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Abstract

When ambiguity averse investors process news of uncertain quality, they act as if
they take a worst-case assessment of quality. As a result, they react more strongly
to bad news than to good news. They also dislike assets for which information
quality is poor, especially when the underlying fundamentals are volatile. These
effects induce negative skewness in asset returns, increase price volatility and induce
ambiguity premia that depend on idiosyncratic risk in fundamentals. Moreover,
shocks to information quality can have persistent negative effects on prices even
if fundamentals do not change. This helps to explain the reaction of markets to
events like 9/11/2001.

1 INTRODUCTION

When individuals make decisions under uncertainty, they receive information, or signals,
about unknown parameters. Most economic models assume that signals are processed
the Bayesian way: an individual is assumed to form subjective probabilistic beliefs about
the parameters, and he then incorporates signal realizations into beliefs by applying
Bayes’ Rule, given a likelihood function that relates signals to parameters. The Ells-
berg Paradox highlights one limitation of the Bayesian model: it cannot accommodate
ambiguity, where the individual is not confident enough in his prior understanding of
the environment to commit to a single (subjective) probability measure. This paper is
concerned with a second feature of complicated environments that is also beyond the
scope of the Bayesian approach - it is often difficult to know the reliability of signals. We
incorporate ambiguous information into a choice-theoretic framework. We then derive
its implications for behavior and study its role in financial markets.
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Our model of information is illustrated most easily with an example. Let θ denote
a parameter that the agent wants to learn. We assume that a signal s is related to the
parameter by a family of likelihoods:

s = θ + �, � ∼ N ¡0, σ2s¢ , σ2s ∈
£
σ2s, σ

2
s

¤
. (1)

Bayesian models focus on the special case of a single likelihood, σ2s = σ2s, and measure
the quality of information provided by the signal s via the precision 1/σ2ε. In our model,
information quality is captured by the range of precisions [1/σ2s, 1/σ

2
s]. Information

quality therefore has two dimensions: the overall location of the interval determines how
quickly an agent expects uncertainty to be resolved, while its width measures (lack of)
confidence in the reliability of the signal. The latter dimension is unique to the case of
ambiguity. In this paper, we argue that to capture the effects of, say, an improvement
in information quality, it is important to distinguish these two dimensions: the economic
consequences of a rightward shift in the interval of precisions differ qualitatively from
those of a reduction in the interval width.

To model preferences (as opposed to merely beliefs), we use recursive multiple-priors
utility, axiomatized in Epstein and Schneider [17]. The axioms describe behavior that
is consistent with experimental evidence typified by the Ellsberg Paradox. They imply
that an ambiguity averse agent behaves as if he maximizes, every period, expected utility
under a worst-case belief that is chosen from a set of conditional probabilities. In the
present paper, the set of conditional probabilities incorporates ambiguous information.
These probabilities are updated by applying Bayes’ Rule to the whole family of likelihoods
that describe a signal. Through updating, ambiguity in signals affects the set from which
worst-case conditionals can be drawn, and hence behavior.

Ambiguous information has two key effects on behavior. First, after a signal has
arrived, agents respond asymmetrically: bad news affect conditional actions — such as
portfolio decisions — more than good news. This is because agents evaluate any action
using the conditional probability that minimizes utility from that action. If an ambiguous
signal conveys good (bad) news, the worst case is that the signal is unreliable (very
reliable). Second, even before an ambiguous signal arrives, agents anticipate the arrival
of low quality information and discount consumption plans for which this information
may be relevant.

Financial market participants absorb a large amount of news every day. To illustrate
the role of ambiguous information in financial markets, we consider a representative agent
asset pricing model. The agent’s information consists of (i) past prices and dividends
and (ii) an additional, ambiguous, signal that is informative about future dividends. Our
setup thus distinguishes between tangible information — here dividends, and also past
prices — that lends itself to econometric analysis, and intangible information — such as
news reports — that is hard to quantify, yet important for market participants’ decisions.
We assume that intangible information is ambiguous while tangible information is not.
We derive some general properties of prices and clarify the relationship between prices and
information quality under ambiguity. Then we explore the response to sudden changes in
information quality by calibrating a model to the aftermath of 9/11. This also illustrates
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how belief parameters can be identified from observed prices.

Reaction to ambiguous news affects the first three moments of asset prices. First,
the anticipation of ambiguous information increases measured average excess returns.
As with consumption plans, agents dislike assets about which ambiguous information is
expected to arrive. They are willing to buy such assets only at a discount, so that a
premium for low information quality emerges in equilibrium. Second, the volatility of
prices and returns can be much larger than the volatility of fundamentals. Volatility
depends on how much the worst-case conditional expectation of fundamentals fluctuates.
If the range of precisions contemplated by ambiguity averse agents is large, they will
often attach more weight to a signal than agents who know the true precision. Intangible
information can thus cause large price fluctuations.

