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1. Introduction

In previous papers (1986, 1987), I have proposed a Knightian theory of
decision in which decision makers use many subjective probability distribu-
tions to compare alternatives. The multiplicity of the set of subjective
distributions arises from ignorance of the true probabilities and aversion
to uncertainty. Following Frank Knight (1921), I use the word "uncertainty”
to mean random variation according to an unknown probability law. "Risk"
means random variation according to a known law. Uncertainty aversion is
distinet from risk aversion. An increase in uncertainty aversion increases
the multiplicity of the subjective distributions. An uncertainty neutral
decision maker has only one subjective distribution and so is Bayesian.

In this paper, I attempt to reconcile the apparent definiteness of
econometric practice with the vagueness of subjective probabilities assumed
in Knightian decision theory. I argue that some standard uses of classical
inference are Knightian in spirit, even though the formal justification of
classical methods uses the frequentist notion of probability. Classical
confidence regions may be viewed as defining sets of posterior means corres-
ponding to a standardized set of prior distributions. Tests of the null
hypothesis that a parameter equals a particular value may be viewed as de-
termining whether it is rational, from a Knightian point of view, to act as
if the null hypothesis were true. This interpretation of the tests seems
to correspond fairly well to practice and to the informal story told by
classical statisticians. Hence, one could argue that to this extent clas-
$ical statisticians act uniconsciously as Knightian decision makers. If one
fccepts this argument, then it is of interest to know what level of uncer-

tainty aversion corresponds to the popular 5% significance level. The



definition of standardized sets of prior distributions invelves a standar-
dized and measurable form of uncertainty aversion. The equivalence of
classical confidence regions and sets of posterior means establishes a cor-
respondence between confidence levels and levels of risk aversion. In
examples, the levels of risk aversion corresponding to the 95% confidence
level are quite high. This fact Is Indirect evidence that uncertainty
aversion is a real and important aspect of reality.

The Knightian uncertainty associated with parameter estimation would
tend to disappear as data was accumulated. This fact seems to imply that
econometric research would eventually remove nearly all Knightian uncertain-
ty about the economic environment. But this would be so only if the
environment were governed by probability laws which could be inferred from
data. I argue that not every stochastic process has such a law, I call
such a law discoverable and give a tentative definition of discoverability.
I prove that not every process has a discoverable law and alse that every
discoverable law may be learmed. I also discuss how one might test for
discoverability. Any failure of a model to pass a test for structural
stability is evidence in favor of lack of discoverability. I believe that
lack of discoverability is not an unlikely hypothesis to apply to many
economic time series,

The paper is organized as follows. In the next section, I review
Knightian decision theory briefly. In Section 3, I define a standardized
and measurable form of uncertainty aversion. Section 4 discusses, from a
Knightian viewpoint, confidence intervals and related tests of hypotheses,
The ldeas of Section 4 are applied to the normal linear regression model in

Section 5. Related matters are discussed in Sections 6 and 7. Discover-



ability is discussed in Sections 8 and 9. In Section 10, I interpret the
Kalman filter model as expressing Knightian uncertainty about the eveolution
of parameters in a linear regression model. In an appendix, 1 address the
issue of how one can speak of Knightian or Bayesian subjective probabilities
over unobservable distributional hypotheses. Subjective probabilities are
inferred from preferences over bets, but one cannot bet on an uncbservable
event, such as the truth of some distributional hypothesis. I show that if
one makes a certain simple assumption, then distributions over hypotheses
can be derived from preferences over bets on only observable events.

Edward Leamer (1987) has argued that probability intervals should be
used to express uncertainty about both prior and posterior probabilities.

He emphasizes the connection between this Knightian view and the analysis of
the sensitivity of posterior to prior distributions. Peter Walley (1984) is
writing or has written an unpublished book which advocates the use of mul-
tiple subjective probabilities as a basis for statistical inference and
decision theory. I have been able to obtain only the introductiom.

This paper of mine should not be understood as advocating that Knight-
lan decision theory be the foundation of statistical inference. I have no
opinion on that matter. My purposes are to describe how Knightian uncer-
tainty could be quantified and to imagine how it could persist in a world we

think of as governed by definite stochastic processes.



2. Review

I describe briefly the basic ideas and notation of the Knightian deci-
sion theory presented in Bewley (1986, 1987). The starting point is a rela-
tion of striet preference, S , defined over a topological vector space,

X , of lotteries. The space X consists of measurable real-valued func-
tions on a state space § with ¢-field S . The topology of X -is locally
convex and the space, X* , of continuous linear functionals on X may be
identified with the signed measures on S . The ordering } is transitive,
but may not be the strict preference posterior of a complete ordering. (An
ordering, 2 , is complete if and only if for every =x and ¥y in X,
either xSy or yg x .) The ordering & 1is continuous and satisfies a
substitution assumption. Under these assumptions, S may be characterized
by a convex and closed set, H(>) , of measures on § as follows: x }-y
if and only if f(x(s) — y(s))x(ds) > 0, for all = € I(>) . Depending on
context, HI(>) will be either a cone of measures or a set of probabilicy
measures. The characterization is proved by noting that

cE) =~ (x e X|x S 0) 1is a comvex cone containing the positive cone of X .
The set I(®) 1is dual to C) .

An additional assumption guarantees that if the probability of an event
is known objectively, then the subjective probabilities of the event all
equal the objective one. Thus, the von Neumann-Morgenstern theory of choice
under risk is not contradicted. Incompleteness of preferences is what dis;
tinguishes behavior toward uncertainty from behavior toward risk.

The preference ordering ¢ is said to be upcertainty averse if and
only if M0(>) intersects more than one ray through the origin in X% . The

ordering is uncertainty neutral if and only if () 1is contained in a



single ray of X* , which in turn is true if and only if > is the strict
preference part of a complete preference ordering. Thus, uncertainty neu-
trality is equivalent to being Bayesian.

The term "uncertainty aversion" stems from an additional hypothesis
called the inertia assumption. According to this assumption, it is possible
to define a status quo, and the status quo is abandoned only in favor of a
point strictly preferred to it, Thus, iﬁcreased uncertainty aversion implies
increased conservatism.

If BcCcX is a choice set, thenm b &€ B 1is said to be undominated or
maximal if there is no b € B such that b > b . A basic theorem, valid
for convex B under quite general conditions, is that b is maximal if and

only if there is =« € I(p) such that b solves the problem

max fb(s)x(ds) . Thus, b 1is maximal if and only if it is optimal with
beB
respect to some =« . A Knightian decision maker acts as a Bayesian one,

except when comparing a new alternative to the status quo. The theorem is

proved by separating B from b + C(3)

3. A Measurable Form of Uncertainty Aversion

There seems to be no useful measure of uncertainty aversion which may
be applied to an arbitrary Knightian preference relation. One cannot even
compare the uncertainty aversion of two preference orderings, $ and %' ,
over the same set of lotteries if one of the comes C(®) or C(>') does
Not contain the other. However, one may obtain a measure of uncertainty
aversion inherent in an individual by considering the size of the set of
Probabjilities he attaches to two disjoint events about whose likelihood he

is equally and totally ignorant. The symmetry of the ignorance can be



interpreted as meaning that the probabilities attached to one event are sym-
metric about 1/2, Letting these probabilities be the interval
[% - £, % + c] , the number a = [% - z]—l[% + s] -~ 1 is an index of the
individual’s inherent uncertainty aversion.

Consider now the set of probabilities attached by the same individual
to N events about whose likelihood he is equally and totally ignorant.
If the individual is consistent, the set of probabilities attached to one of
any two events, conditional on their union, should be of the form

2

abilities over the N events. However, there is a unique largest set of

[l - £, % + c] . This restriction is not enough to define the set of praob-

probabilities satisfying those conditions, namely, HN a [(wl, ey wN)]xn

> 0, for all n, Eﬂn =1 and n, < (l+a)ﬂn, for all k and n) , where L is

k
the probability of the nth event. This set may be thought of as a stan-
dardized set of subjective distributions over N alternatives expressing
equal and total ignorance and uncertainty aversion of degree a .

The definition of such a standardized set of distributions may be
extended to continua of events, provided one takes as given some measure
expressing the equivalence of sets about whose likelihood one is equally
ignorant. Let X be such a measure defined on the set of events S . The
measure A might be improper in the sense that A(S) 1is infinite. For in-
stance, if S were the real line, X might be Lebesgue measure. The set
of measures expressing equal ignorance relative te A and uncertainty aver-
sion of degree a is nl,a = {x|x is a measure on § and if, for A and B in
S, ANB=2¢ and 0 < A(A) = A(B) < =, then x(A) < (l+a)x(B)}Y . If X is a

non-atomic o-finite measure on (5,5) , then HA a may be taken to be

{(r|x is the indefinite integral with respect to A of a measurable function



£ :5S—=R such that 1 < f(s) < l+a, for all s € §)

When applied as prier distributions over parameters, the diffuse or
uninformative distributions of Bayesian statistical theory seem to be in-
tended to express scientific detachment. Thus, if X 1is diffuse, the set
Hl,a expresses scientific detachment together with conservatism of degree

a .

