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NOTES AND COMMENTS

SHARING BELIEES: BETYWEEN AGREEING AND DISAGREEING

By ANTOINE BILLOT, ALAIN CHATEAUNEUF, ITZHAK GILBOA,
AND JEAN-MaRC TapLion!

1. INTRODUCTION

WHEN 15 IT PARETO OPTIMAL for risk averse agents to take bers? Under what conditions
do they choose to introduce uncertainty into an otherwise certain economic eaviron-
ment? One obvigus case is where they do nat share beliefs. As in the classical
(thearetical} example of horse lotteries, people who do nat agree on probability assess-
ments do find it mutually beneficial to engage in uncertainty-generating trade.

If the agents involved are Bayesian expected utility maximizers and strictly risk averse,
it is not hard to see that disagreement on probabilities is the only way that betting,
understoad as trade of an uncertain asset, may be Pareto improving when starting from a
full insurance allocation. On the other hand, any such disagreement induces betting. Put
differently, Pareto optimality dictates either that there be no betting (in case beliefs are
common to all agents) or that there be betting (in case of disagreement). This is
somewhat puzzling, because there is no lack of allocation-neutral, “sunspot” sources of
uncertainty in the world around us. If every disagreement on prohabilities of states of the
warld suggests a Pareto improving trade, one might have expected to see much more
betting taking place.

Rather than believing that peaple who do not bet necessarily share prababilistic beliefs
about anything they do not bet on {or, to be precise, share these beliefs up to some slack
allowed hy transaction costs), we tend to take the relative rarity of bets as a piece of
empirical evidence against the Bayesian model. It seems that often people da not bet
hecause they are uncertainty averse, and they therefore tend to avaid uncertainty that
they know little about. It follows that a person’s willingness to bet will increase with her
subjective confidence in her information and in her likelihood assessments. It is waorth
emphasizing that Bewley's (1986) motivation for his work on Knightian decision theory
was partly this absence of abserved widespread betting.

While we do not attempt to argue that the full complexity of betting behavior can be
explained by the type of models we study here,” we are led to ask, how much can be
explained by these models if we relax some of the more demanding assumptions of the
Bayesian madel. Specifically, we consider maxmin expected utility with a nonunique prior
{Gilboa and Schmeidler (1989)) that captures Knightian uncertainty (Knight (1921)).
Assume that such uncertainty averse agents who are also risk averse, give rise to an
ecanomy in which there is no aggregate risk. When does there exist full insurance, i.e.,
no-bet allacations that are also Pareto optimal? When is it the case that afl Pareto

YWe thank participants of the Erasmus conference at Tilburg University and two referees for
useful comments.

*In particular, we ignore the social aspects of betting as well as the steategic ones (see, &g,
Milgrom and Stokey (1982)}.

6835



686 A. BILLOT, A. CHATEAUNEUF, 1. GILBOA, AND I-M. TALLON

optimal allacations are full insurance? Is any betting due to different beliefs, and,
conversely, does a difference in beliefs always trigger some betting?

In the multiple prior model an individual is characterized by a utility function and a
nonempty, closed, and convex set of probability measures. The individual evaluates every
act by its expected utility according to each possible probability measure, and chooses an
act whose minimal expected utility is the highest. The family of preference relations
described by this model strictly contains the relations described by Choquet expected
utility with a convex capacity (see Schmeidler (1989)). :

Consider now a pair of agents conforming to the multiple prior model. It is an easy
extension of the expected utility analysis to show that these agents will not bet against
one another if they share at least ane prior. Moreover in a general framework with more
than two agents and complex bets possibly involving several of them, it is easy to show,
following Dow and Werlang (1992) early intuition, that Pareto optimal allocations are
indeed full insurance allocations whenever agents' sets of priors have a nonempty
intersection (see, e.g., Tallon (1998), Dana (1998)).

The question of whether the converse to this result holds arises naturally: is comman-
ality of beliefs, in the sense of agents sharing a prior in commaon, exactly what is needed
to explain, within the framework of the multiple prior model, the absence of betting on
the many possible sources of “extrinsic” uncertainty? Differently put, is the observation
of a Pareto optimal allocation that is immune to sunspots enough to tell us something
about the intersection of agents’ sets of priors?

