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Abstract
Following Mongin [13, 14|, we study social aggregation of subjec-
tive expected utility preferences in a Savage framework. We argue that
each of Savage’s P3 and P4 are incompatible with the strong Pareto
property. A representation theorem for social preferences satisfying
Pareto indifference and conforming to the state-dependent expected
utility model is provided.

1 Introduction

Harsanyi’s theorem [9] discusses social aggregation of individual preferences
in a risky environment. He shows that when all agents’ preferences conform
to the axioms of expected utility, if social preference also conforms to the
axioms of expected utility and satisfies Pareto indifference with respect to
agents’ preferences, then social preference can be represented as a weighted
sum of agents’ expected utility functions.! An example due to Diamond
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6] illustrates that Harsanyi’s assumptions on social preference may not be
compelling.

Mongin [13, 14] pursues a similar program within Savage’s [17] framework
of subjective uncertainty. If all agents behave according to Savage’s axioms,
he shows that it is generally impossible for social preference to jointly satisfy
Savage’s axioms and the strong Pareto property with respect to individual
preferences. Two natural responses to this negative conclusion present them-
selves. One is to condemn the strong Pareto property in a setting of subjective
uncertainty. Gilboa, Samet, and Schmeidler [8] follow this approach, see also
Raiffa ([16] p. 228-238) and Broome [4]. Our approach is to analyze the gen-
eral structure underlying the impossibility results, by studying them at an
axiomatic level.

At an individual level, Savage’s axioms are used to deliver a personal
notion of probability. The primary axioms in his theory are P2 (sure-thing
principle), P3 (eventwise monotonicity), and P4 (weak comparative probabil-
ity).2  In terms of empirical violations of Savage’s theory at an individual
level, P2 is often criticized. We have no specific criticism against assuming
P2 at a social level. Instead, we discuss P3 and P4. We remain agnostic on
the normative appeal of these axioms, as we believe that there are reasons
both for and against each of them. However, we show by examples that each
of these axioms conflicts with the strong Pareto property on its own.

Our work concludes by studying the most well-known model which gener-
ically violates P3 and P4, the state-dependent expected utility model. A
similar exercise is conducted by Mongin [14], in the Anscombe-Aumann [1]
and Karni, Schmeidler, and Vind [11] frameworks.

We provide a representation theorem for social preference conforming
to the state-dependent model and which satisfies Pareto indifference with
respect to individual preferences. Under Pareto indifference, social preference
can be represented by a weighted sum of individual utility representations.

Section 2 describes the model and provides examples and propositions
illustrating the conflict between Savage’s axioms and the Pareto properties.
Section 3 provides a representation theorem in a state-dependent expected
utility framework. Section 4 discusses the relation of our work with that of
Gilboa, Samet, and Schmeidler. Finally, Section 5 concludes.

2The terminology is from Machina and Schmeidler [12].



2 The model and Savage’s axioms

Let (S,%) be a measurable space, where S is a set of states and ¥ is a o-
algebra of events. We use s to denote a generic stateand Aor B to denote
generic events. Let X be a set of outcomes. Define the set of (simple) acts
F as the set of finite-ranged -measurable mappings f : S — X. We use
for g to denote a generic act. For x,y € X, A € X, define Ay € F as

Ay = zifse A
ray = yifse A¢ )°

With a slight abuse of notation, x € X also denotes the act whose constant
outcome is .

Savage’s axioms apply to binary relations = on F. Say that A € ¥ is
null for > if for all x € X and all f € F,

rifse A
f~ ( f (s) otherwise )

For a set of agents N = {1, ..., n}, agent ¢’s preference is denoted by >=; and so-
cial preference is denoted by >(. Say that > satisfies Pareto-indifference
with respect to (>=,....,>=,) ifforall f,g € F,ifforalli € N, f ~; g, then
f ~o g. Say that = satisfies the weak Pareto property with respect to
(=1,..., =) if for all f,g € F,ifforalli € N, f >, g, then f >y g. Say that
o satisfies the strong Pareto property with respect to (-1, ..., =) if
it satisfies Pareto indifference with respect to (=1, ..., =) and if for all i € N,
f =i g, with strict preference for some j € N, then f > g.

A function U : F — R is a subjective expected utility functional if
there exists a nonatomic, countably additive® probability measure x on (S, %)
and a function u : X — R such that for all f € F, U (f) = [qu(f (s)) dpu (s).
Say a binary relation > is a subjective expected utility preference if
there exists a subjective expected utility functional U such that for all f, g €
F,

fzgeU(f)2Ulg).

For any such U representing a nondegenerate subjective expected utility pref-
erence, the associated probability measure pu is unique, and the function wu is
unique up to positive affine transformation.

