x) . The

set of probabiiistic states is ((x) = x  G(R')
x'eX(x)

, and M(x) is the set

of measurable subsets of Q(xX) . M(X) may be considered to be a subset of

M Dby means of the natural projection from G to 0(x) . By assumptions
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2.1 and 7.1, =(x) 1is well-defined in x € I , so that

w(C[x) - n(C)(w(x))—l is well-defined, for C € M(x) . The set of personal
probabilities for P(x) is I(x) = (x(+]x)|r € I} . The set of determin-
istic programs is A(x) . If‘ a€A(x) and w € Q(x) , the total reward
is #(x,a,w) . If = &€ dx), let v (x) = max{Eﬂ%(x,i)Ii € A(x)) . V_(x)

is the value of P(x) 1if the personal probability measure = is used o

evaluate programs. If x' £follows x and =« € I(x) , then =(+|X') €

I(x’) 1is well-defined.

Assumption 8.2. For all (x,a) € graph & and r e O(x) , V

7(.[.‘,)(}0) is

not constant as x' <varies over I(x,a)

This assumption asserts that random variations always matter.

I now define what it is for a program to be calculable. 1If X, € X
and n is a positive integer, let X(xt, n) = (xt+k € X(xt)lo < k = n)
There corresponds to X(xt, n) a decision subproblem, P(xt, n) , with
states X(xt, n) . P(xt, n) 1is defined much as P(xt) is defined.
Because P(xt, n) has only finitely many deterministic programs, a maximal

program for P(xt, n) can be calculated in finitely many steps. A program

tw )

€ A 1is calculable if at each state X,

, there is a finite procedure for
choosing a positive integer n(xt) and a program a, for P(xt, n(xt))

t

such that a(x ) = a (x
20 = 2, (x)
The procedure used to calculate a ignores distant future states. The

procedure could be improved by ignoring states of very low probability as

well.

Theorem 8.1. If assumptions 8.1 and 8.2 apply and II is recursive in the

sense of definition 7.2, then there exists a calculable mezimal program

1l
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Proof. First of all, I need notation applying to the problem P(x_, n)
The set of probabilistic staces is Q(x_, n) = X{G(x)|x € X(x_, n)) . The

sets of personal probabilities and of deterministic programs are denotsad,

respectively, by H(Xt’ n) and é(xt, n) . If ae é(xc, n) and
w € D(xt, n) then f(xt, n, a, w) denotes the total reward. I£
T € H(xt, n) , then Vw(xc, n) = max{Exf(x:, n, 3)[3 € é(x:, n)) . 1
T € H(xt, n) , then xT(-lx, a) denotes the corrasponding veczor of trans-
ition probabilities.

The pair (P(xt, n), ) , where =x €& H(xt, n) , 1is said to be sscis-
factory if it meets the following conditions.
Condition 8.3. For all xt+k € X(xt, n) with k<n , 7I(.lxc+k) belongs
to the interior of HT(xt+k)
Condition 8.4. If ae é(xt, n) solves V”(xt, n) = Eﬂ%(xt, n, a) , then

there is x%(-lxt) € HT(XC) such that xi(olxt, é(xt)) - ﬂT(-Ixt, é(xt))

-2.n
and V”(xt, n) - B(1-§) 7§

> ! - for al
r(xt, a) +§ = ”T(xt+llxt’ a)vx(-]x )(xt+l, n-1) , for all
X t+l
t+l
a » é(xt) , Where B > sup(r(x,a)l(x,a) € graph A)

Lemma 8.2. Fix ;T(-

xt) in the interior of HT(xt) . If (P(xt, n), m)
is such that nT(-Ixt) - nT(-Ixt) , then (P(xt, n), n) satisfies condi-

tion 8.4 for all n sufficiently large.

Proof. It is enough to show that if (P(Xt’ nk), nk) is any sequence such

that nkT(-Ist) - xT(-Ixt) , for all k, and ii: no=a, then there is

a subsequence, denoted <P(Xt' nk), wk) again, such chat (P(xt, nk), wk)

satisfies condition 8.4 for k sufficiently large. By the compactness of
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O(s_) , one may assume that lim 7w (-[x) - (-[x) , for all x e X(x_) ,
t kT T <
k-0
where = € H(xt) . Therefore, ii: V7r (xt+l, n - 1) = Vﬁ(xt+l) , Zfor any
X following X, - Lez a € é(xt, nk) satisfy vx_(xt’ nk)