Third, the asymmetric response to ambiguous information implies that returns should
be negatively skewed at high frequencies. Negative skewness here is not derived from
asymmetries in the distribution of signals or fundamentals — it is simply due to agents’
processing of signals under ambiguity. The model also suggests that skewness should be
more pronounced for stocks for which the relevant amount of intangible information is
larger. This is consistent with the fact that stocks that are “in the news” more — such
as glamour stocks, stocks that have recently experienced a runup in prices, and stocks of
large firms — exhibit more negative skewness.

Premia due to ambiguous information are distinct from risk premia. Under ambiguity,
an asset can command a high premium even if it is uncorrelated with all other assets
in the market and makes up a small share of the representative agent’s portfolio. For
ambiguity averse investors, uncertainty is a first-order concern: if information quality
drops, an asset is treated as if its mean payoff has fallen. This lowers prices (and increases
expected excess returns) regardless of covariance with the market. In addition, premia
due to ambiguous information depend not only on the quality of information about that
asset, but also on the volatility of its fundamentals. In markets where fundamentals do
not move much, it is irrelevant whether information quality is high or low. In contrast,
when fundamentals are volatile, information quality is much more of a concern and the
premium for low quality is higher. Importantly, ambiguity averse investors fear not only
market-wide, but also asset-specific ambiguous information. The model thus predicts the
existence of a premium for idiosyncratic volatility.

Moreover, ambiguity premia are anticipatory: the prospect of lower information qual-
ity, perhaps triggered by an announcement or other event, is sufficient to lower asset
prices. In contrast, in a Bayesian model changes in future information quality are ir-
relevant for current prices. This result suggests that conclusions commonly drawn from
event studies should be interpreted with caution. For example, a negative abnormal re-
turn after a merger announcement need not imply that the market views the merger as
a bad idea. Instead it might simply reflect the market’s discomfort in the face of the
upcoming period of ambiguous information. Importantly, a discount due to low future
idiosyncratic information quality cannot be captured by the Bayesian model: if lower
information quality is captured by higher risk, then it should be diversified away.
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The importance of ambiguous news varies not only in the cross-section, but also over
time. Ambiguous information is particularly prevalent when payoff-relevant news are
unfamiliar to market participants. This leads us to consider shocks to information quality.
Asset markets often witness events that simultaneously (i) increase uncertainty about
fundamentals and (ii) change the nature of signals relevant for forecasting fundamentals.
One example is the terrorist attack of September 11, 2001. This shock both increased
uncertainty about future growth and shifted the focus to hitherto “unfamiliar” news
about foreign policy and terrorism. Since the shock increased uncertainty, it marked the
start of a learning process that affected prices. Since the news were unfamiliar, it is
natural to model this process as learning from ambiguous signals.

Shocks to information quality can have drawn out negative effects on prices even if
fundamentals do not change. The initial drop in the stock market when it reopened on
September 17 was followed by more losses over the following week, before a gradual re-
bound occurred. With hindsight, we know that no long term structural change occurred:
the shock changed only information quality, not fundamentals. Thus a Bayesian model
with known signal quality has problems explaining the initial slide in prices. Roughly,
if signal precision is high, the arrival of enough bad news to explain the first week is
highly unlikely. If signal precision is low, bad news will not be incorporated into prices
in the first place. In our model, where signal precision is unknown, bad news are taken
especially seriously and hence a much less extreme sequence of signals suffices to account
for prices in the first week. In sum, ambiguous information can help to rationalize the
delayed negative response observed after a shock to information quality.

Our assumption that tangible information is unambiguous is a simplification. More
generally, one would expect that all information is at least somewhat ambiguous. How-
ever, it is plausible that intangible information is more ambiguous than tangible infor-
mation. Econometric analysis can often help narrow down the range of precisions for
tangible signals: for example, one can study the predictability of stock returns by the
price dividend ratio. As discussed in Epstein and Schneider [19], learning can resolve
ambiguity over time, so that one might expect a narrower range of precisions for tangible
signals. In contrast, quantitative analysis that determines the true precision of news
reports is almost impossible.