It turns out that we can answer this question affirmatively and that the result in the
Bayesian model has a conceptually identical counterpart in the multiple prior model.
Under the same nontriviality conditions, there exists a Pareto optimal full insurance
alfocation if and only if afl Pareto optimal allocations provide full insurance, and this
holds if and only if all agents share a prior probability on the states of the world. In other
words, commonality of beliefs is the necessary and sufficient condition to explain the
absence of betting. Wheteas in the Bayesian model “sharing a priot” could only mean
“having an identical prior,” in the multiple prior model this phrase may be read as
“having at least one prior in common.” With this grammatical convention in place, the
result holds verbatim. )

Bayesian agents either agree on probability assessments, or disagree enough to bet
against each other. By contrast, uncertainty averse agents can be in a “grey area”
between agreeing and disagreeing: they may not agree in the sense of having the same set
of passible priots, vet not disagree in the sense of being willing to bet against each other.

Finally, we emphasize another contribution of this note. In showing that commonality
of beliefs is the minimal assumption explaining the absence of bets, we prove a
separation theorem for » convex sets that might be of interest on its own.

The rest of this paper is organized as follows. Section 2 provides the set up of the
model. In Section 3 we state the main result and the separation theorem. Proofs are
relegated to an Appendix.

2. SET-UP

The economy we consider is a standard two-period pure-exchange economy with
uncertainty in the second period, but for agents’ preferences. The state space is §, and X
is a g-algebra of subsets of §, so that (S, X) is a measurable state space. There ate »
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agents indexed by subscript {. We assume (i) that there is only one goad, which can be
interpreted as income or money; and (ii) that there is no aggregate uncertainty. Trading
an uncertain asset is thus interpreted as betting rather than as hedging. Let B(S, X) be
the Banach space of real-valued, bounded, and measurable functions on S, endowed with
the sup-norm. Let ba(S$, X) be the space of bounded finitely additive measures on (S, %)
endowed with the weak™-topology. Agent {'s consumption C,, is a positive element of
B(S, X), that is, C{s) is the consumption of agent { in state s. Denote by w = B(S, )
the constant-across-states aggregate endowment, and assume that w > 0. An allocation
C={C,,...,C,) is feasible if I_,C;=w. An allocation is interior if C{s)> 0 for all £,
for all s.

In the multiple-prior approach, each agent i is endowed with a utifity index U: R, - R
and a set £, of probability distributions over S. U is defined up to a positive affine
transformation, and is taken to be differentiable, strictly increasing, and strictly concave.
2. is a convex and closed set of ba($, ). We assume that all priots in &, are g-additive.?
Note that &, is compact in the weak*-topolagy since it is a weak *-closed subset of the
set of finitely-additive probability measures on ¥, which is compact in the weak*-topol-
agy (see, e.g., Dunford and Schwarz (1958)). The norm-dual of B(S, X) which is
isometrically isomorphic to ba(S, 3') will be denoted B*(S, X ).

The overall utility function I defined over B(S, X) then takes the following form:

VA{C,)= min E ULC,).
ned,;

We assume throughout that:
VA€ X Y, Vr eP, NmeP, n(A)=0sm{A)}=0.

This assumption essentially says that all agents agree an “null events.”

The last definition we need is that of a full insurance allocation. An allocation C is
said to be full insurance if it is constant apart from a set 4 € ¥ that has w(.4) = 0 for
some (and therefare, by the assumption of mutual absolute continuity, for all) 7, €2,
and i}

3. THE MAIN RESULT

The following theorem states that the set of Pareto optimal allocations and the set of
full insurance allocations are either identical ar disjoint. Moreover, they are identical if
and only if the agents share at least one prior.

Y Note that the axiomatization of Gilboa and Schmeidler (1989} delivers only finitely additive
probability distributions.