4. Knightian Statistical Inference

Standardized sets of prior distributions may be used to obtain Knight-
ian analogues of certain classical confidence regions and of associated
tests of hypotheses. These Knightian confidence regioms and tests have the
advantage that they have a decision theoretic interpretation. Let y be a
random variable with a probability distribution depending on a vector, s ,

of unknown parameters belonging to a set S . The values of y may be

finite dimensional vectors. Suppose that one can define a diffuse prior

distribution, A over 8 , so that HA a is a standardized set of priors
for s . Finally, let y = (yl, vy yN) be any random sample from the
distribution for y . Given y , there corresponds to each = in o, a

posterior probability distribution for s and hence a posterior distribu-
tion for y , call it px(dylx) . Let Px,a(?’lz) - (p’r(dy]z) Pxen )
The set of posterior means, Hx,a(YII) - {Jy(s)p(ds) : p € Px’a(y]z)} is
the Knightian-analogue of the classical confidence interval for the mean of
¥ . Notice that y need not be normally distributed in order for
HA,a(YII) to be well-defined. HA,a(YIz) is well-defined as long as the
Posterior means of y exist, Notice that the regioms HA a(Y|Z) are

indexed by the degree of uncertainty aversion rather than the confidence



level.
The decision theoretic interpretation of M, (ylz) stems from the
fact mentioned in Section 2 that decisions are undominated in the Knightian

sense If and only if they are optimal with respect to some subjective dis-

tribution. Suppose that after observing y= (yl, vy yN) , 4a decision
maker with priors HA 5 Dust make choices whose payoffs in utility depend
linearly on a future random sample from the distribution of y , say

Y1 o Yneg ¢ Then, a maximal decision will be optimal with respect to
some one of the posterior distributions for y . Since the dependence of
payoffs on the future sample is linear, the decision maker need know only
the mean of the posterior distribution. Thﬁs, Mk,a(YIz) is the set of
means it would be rational to use to evaluate alternative choices.

This assertion may be demonstrated more rigorously as follows. The

payoff of a choice is a linear function of the future sample, say

bo + bl.yN+l + ... + bk-yN_l_K , where b0 is a number and bl’ ..., b are

K

vectors of the same dimension as y . Represent the choice by the vector
b = (bo, bl' v bK) and let B be the set of choices. Corresponding to
any posterior distribution p € PA a(ylz) , there is a linear functional,
Fp, on B defined by F (B) = b, + (Jy(s)p(ds)). Ebk. A choice b in

k=1
B 1is maximal if and only if there is no b in B is such that

Fp(b) > Fp(h) , for all p in PA,a(YII) . Clearly, if for some p in
PA'a(ylz) , F @) = :2: F (b) , then b is maximal. If B is convex, it
follows from Minkowski’s separation theorem that b in B is maximal only
if there is p € PA a_(ylx) such that F (b = ::g F (b) . Since the linear
functional Fp depends on p only through its mean fy(s)p(ds) , it fol-

lows that the set HA a(y|z) is the set of means which may rationally be



used to evaluate altermatives. Loosely speaking, it would be rational to
act as if the true mean of y were any point in Hk,a(YIZ)

Of course, if payoffs depended non-linearly on future observations of
y » then the decision maker would need to know more than simply the mean of
a posterjor distribution in order to evaluate alternatives.

The regions Hk,a(YIz) may be used to test hypotheses about the mean
of y . Define the hypothesis to be a subset, H , of the vector space to
which y belongs. Say that H is accepted if and only if
HN HA,a(Y|I) » ¢ . The decision theoretic interpretation is that in the
context of the decision problem previously defined, it is ratiomal to act as
if the true mean of y satisfied the hypothesis.

This interpretation of hypothesis testing applies alsoc to tests of the
point hypothesis that the mean of y is a particular value, say y . This
hypothesis is accepted if and only if ye MA,a(Y!Z) . Acceptance of the
hypothesis implies that it is rational for the decision maker to act as if
the mean of y were y .

The above discussion can be extended to statistical inference about
linear regression parameters. Suppose that it is known that
y=- ﬁo + kflﬂkxk + £ , where the ﬁk are unknown constant vectors of the
same dimension as y , the X, are predetermined numbers or exogenous ran-
dom variables and ¢ is an error of mean zero. Suppose that a diffuse
prior distribution, X , 4is given over the ﬂk's and the parameters of the
distribution of ¢ . Finally, suppose that past observations of the xk's
and the y’s are given, Call the vector of these observations x,y)

Then, to each prior in I

A,a '’
vector S = (Byr ++v B) . Let Hl,a(ﬂ|§'z) be the set of these posterior

there corresponds a posterior mean of the



1¢

means, one for each prior in nA,a . HA,a(ﬁli'z) is the Knightian confi-
dence region for g . Letting a hypothesis be a subset, H , of the space
of all possible vectors, g, H is accepted if and only if

Hn MA,a(ﬂIE,Z) " 3§ .

A decision theoretic interpretation of this form of inference may be
given by assuming again.that a decision maker with priors nl'a faces a
decision problem with payoffs depending linearly on future values of y .
Suppose also that he can forecast or predetermine future values of the L
Then, he acts rationally if he uses any point £ in Ml’a(ﬁlﬁ-z) to evalu-
ate his alternatives. The point hypothesis g = § is accepted if and only
1f it is rational for him to act as if B were the true mean. Notice that
the Knightian test of the hypothesis g = § does not require that a posi-

tive prior probability be attached to the single point, A , as must be

done in Bayesian tests of this hypothesis.

5. The Normal Linear Regressjon Model

The Knightian confidence regions may be said to be analogous to the
classical regions because the two coincide in the case of the normal linear
regression model. Also, Knightian tests of linear hypotheses on the model
are equivalent to the classical tests.

Represent the normal linear regression model by the equationms

K

Yo = 50 + kflxtkﬁk + LI for t=~1, ..., T, where the Ye and x
are observed numbers, the ﬁk are unknown constants, and the €, are

tk

mutually independent normally distributed random variables with mean zero
and variance 02 . In vecror form, the model is y = X8 + ¢ , where

and X is

y=- (ylr e ey YT)' ] ﬂ- (0601 ey ﬁK)’ ’ £ ™ (Cl, ey ET)'
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the obvious T x (K+1) matrix of ones and xtk‘s . Throughout what
follows, it will be assumed that X has rank K+1 .

The choice of a diffuse distribution is a controversial subject.1 It
can by no means be said that there is any obviously standard diffuse prior
on the parameter vectors (§,0) . Perhaps the most attractive property that
such a prior should have is to be invariant to changes in the units in which
the data are measured. Similarly, the distribution should remain invariant
if linear combinations of the xtk's are added to the Y. - Suppose that

the X, are replaced by Xep ¥ A+ bxkxtk , where a, and bxk are

constants. Suppose also that the ¥, are replaced by

K
yt - ay + byt + kflckxtk , Where ay , b and the ck are gonSCants.
-~ KA
Then, Y. - ﬂo + kflﬁkxtk + &, where ¢, 1s normally distributed with
mean zerc and variance 32 - b?'a'2 and where the vector g = (ﬁo, .oy ﬂK)’
is of the form g =d + D8, d being a vector of constants and D being

an invertible matrix of constants. If £(8,0) 1is the prior density, then
the transforned density of (§,8) is F(3,3) = b L|p| Leco (s—a), b~ 15)
The desired invariance property is that F(;,&) - Cf(;,&) , for some con-
Stant C . Since f is improper, C need not equal one. The invariance
property implies that £(8,0) = As" , For some comstants A and n .

In order to fix the exponent n , one may require that the prior dis-
tribution of y transform correctly under changes in the scale of y . The
Prior density of Y » given the prior density Ac" over (B,0) |is
Py = a(2m) szan_Texp[— ;l—z(y-Xﬂ)'(y—Xﬁ)]dﬁda . If y 1is replaced by

a

by , where b 1s a non-zero number, then the prior density p(y) tranms-
e et

1Zellner (1971) has a good discussion of diffuse priors in the appendix
of Chapter II.
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- i i i i t
forms to P(by) = b Tp(y) The required invariance property is tha
* —(T-K-n-2)

P(by) = p(by) . It is not hard to calculate that p(y) = As

where ; is a constant and 52 - (T—Kﬁl)-l(y - (X’X)_1X'y)'(y - (X'X)_1X'y)

is the usual unbiased estimate of 02 . One sees that if n = —(K+2) ,

then p(y) - asT and so P(by) = p(by) , as desired.

Let A be the prior distribution over (8,0¢) with densicy a-(K+2)

As in the previous section, let Ml,a(ﬂlx’y) be the set of posterior means

of B given (X,y) and calculated using priors in HA,a
The theorem below expresses the equivalence of HA'a(ﬂIX,y} with the

classical confidence region for f . 1In the statement of the theorem,

b = (X'X)—lX'y is the least squares estimate of B and 52 is as before.