-

- E r(x_, n, ak) and let a € §(xt) satisfy Vx(xt) - Eﬁr(xt, a)
Since A(x_) 1is finite, one may assume that ak(x“) - a(x_) , for all k.
[ -3 [ - [

By assumption 8.2, is not constant on I(x_, a) ,
e

v (% )
7( ]xt+l) t+l-
for all a € A(x.) . Since wT(-[xt) - HT('[XC) belongs to the interior of

D.(x) , there is mi(+|x ) € I (x) such that mi(+[x_, a(x))

- ;T(-lxh, a(x_)) and for some ¢ >0,
%% - [

V”(xt) ~e> Z ”é(xt+llxt’ a)V”('lX )(xt+l) , for zll =z = é(x:)
t+l
t+l
-2 %
Hence, for sufficiently large k , V_ (x_, nk) - B(1-6) “§
e t
> z ”T(xt+llxt’ a)Vﬁk(.[x )(xt+1, - 1) , for all
t+l

xt+l
a » g(xt) - gk(xt)

This completes the proof of lemma 8.2.

The pair (P(xt, n’), ') is said to extend (P(xt, ny, ) 1if n’ >n
and 7 equals #’' restricted to O(xt, n) . Assumption 8.1 and lemma 8.2
imply that one can find in finitely many steps a satisfactory extension of
any pair (P(xt, n), m) which satisfies condition 8.3.

The procedure for calculating a maximal program is as follows. Choose
wT(-[xo) in the interior of M.(x,) . By assumption 8.1, such a choice is
possible. Let (P(xo, n(xo)), xxo) be a satisfactory extension of
(B(xy, 1), mple]xy))

One now constructs by induction on t satisfactory pairs

(P(Xt’ n(xt)), nxt) such that whenever xt+l follows X
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T+l T+ X

1 ! < -1 -
n(x 'l>)’ 4 t+l) extands (P(xt+l‘ n(kt) 1), xx~( ]xt+l)) . The

induction step is as follows. Suppose the construction has been made for

x, with k=t . Let x follow x_ . Because =« satisfies condi-
|3 t+l t N_
tion 8.3 x . lx does so as well., Let 2(x , nix T be
’ x,( l t+l) (2( T+l ¢ :Tl)) xc+l)
L™

a satisfactory extension of (P(x

Reppr B = D)oy ('lx:+1))

For each X o let ax € A(Xc’ n(xt)) be optizal with respect to
t

=4
o
4]
r
1o )

. € A be defined by a(x_) = a, (x_)
t “ - t -
I next show that the calculable program a just cdefined is maximal.

For each x_ , let wi(-lxt) be a transition probabilicy satisfying condi-
=

tion 8.4 for (P(xt, n(xt)), e ) . By the recursivicy of 1 , cthere is
t
* €I such that ?T(-lxt) - m(elx) . for all x_ . It is sufficient to
~
show that g is optimal with respect to x . By the sctandard theorem of

dynamic programming, a 1is optimal with respect to =« if

8.3) for all X, and ¢t , ”( IX )r(x a)
= max f[r({x_,a) +§ Z x (x ix ,a)E~ 2(x ,a)]
aga x,) T’ +1 w(«|x o) el

t+l

In order to prove equation 8.5, I need the following lemma. Let x €I

be such that nT(-[xt) - nxtT(']xt) , for all X, - Since @I is recur-

sive, =« exists.

Lemma 8.3. For any X, and any x € X(xt, n(xt))}

T+l

f(x N E) >V (x , n(x'_) - k) , and
mllrg) ek SR T ey ek i n(x _)-k
z a < ) - _ey=2 -
r(e]x )" Ferer 27 er ('[Xc+k)(xt+k’ n(x.) - k) £ B(1-6) "5
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Proof of lemma. For notational convenience, the proof is given for the case

k=0 . Let the increasing sequence é, Yi, ... of subtrees of X(xt) be
defined as follows by induction on t . Xé - X(xt, n(x_)) . Given
kn' Xn+l - Xa U U(X(xt+n+l, n(xt+n+l)>|xt+n+l € Xn} . Let én be the pro-
gram on Xé defined as follows. én(xt+k> - é(x:+k) , 1f k<n . For
c - i 1 c
k>n, én(x:+k> a, (Xc+k) , Wwhere Xeyn 18 the elemenc of Xt+n
t+n
preceding Xeix - Notice that 3 - Exc
It should be clear that V“x (xt, n(xt)) - ( ix )r(\ , ao) , that
T
E (s , §n> < E”<.lxt)r(xt, §n+l) , for all n , and that
ixm E”( [x ) gn) ”( lx >r(x , a) . Also,
-1 n(xt)+n
- < - . ref
7( lx >r(x , n+l) W( ix )r(x , 5) < B(1-8) 7§ Therefore,
A ) -2 n(xt>
Ere ] Tz, a) - Vﬁ,x (x., n(x.)) g B(1-8) ~¢
t

This completes the proof of lemma 8.3.