3Savage’s theorem [17] only delivers a finitely additive probability measure. Arrow [2]
discusses conditions which guarantee that the probability measure is countably additive.
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2.1 P3: Eventwise monotonicity

Savage’s axiom P3 states:

P3 For all non-null A € ¥, z,y € X, f € F,

rifse A yifse A
Ity@(f(s) ifseAc>t<f(s) ifseAc>'

A social preference that satisfies P3 cannot generally satisfy the weak
Pareto property. The following example illustrates this point.

Example 1 Let N = {1,2} and X = R?. The set X represents distributions
of wealth amongst the two agents. Let >q be a social preference over
F. Assuming each agent likes more wealth to less and cares only about
her own wealth, a plausible social ranking is (0, 100) ~q (100,0). Let
A, A¢ € . Suppose agent one believes A is more likely than A° and
agent two believes A€ is more likely than A. Then for i = 1,2,

(100, 0) A (0,100) >; (0,100) A (100,0).
By the weak Pareto property,
(100, 0) A (0,100) = (0,100) A (100,0) .

Here, = violates P3. To see this, suppose =g satisfies P3. As
(100, 0) ~¢ (0,100), and as = satisfies P3,

(100,0) ~ (100,0) A (0, 100)

and
(0,100) A (100,0) ~q (0, 100) .

By transitivity, the ranking (100,0) > (0, 100) holds, a contradiction.

2.2 P4: Weak comparative probability

Savage’s axiom P4 states:
P4 For all 7, 2,7,y such that 7 = z and i > y, for all A, B € X

TAz = TBx < yAy = yBy.



Example 2 shows that P4 is also incompatible with the strong Pareto
property.

Example 2 Let N = {1,2} and X = R?, where the numerical quanti-
ties again represent monetary values. Each agent only cares about the
amount she receives. Suppose again that agent one believes A is more
likely than A°, and agent two believes A° is more likely than A. By
strong Pareto, (100, 0) ¢ (0,0) and (0, 100) > (0,0). Thus,

(100,0) A (0,0) =1 (0,0) A (100, 0)

and
(100,0) A (0,0) ~5 (0,0) A(100,0).

By the strong Pareto property,

(100,0) A (0,0) >=¢ (0,0) A(100,0).
By a symmetric argument,

(0,100) A (0,0) <o (0,0) A(0,100).

These rankings clearly violate P4.

2.3 General incompatibility results

The following propositions are general versions of the examples.

The first proposition follows directly from Example 1. For any preference
relation = satisfying P4, a likelihood relation =! on ¥ can be defined as
follows: A =! B if and only if there exist z,2’ € X such that x = 2’ and
rAzx' > xBx' A

Proposition 1: Suppose =; and =, satisfy P4 and for all i = 1,2, A =!
B < B¢ =l A°.  Suppose there exist 7,z € X such that T =; z,
x =5 T, and T ~g x. If = satisfies P3 and the strong Pareto property
with respect to (=1, =2), then ={=-1,.

4Propositions 1, 2, and 3 are stated for environments with only two agents. Similar
results can be established for any number of agents, by partitioning the set of agents into
two types, where each type has a preference relation corresponding to one of the two
preference relations in the propositions.



The next proposition illustrates a related point. If individuals’ “beliefs”
are different, then aggregation under the strong Pareto property and P3 is
possible only if their “tastes” are the same.

Proposition 2: Suppose =1 and =5 satisfy P3 and that there exist 7, z, 7, y
such that T =1 x and § =5 y. Suppose there exist A € ¥ such that A is
non-null for >; and null for =2, and B € ¥ such that B is non-null for
=9 and null for »;. If > satisfies P3 and satisfies the strong Pareto
property with respect to (=1, =), then =1 |x =>» |x.

Proof: We first show that each of A and B is non-null for =q,. As
=1 satisfies P3 and A is non-null for >, TAz =1 x. As A is null for >,
TAxz ~9 x. By the strong Pareto property, TAz >~ x, so that A is non-null
for =g. The proof for B is symmetric.

Suppose the statement of the proposition is false. Thus, =1 |x #>2 |x,
and without loss of generality, there exist z,y € X such that  >; y and
y =2 x. As > satisfies P3, zAy =1 y, and as A is null for =5, zAy ~» ¥.
By the strong Pareto property, zAy =¢ y. As A is non-null for >, by P3,
T oy

As >4 satisfies P3 and as B is non-null for =5, y > 2By, and as B is null
for agent =1, y ~; xBy. By the strong Pareto property, y ¢ xtBy. As B is
non-null for >, by P3, y >=¢ x. But we previously concluded that = >=¢ y, a
contradiction.ll

The last proposition follows directly from Example 2.