Also, FT denotes the cumulative distribution funetion of the student ¢t

distriburtion with T degrees of freedom and I denotes the gamma function.

5.1) Theorem. MA a(ﬁ!X,y) - (ﬁl(ﬁ—b)'x'x(ﬁ—b) < 7252} , Wwhere

§ = JT/{T-K~-1) v 1s the unique solution of the equation

or|TEL 9 —(T=1)/2
- 2 fa
§ = ST|€F () + 1+

a-vrf)m Ut

The classical confidence region for § of confidence level 100a
would be (B](-b)'X'X(B-b) < 6s>(14K)] , vhere F°'X () = a and P
- T-K-1 T-K-1
i1s the cumulative distribution function of the Snedecor F distribution
with K+l and T-K-1 degrees of freedom. Clearly, for any § > 0 there
exists an a such that Fﬁt;_l(E) = a , Thus, HA a(ﬂ]x,y) is a eclassical

confidence region for some confidence level,
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Proof of Theorem 5.]. Recall that o, a- {x|x is the indefinite integral
r

over (B8,0) of a measurable functionm, £(8,0), such that a-(K+2) < £(8,0)

< (Lrayo™(K4D)

, for all (B8,a)) . If x € Hl Q" let fr(ﬂ.,a) be the
density of . If x e HA a? then the correspoending posterior probabil-
ity distribution of B has a density proportional to the integrable func-
. =T 2 2 e

tion p_(f) = Ofua exp{-(1/2¢7) [(T-K-1)s" + (8-b)‘'X X(ﬂ-b)]lfx(ﬁ,a)dd .
Clearly, if x and =x' in HA a 2%® such that fr(ﬁ,a) < f«'(ﬁ’o) ., for
all B and ¢ , then p.(B) £ P, (B) , for all A . Therefore, the set
of posterior probability distributions for £ corresponding to the set of

priors HA a is PA a(ﬁ) - {v(Rg+l)-1u[u is the indefinite integral of

p(B), where p,(8) < p(B) < (1+a)p,(B), for all B) . It may be calculated
that p,(8) 1is proportional to [T—K-1 + [(f-b)’'X'X(8-b)]/s2) (T++1)/2 2
I now introduce some new notation. If gq : RK+1 + [0,=) 1is inte-

grable, let I_ - (g ... _4J”Q(ﬁo, s BBy L. dﬁK)'l
I _TBRGB,, - B)dBy ... dBy, ...,
I PO o Y7 BBy .. a8)[Q : K 4 [0,0) 1s measurable
and q(By, ---0 Bp) S QBy, -... By = (4a)alBy, ..., By). for all
(Bys +--» B)) . Thus, M, L(BIX.y) = I,
It is not hard to verify that Iq is convex, for any q . An obvious

weak compactness argument implies that Iq is compact.3

Now consider a change of variables p=c+C8, where C is a non-

singular (K+1) x (K+1) matrix. Then, the density p(p) corresponding to

—

2See Zellner (1971), p. 67.

3By the weak topology, I mean the weak topology defined from the dual-

ity between the vector space of bounded continuous functions on RK+1 and

the vector space of signed measures on RVTT |



the density q(B8) 1is p(p) = (det C)mlq(C—l(p-c)) . Clearly,

5.2 I =¢+CI c+Czlze I}
(5.2) P g™t | q

is the set of means of p..
I now show that if the density q is of the form q(8) = £(8-8) ,

for some function f , then
(5.3) I, = (Bla-g < +%) , for some + >0 .

In order to prove that (5.3) is true, let C be any ({(K+l) x (K+1)
orthogonal matrix and let p =G . If p is the density of p corres-
ponding to q , then p(p) = (det C) 1q(CTLp) = £(CT4p+C Lp) = £(pep)
= q(p) , so that by (5.2) Iq - Ip - CIq . Since C 1is an arbitrary
orthogonal matrix and Iq is convex and compact, it follows that Iq is a
closed ball about the origin of RK+l . This completes the proof of (5.3).

Since the matrix B = s-ZX'X is symmetric and positive definite, there
is an orthogonal matrix ¢ such that C'BC = D , where D 1is diagonal.

Let Dl/2

be the unique diagonal matrix such that D]'/le/2 = D . Finally,
let p = Dl/zc'(ﬁﬁb) . The density Pk(ﬂ) is of the form
px(ﬁ) = £((f-b)'B(p~b)) . Therefore, the density, q , of p correspond-
ing to P, is proportional to £(psp) . By (5.3), Iq - {plp-p < 12} .
for some <y > 0 . It follows that IPA = (8| (8-b)'B(p-b) < 12}

In order to evaluate v , I use a result of DeRobertis and Bartigan
(1981) to evaluate v = sup(polp € Iq] . Clearly,
o - sup{(_”er(po)dpo)_l_wjmpoQ(po)dpo]Q : R » R is measurable and

95(pg) S Qpy) £ (1+a)qy(py), for all Py} where
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qo(po) - [~ ... f q(po, Caey pK)dpl, ey de . By Theorem 4.1 of
DeRobertis and Hartigan (1981), v 4is the unique solution of the equation

@

(5.6)  (Wa) [ oy = MTagledeg + [ (oy - M aglegddeg = O,

-—i)

where x+ = max{0, x) and x = min(0,x)

Using the definition of p , one sees that q(po, . PK) is propor-
tional to [T-K-1 + pg + ... + pi]-(T+K+l)/2 . Integrating with respect to
Pyr ++vr Pg » oOmE obtains that qo(po) is proportional to
[T + Tpg/(T—K—l)]'_(T'H')/2 , which is proportional to the density of the

Student t distribution with T degrees of freedom for the wvariable

JT/(T-K=1) p. . The formula for v in Theorem 5.1 is obtained by substi-
0 Y

tuting this Student t density for qo(po) in equation (5.4). Q.E.D.

One can use the Knightian confidence regions to formulate tests of
linear hypotheses on the regression coefficients of the normal linear re-
gression model. These tests are of the some form as the classical tests.

Consider the general linear hypothesis S &€V + 8, where V is a

linear subspace of RK+1 . The Knightian test of the hypothesis S eV + 8
s to accept if Oe€x (M, (A[X,y) - F) , where = _ : B L v is the
, v

orthogonal projection of RK+1 onto the orthogonal complement, Ve, of V
in RK+1 . For instance, the Knightian test of the hypothesis

By = -v. = Bg = 0 1is to accept if 0 € xz(Mk'a(MX.y)) , where

T . K‘l‘l K-H . > s

2 + K + R is the orthogonal projection which carries (ﬂo, cen, ﬁK)
to (ﬁH+1' ceey ﬁK) .  The next proposition makes it possible to compare

this test with the classical one. In the proposition, X, denotes the

matrix consisting of the first H+l columns of X and Xz denotes the
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last K=H columns. Also, ﬂ(l) - (ﬁo, vees ﬂH)‘ . ﬂ(2) - (ﬂH+l' iy Bk)

, b)) , where b = (X'X)_lX'y .

and b - (bH+l’ . X

(2)

Proposition 5.5. RZ(HA,a(MX,y)) - {ﬁ(z)](ﬁ(z) - b(z))'D(B(z) - b(z))

< 1252] , Wwhere D = Xﬁ(I - Xl(XiXI)_lXi)XZ and where v is as in Theorem

5.1.

Proof. Clearly, rz(ﬁk,a(ﬁlx,y)) - Ifor some ﬂ(l)’

' 1y 2 2
(ﬂzl)' 322) (2))x X 5(2) N b(z) < s} . Using the symmetry of X'X ,

B
it is not hard to see that (B{qy, Alyy ~ bEZ))X'x[ﬁ (E)b ]
(2} (2)

[ _ -1 - '
+ 311312(ﬁ(2) (2))) , Wwhere Bij - Xixj , for i, j =1, 2 . Since

< s . _ 2.2
Bll is positive deflnl%e, (ﬂ(z) —‘b(z)) D(ﬁ(z) b(2)) <Ts wvhenever

B
L) 22
(Biqys Brgy = Bygy)'X'X - <7y'st . If
W P TP 22 b(z%
2
Bay = 2@ PPay " Bp)) ST . chem
8
(1) 22
(B,q42 B - y'X'X < 7°s”, where
4 (2> @7 gy by,
Py = -5 B1p(Beay ~ Deay) - Q.E.D.

From this proposition, one see that the Knightian test of the hypothe-

sis 3(2) - 5(2) is to accept the hypothesis if (b(z) - 3(2))'D(b(2)

- 3(2)) < 1252 . The classical test of this test is to accept the hypothe-
- - 2 —H
— ’ - < -
sis if (b(Z) ﬂ(2)) D(b(z) ﬁ(2)) §s” , where F 1(6/(1( H)) l—a

and 100a is the significance level of the test and FK again denotes

T-K-1
the cumulative distribution function of the F distribution. Thus, the

Knightian and classical tests differ only in the definitions of the numbers

72 and § .
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The same relationship exists between classical and Knightian tests in

the special case of a point hypothesis about one component of B8 . Let 1

be the k™ diagonal entry of (X'X)"F . If H = R-1 , then D = s!