I may now prove equation 8.5 and hence the theorem. By condition 8.4

and lemma 8.3,

8.6) - for all X, and ¢ , ”( lx )r(x . a)

> r(xt, a) +§ = n&(xt+!|xt, a)E”(. < )r(xt+l, a) ,

t+l
for a in é(xt) not equal to g(xt)
x.) = my ? (- ]x ) and nT(olxt) - nxtT(olxt) , for all
x_ . Since by condition 8.4, = T(-]xt, a(x.)) = n&(-]xt, a(x.)) , it
a7, - 1 =

follows that E IX >r(x , a) ”(_ xt)r(ét’ a) , for all X, and .



Substituting =T for =« in inequality 8.6, one obtains equatiocn 8.5.

This compleces the proof of the theorem. Q.E.D.

The procedure just described for calculating a maximal program reminds
one of Simon’s (1955, 1959) satisficing. A decision maker following the
procedure outlined would not be interestad in refining his calculations once
he had achieved a satisfaczory incomplete program. In this sense, he would

behave as if he had achieved a predetermined aspiration level.

9. Maximaliry bv Aporoximation in Problems of Tvpe IT

This section is devoted to an analogue of theorem 8.1 for type II probd-
lems. The main difference with the previous section is that the analogue of
assumption 8.2 must be statad in terms of derivatives rather than levels,
because type 1l problems have continuous state and action variables.

Assume that assumption 4.1 applies, so that HT(S) is well-defined,

for all s . HT(S) is a subset of the set of all probsbility vectors on
the immediats successors of s , call it AI(S) The analogue of assump-

tion 8.1 is the following.

Assumption 9.1. For all s , HT(S> has non-empty interior in the usual
topology on AI(S) .

If (s,w) € § x W, let P(s,w) be the decision subproblem defined at
the beginning of Section 5. If = € HO(s) , let ‘V”(s,w) be the value of
P(s,w) according to = , as defined in Section 6. If n 1is a positive
i - £
integer, let S(s_, n) = (s_, € S(st)IO <k<mn} . If weW, let

P(st, w, n) be the decision subproblem corresponding te S(St’ n) with

initial state (st, w) . The problem P(s_, w, n) is defined in the
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obvious way. Let é(st, w, n) , Q(st, n) and H(st’ n) be, respeczively,

the sets of programs, probability states and personal probabilities for

P(st, w, n) . If ae é(st, w, n) and w € D(st, n) , lec
%(st, W, n, a, w) be the total return. Similarly, if = € O(s_, n) , chen
V(s , w, n) = max{E T(s_, ¥, n, a)la € A(s_, w, n)} . If = € O(s) ,

T t m T -0 - - T
VT(st, w, n) is defined to be V”,(st, w, n) , where =’ 1is the restric-
tion of = <to O(st, n) . In order to be able to deal with derivatives,

the following assumptions are made.

Assumption 9.2. For all s , the functions r : graph A(s,-) - [0,=) and
h : Y(s) - W are continuously differentiable and there is Bl >0 such
that |[Dh(s,w,a)| <B , forall s, v and a.

The derivatives of r and h are denoted Dr and Dh , respectively.

Assumption 9.3. For every (s,w) and n and every = € H(s) , the func-
tions V”(s,w) and V”(s,w,n) are continuocusly differentiable with respect
to w . There are 32 >0 and 7 >0 such that 5 <1 and

n
lov (s,w.n)] =B, and [OV (s,w,m) =DV (s,w) < By , forall s, =,

and n .

It is important that Bl ) 32 , and n be knoyn to the decision
maker. Otherwise, he would not know how to calculate a maximal program.

Many economic programming problems satisfy assumption 9.3, though gen-
eral conditions on r, h, A, W and I guaranteeing these assumptions

are awkward to state.

The analogue of assumption 8.2 is the following.



Assumption 9.4, For any (s,w) € § x W and = € II(s) if a 1is anv pro-

r
gram for P(s,w) which is optimal with respect to = , <then the convex

hull of (DV

x(e s,)(S’. h(s’, w, a(s)))Dh(s’, w, a(s))|s’ € I(s)} has non-

. . . . - o N+K
empty interior in the affine subspace of R spanned by

(p(s")Dh(s’, w, a(s))]s’ € I(s), p(s’) € R, for all s')

The following assumption is also needed.