Proposition 3: Suppose =; and >, satisfy P4 and for all « = 1,2, for all
., € X, A BeX,

T ~; ¢ = vAx' ~; 2B

Suppose there exist 7, 2,7,y € X such that T =1 2,7 ~o 2, ¥ ~1 y,
Y =2 y. If =¢ satisfies P4 and the strong Pareto property with respect
to (=1,2), then =i =-1.

3 A possibility result

We show that if social preference is not required to satisfy P3 and P4,
Paretian aggregation is possible under the state-dependent expected util-
ity model. To this end, say U : 7 — R is a state-dependent subjective
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expected utility functional if there exists a nonatomic, countably addi-
tive probability measure p on (5,%) and a function u : X x S — R such
that for all z € X, u(z,:) : S — R is Y-measurable and p-integrable and
for all f € F, U(f) = [qu(f(s),s)du(s). Say a binary relation > is a
state-dependent subjective expected utility preference if there exists
a state-dependent subjective expected utility functional U such that for all

f,.g€F,

fzgeU(f)=2Ulg).

For more information about state-dependent subjective expected utility pref-
erences, see Wakker and Zank [18].

The probability measure component of a state-dependent subjective ex-
pected utility functional is not unique. Thus, we cannot refer to society’s
“beliefs” in an unambiguous way. This is an artifact of the incompatibility
of P4 with Paretian aggregation.

Theorem 1: Suppose that for all i € N, »=; is a subjective expected utility
preference represented by U; : F — R. Then > is a state-dependent
subjective expected utility preference which satisfies Pareto-indifference
with respect to (=1, ..., =,) if and only if there exists a vector A € RY
such that for all f,g € F,

froge Y NU(f) =) NUi(g).
N N

Representations corresponding to stronger Pareto properties can similarly
be derived using Lemma 1 of Appendix A and the general representation
theorems of DeMeyer and Mongin [5]. Mongin [14] proves a related theorem
using the added structure of the Anscombe-Aumann [1] framework. However,
an example (using probability measures with atoms) due to Mongin [13]
illustrates that such an aggregation theorem is not generally true in a Savage
framework.

The proof of Theorem 1 is in the Appendix. In order to prove Theorem
1, we establish in Lemma 1 that the utility possibilities set for a collection of
state-dependent expected utility maximizers is convex, a fact which comes
for free in the Anscombe-Aumann model. After establishing this, we apply
a general representation theorem of DeMeyer and Mongin [5].



4 Gilboa, Samet, and Schmeidler

A work closely related to ours is that of Gilboa, Samet, and Schmeidler
[8]. These authors take the position that the Pareto properties we study
are not compelling at a social level. By applying Pareto indifference only
when all agents agree on the probabilities of “relevant” events, they obtain
an aggregation possibility result and representation. Their contribution is to
show that by suitably weakening Pareto indifference, social preference can
be made to generally satisfy Savage’s axioms.

We do not take the position that Pareto indifference is universally com-
pelling; nor do we take the position that P3 and P4 are generally not com-
pelling. Our main contribution is to investigate the compatibility of vari-
ous axioms at a basic level. Paralleling Gilboa, Samet, and Schmeidler, we
weaken, as little as possible, the hypothesis that social preference should
satisfy Savage’s axioms, while maintaining Pareto indifference.

5 Conclusion

Mongin’s [13] negative results make clear that Paretian aggregation is in-
compatible with the expected utility model for social preference. A nat-
ural conjecture is that Savage’s P2 is the source of this impossibility result.
Thus, Blackorby, Donaldson, and Mongin [3] study Paretian aggregation in
non-expected utility models (in a multi-profile framework—see also Hylland
and Zeckhauser [10]), establishing negative results. Our first contribution
is to work at a primitive level, identifying which of Savage’s axioms are the
source of the negative results. We determine that two of Savage’s axioms
are incompatible with Paretian aggregation-P3 and P4. Our second contri-
bution is to demonstrate the possibility of Paretian aggregation without P3
and P4 by providing a representation for social preference conforming to the
state-dependent expected utility model.

6 Appendix—Proof of Theorem 1

To prove Theorem 1, we use the following Lemma.

Lemma 1: Suppose (Uy, ..., Uy,) is a vector of state-dependent expected util-



ity functionals. Then

{(UL(f), - Un () - f € F}

1S convex.

Proof: We need to show that for all f,g € F, a € [0, 1], there exists
some h € F such that for all i = 1,....m, U; (h) = aU; (f) + (1 — a) U; (g).

Therefore, let f*, g* € F, o € [0, 1].