K
From this fact and proposition 5.5, it follows that the Knightian test of

the hypothesis ﬁk - Ek . fo; some k , 1is to accept the hypothesis if

(bk - Ek)z < 72525k . The classical test is to accept the hypothesis if

(bk - Ek)z < 62525k , where FT_K_l(S) -l , FT—Krl being the cumula-

tive distribution function of the Student t distribution with T-K-1

degrees of freedom.
It follows easily from proposition 5.5 that the equivalence of classic-

al and Knightian tests applies to tests of linear hypotheses of the form

€V, where V is a linear subspace of RK+1 . The classical test may

be described as follows. Let e be the vector of residuals of the Tegres-

sion of y onto the columns of X and let ey be the vector of residuals

of the regression of y onto the columns of L where the rows of X,
are the orthogonal projections of the rows of X onto V . The c¢lassical

test is to accept that B eV if (ev-ev — ere)(T-K-1) < 6(eve)(K-H)

where H+1 1is the dimension of V and F?:EQI(S) = l-o . By theorem 5.1,

the Knightian test is to accept that S eV if Oenx . B

v T
B = (8 & R (p-b) k' R(p-b) < 4%8%) .

where

Eroposition 5.6. For any a such that 0 <a <1, there isa ¢ >0

such that 0 & x CB if and only if [e,ve._ — ese)(T-K-1)]/[(e-e) (¥~H)}]
v c v v

< § ~H -
$6 where Fil () =l .
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Proof. By making an orthogonal change of basis of RK+1 » One may assume

K+1I

that V= (8 &R pH+l -, = ﬁK = () . Under this hypothesis, it is not

hard to see that

{eyrey = &) (TK1D)  (Brp) = By)) DBy = by))
(e«e} (X-H) sz(K—H)
where the notation is as in propositien 5.5. By that proposition, there is

¢ >0 such that

Aoy =29y DCBpy = byy) <s

SZ(K—H)

if and only if 0 e szc . Q.E.D.

The equivalence between classical and Knightian tests or confidence
regions offers one means of reconciling econometric practice with the mul-
tiplicity of subjective distributions assumed in Knightian decision theory.
The classical confidence region may be interpreted as indicating the size of
the set of posterior distributions which should be attached to regression
parameters. Significance levels are measures of the level of uncertainty
aversion associated with the tests.

The equivalence between classical and Knightian methods alseo suggests
that perhaps practicing econometricians act unconsciously as Knightian
decision makers. In support of this suggestion, one can argue that the
attitude commonly adopted toward hypothesis testing seems Knightian in
spirit. This attitude seems to be that it is reasonable to believe that a
hypothesis is true, once it is found acceptable according to a good statis-
tical test. The Knightian theory states a sense in which such belief is

reasonable,
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The suggestion that practicing econometricians are unconsciously
Knightian makes it natural to ask what level of uncertainty aversion corres-
pond to the typical confidence level of 95% in the case of linear regres-
sion. According to theorem 5.1, the classical and Knightian confidence
regions are of the same form. Using the equation of theorem 5.1. one can
determine what level of uncertainty aversiom, a , would give the classical

region of confidence level 95%. The following table gives values of a so

determined at specified levels of K and T-K-1 .

K
1 2 3
T-K-1
10 1,355 6,161 20,406
20 1,206 4,915 7,835

These values are enormous. Their largeness is the inverse of the robustness
of posterior means to priors observed by DeRobertis and Hartigan (1981).

In order to grasp the meaning of these numbers, recall that a is de-
fined as (0.5 + €)(0.5) - €)= 1, where the interval [0.5 - £, 0.5 + ¢]
1s the set of subjective probabilities attached to an event about whose
likelihoods of occurrence and non-occurrence one is equally and totally
ignorant. If a = 1,000 , them & = 0.499002 , so that at the levels of
a in the table, mearly all probabilities between zero and one are applied
to the event.

The large levels of uncertainty aversion implied by the 95% confidence

level is evidence that uncertainty aversion may be an important aspect of

Tealicy,
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6. The Maxjimum Likelihood Point of View

In interpreting confidence regions, 1 have assumed that a researcher’g;
ultimate objective is to maximize some payeff function which is linear in
future values of Ve - That is, researchers were viewed as providing infor.
mation potentially useful for practical applications. But researchers Seem:
to be preoccupied with learning the truth as well as with possible applica-~
tions. Talk of truth suggests Jeffreys’' (1961) epistemological derivation
of Bayesian statistical methods. However, talk of truth also suggests a
decision problem having to do with the allocation of scientific resources.
Since such resources are scarce, it makes sense to allocate them to the ver-
ification of those hypotheses which seem most likely. Since the subject of
economics "wins" only if a hypothesis is verified, it makes sense to bet on
the most likely candidate hypotheses. At least at a preliminary‘stage of
research, oﬁe should sort out the most promising hypotheses whose relative
explanatory power would be compared in later work. This search for promi-
nence I call the maximum likelihood point of view, where by likelihood I
mean posterior probability.. This point of view leads to another Knightian
interpretation of confidence regions and also provides some Jjustification
for the practice of choosing the regression with the highest R2

Suppose that a long list of K Tregressors is under consideration and
that it is believed that an acceptable model has no more than n of them.
Also, suppose that a priori ome is completely ignorant of the regression
coefficients. The problem is to choose the most likely set or sets of re-
gressors.

Let H be the set of subsets of (1, ..., K) of size n . Each H

in H corresponds to the hypothesis that the set of regressors is those
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indexed by the elements of H . Let XH be the T x n data matrix of the

regressors in H and assume that XH is of rank n, for all H . ¥y

denotes the T +vector of observations of the dependent variable and Sﬁ
denotes the sum of squared error of the regression of y on XH , decided

by T-n . Choosing the regression with the highest R2 corresponds to

choosing the one with lowest Sﬁ .

defined over the parameters (ﬂH, aH) of the regression y of

Let AH be the prior with density
a—(n+1)

XH . The constant a, must be chosen so that the prior density of y does

not depend on the choice of units of the regressors. This restriction

implies that ay - AH|X}‘{XH|1/2 , where Ay is a constant. If all hypothe-

ses are treated symmetrically, the constants AH should be independent of

H and so may be set equal to one. Let X be the global prior generated by

the AH and defined on the parameters (ﬂH, UH) , for all H . Given

AH , the distribution of y is ASET , where A 1is a constant indepen-

dent of H . Thus, given X , the posterior probability of H 1is propor-

tional to ng , so that the most likely hypothesis is the one with the

lowest sﬁ and highest R2 . If one is Knightian with priors II

then hypothesis H dominates H’ if and only if Sy

sg < (a+1)-2/Ts§, . This criterion can be viewed as a Knightian interpre-
4

A,a’

> (a+l)s;? or

tation of the usual F-tests used to compare H and H'
The choice of a model, or a small set of models, with the highest R2
could be misleading for practical decision making. Since different models

could have very different practical implications, good decision making

Right require consideration of all models.

————,

4

This approach to model selection cannot be carried very far. It gives
"0 guidance as to the choice of n . It is not clear how the constants AH
should depend on n .
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Empirical economists seem to prefer classical to Bayesian statistical’
methods, even though economic theori#ts tend to assume that all rational
people are Bayesian. One can speculate that the preference for classical
methods stems from their tendency to indicate which hypotheses are promi-
nent. An honest use of Bayesian methods would probably atrach small
positive prior probabilities to many hypotheses and make the posterior prob-
abilities of each look discouraging low. From the maximum likelihood point
of view, one should not necessarily be disheartened by low posterior proba-
bilities.

Turning now to the interpretation of confidence regions, imagine that a

researcher wishes to estimate a vector of parameters, f# . In order to
indicate the most prominent value of 8, a Bayesian would probably report
the mode of the posterior distribution of 8 . The mode could be viewed as

the best working hypothesis as to the value of B . A Knightian would have
a set of modes to report, one for each of his priors. These choices form a
confidence region.

Consider now the normal linear regression model of the previous sec-
tion. Using the standardized set of priors defined there, one obtains that
the set of modes is a classical confidence region. The set of posterior
densities on the regression coefficients, B, 1is the set of densities
p(8) , which, before normalization, satisfy P, (B 2 p(B) £ (1+a)pl(ﬂ) ,

for all p , where pA(ﬂ) is proportional to

{(T—K—1)52 . (ﬁ—b)‘X'x(ﬂ—b)]_(T+K+1)/2 . A value B can be a mode for some
p if and only if [(T-R-1)s? + (8-b)'X'X(-b)] (T+K*+1)/2

> (Lra) [(T-k-1)s2] T2 10 follows that the set of modes is

(8] (8-b) x'x(pb) < [(1+a)2 T**D) 117 k-1)s2) | which is of the same

form as- a classical confidence region.
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One can again ask which levels of uncertainty aversion, a , give a
region identical with the classical 95% confidence region. The table below
gives such values. They are very large, just as they were in the corres-

ponding table of Section 5.