* 1t is straightforward to check that € is of full-insurance if and only if Vi, €, is constant apart
from a set A; € X that has m,(A;) =0 for some (and therefore, by assumption of mutual absolute
continnity, for all) =, €42,
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THEOREM 1: Under the maintained assumptions, the following assertions are equivalent:
(i) There exists an interior full insurance Pareto optimal allocation,

(1) Any Pareto optimal allocation is a full insurance allocation.

(iii) Every full insurance allocation is Pareto optimal.

v) ML, & # 3.

The intuition for the proof (and the role of some assumptions) is as follows, We prove
that {iv) = (ii) = Cii) = () = (v). If there is a common prior (iv), one can use strict’
concavity to show that a risk bearing allocation is Pareto dominated by the full insurance
allocation that equals its expectation at every state, proving (ii).> This step uses the
mutual absolute continuity assumption, as well as the assumption that the probability
measures we deal with are g-additive {rather than only finitely additive). Observe that
with finitely additive measures the implication (iv) = (ii) does not hold, even in a
Bayesian set-up. This is so because the integral of a function with respect to a finitely
additive measure may be strictly smaller than each of the values the function assumes.
Therefore individuals who hold assets that they view as uncertain may not benefit from
smoothing them across states. If every Pareto improving allocation provides full insur-
ance (ji), the converse (iii) also holds, since no two full insurance allocations can be
Pareto ranked,® and it follows trivially that there is at least one such allocation (i).
Finally, the crucial step and the main contribution of the theorem is that the existence of
a full insurance Pareto aptimal allocation (i) implies that there is a common prior (iv).
This step does nat require concavity of the utility index.” In proving this last part we
make use of the following theorem, which generalizes the standard separating hyperplane
theorem, and may be of interest an its own. In the Appendix we also comment on the
geometric interpretation of this result, which may be viewed as a separation thearem
among # Convex sets.

THEOREM 2: Let X be a locally convex linear topological space and ler P, C X, 1 =i <n,
be convex, nonempty, and compact. Then, the following are equivalent:

() N, #=4.

(i) There exist F C{1,...,n}, [ = Pland p € col\d, o ; B,) and for each i € [, there exists a
continuous linear functional hi: X — R such that:

{a) Vie], hig—p)>0 forallgez,
(b) L ;=0

An immediate corollary of Theorem 2 is that, under the same assumption, if Mj_; 5%
=, there exist continuous linear functionals A, i=1,...,#, and a point p such that
(@'Y hlg—pl=0forall g =&, forall i, (b} LY, k=0, and (c'} there exist i,i" such that
the inequality in (a'} is strict.

It is worthy of note that a similar result, developed independently and with a rather
different motivation, 15 to be found in Samet (1998), for subsets of a finite dimensional

T This implication follows the logic of similar results for Choquet expected utility in Chateauneuf,
Dana, and Tallan (1998).

® The fact that (iv) implies (i) and (iii) alsa appears in Dana (1998) but in a finite sec-up,

7 Dana (1998) shaws that if there is a full insurance competitive equilibrium in. this economy with
finitely many states, then agents share a prior in common. Her proof, however, uses the concavity of
the utility index and relies on the existence of a competitive equilibrium.
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simplex. Samet’s result is weaker in the sense that it guarantees the existence of linear
functionals as in our case, but does not guarantee that the separating hyperplanes will
intersect at one point p in the convex hull of the sets, and therefore does not yield itself
to a straightforward geometric interpretation. Further, Samet's result can be easily
derived from the corallary abave specialized to subsets of the simplex. It does not appear
that Samet’s argument could easily he amended ta get ours.

Thearem 1 has two immediate corollaries. First, in the Chaquet expected utility model
with convex capacities, nonempty core intersection is equivalent to some, or all, Pareto
optimal allocations being full insurance. Second, in the expected utility case, where the
sets of priors are reduced to ane point, some, or all, Pareto optimal allocations are full
insurance allocations if and anly if agents have the same heliefs {i.e., the same prior).