With ambiguous signals, the relationship between information quality and the volatil-
ity of prices and returns is very different from that with risky (or noisy) signals. With
noisy signals, better information quality (that is, higher precision) simply means that in-
formation about future cash flows is revealed earlier, when the cash flows are discounted
more heavily. As a result, changes in information quality affect the volatility of prices and
returns in opposite directions. For example, with earlier release of information, prices
fluctuate more, but returns fluctuate less. In our framework, higher information quality
can also mean that news becomes less ambiguous, or easier to interpret. Rather than
speed up the temporal resolution of uncertainty, this changes how shocks to fundamentals
feed through to prices and returns at a point in time via the interpretation of signals.
Changes in information quality then affect the volatility of prices and returns in the
same direction. For example, a reduction of ambiguity — perhaps due to improvements

4



in information technology — can increase the volatility of both prices and returns.

The paper is organized as follows. Section 2 presents a simple thought experiment —
related to the Ellsberg Paradox — to clarify the concept of ambiguous information and our
modeling approach. It also reviews recursive multiple-priors utility. Section 3 discusses a
simple representative agent model and derives general properties. Here we also contrast
the Bayesian and ambiguity aversion approaches to thinking about information quality
and asset pricing. Section 4 considers the calibrated model of 9/11 as an example of
shocks to information quality. Section 5 discusses related literature. Proofs are collected
in an appendix.

2 AMBIGUOUS INFORMATION

In this section, we discuss two experiments that illustrate how ambiguity aversion can
imply behavior that is both intuitive and inconsistent with the standard expected utility
model. The first is the classic Ellsberg Paradox that was the starting point for the large
experimental literature on ambiguity. A second (thought) experiment clarifies the concept
of ambiguous information. We then discuss an example with normal distributions, already
partly described in the introduction, that is the key tool for our applications. Finally, we
discuss the axiomatic underpinnings of our approach as well as its connection to the more
general model of learning under ambiguity introduced in Epstein and Schneider [19].

2.1 Experiments

Experiment 1 (Ellsberg Paradox). Consider two urns, each containing four balls that are
either black or white. The agent is told that the first “risky” urn contains two balls of
each color. For the second “ambiguous” urn, he is told only that it contains at least one
ball of each color. It is announced that one ball will be drawn from each urn. The agent
is invited to bet on their color. Any bet (on a ball of some color drawn from some urn)
pays one dollar (or one util) if the ball has the desired color and zero otherwise.

Intuitive behavior pointed to by Ellsberg, and subsequently documented in many
experiments, is the preference to bet on drawing black from the risky urn as opposed
to the ambiguous one, and a similar preference for white. The paradox is that decision-
makers who form a single subjective probability over the composition of the ambiguous
urn cannot exhibit such behavior. Indeed, strict preference for black from the risky urn
reveals that the subjective probability of black for the ambiguous urn is less than 1

2

(that is, the objective probability of black for the risky urn). At the same time, strict
preference for white from the risky urn reveals that the subjective probability of black for
the ambiguous urn is more than 1

2
, a contradiction. An alternative way to think about

Ellsberg-type behavior is that a decision-maker forms a (subjective) range of probabilities
about the composition of the ambiguous urn. He then evaluates bets by calculating the
worst-case expected utility. For example, suppose that the range of probabilities of black
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is the interval
£
p, p̄
¤
. The worst-case expected utility of a bet on black is then p for a bet

on black, and 1− p̄ for a bet on white. Since the objective probability of black from the
risky urn is 1

2
, Ellsberg-type behavior follows whenever p < 1

2
< p̄.

To emphasize the relevance for asset pricing, it is helpful to view the Ellsberg Paradox
as a simple portfolio choice problem under model uncertainty. Bets on black and white
from the ambiguous urn are assets. The correct “model” of their payoffs is not known. A
Bayesian investor treats all model uncertainty as risk — he decides on a prior over possible
distributions and uses that prior to calculate conditional payoffs. Since information
about the assets is symmetric here, a typical Bayesian would probably adopt a prior that
respects symmetry. But this implies that under his conditional belief each asset pays one
with probability one half, and zero otherwise, whatever the precise shape of the prior.
As a result, the Bayesian would be indifferent between either bet on the ambiguous urn
and a bet on the fair risky urn. The behavior pointed to by Ellsberg shows that people
do not treat model uncertainty simply as risk. Instead, they behave as if they adjust the
mean return on the ambiguous assets. This first order effect of model uncertainty will
be an important theme below.