K
1 2 3
T-K-1
10 66 396 2,563
20 35 142 572

7. Uncertainty about the Likelihood Function

In the previous two sections, it was assumed that the random variables
¥y, were normally distributed. As this seems a somewhat dubious assumption
in the context of economic data, it is interesting to note that the results
of the previous two sections may be interpreted as expressing uncertainty
about the likelihood function as well as about the value of the parameters.

In order to make this interpretation, let Q be the state space con-
sisting of all vectors (f,s,y) = (ﬂo, cees ﬂK' Ty Fyr coo yT) and assume
glven the matrix, X , of observations of independent variables. let A

be the measure on O defined from the diffuse prior A on (4,0)
a-(K+2)

, with
density , and assuming that for each (8,s) , the Y. are
independently and normally distributed with means Xtﬂ and variance 02
That is, A has density, pA(ﬁ,a.y) , Pproportiomal to

,‘(T"'K*Z) 1 T

2
exp|- Z{y_—~-X273
2¢% t=1 ¢ F
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Taking A as a central measure, one can form the set of measures expressing

equal ignorance relative to A and uncertainty aversion of degree a .

This set is HA a = (v]u is a measure on 1 which is the indefinite integral
)

of a measurable function £ : Q + (0,o) such that for almost every

(B,0,y) €11, PA(B.0.7) & £(B,0,y) s (1+a)pA(ﬂ.d.y)] . Clearly, HA,a ex-
presses uncertainty about the likelihood function, though the scope of the
uncertainty is restricted to a neighborhood of the normal likelihood. The
distributions in HA,a are improper, but the distributions conditional on
¥ are proper and are exactly the posterior distributions obtained in See-
tion 5 from nA,a using the normal likelihood function. Thus, MA,a(ﬂ[X’YJ
is the set of conditional means of # obtained from the conditienal distri-
butions drawn from HA,a . The results of the previous two sections could

have been derived using I rather than II .
A,a A,a

>

8. Discoverability

Until now, I have tried to show that the confidence regions and signif-
icance levels of classical statistics may be interpreted as manifestations
and measures of Knightian uncertainty. However, these arguments do not
explain how Knightian uncertainty could be more than a temporary phenomenon.
Numerous theorems demonstrate that the distribution of a stochastic process
is learned asymptotically as the number of observations goes to iInfinite.
Since economic life is always generating new observations, will we not even-
tually know nearly perfectly all random processes governing economic life?
One obvious answer is that the probability laws governing economic life are
always changing. But then, why are not those changes themselves governed by

a stochastic law one could eventually discern?
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The answer to these questions seems to be that not every stochastic law
can be learned from the data it generates, Of course, any sequence is triv-
ially generated by the stochastic law which attaches probability ome to the
given sequence, and this law is in some sense learned as one observes the
sequence. But learning in this sense would not help one predict future
values of the sequence., What one has in mind when speaking of learning a
stochastic law i{s learning regularities useful for prediction. Knightian
uncertainty would tend to disappear as data accumulated only if such regu-
larities existed and could be inferred from the data. These properties of a
law I refer to as discoverability.

Lack of discoverability leaves one at a loss as to how to proceed.
Without it, how is one to determine what subjective distributions te attach
to future realizations and how is one to test for discoverability? But
whatever the inconvenience, I believe that non-discoverability should be
admitted as a possibility, There seems to be no scund reason for believing
that economic time series necessarily have discoverable laws, the popularity
of time series methods notwithstanding.

The concept of discoverability being wvague, I here attempt a rigorous
definition. Using the definition, I prove that discoverable laws indeed can
be discovered and that there exist non-discoverable ones. The definition
zay be incomplete in that ome can think of laws which are discoverable in
the loose sense and yet are not included in the definition. However, I
believe the definition includes all laws likely to occur in economics.

The definition of discoverability is broken down into two definitioms,
vhich 1 term strong and weak. The strong one includes stationary processes

and those generated by difference equations of finite order and with essen-
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tially bounded solutions. Their laws can be discovered from the frequency
of occurrence of events. The strong definition includes laws which can he
discovered from frequencies only after a transformation of the data, such as
first differencing.

Discoverability is defined as applying to the law for a given sequence
of numbers. The question is whether a law of evolution can be derived for
the sequence. The numbers of the sequence are assumed to be integers or
finite decimal expansions of numbers with some bound on the number of sig-
nificant digits to the right of the decimal point.5 I will mention later
how the definition might be extended to sequences of not necessarily inte-
gral numbers.

let x = (xl, Xy, ...) denote a sequence of integers. One might wish
to allow each x to have many components, but such a sequence can be rep-
resented as a sequence of numbers by writing all the components in succes-

sion,

Strong Discoverability

Strong discoverability applies to essentially bounded sequences. A se-

quence x 1is defined to be essentially bounded if

lin Lim inf N (sl sns ¥, |xg| sB)| =1,
B N
where |+| denotes cardinality as well as absolute wvalue.
The set of integers is denoted Z . For positive integers N and M

and for c € ZM and ye Z, let

5In fact, decimal expansions should be expressad as pairs of integers,
one before the decimal point and one after.
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M ](nIM <n=<N, (xn—M’ N xn—l) -c, X = y}l
Px,N(ylc) - |(n|]M < n = N, (X v oo x ) - e}
if l{nlM <n<=<N, (xn_M, ceey xn—l) - cll > 0 . Otherwise, let

M
P, y¥le) = 0.

Definition. A sequence x has a strongly discoverable law if it is essen-
tially bounded and for sufficiently large M , lim pz N(ylc) exists, for
Now

all y€2Z and c e ZH .

Example. I now give an example of a sequence with a law which is, in a
sense, mnowhere discoverable. I define a sequence x of O's and 1's such
that for all M and all c e {0,1}M , lim sup pi N(llc) =1 and

N ’

linm inf p: g(tley =0 .

N

Let Pys Pps - be any sequence of numbers such that 0 < P, <1

for all n, and lim sup p_ =1 and lim inf p_ =0 . Define positive
N-+o n N-+ n

integers Nl' N2’ vy Nk' ... and the Xys Xpy ooeny xNk by induction on

k as follows. Let Xps --er Xy be any finite sequence of 0’'s and 1's

1
M
such that for x = (xl, eeay le) . |px'N1(1|c) - pll <1l/2 , for all

¢ € {0,1) . This is trivially possible. Having defined Nk and

xl. ceay xNk + let xNk+1, ceey Xy be any finite sequence of 0’s and

k+1
K+l ~k+1
1's such that for x = (x,, ..., Y, (Lle) - p 4] <2 ,
1 N1 N k1

for all ¢ e {0,1}k+1 . If Xy 417 SN 420 - is chosen according to a
k k
binom{al process with probabilicy Prsl that x - 1, then as Nk+1 goes

to infinity, the probability that the sequence Rys oees Xy satisfies

k+1

the above conditions goes to one. Therefore, there exists an Nk+1 and a

Seque i
Quence xNk+l, cee xNk+1 satisfying the conditions. This completes the
definition of x .
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T now show that x has the desired property. Clearly, if k <K and

c € (0.1]k , then |p: N (l,¢) - pKl < ZFK , since
K

Ipi N (l,c) - pK‘ < 2_K , for all c € {O,l}K . Therefore, for any k and
K
any c e (0,1}, 1liminfpS (l,e) < Lim inf o5 (1,¢) = lim inf p, = 0
x,n - x,N K

x -0 x Koo K Koo

and 1lim sup p_ _(l,¢) > lim sup p (L,¢) = lim sup p, = 1 . This com-
X,n - x,N K

o Koo K Koo

pletes the discussion of the example.

I now turn to the sense in which a strongly discoverable law may be
discovered. Clearly, no algorithm can determine in finitely many steps
whether a sequence is essentially bounded or has a discoverable law, for
these are properties of the tail of the sequence. Also, even if it is knowa
that a sequence has a strongly discoverable law, no algorithm can be con-
structed which will in all cases eventually stop and produce a distributiom
known to approximate the limit distribution of the sequence to within some
preset margin of error. However, one can easily define an algorithm which
continues indefinitely and from any sequence with a strongly discoverable
law produces from some point or an approximation of the limit distribution
which is accurate to within some preset margin of error.

To be more precise, a strong approximation of the law of
X = (xl, Xy» ...) 1is defined to be (M,B,p) , where M and B are posi-
tive integers and p : I, X Ig - [(0,1] , Ig being (-B, -B+l, ..., B}

M

The value of p at (y,c) € Ip X Iy is written as p(y|c) . Suppose thik

x is essentially bounded and has a strongly discoverable law and let

B
positive integer m , the strong approximation (M,B,p) is said to apprasl

pu(y|c) - 1lim pH (yle) , for (y,c) € Ip X Y. For £e>0, §>0 ol
x Moo x,N B

imate the law of X up to (£,§,m) if M>m,

lim sup N-llln]|xn| >Bl| <& and |p(y|e) - p:(ylc)l <§ , forall

N



29

(y,c) € IB X Ig - An approximation algerithm is a calculable function which

for each finite sequence of integers (xl, . xN) produces a strong
approximation (M,B,pl(xl, ooy xN))

8.1) TIheorem. For any ¢>0, § >0 and positive integer m , there
exists an approximating algorithm, (M.B,p){+*) , such that if

X = (xl, Xy ...) 1is essentially bounded and has a strongly discoverable
law, then for sufficiently large N , (H,B,p)(xl, ey xN) approximates

the law of X wup to (¢,§,m) and the B component of

(M,B,p)(xl, vy xN) does not depend on N .