Ass tion 9.5. For any program a and any w € I ,

-

lim §E w (a, s ) = 0
T - T
LT+

A program a € A is said to calculable if ac ezch state (s_, %_)
- - [ [,

arrived at, there is a finice procedure for choosing z positive intsger

n(st) and a program Est for P(st, Ve n(st)) and if 3(5c> -2 (sc> ,

for all st .

Theorem 9.1. If assumptions 9.1-9.5 apply and if T is recursive in the

sense of definition 4.2, then there exists a calculable maximal program a

Proof. The proof is much like that of theorem 8.1. Imn a pair
(P<st’ w, n), w) , it is understood that = € H(st) . Also,
(P(st, w, n'), n') -extends (P(st, w, n), #) 1f n' >n and w egquals

’

T restricted to O(st, n) . The pair (P(st, w, n), ®) 1is satisfacrorv

if it meets the following conditions.

Condition 9.6. For all s

etk € S(st, n) with k<n, wT(-{st+k) belongs

to the interior of HT(S )

t+k
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Condition 9.7. Suppose that a € A(st, w) solves the equation

A - . - N
Vx(st, v, n) = Exr(st, w, n, a) . If for each S.;1 € °(sc) , p(sc+l) g€ R

NP n-1
satisfies “p(sc+l) -D h(st+1. W, g(st), n)” < Zqu ,

v {s ,
x(o]st+l)\ t+l
then there is xi(-[st) € HT(st) such that

z x%(st+llst)p(s )Dh(st+l’ W, é(st))

t+1l
st+l
- z 7rT(sc+llsc)Dvn('ls .)(st+l’ h(st:J.-l' i E(sc))' n)Dh<sc+l’ v é(s:))
s t+l
t+l
i Py - i .L ri £ If
Lemma 9.2. Fix ﬁT( sc) in the interior of HT(sc) .

(P(s_, w, n), ) 1is such that = (-|s ) = ;,(-\s ) , cthen
= T t L ol

(P(s_, w, n), n) satisfies condition 9.7, for all n sufficiently large.

t

Procf. It is enough to show that if (P(st, v, nk), ﬂk) is any sequence

such that

s.) = w(+]s) , forall k, and limn ==, then
k=

there is a subsequence, denoted (P(st, w, nk), xk) again, such that

Ter(*

(P(st, w, nk), nk) satisfies condition 9.7 for k sufficiently large. Let

ék (S é(st, v, nk) solve V“ (st, w, nk) - E“ f(st, v, o, ék) . By compact-

k k
ness, one may assume that lim ﬁkT(-[s) - nT(- s) and lim ék(s) - g(s) ,
ke ko
for all s € S(st) , WwWhere =« € H(st) and ae é(st) . Then,
V“(st, W) - Eﬂr(st, w, &) , lim DVW (st, W, nk) - DVx(st, w) and
ke k
Lin DV, (s Bl @ (600) = DV (s, Blsyy, o, 2(50)) , for all
st+l < I<St)

By assumption 9.4, there is &€ > 0 such that if for each

N . s
Sl € I(St)’ p(st+l) € R satisfies

"p(st+l) - Dvx(st+l' h<st+l’ w, é(st)))" < ¢ , then there is
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ﬂi(-[s:) € Ht(sc) sueh that I ”%('lsc)p<sc+l)oh(sc+l' b i(st))

s
o+l

- = :r,r(-[st)DV w, a(s )))Dh(s_.,. w, a(s ) . By

x(-[sc)(sc+1' t+l’

T+l

assumption 9.3, it now follows that if n is so lar
then (P(s_, w, nk), x, ) satisfies condition 9.,7. This completes the proof
t k : :

of the lemma.

The procedure for caleculating a maximal program is as Zollows. Choose

s s in the interior of H“(SO) . By assumption 9.1, such a choice is

T(. O) T

possible. By assumption 9.1 and lemma 9.2, one may find in finitely many

steps a sztisfactory extension of (P(so, Yoo ), HI(-{SO)) , call iz

(P(so, LAY n(so)), nsO) . Let Eso be a program for P(so, Yy n(so))

which is optimal with respect to =« . Llet a(s ) =a (s.) . Then
: sO -0 =S 0
wl(g, sl) - h(sl, Yo E(SO)) is well-defined.