Note that even though we cast the argument in the multiple prior model, it should be
clear from the proof that a similar result holds for the Bewley (1986) approach. In
Bewley's approach, agents are also endowed with a set of priors and move away from a
{exogenously defined) status quo situation only if the new situation is better than the
status quo for all the probability distributions in their set of priors. While Bewley
characterizes a partial order aver acts, a proposed bet will be preferred to a certain status
guo if and only if this preference holds in the multiple prior model of Gilboa and
Schmeidler.®

Our analysis is conducted for an economy with one good. However, the only use we
make of this assumption is in arguing that all full insurance allocations are Pareto
optimal: Indeed, one can generalize our results to an economy with #t goods, with the
slight modification that full insurance allocations that are considered for optimality be
assumed Pareto optimal in each state.
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APPENDIX

ProOF oF THEOREM 1: We first prove (iv} = (ii} Assume to the contrary that there exists an
agent, say, agent 1, such that for every 7, €2, and every ¢ s B, o ({s1C (s} <]} + = ({sIC 5] >
ch) = 0.

§ Bewley (1989) contains a similar na-trade result far agents whase preferences are given by
partial orders as in Bewley (1986). His proof is very similar to Samet’s, and his result is weaker than
Thearem 2 in the same sense that Samet’s fs.
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Let me N, & and define C,=E,C, for all & Abusing notation, let C; alse denote the constant
allocation giving C; to agent i in all states. € ={(C,); is a feasible allocation since L,C, = L E, C; =
E (L, C)=E wl; =w. Now,

VAC,) = min EULC) <E, ULC).

P,
Furthermore,
E,ULC) s UCE(C)) = ULC)) = VKC)

for all ¢ since OJ; is concave.
Since = belongs to &, one gets that

m{sIC () <C ) + 7 ({(5IC () > T 1) > 0.

Furthermore, m({s|C,(s) < C,;}) =0 is impossible, for then w({s[C(s) > €, > 0, implying by o-ad-
ditivity of m that £,(C;)>C,, a contradiction. Hence, w({s|C{(s)<C,D >0 and, similarly,
wl({slC (s> Ch =0 _ _

It follows that V,(C,) < V,(C,) since U; is strictly concave. Therefore, the allocation € Pareto
dominates C, a contradiction.

To see that (i) implies {iii} let C be a full insurance allocation. Assume, contrary to {ifi), that it is
not Pareto optimal, and is dominated by another allocation €’. By the same argument as abave, C’
is at least as desirable as C' for every agent. By transitivity of Pareto domination, C' Pareto
dominates C. But this is a contradiction since both pravide full insurance and there is only one good
in the economy.

That (iii) implics (i) is obvious, and it remains to prove that (i) implies (iv). Suppose to the
contrary that M, & =, and let C be an interior Pareto optimal allocation that is a full-insurance
allocation (C; is constant for all i apart on a set of measure zero, the latier notion being defined
unambigucusly giver. our absolyte mutual continuity assumption). By Theorem 2 (where X is
B*(S, 3) endowed with the weak®-topalogy), since M, % = 7, there exists a nonempty set I, a
point p and functionals &, € B*(S, X), { €1, such that:

(@) ¥iel, hig—pr=0foral ge&;

L k=0

Recall that (sce, e.g., Kelley and Namioka (1963, p. 155)) every weak *-continuous linear
functional an the conjugate space of a linear topaological space E is the evaluation at some point of
E. Hence, for all { €1, there exists 1, € B(S, %) such that h{p) = p(D,}, for all p = B*(S, X},

Construct the allocation. (C,), 1., 38 follows:

C=c, iel
C=C+elD —plDgl, iel,

with £ 0 small enough so that ¢ is an allacation.
We first check that this allocation is feasible:

£ ZD,-— Zp(D,-}lsl =g ZDI-— Zh;(p)

ie! ief ief i=f
=z 2 D, since 2 h,=0.
ief ief

Now, D, is such that i(g)=g(D,) for all g B*(S, X) and hence ¢(L;.,;D)=0 for all
g B*(5, X).

To conclude that &, . D, = 0, suppaose there exists 5 such that ¥, -, D{s) =&, @ # 0. The event
{sIL; = ;D(s) = 2} is measurable because the D, are measurable. Now, let g be the continuous linear
functional in 8*(S, X} cerresponding to the additive probability in ba($, ) with the mass 1 on that
event. Then g(Z, . ,D;) =0 implies & =0, a contradiction. Hence, L; -, D; = 0.