Proof. Suppose the algorithm is presented with (xl, . xN) . For
n=1, ..., N and B=1, ..., N: the algorithm computes

- n-1|(k|1 <k =<n and ka] > B} . It then computes, for each

Be {1, ..., N} , KB,N . which is the smallest integer K such that
eB,n <ege, for n=K, K+1, ..., N, 1if such an integer exists. Other-

wise, KB N = N+l . Next, the algorithm computes which is the

Bx,N !
smallest B € {1, ..., N} such that KB N <B, 1if such a B exists.

Otherwise, Bx N N+1 . Finally, the algorithm computes p: N(ylc) , for

)
px,N N

Now suppose that =x is essentially bounded and has a strongly discov-

m
(y,c) e IB x I, , and reports (H,B,p)(xl, e, xN) = (m, Bx,N'

erable law. Clearly, there is B such that B, y=%8,

clently larpge. Since I, X Io is a finite set and lim pm (yied
B B Neveo x,N

for N suffi-

m .
- px(ylc) » for all (y.,c) € IB X I: , (m, Bx,N' p:,N) approximates the

distribution of x wup to (e,§,m) , for N sufficiently large. Q.E.D.
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Weak Discoverahility

If a sequence diverges to infinity, one cannot expect to derive its law
from frequencies alone. Events containing only finitely many points may all
occur only finitely often. One might try to derive the law from the
frequencies of all subsets of ZM , for some large M . But this approach
is not feasible since there are a continuum of subsets of ZM . Another
strategy is to look at the computable subsets of ZM , there being only
countably many of them. I use a related but less general approach which

seems to be closer to statistical practice. The idea is that the law of the

sequence X = (xl, Xy, ...) may be discovered if there is a computable
sequence of functions, £(N, ERIRREE xN) , for N =1, 2, ... , such that
the sequence of integers dN = f(N, xl, s xN) has a strongly discover-

able law, The law of x may be recovered from knowledge of f and of the
law d = (dl. d2, ...) , provided £(N, xl, ey xN) is a one-to-one func-
tion of Xy -

The computable functions are, according to Church’s thesis, those whicn
arelgeneral recursive. (See Monk (1976), Chapter 3 and p. 46.) A diffi-
culty arises immediately because recursive functions are defined to be fung=
tions of a fixed number of variables, not of any finite number of variable®

Having found no definition for the latter case, 1 attempt one here.

An integer-valued function £(N, xl. ey xN) , where the xN are
integers and N =1, 2, ... , 1is said to be recursive if there exist posk

tive integers M and K and general recursive functioms,
gm(N, Yyr oo Iy #x) , for m=1, ..., M, and if there exist initial
values Y10¢ -+ Ym0 such that the Yun for m=1, ..., M and

N=1, 2, ... are generated by the inductive formula
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Yoy ~ gm(N. Y1 N1’ *tr YMoN-1’ xN) , for all M and N . Finally,
£y, LSTIRERY xN) - gM(N. Y1 N1’ *c ot Ty N-1' xN) . Since the functions

g, are general recursive, it is understood that the are integers.

T
Observe that the above definition of recursiveness is closed under
composition. That is, if £(N, Xy e xN) and g(N, dl’ ces dN) are

recursive, then the function h(N, Xy eeny xN) - g(N, £(1, xl), ey

£(N, §1. eees xN)) is recursive.
Definition. A sequence x = (xl, xz, ...} 1is said to have a weakly discov-
erable law if there is a recursive function £(N, Xiv o oees xN) such that

1) dN = f(N, Ry wees xN) , N=1,2, ... 1is an essentially bounded

sequence and has a strongly discoverable law and if

2) for all N and Ryy ceen Xg g oo the function
h{x) = £(N, Xys o oees Xy g, x) 1is injeetive,

Clearly, a sequence with a strongly discoverable law has a weakly dis-
coverable law. Because recursiveness is closed under composition, one does
not enlarge the set of discoverable laws if one assumes that the sequence

dN defined above is weakly rather than strongly discoverable.

Remark. The decimal expansions of e and x have weakly discoverable

laws.

8.2) Theorem. There is a sequence of integers with no weakly discoverable

law,
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Proof. Llet F be the set of recursive functions £(N, L RRRREY xN) , de-
fined for any integers .xl, ey Ry and for N=1, 2, ... . F 1is a
countable set, since the set of general recursive functions is countable,
when recursivity is defined in the usual sense. (See Monk (1976), p. 50C.)
Let f(l), f(2), ... be an enumeration of all the members of F .

Let j(t) be the largest integer j such that t > j(j+1)/2 and let
k() =t - j(e)(j(e)+1)/2 + 1 . Thus, k(1) =1, k(2) =2, k(3) =1,
k(4) =2, k(5) =3, k(6) =1, and so on. The sequence

X - (xl, X .} 1is defined by induction as follows. Let x, =1 . Sup-

1

LI have been defined, where t 1is a non-negative

21

pose that xl, S

2

integer. For n =1, ..., 2t , let dn - f(k(t))(n, Xpo e, xn) . Since

the functions hn(x) - f(k(t))(n, Xps o eeen X9 ®} 1s injective and maps

integers to integers, its range is unbounded. Let x ¢ be such that

. 2741

If(k(t))(2t+l, Kyv o eves X }I > t . Having defined x £ e XL .

N 2741 (k(t)) .t 27+1 274

for mn<2", let x be such that |[f (274l x;, ...,
2740+l c e+l

X . )[ > t . This defines Xq for N=2"41, ..., 2 .

2 +n+l

Suppose that Xyr Xgh ene has a weakly discoverable law. Then, for

some f € F , dN = f(N, Ryy eeey XN) is an essentially bounded sequence.

But f = f(i) , for some 1 , and by construction for any B > 0

lim sup N *[(n : 1 snsNand [P, %y, «oes x| > B)| > 1/2 . Hence,
N-+ao

the sequence dl’ d2, ... 1s not essentially bounded. Q.E.D.

I now consider how a weakly discoverable law may be discovered, A weak

approximation of the }law of x = (xl, Xy, ...) consists of (f,M,B,p) ,
where £(N, L LIRREY xN) is recursive in the sense defined abeve and
(M,B,p) 1is a strong approximation of the sequence dN = £(N, Rpv voes xN) s

for N =1, 2, ... . An approximating algorithm, (£,M,B,p) , produces for
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each finite sequence of iIntegers (xl, ceey xN) a weak approximation,

(£.M,8,p) of the law of x .

(xlr---)xN) ’

8§.3) ITheorem. For £ >0, 6 >0 and any positive integer m , there

exists an approximating algorithm (£,M,B,p) such that if
X - (xl, X5, ...) 1s any sequence with a weakly discoverable law, then for

sufficiently large N

1) the M component of (f,M,B,p)
(xll'-"xn)

does not depend on N and

2 (£,4,8,p)
(g0 0xy)
3) the B and p components of (f.M,B,p)(x ) satisfy
1:-"!
N-l|(n :1=<n=N and Idnl >B)| <« , |p2 N(y|c) - plyle)| < § , for any
(y,c) € IB x I;, where d = (dl' d2, ...) 1is the sequence defined by
dn = f(n, Xyv ey xn)

Remark. The algorithm does mot necessarily find the true £ associated

with x .

Proof of Theorem. Let F be as in the previous proof and let
G = {(f,B)If €EFand B=1, 2, ...} . G 1is countable. Let
g(l), 5(2), ... be an enumeration of G . Write g(j) as (f(j), B(i)) .
When the algorithm is presented with (xl, . xN) , 1t computes

(1 (i (i) -1 . (j)
4~ = £19(n, %, ..., %) and e~ -n [k : 12k <n and Idk [
>B(j))] , for j, n=1, ..., N. The algorithm also computes

m iy
pd(J) n(y]c) for each (y,c) € IB(j) x IB(j) , where

D L@, )y

.y

For each j such that 1 < j <N, let k(j,N) be the largest inte-
Ber k < N such that eij) <g¢, for n=%k, ..., N, and such thac for

all (y,e) € IB(j) x Il;(j) ,
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max pm(.) (yle) - max pm(.) (yle) <6,
ken<N d'47 n ksnsN d'J7n

if such an integer exists, Otherwise, let k(j,N) = N . Let j(N) be the;

smallest integer j such that k(j,N) = min k(i,N) . The algorithm

(G (9)) 1<i=<N o
reports (f,M,B,p)(x L - (g4 ,» m, B(j(®)), p) , where p = Py,

' %)
. (3 ;
with d =4 and k = k(j(N),N)
It is easy to verify that the algorithm has the required properties.