In sum, the Ellsberg Paradox arises because decision makers appear to feel more
comfortable when the probabilities of uncertain events are objectively known. Gilboa
and Schmeidler [22] have shown formally that this attitude can be captured by multiple
priors. If S is a set of possible states of the world and c : S → R, is a consumption plan,
they define utility by

U (c) = min
p∈P

Ep [u (c)] , (2)

where u is a standard utility function, P is a set of probability measures on S, and Ep is
the expectation under p ∈ P. The model coincides with the expected utility model when
beliefs are given by a single probability, that is, P = {p}. More generally, the decision-
maker behaves as if he evaluates the utility of a plan c under the “worst-case” probability
in P. Gilboa and Schmeidler prove that this is implied by “preference for objectively
known probabilities”, as described by their axioms.

Ambiguous Information

Experiment 2. Consider again a risky and an ambiguous urn. Instead of betting on
the next draw, the agent is now invited to bet on the colors of two specific balls, called
the “coin balls”. For each urn, the color of the coin ball is determined by flipping a fair
coin: it is black if the coin toss produces heads and white otherwise, where the coin tosses
are independent across urns. In addition to the coin ball, each urn contains n “non-coin
balls”, of which exactly n

2
are black and n

2
are white. For the risky urn, it is known

that n = 4: there are exactly two black and two white non-coin balls. In contrast, the
number of non-coin balls in the ambiguous urn is unknown — there could be either n = 2
(one white and one black) or n = 6 (three white and three black) non-coin balls. The
possibilities are illustrated in Figure 1.

A priori, before any draw is observed, one should be indifferent between bets on the
coin ball from either urn - all these bets amount to betting on a fair coin. Suppose now
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Figure 1: Risky and ambiguous urns for Experiment 2. The coin balls are drawn as half
black. The ambiguous urn contains either n = 2 or n = 6 non-coin balls.

that one draw from each urn is observed and that both balls drawn are black. For the
risky urn, it is straightforward to calculate the conditional probability of a black coin
ball. Let n denote the number of non-coin balls. Since the unconditional probability of
a black coin ball is equal to that of a black draw (both are equal to 1

2
), we have

Pr (coin ball black|black draw) = Pr (black draw|coin ball black) = n/2 + 1

n+ 1
,

and with n = 4 for the risky urn, the result is 3
5
.

The draw from the ambiguous urn is also informative about the coin ball, but there
is a difference between the information provided about the two urns. In particular, it is
intuitive that one would prefer to bet on a black coin ball in the risky urn rather than in
the ambiguous urn. The reasoning here could be something like “if I see a black ball from
the risky urn, I know that the probability of the coin ball being black is exactly 3

5
. On the

other hand, I’m not sure how to interpret the draw of a black ball from the ambiguous
urn. It would be a strong indicator of a black coin ball if n = 2, but it could also be a
much weaker indicator, since there might be n = 6 non-coin balls. Thus the posterior
probability of the coin ball being black could be anywhere between 6/2+1

6+1
= 4

7
≈ .57 and

2/2+1
2+1

= 2
3
. So I’d rather bet on the risky urn.” By similar reasoning, it is intuitive that

one would prefer to bet on a white coin ball in the risky urn rather than in the ambiguous
urn. One might say “I know that the probability of the coin ball being white is exactly
2
5
. However, the posterior probability of the coin ball being white could be anywhere
between 1

3
and 3

7
≈ .43. Again I’d rather bet on the risky urn.”

Could a Bayesian agent exhibit these choices? In principle, it is possible to construct
a subjective probability belief about the composition of the ambiguous urn to rationalize
the choices. However, any such belief must imply that the number of non-coin balls in
the ambiguous urn depend on the color of the coin ball, contradicting the description
of the experiment. To see this, assume independence and let p denote the subjective
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probability that n = 2. The posterior probability of a black coin ball given a black draw
is

2
3
p+ 4

7
(1− p) .

Strict preference for a bet on a black coin ball in the risky urn requires that this pos-
terior probability be greater than 3

5
and thus reveals that p > 3

10
. At the same time,

strict preference for a bet on a white coin ball in the risky urn reveals that p < 3
10
, a

contradiction.

This limitation of the Bayesian model is similar to that exhibited in the Ellsberg
Paradox above. However, the key difference is that the Ellsberg Paradox arises in a
static context, while here ambiguity is only relevant ex post, after the signal has been
observed.

Information Quality and Multiple Likelihoods

The preference to bet on the risky urn is intuitive because the ambiguous signal — the
draw from the ambiguous urn — appears to be of lower quality than the noisy signal —
the draw from the risky urn. A perception of low information quality arises because the
distribution of the ambiguous signal is not objectively given. As a result, the standard
Bayesian measure of information quality, precision, is not sufficient to adequately compare
the two signals. The precision of the noisy signal is parametrized by the number of non-
coin balls n: when there are few non-coin balls that add noise, precision is high. We
have shown that a single number for precision (or, more generally, a single prior over n)
cannot rationalize the intuitive choices. Instead, behavior is as if one is using different
precisions depending on the bet that is evaluated.