Let X (f*,¢%) = (range (f*)) U (range (¢*)). As f*, ¢g* are simple acts,
| X (f*, g%)| < oo. Let F(f*,g*) C F be the set of acts whose range lies in
X (f* g9

By assumption, for all + = 1, ..., m, there exists u; : X x S — R and p;
on (S,%) such that U (f) = [gui (f (s),s)dp; (s). Foralli=1,..,m, and
for all x € X (f*, ¢*), let v7 be a measure on ¥ defined by

ﬁ&mzému»wm@.

Then for all i € N, x € X (f*, ¢*), v¥ is countably additive, nonatomic, and
finite.> By definition of the integral, for all i € N, f € F (f*, g*)

U(f)= >, vi(f'(@).

reX(f*,9%)

Let IT be the set of 3-measurable ordered X (f*, ¢g*)-partitions. For-
mally, IT is defined as the set of functions P : X (f* ¢*) — X satisfying
i) Ux(pegn P (x) = S and i) for all z,y € X (f*,g") such that z # y,
P(z)N P (y) =0.

Clearly, there is a bijection 1) between F (f*, g*) and II, given by for all
feF(f*g*) and for all x € X (f*, g*), ¥ (f) (x) = f~' (z). In particular,

A= {0 (P@)),, cRXCS pe)

5To see that v¥ is nonatomic, suppose that it is not. Then there exists some E € &

such that v¥ (E) > 0, and for all F C E, v¥ (F) € {0,v% (E)}. Let {E,},._, bea
sequence such that F; = E, and for all m, E,, C En,1, p; (Em) = %,ui (Em-1), and
v (Ep) = v¥(E). By countable additivity, p; (oo_; Em) = 0 and v¥ ((oo_; En) =
v? (E) > 0, a contradiction. Finiteness follows as w; (z,) is p;-integrable.



is equal to
B={( (f ' (@), CRX feF (£}

By Theorems 1 and 4 of Dvoretzky, Wald, and Wolfowitz [7], it follows that
A is convex.® Thus B is also convex.

By summing the columns of the elements of B, we obtain
{(UL(f), - Un(f)): feF(f9")} Convexity is preserved un-
der this summation. Lastly, note that {(U;(f*)),,(Ui(¢")),} C
{(UL(f), -, Un(f)) : f€F(f* g")}. Thus, there exists some h € F (f*, g*)
such that for all i = 1,...,m, U; (h) = &*U; (f*) + (1 — a*) U; (¢*).

We now prove the theorem.

Proof: It is obvious that if there exists a vector A € RY such that
for all f,g € F, f =0 g < > yNU:(f) > D yAUi(g), then = satisfies
Pareto indifference with respect to (=1, ...,>=,). We will now show that it is
a state-dependent subjective expected utility preference. If for all f,g € F,
f ~o g, then the claim is obvious. So, assume there exist f’, ¢’ € F such that
f’ >0 g/.

For all © € N, U; has two components, a utility index u;, and a probability

measure ;. Let p = E‘%‘“ t. Then p is a probability measure defined on

(S,%). For all i € N, p,; is absolutely continuous with respect to u. By
the Radon-Nikodym Theorem, for all i € N, there exists a »-measurable,
p-integrable function h; : S — R such that for all f € F,

/S wi (F () dps (s) = / i (1 ()) hi (5) dp (s)

Thus, for all f € F,

STAU () = / (Z A (f () by <s>> 08

Let u: X x S — R be defined by
u(z,s) = Z i () hy (s) -
N

6This follows as Theorems 1 and 4 of Dvoretzky, Wald, and Wolfowitz imply that
{(Uf (P (W) i,2), © RmXX(F79M)xX(f797) ;. P H} is convex. The set A is a projection

of this set on the subspace in which z = y.
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Thus, for all z € X, u(x,-) is X-measurable and pu-integrable, and for all
fer,

SN = [ ulr(s),5)dns).

Conversely, suppose that for all © € N, =, is a subjective expected utility
preference. Suppose that = is a state-dependent subjective expected utility
preference which satisfies Pareto indifference with respect to (=1, ..., =5).

For all : € N, let U; : F — R be a subjective expected utility functional
representing >;, and Uy a state-dependent subjective expected utility func-
tional representing ~y. By Lemma 1 above and Proposition 1 of DeMeyer
and Mongin [5], there exist A € R" and K € R such that for all f € F,

Uo (f) = K+ Y A\Ui(f).

Thus, for all f,g € F, f =¢ g if and only if K + Y yNU;(f) > K +

Y-y AiUi(9). Equivalently, f = g if and only if > A\U; (f) > D5 AiUi (9).
[ |
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