Q.E.D.

I here make a few comments as to how one might extend the previous def-
initions and results to the case in which the x ~are continuous variables.
In defining strong discoverability, the probabilities pglN(yIc) would have
to be defined for small intervals y and cubes ¢ . In defining algorithms
for discovering laws, one must assume that the data, xn » are given as
decimal expansions with a fixed number of significant digits. One can learn
the law only up to the error introduced by the imprecision of the decimal
expansion. One can reduce the error by choosing the intervals y and cubes
¢ so that their boundaries avoid areas where the data tend to accumulate.

In defining weak discoverability, the function £ should be defined
only for finite decimal expansions of the data. The value of f should
also be some finite decimal expansion. In fact, f should be defined as a
sequence of functions, fl, f2’ ..., where fi gives the decimal expansion
of £ up to i significant digits. The function f could also depend on

continuous parameters 01, ey B which again can be expressed only as

K 1
finite decimal expansions. In order to be able to learn the law of x , f

must depend continuously on the X and Gk .

eki are the decimal expansions of X and 0k » respectively, up to i

More precisely, if X4 and
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significant digits, then £(N, Xy ere xN, 31, vy EK)
- 1i§ fi(ﬂ. Rygr o vovr Xy 811, e aKi) should exist. Under these con-
ditions, the ¢ could be estimated from the data.

k
In what follows, I will refer to distributions having no discoverable

law. By such a distribution, I mean one whose realizations almost surely

have no discoverable law.

9. Tests for Discoverability

One can test the hypothesis that data have no discoverable law only
against hypotheses containing some specific structure. In order to carry
out such a test in a Bayesian or Knightian way, one needs to know what dis-
tribution to assign to the data under the hypothesis that it has no discov-
erable law. According to the results of the appendix, such a distribution
should be in the weak closure of either the convex set or convex cone gener-
ated by the set, HO , of probability distributions with no discoverable
law. Unfortunately, the weak closure of Ho is the set of all probability
distributions, since lack of discoverability is a property only of the tail
of a sequence. Thus, the appendix is no help at all.

One can argue loosely as follows. Lack of discoverability has to do
vith instability of structure. The gtructure could be long-run averages or
the parameters of a model. Hence, a distribution associated with non-
discoverability should be such that averages and parameter estimates are
“nstable., If any particular model shows structural instability according to
Some classical test, one may interpret the test as favoring non-
discoverability over the particular model being tested.

Imagine one has a sequence of discoverable structural models in mind,
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Hl' H2’ ... , to each of which a positive prior probability is attached,
One also attaches positive prior probability to non-discoverability, HO .
which amounts to giving positive prior weight to some subjective distribu-
tion over the data, this distribution being associated with Ho .6 Given
data, the posterior probability of each hypothesis may be calculated.
Failure of stability by any of the models Hl, HZ' ... might tend to faver
the posterior probability of the other models and should also favor HO .

If a great deal of data were available and all the models Hl, H2' ey Hﬁ .

for N large, showed structural instability, one imagines that K, would

0
be greatly favored.7 Eventually, one might learn that one should stop
looking for structure.

If one of the medels were a linear regression model, a test for struc-
tural stability would be a Chow test for the stability of the regression
coefficients or any test for heteroskedasticity of the error terms. Failure
to pass these tests should probably be thought of as favoring the possibil-
ity of no structure as weli as showing the need to search for another
structure.

One often hears or reads that economic time series are generated by
some vector autoregressive (VAR) process, but that the coefficients of the
process change over time. The instability of typical VAR coefficients gives

weight to the idea that there may be no useful structure behind the data.

To say that coefficients are moving arbitrarily is indistinguishable from

5Such assoclated distributions are explained at the end of the
appendix.

7It: needs to be proved that a subjective distribution on the data

exists which would asymptotically separate Ho from Hl, ey HN , 1if Hb

were true. Alsc, one should supply a proof of the connection between clas-
sical stability tests and a Bayesian test for Ho .



37

saying that there is no discoverable law. It must be possible to fit any
data with a VAR if the coefficients themselves afe allowed to fluctuate,
even if these fluctuations are fairly rare. Ome must question the predic-
tive value of such fluctuating models, Coefficient changes are often
justified by referring to some major economic event, but do not such events
occur frequently? I1f one allows coefficien variability, one has a discov-
erable structure only if the changes in coefficients themselves obey some
discoverable law, as in Kalman filter models. 3But for such models to have
passed a real test, one must have enough data to test the structural sta-
bility of the process governing the evolution of the coefficients.
Ultimately, one should have finitely many stable parameters. Until one
does, one cannot say that Knightian uncertainty has been eliminated.

If one concludes that a body of data does not have a discoverable law,
it does not follow that ome can say nothing about the distribution generat-
ing the data. One could assert that the distribution has a temporary
structure which changes slowly, but otherwise unpredictably. Or one could
estimate bounds on the distribution. The bounds on the probability of an
event would be estimates of the limits infimum and limits supremum of the
frequency of the event’s occurrence, these limits being possibly distinct.

Similarly, bounds on the mean of a sequence xl, Xyy ven would be estimates

N N
of 1lim inf Nul 3 % and lim sup N_l Z x_ . Such estimates might be
n n
Neweo =1 N-a n=1
R 1 N
min XK "2 x  and max K = Z x_ . The presence of temporary struc-
logh<ksN -1 " logN<K<N m=l

ture or the existence of bounds on a distribution do not preclude the

Presence of persistent Knightian uncertainty.
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10. The Kalman Filter

It is contrary to common sense to assume that the entire economic sys-
tem is without structure, there being obvious relationships between many
economic variables. But there seems to be no reason to assume that these
relationships have a permanent form. A good hypothesis might be that they
change slowly and that the changes themselves have no discoverable law. If
such were the case, there would always be a certain amount of Knightian
uncertainty assoclated with the relationships, no matter how long they had -
been cbserved.

This uncertainty can be expressed to some extent by means of the Kalman
filter model. This model generates a probability distribution over a
sequence of slowly evolving regression parameters. One can use this distri-
bution as the central distribution in the standardized set of distributions
defined in Section 3. This set of distributions expresses uncertainty
associated with the unpredictability of the parameters.

To be more specific, let Ye = xtﬁt + € t=1,2, ... , be a se-
quence of regression models, where each Xt is a K+1 wvector of exogenous
variables, ﬂt is a K+l wvector of parameters, and €95 Egr weo is a
sequence of independently and normally distributed variables with mean zero
and variance 02 . According to the Kalman filter model, the J_  are gov-
erned by a process ﬂt - ﬂt—l + Bt , for t=2,3, ..., where the ¢

t

are independently and normally distributed K+l vectors with mean zero and

variance-covariance matrix 026 . Also, the variables 51, 62, ... and
€1, €9, ... 8IS all mutually independent. If one assumes that ﬂl is
normally distributed wich mean f and variance-covariance matrix V , then

for each T > 1 , the distribution of ﬂT+l conditional on y;, ..., ¥
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and Xy eees X is normal with mean bT,T+1 and variance-covariance
matrix VT,T+1 ., Wwhere bT,T . bT,T+1 . VT,T and VT,T+1 are defined by
induction on T as follows, b01 -§, and V01 =V . Given bT—l,T and
Upy g for T21, then Vp .= &Xp+Vy 7 and

by = VTT(ngl,TbT_I’T +y &) . CGiven b and V., for T=1,

then bT,'I'+1 - bT'I' and vT,T+1 - VTT + % .

Let X be the probability distribution over (yl. ﬁl' Yor ﬁz, |
determined by the above model and assuming knowledge of Xl, X2'
Treat A as a central distribution expressing the idea that the ﬁt evolve
slowly. Then, nl,a is a set of distributions expressing Knightian uncer-

tainty about the distribution of (yl, ﬂl’ Yoo ﬂz, ...y , where HA,a is
defined as in Section 3. The corresponding set of conditional distributions

of ﬁT+l , glven knowledge of Yy < Yp oo 1s HA(T+1),a , where XA{T+1)
is the conditional distribution of ﬂT+l , given ¥yv cees Yo o according
to the distribution X . The set means of ﬁT+l , for all the distribu-
tions in HA(T+1),a , is the confidence region HA,a(ﬁT+1[yl’ veen Yoo X
- —-— ’ - 3 -

{ﬁl(ﬂ bT,T+1) VT,T+1(ﬂ bT,T+1) <7, wvhere v 1is the unique solu
tion of the equation [555]1 = £(v) + ¥yF{y) , £ being the density and F
the cumulative distribution function of the normal distribution with mean
zero and variance one.