Indeed, in the case of bets on a black coin ball, the choice is made as if the ambiguous
signal is less precise than the noisy one, so that the available evidence of a black draw
is a weaker indicator of a black coin ball. In other words, when the new evidence — the
drawn black ball — is “good news” for the bet to be evaluated, the signal is viewed as
relatively imprecise. In contrast, in the case of bets on white, the choice is made as if
the ambiguous signal is more precise then the noisy one, so that the black draw is a
stronger indicator of a black coin ball. Now the new evidence is “bad news” for the bet
to be evaluated, and is viewed as relatively precise. The intuitive choices can thus be
traced to an asymmetric response to ambiguous news. In our model, this is captured
by combining worst-case evaluation as in Gilboa-Schmeidler with the description of an
ambiguous signal by multiple likelihoods.

More formally, we can think of the decision-maker as trying to learn the colors of
the two coin balls. His prior is the same for both urns and simply places probability
1
2
on black. The draw from the risky urn is a noisy signal of the color of the coin ball.

Its (objectively known) distribution is that black is drawn with probability 3
5
if the coin

ball is black, and 2
5
if the coin ball is white. However, for the ambiguous urn, the signal

distribution is unknown. If n = 2 or 6 is the unknown number of non-coin balls, then
black is drawn with probability n/2+1

n+1
if the coin ball is black and n/2

5n+1
if it is white.

Consider now updating about the ambiguous urn conditional on observing a black draw.
Bayes’ Rule applied in turn to the two possibilities for n gives rise to the posterior
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probabilities for a black coin ball of 4
7
and 2

3
respectively, which leads to the range of

posterior probabilities
£
4
7
, 2
3

¤
.1 If bets on the ambiguous urn are again evaluated under

worst-case probabilities, then the expected payoff on a bet on a black coin ball in the
ambiguous urn is 4

7
, strictly less than 3

5
, the payoff from the corresponding bet on the

risky urn. At the same time, the expected payoff on a bet on a black coin ball in the
ambiguous urn is 1

3
, strictly less than the risky urn payoff of 2

5
.

Normal Distributions

To write down tractable models with ambiguous signals, it is convenient to use normal
distributions. The following example features a normal ambiguous signal that inherits
all the key features of the ambiguous urn from Experiment 2. This example is at the
heart of our asset pricing applications below. Let θ denote a parameter that the agent
wants to learn about. This might be some aspect of future asset payoffs. Assume that
the agent has a unique normal prior over θ, that is θ ∼ N (m,σ2θ) — there is no ambiguity
ex ante. Assume further that an ambiguous signal s is described by the set of likelihoods
(1) from the introduction. For comparison with Experiment 2, the parameter θ here is
analogous to the color of the coin ball, while the variance σ2s of the mean-zero shock ε
plays the same role as the number of non-coin balls in the ambiguous urn.

To update the prior, apply Bayes’ rule to all the likelihoods to obtain a family of
posteriors:

θ ∼ N
µ
m+

σ2θ
σ2θ + σ2s

(s−m) ,
σ2sσ

2
θ

σ2θ + σ2s

¶
, σ2s ∈

£
σ2s, σ

2
s

¤
Even though there is a unique prior over θ, updating leads to a nondegenerate set of
posteriors — the signal induces ambiguity about the parameter. Suppose further that in
each period, choice is determined by maximization of expected utility under the worst-
case belief chosen from the family of posteriors. Now it is easy to see that, after a
signal has arrived, the agent responds asymmetrically. For example, when evaluating a
bet, or asset, that depends positively on θ, he will use a posterior that has a low mean.
Therefore, if the news about θ is good (s > m), he will act as if the signal is imprecise
(σ2s high), while if the news is bad (s < m), he will view the signal as reliable (σ2s low).
As a result, bad news affect conditional actions more than good news.