SHARING BELIEFS 691
Now, for { € f, ane has:

VAC) = EglU(C+ el D;— p(D)1g])  for some §° €7,
= VLG + eUACI49(D,) - p¢ D) + o(e)

= VL) + U LG5~ pH] +0le)

2 V(C)+ eUC inf hg—p) + ale)
qe‘@i

where a(g)=alel/e—»0as £~ 0.

Since inf, - » A —p) > 0 by continuity of 4, and compactness of #, and a(s}—~ 4, there
exists £ small enough sa that the term in bracket is strictly positive.

Hence, DE(C‘,-] > P(C,) for i€ ), and we found a Pareto dominating allocation (C:')a=1
contradiction. ’ QED

Proor oF THEOREM 2: We start with the following lemma:

LemMa: Let X be a locally convex linear topological space and let 3. C X, 1 i <n be convex,
nanempty, and compact. Assume that ;. P=Ebut that for all L= n, N, P # . Then, there
exist p € col\U}_ | ) and a continuous finear functional t;: X — R for each { = n such that:

(1) ¥i<n, blg-—p)>0¥qE7,

() T, 4ty = 0.

The gecmetric interpretation of this lemma is as follows. Assume that s convex and compact sets
have an empty intersection, but that every subset of them has a nonempty intersection. Then, we can
find 2 point p that is not included in any set, but that is “in the middle™ in the following sense: ane
can find, for each set &, a hyperplane A, that passes through p that is in the convex hull of the
uniont of the &, and leaves the entire &, on one side, such that the normals of these hyperplanes,
multiplied by appropriate positive constants, add up to zero. In the case r = 2, our lemma reduces to
a standard separation theorem between two disjoint sets. For # > 2, the lemma may be considered as
an n-way separation amang # convex sets. See Figure 1 for an illustration of the case n = 3.

hy = ho(p)

P, Py

ha = ha(p)

2]
hy = hy(p)

FicurE 1.—Separation among three convex sets.
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Proor oF THE LEMMA: The proof is by induction an #. For n = 2, we have & N5, = (X and we
use a standard separation theorem (cf. Kelley and Namioka (1963, p. 119, theorem on strong
separation)) ta conclude that there is a continuous linear functional A: X — R and 2 number € R
such that i{g) > 8 for g€, and hig) < 4 for g5, Choose p such that Al p)= 3, and set
iy =h and h, = —h. By linearity of £ it is possible ta choose p & co( 2 UL, )

Assume that the lemma holds for every n' < n. Let there be given (#){_ . Set A= ;. 2 and
B =22 Observe that 4 and B are convex, nonempty, and campact. Furthermore, they are disjoint
since N, %, = 0. Apply the same separation thearem to conclude that there exist a continuous
linear k,: X - H and 8< R such that '

higy>8 ¥YgeB and h(g)<p Yged.

Chcrose gy € X such that ki (q,} = 3. We shift the origin to g,. Specifically, define for each i < s,
Zo={p—qq| peF} = — 4,. Natural Iy, (F) ; and their intersections inherit all relevant proper-
ties of (#);. Denate B=B- gp=2, and A=A—q,=0; ., % and observe that &,(g)> 0
Ygeh and h,(q) <0 Yge A Consnder X' ={geX|h, {g)=0h X" is a lacally convex lmear
topalogical subspace of X. Focusing on this subspace, define & =& N X" for i < n. Obviously, &,
is convex and compact for every { < n. We argue that it is also nonempty. Indeed, 93 contains A. On
the other hand, 53 has 2 nanempty intersection with A= Z,.. By canvexity of J’ and linearity of &,
Z @, Similarly, for { <n, Mivin . contains A and mtelsects B and we therefare get

N P2 Wi<n,

IE T

However, X" is a hyperplane separating B from A Hence (., & = . It follows that {Z#), <p on

X' satisfy the conditions of the lemma for »* =» — 1. Therefare, there exist a point < co( Uiy .@ }
and ccmtmuous linear functionals #: X' — R, i <a, such that A{q —§) >0 Yq €&, i <n, and
Y, . A=00n X' Using standard argumcnts (see Fact 1 below), we conclude that, for every { <n,

h; on X' can be extended to &, an all of X such that:
hlg—f1>0 Yged.
Define =1L, ., k; on X. Observe that for every g €X',

Wgy=Y alq) = Y kg =

i=H [<H

Henee ki, and h are continueus linear functionals on X satisfying
hAig)=0=hig)=0 VgeX.