One now continues by induction on t to construct a sequence of sacis-

factory pairs (P(st, wt(é, St)’ n(st)), L ) and the aczioms

t
i(s:) - ést(st) . These are such that if Sei1 follows S. s then
P . A
(“(St+l’ Jt+l(§’ st+l)’ n(st+l)), Ts ) extends
t+l
(P(st+l’ wt+l(5’ St+l)’ n(st) -1, nst(~[st+i)) . Thus, suppose by induc-

tion that g(sk) and (P(sk, wk<§’ sk), n(sk), nsk) are defined for

k =t . Then wt+l<é’ st+l) is well-defined. By assumption 9.1 and lemma

9.2, (P(st+l’ wt+l<5’ St+l)’ n(st) -1, ﬁst(-|st+l)) has a satisfactory

extension, call it (P<st+l’ wt+1(§, st+1)’ n(st+l)), L ) Let a

s
T+l T+l
)) optimal with respect o

be a program for P(s (a, s ;) nis

w
t+l’ t+l t+l

“st+1 and let wt+l(5’ st+l) - h(st+l’ wt(g, St): E(st))
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It remains to be shown that the calculable program a is maximal. By

condition 9.7 and assumption 9.3, for each s_ , there is
[
x.. (e s such that
TT( st) € HT( t)
. =) s v , W, a2, s , s
9-8) z T(st+1i t)D T (sc+l :+;(~’ :+l) n( :+1))
s . s
T+l t+1

For each s and t let s = DV s , wi(a, s a(s
ach s : Plsg) = DV, (s (@ 5, a(s )
Tt
is optimal with respect to T in P(st, w_(a, st), n(sc)) ,
o
< ol

Because

1t follows that the pair (wt(é, st), E(sc)) solves the problem

max (t(s_, w, &) +§ Zx__(s_.|s)
X t s T t+l'Tt
(w,a)Egraph A(st,-) Sl t
V 2 — — .
D L3 (-]st+l)(sc+l’ wt+1(5’ sc+l)’ n(st) l)h(sc’ v, 2 p(sc) ¥l
t

Therefore,
9.9) (Wt(é, st), g(st)) solves the problem

max [x(s_,w,a) + § T m.(s__.|s )p(s__,)h(s_,uw,a) - p(s_)+w],
(w,a)egraph A<st") T Seu T 7t+l' Tt t+l T T

for by equation 9.8, the first order optimality conditions are the same in

these two problems,

By the recursivity of I , there existcs = € I such that

ET(-

s.) = xi(-lsc) , for all s, . Conditionms 9.9 are one form of the

first order conditions for the problem maz(E;?(a)la € &} . This problem is
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concave and by assumption 9.5, the tranmsversality condicions are satisfied,

so that =z is optimal with respect to =< and hence is maximal. Q.E.D.

The following example shows that the conditions of theorem 9.1 are not

empty.

Example. Consider an investment problem with objective funccions

«

E‘ z 5“u(a_) , where u 1is differenciable, concave znd inereasing and
i t—O [ .
. d ]
0 <6 <1 . Assume that agu(O) < = . The variable a_ rapresents con-
[

sumption in peried t and is the action variable., The endogenous state
variable is wealth, w . If wealth is w , cthe setr of possible actioms is

[0,w] . The set of exogenous states is the tree S , and T 1is a set of

probabilicy distributions over paths in S . Assume that I satisfies
assumptions 4.1 and 9.1 and is recursive. If the current state is (st, w)

and the action is a € [0,w] , then the succeeding state is

(

st+l’ h<st+l’ W, a)) = (st+1, b(st+l)(w~a) + y(st+l)) , Where b(st+l) > 0

and y(st$1) >0 . Assume that there is 4 such that 0 < v < 1 and for

every s_, 0<s§ Z nT(s y s+, for all

s
t+l

Ist)b(s

t+l t+l

“T(sc+llst) € HT(st> . Assume also that for every S. there is
Serl € I(st) such that b(st+l) - 0

This example satisfies the assumptions of theorem 9.1. In particular,

if Vﬂ(s,w) is the wvalue function, V“ is differentiable and é;V“(s,w)

d
is positive. Notice that for every (s,w,a) , %;h(s’, w, a) =Q , for
some s’ € I(s) and %;h(s', w, a) > 0 for scme other s’ € I(s) . Also,

dh(s’, w, a)/dw = —-[dh(s', w, a)/da] , for every (s’, w, a) . It follows

that the set of derivatives appearing in assumption 9.4 is a nom-trivial
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