2.2 A Model of Learning under Ambiguity

Recursive multiple-priors utility, axiomatized by Epstein and Schneider [17], extends the
Gilboa-Schmeidler model to an intertemporal setting. Suppose that S is a finite period
state space. One element st ∈ S is observed every period. At time t, the decision-maker’s
information consists of the history st = (s1, ..., st) . Consumption plans are sequences
c = (ct), where each ct depends on the history st. Given a history, preferences over future

1Because the agent maximizes expected utility under the worst-case probability, his behavior is iden-
tical if he uses the entire interval of posterior probabilities or if he uses only its endpoints.
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consumption are represented by a conditional utility function Ut, defined recursively by

Ut(c; s
t) = min

pt∈Pt(st)
Ept

£
u(ct) + βUt+1(c; s

t, st+1)
¤
, (3)

where β and u satisfy the usual properties. The set Pt(s
t) of probability measures on S

captures conditional beliefs about the next observation st+1. Thus beliefs are determined
by the whole process of conditional one-step-ahead belief sets {Pt(s

t)} .
To clarify the connection to the atemporal case (2), it is helpful to rewrite utility

using discounted sums. Consider the collection of all sets Pt(s
t), as one varies over times

and histories. This collection determines a unique set of probability measures P on S∞

satisfying the regularity conditions specified in [17].2 Thus one obtains the following
equivalent and explicit formula for utility:

Ut(c; s
t) = min

P∈P
EP

£
Σs≥t βs−t u(cs) | st

¤
.

This expression shows that each conditional ordering conforms to the multiple-priors
model in Gilboa and Schmeidler [22], with the set of priors for time t determined by
updating the set P measure-by-measure via Bayes’ Rule.
Epstein and Schneider [19] propose a particular functional form for {Pt(s

t)} in order
to capture learning from a sequence of conditionally independent signals. Let Θ denote
a parameter space that represents features of the data that the decision maker tries to
learn. Denote by M0 a set of probability measures on Θ that represents initial beliefs
about the parameters, perhaps based on prior information. TakingM0 to be a set allows
the decision-maker to view this initial information as ambiguous. The distribution of the
signal st conditional on a parameter value θ is described by a set of likelihoods L. Every
parameter value θ ∈ Θ is thus associated with a set of probability measures L(· | θ). The
size of this set reflects the decision maker’s (lack of) confidence in what an ambiguous
signal means, given that the parameter is equal to θ. Signals are unambiguous only if
there is a single likelihood, that is L = {c}. Otherwise, the decision-maker feels unsure
about how parameters are reflected in data. The set of normal likelihoods described in
(1) are a tractable example of this that will important below.

Beliefs about every signal in the sequence {st} are described by the same set L.
Moreover, for a given parameter value θ ∈ Θ, the signals are known to be independent
over time. However, the decision-maker is not confident that the data are actually iden-
tically distributed over time. In contrast, he believes that any sequence of likelihoods
ct = (c1, .., ct) ∈ Lt could have generated a given sample st and any likelihood in L might
underly the next observation. The set L represents factors that the agent perceives as
being relevant but which he understands only poorly - they can vary across time in a way
that he does not understand beyond the limitation imposed by L. Accordingly, he has
decided that he will not try to (or is not able to) learn about these factors. In contrast,
because θ is fixed over time, he can try to learn the true θ.

2In the infinite horizon case, uniqueness obtains only if P is assumed also to be regular in a sense
defined in Epstein and Schneider [18], generalizing to sets of priors the standard notion of regularity for
a single prior.

10



Conditional independence implies that the sample st affects beliefs about future sig-
nals (such as st+1) only to the extent that they affect beliefs about the parameter. We
can therefore construct beliefs {Pt(s

t)} in two steps. First, we define a set of posterior
beliefs over the parameter. For any history st, prior µ0 ∈M0 and sequence of likelihoods
ct ∈ Lt, let µt (· ; st.µ0, ct) denote the posterior obtained by updating µ0 by Bayes rule if
the sequence of likelihoods is known to be ct. Updating can be described recursively by

dµt
¡· ; st, µ0, ct¢ = ct(st | ·)R

Θ
ct(st | θ0) dµt−1(θ0; st−1, µ0, ct−1)

dµt−1(· ; st, µ0, ct−1).

The set of posteriorsMt (s
t) now contains all posteriors that can be derived by varying

over all µ0 and ct:

Mt(s
t) =

©
µt
¡
st;µ0, c

t
¢
: µ0 ∈M0, ct ∈ Lt

ª
. (4)

Second, we obtain one-step-ahead beliefs by integrating out the parameter. This is
analogous to the Bayesian case. Indeed, if there were a single posterior µt and likelihood
c, the one-step-ahead belief after history stwould be

pt
¡·|st¢ = Z

Θ

c(· | θ) dµt(θ|st).

With multiple posteriors and likelihoods, we define

Pt(s
t) =

½
pt (·) =

Z
Θ

ct+1(· | θ) dµt(θ) : µt ∈Mt(s
t), ct+1 ∈ L

¾
=

Z
Θ

L(· | θ) dMt(θ). (5)

This is the process of one-step-ahead beliefs that enters the specification of recursive
multiple priors preferences (3).