As T goes to infinity, the size of Hl'a(ﬁr+l|y1, coer Ypo X)) will
not converge to zero, so that uncertainty is permanent. This permanence is
due to the fact that one assumes uncertainty about the probability distri-
bution of ﬂt+1 given ﬁt as well as about the prior distribution of ﬂl )

¢ and ¢ . The uncertainty about the evolution of ﬁt reflects the

hypothesis that the changes in f_ have no discoverable law. If one had



40

enough data, one could test this hypothesis and, if it were accepted, esti-

mate bounds on the distribution of 2 ﬁt

e+l ~

. . . . 2
Remark. One cannot use an invariant distribution for ﬁt , O and ¢ ,

for if one does so the posterior distribution of the ﬁt is not integrable.

11. Conclusion

A plausible picture of the economic world is as follows. Economic time
series are related to each other by structures, which may be changing
slowly. Confidence regions can express, in a systematic way, Knightian
uncertainty about the parameters of those structures. One could express
uncertainty about the structural model itself as intervals of posterior
probabilities, the probabilities being those attached to various alternative
models. But one canmnot express this uncertainty in a standardized way.
There is no reason to believe that the slow evolution of the structural
models itself obeys a discoverable law. Nor is there any reason to believe
that discoverable laws drive the common fluctuations in the time series. 1In
this view, there is ample room for Knightian uncertainty about economic

environments, even about one well-studied by econometricians.
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APPENDIX

Subjective Distributions and Hypotheses

Much of what has been presented in this paper involves subjective prior
distributions over distributional hypotheses. The use of such prior distri-
butions involves an ambiguity. In the framework of Knightian and Bayesian
decision theory, subjective distributions are parameters of a preference
ordering over bets. One can imagine making real bets only on observable
events. OJne cannot observe which of several possible objective distribu-
tiens is the correct ome. So what is the status of prior distributions?

This difficulty has been raised by Marshak. (See Marshak et al. {1975).)

The commonly accepted answer to his query seems to be that one forms pref-
erences for bets on hypotheses while pretending that the bets could be
carried out. (See Marshak, et al. (1975).) Since I find this answer un-
satisfactory, I propose another one here. I show that if an additional
behavioral assumption is made, then one can derive the prior distributions
over hypotheses directly from the subjective distributions over observable
data. The additionai assumptions is that one prefers lottery A to B {if
A has higher expected value than B under each of the distributions
believed possible.

Consider, first of all, the simple case in which the data are bounded.
Letting (? denote the set of all possible data, assume that Q is a com-
Pact metric space. Let the set of lotteries be C(Q) , the set of continu-

s functions on Q . Give C(0) the supremun norm, f«| . That is

|fH = max [f(w){ + The set of continuous linear functionals on C(B) is
wed



42

rca(fl) , which is the set of regular, countably additive set functions on
the Borel measurable subsets of 0 (see Dunford and Schwarz (1957), p.
262). The weak topology or rca(Ql) 1is the weakest such set that a sequence
v, in rca(Ql) converges to v if and only if lim fk(w)vn(dw)

- [x(@)v(dw) , for all x € C(O) . The weak topology is itself a metric
topology (see Parthasarathy (1967), p. 43). Let A(f}) = {v € rca(d)|v(Q)

= 1 and v(A) > 0, for all Borel measurable A} . A Knightian preference
ordering }- on C(Q) 1is one such that there is a non-emﬁty, compact and
convex subset, T , of A(R) such that for all x and y in C{Q) ,
x>y if and only if E(xy) >0, forall nel .

Suppose it is believed that the true distribution of the data lies in a
non-empty, compact subset, H , of A(fl1) . Since H is itself a compact
metric space, we may define C(H) and A(H) just as C(f) and A(Q) were
defined. Define the map F : A(H) - A(RQ) as follows. If x € G(1) and

a € A(H) , then

Fla)sx = Iﬁfnx(w)v(dm)a(du)

F 1is continuous with respect to the weak topologies on A(H) and A(Q) ,
for if e 1s a sequence in A(H) converging to a .and if x € C(Q)

then fhx(w)v(dw) depends continuocusly on » , so that

Un [ fox()v(aw)a () = [ [ox(w)v(dw)a(d)
ni o

Since F 1is continuous, o, - F'I(H) i1s compact. Since F is affine, Hh
is convex. The probabilities in ﬁH are subjective distributions over H ,
and 1f HH w ¢ , then HH defines a Knightian preference ordering over

CH) . 1If F(HH) = I , then one could say that each subjective distribu-



43

tion in T could be obtained from one over H . If v is a probability
distribution over 0 and x € C(Q) , let ny -fx(w)u(dw)
Representation Assumption. If va >0, forall v e H, then x %-0 .

A.1) Theorem. F(HH) - 1T .

Proof. It is sufficient to show that N is contained in the range of F .

Suppose that x € I is not in the range of F . Since F is continuous
and defined on a compact set, its range 1s compact. Since =« is mot in the
range of F, K = [txlt > 0} does not intersect the range of F . Apply

the separation theorem (Dunford and Schwarz (1957), p. 417), to K and

the range of F in the space reca(l) with the weak topology and with dual
space C(Q) (Dunford and Schwarz (1957), p. 421). One thus establishes
that there is =x € C(1) and a positive number r such that Eﬂx =0<«<r=
E#x . for all pu 1in the range of F . It follows that va >r>0, for
all v € H, so that x$ 0, by the representation assumption. There-
fore, Eﬂx > Q0 , by the definition of I . This contradiction proves the

theorem. Q.E.D.

Remark: It is not hard to see that the F(HH) is the weakly closed convex
hull of H .

I now turn to the case in which the data are unbounded. Let the set of
Possible data, 3, be a locally compact metric space. Let L{({l1) be the
set of continuous functions on § with compact support. That is,

L) ~ (x : @ + (—o,®)|x is continuous and {w|x(w) » 0} is contained in a
Compact subset of §1) . Give L(Q) the supremum norm. With this norm,

L@ is a normed vector space, though certainly not a Banach space. The
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set of continuous linear functionals on L{Q) 1is eca(Q) , the set of
countably additive set functions on the Borel o-ring of @ (Halmos (1950),
p. 247). I1f A 1is a bounded, Borel measurable subset of  , then

]p(A)I <o, for all p € ca(fl) . Each pg € ca{Ql) acts on L{Q) via
integration. Similarly, each =x € L{fl) acts as a linear functional on
ca() . The weak topology on ca{fl) 1is the weakest such that each

x € L(1) 1is continuous as a functional on ca(@l) . Let ca+(ﬂ) denote the
set of non-negative set functions in ca(@l)

Regarding L(0) as the set of lotteries, a preference ordering o on
L(Q) 1is Knightian if there 1s a weakly closed, convex cone, I C ca+(n)
such that x > y if and only if [(x(w) - y(u))p(dw) > 0 , for all
uel .

Even though subjective distributions may be unbounded, think of the
data as generated by a probability. Let A(Q) denote the set of prpbabilw
ities defined on the Borel o-ring of { , so that A{(Q) is a subset of
ca+(ﬂ) . Suppose it is believed that the true probability law belongs to
some weakly closed, non-empty subset H of A(f1) . Let CH be the weakly
closed, convex cone in ca+(ﬂ) generated by H . The object is to find.

conditions under which I ¢ CH .

Strong Representation Assumption. If x € L(1) and [x(w)u(dw) >0, fof

all peH, and [x(w)p(dw) >0, for some pw€ H, then xS0

A.2) Theorem. I C CH .
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roof. If the theorem is false, there is x € I such that = g QH . Sep-
arating « from CH in the space ca(fl) endowed with the weak topology,
one establishes that there is x € L(1) such that [x(w)x(dw) < 0
< fx(u)p(dw) , for all pue CH . Let y € L(1) be such that ¥y >0 and
fy(w)p(dw) >0, for some pe€H . For & >0 sufficiently small,
f(x(w) + ey(w))n(dw) < 0 and f(x(m) + ay(w))p(dﬁ) > 0, forall pueH,
with strict inequality for some p . Hence, by the strong representation
assumption, x + cy'§ 0 an& s0 f(x(w) + ey(w))x(dw) > 0 , which is a

contradiction. Q.E.D.

If H were itself locally compact, one could prove that every =« in
I corresponded to a prior distribution on H , as in Theorem A.1. These
prior distributions need not be bounded. The diffuse prior of Section 5
would be an example of such a distributiom.

Often distributional hypotheses are themselves composites. Thus, HO
might be the hypothesis that a sequence of random variables has no discov-

erable law, and Hl might be the hypothesis that the random variables are

independently and normally distributed with common mean and variance, Sup-

pose that Ho U Hl is the entire set of hypotheses. Then, since

Ic CH UH. each probability distribution x € I may be represented as
071

T~ ap, + (l—a)pl , where By is a probability distribution in QH , for

i

1=0,1, and a € [0,1] 1is the prior probability of hypothesis Hy .

The distribution p; may be thought of as the subjective distribution

associated with the hypothesis Hi . Each By 1s, of course, defined over

the data, not over H; . Similarly, any improper distribution x € I may

b i - ’
e written as =« B1 + By where By € qu ,
@3y be thought of as subjective distributions associated with H, .

for i =0, 1 . The By
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