By standard arguments (see Fact 2 belaw), thcre exists as R such that kig) = wh Lgy¥geX.
We wish to show that « < 0. Consider g €4 = N, ., . Since kg — f) > 0¥i<nand &5} =0,
we ghtain

gy =hlqg—p)= E hig—p)=0.

On the ather hand, h,,(q) <0 since g € A. It follows that & < 0.

Define , = {~a)h,. Since (~a) =0, h{qg—p)=h lq) > 0 YgeB,

Ta conc[ude set p=p+qy. Observe that p € calU'T ') and hence pecallJi_ | 2,). We
claim that p and (&), satisfy (a} and (b). Indeed, for every i < n, and every g €2

hig-p)=hl{g—q0)—(p—gh)=h{lg—qy}-p)=0

since ¢ — g, €. Finally, I, < i, = 0 by construction of A,. Q.ED.
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The following two facts, which are used in the proof abave, are straightforward and/or
well-known.

Fact 1: Let X be a locally convex linear topological space. Let i be a cantinuous lincar
functional and X' ={peX{h(p)=0L Assume that CcX is convex and compact, and that
CnX’ # . Further assume that A': X' — R is a continuous linear functional such that £'{p} =0
YpeCNX'. Then, k' can be extended to a continuous linear functional si: X — B such that
Mpl=0v¥peC.

PrRoOF OF FACT 1: Set D={p< X' |&'(p)=10} Observe that D+ I since the origin is in D.
Thus € and D are disjoint nonempty closed and convex sets in X, and C is compact. Let a
continuous linear functional 2: X —» R and 4 € R be such that

Wlpy<d ¥peD and hip)>d ¥peC.

We claim that & has to be constant an D. Indeed, assume that far same p, g€ D, F(p) = k(q).
Since p,g €D implies A(p) =Alg) =0 and #'(p) = h'{g) =0, we conclude that p + alg —ple D
for all «<R. Hence {,’:a(p +alg —plac Rl =R, a contradiction to the fact that fi(p) <
¥p & D). Thus there is a ¢ € F such that & p) = ¢ ¥p < D. Since the origin is in D, we obtain ¢ = .
It follows that 4 > ¢ and therefore

f[(p])d>0 Ypel.

We now wish to show that, up to multiplication by a positive constant, & extends /' on X. Restrict
attention to X*. If peX’ satisfies #'(p) =0, then p €0 and we know that {p)=0. By Faet 2
below, there exists e = ® such that 2(p) = ah’{p) ¥p € X' However, on C A X", both / and 4* are
positive. Therefore & > 0. Hence h =(1 /a)it extends k' on X and is positive on all of €. Q.ED.

FacT 2: Let X be a linear space and let hi,7: X — B be linear. Assume that
Mgy=0=n(g)=0 vgeXx.

Then there exists a & R such that A(g) = aklq) ¥g & X.

We skip the proot of this Fact and now turn to the proof of Theorem 2:

(i) = (ii). Assume that ;. , & =@ Let [ be a minimal (with respect to set inclusion) subset of
{1,..., n} with the property that N, - ; & = & Since N | F =, but &, # @ for every {, such a set
[ exists and far every such set |[f{= 2. Apply the Lemma to [

(ii) = (). Assume that a point peX, 2 set fc{l,...,n}, and functionals (&), o, exist as
required, and suppose, cantrary ta (i}, thac there exists g € ;. ,, & Then, by (2}, T, ¢ (2 g — p) = 0,
cantrary ta (b), O.ED.
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