The Bayesian model of learning from conditionally i.i.d. signals obtains as the special
case of (5) when both the prior and likelihood sets have only a single element. For that
model, the de Finetti theorem implies that one-step-ahead beliefs can be written equiva-
lently as the conditionals of a single exchangeable probability P ∗ on the set of sequences
S∞. Similarly, when there is a single likelihood, that is, signals are unambiguous, then
there is a set P∗ of exchangeable measures on S∞, such that Pt(s

t) equals the set of all
one-step-ahead conditionals induced by measures in P∗.

3 TREE PRICING

In this section, we derive two key properties of asset pricing with ambiguous news: market
participants respond more strongly to bad news than to good news, and returns must
compensate market participants for enduring periods of ambiguous news. We derive
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these properties first in a simple three period setting. In this context, we also compare
the properties of information quality in our model to those of Bayesian models. We then
move to an infinite horizon setting, where we derive a number of implications for observed
moments.

3.1 An Asset Market with Ambiguous News

There are three dates, labelled 0, 1 and 2. We focus on news about one particular asset
(asset A). There are 1

n
shares of this asset outstanding, where each share is a claim to a

dividend
d = m+ εa + εi.

Herem is the mean dividend, εa is an aggregate shock and εi is an idiosyncratic shock that
affects only asset A. In what follows, all shocks are mutually independent and normally
distributed with mean zero. We summarize the payoff on all other assets by a dividend
d̃ = m̃+ εa + ε̃i, where m̃ is the mean dividend and ε̃i is a shock. There are n−1

n
shares

outstanding of other assets and each pays d̃. The market portfolio is therefore a claim to
1
n
d+ n−1

n
d̃. In the special case n = 1, asset A is itself the market. For n large, it can be

interpreted as stock in a single small company.

News

Dividends are revealed at date 2. The arrival of news about asset A at date 1 is repre-
sented by the signal

s = αεa + εi + εs. (6)

Here the number α ≥ 0 measures how specific the signal is to the particular asset on
which we focus. For example, suppose n is large, and hence that d represents future
dividends of a small company. If α = 1, then the signal s is simply a noisy estimate
of future cash flow d. As such, it partly reflects future aggregate economic conditions
εa. In contrast, if α = 0, then the news is 100% company-specific: while it helps to
forecast company cash flow d, the signal is not useful for forecasting the payoff on other
assets (that is, d̃). Examples of company-specific news include changes in management
or merger announcements.

We assume that the signal is ambiguous: the variance of the shock εs is known only to
lie in some range, σ2s ∈ [σ2s, σ2s]. This captures the agent’s lack of confidence in the signal’s
precision. This setup is very similar to the simple example (??) in the introduction. The
one difference is that the parameter θ = (εa + εi, εa)

0 that agents try to infer from the
signal s is now two-dimensional. Apart from that, there is again a single normal prior
for θ and a set of normal likelihoods for s parametrized by σ2s. The set of one-step-ahead
beliefs about s at date 0 consists of normals with mean zero and variance α2σ2a+σ2i +σ2s,
for σ2s ∈ [σ2s, σ2s]. The set of posteriors about θ at date 1 is calculated using standard
rules for updating of normal random variables. For fixed σ2s, let γ denote the regression
coefficient

γ
¡
σ2s
¢
=

cov (s, εa + εi)

var (s)
=

ασ2a + σ2s
α2σ2a + σ2i + σ2s

∈ [0, 1] .

12



Given s, the posterior density of θ = (εa + εi, εa)
0 is normal with mean vector γ (σ2s)

µ
1
α

¶
s.

The covariance matrix consists of var (εa + εi|s) = (1− γ (σ2s)) (σ
2
a + σ2i ) and var (ε

a|s) =
cov (εa, εa + εi|s) = (1− αγ (σ2s))σ

2
a. As σ

2
s ranges over [σ

2
s, σ

2
s] , the coefficient γ (σ

2
s) also

varies, tracing out a family of posteriors. In other words, the ambiguous news s introduces
ambiguity into beliefs about fundamentals.

Measuring Information Quality

To compare information quality across situations, it is common to measure the infor-
mation content of a signal relative to the volatility of the parameter. For fixed σ2s, the
coefficient γ(σ2s) provides such a measure since it determines the fraction of prior variance
in θ that is resolved by the signal. Under ambiguity, γ = γ (σ̄2s) and γ̄ = γ(σ2s) provide
lower and upper bounds on (relative) information content, respectively. In the Bayesian
case, γ̄ = γ, and agents know precisely how much information the signal contains. More
generally, the greater is γ̄−γ, the less confident they feel about the true information con-
tent. This is the new dimension of information quality introduced by ambiguous signals.
At the same time, γ continues to measure known information content - if γ increases,
everybody knows that the signal has become more reliable.

In the present asset market example, the signal s captures the sum of all intangible
information that market participants obtain during a particular trading period, such as a
day. The range γ̄− γ describes their confidence in that information. It may differ across
markets or time due to differences in information production. For example, consider the
case of a stock which suddenly becomes “hot”, that is, popular news coverage increases.
This often happens when a stock has done well in the past, for example. Increased
popular coverage will typically not increase the potential for truly valuable news: γ̄
remains nearly constant. However, given the new flood of information, the “typical day’s
news” s will be affected more by trumped up, irrelevant news items that cannot be easily
distinguished from relevant ones: γ falls. As a second example, suppose a foreign stock
is newly listed on the New York Stock Exchange. This will entice more U.S. analysts to
research this particular stock, because trading costs for their American clients have now
fallen. Again, the competence of the information providers is uncertain, especially since
the stock is foreign. It again becomes harder to know how reliable is the typical day’s
news. However, since most of the new coverage is by experts, one would now expect γ̄
to increase, while γ remains nearly constant.

3.2 Asymmetric Reponse and Price Discount

We assume that there is a representative agent who does not discount the future and cares
only about consumption at date 2. He has recursive multiple-priors utility with beliefs
as described above. We begin with a Bayesian benchmark, where the agent maximizes
expected utility and beliefs are as above with γ = γ̄. We also allow for risk aversion:
let period utility be given by u (c) = −e−ρc, where ρ is the coefficient of absolute risk
aversion.
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Bayesian Benchmark

It is straightforward to calculate the price of asset A at dates 0 and 1:

q0 = m− ρcov

µ
d,
1

n
d+

n− 1
n

d̃

¶
= m− ρ

µ
σ2a +

1

n
σ2i

¶
;

q1 (s) = m+ γs− ρ

µ¡
1− αγ

¢
σ2a +

1

n

¡
1− γ

¢
σ2i

¶
. (7)

Price equals the expected present value minus a risk premium that depends on risk
aversion and covariance with the market. The latter consists of two parts, the variance
of the common shock εa, and the variance of the idiosyncratic shock multiplied by 1

n
, the

market share of the asset. As n becomes large, idiosyncratic risk is diversified away and
does not matter for prices. If the signal is of any value

¡
γ > 0

¢
, the price at date 1 will

react to it. In addition, the risk premium will be reduced as the signal resolves some
uncertainty.

Ambiguous Signals

We now calculate prices when the signal is ambiguous. For simplicity, we assume that
the agent is risk neutral.3 Of course, he is still averse to uncertainty, since he is averse to
ambiguity. As discussed in Section 2, with recursive multiple-priors utility, actions are
evaluated under the worst-case conditional probability. We also know that the represen-
tative agent must hold all assets in equilibrium. It follows that the worst-case conditional
probability minimizes conditional mean dividends. Therefore, the price of asset A at date
1 is

q1 (s) = min
σ2s∈[σ2s,σ2s]

E [d|s] =
½

m+ γs if s ≥ 0
m+ γ̄s if s < 0.

(8)

A crucial property of ambiguous news is that the worst-case likelihood used to interpret a
signal depends on the value of the signal itself. Here the agent interprets bad news (s < 0)
as very informative, whereas good news are viewed as imprecise. The price function q1 (s)
is thus a straight line with a kink at zero, the cutoff point that determines what “bad
news” means. If the agent is not ambiguity averse

¡
γ̄ = γ

¢
, the price function is the same

as that for a Bayesian agent who is not risk averse (ρ = 0) .

At date 0, the agent knows that an ambiguous signal will arrive at date 1. His one-
step-ahead conditional beliefs about the signal s are normal with mean zero and variance
α2σ2a+σ

2
i+σ

2
s, where σ

2
s is unknown. Again, the worst-case probability is used to evaluate

portfolios. Since the date 1 price is concave in the signal s, the date zero conditional

3This approach allows us to derive transparent closed form solutions for key moments of prices and
returns. In the numerical example considered below, risk aversion is again introduced.
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mean return is minimized by selecting the highest possible variance σ̄2ε. We thus have

q0 = min
σ2s∈[σ2s,σ2s]

E [q1]

= min
σ2s∈[σ2s,σ2s]

E
£
m0 + γs+

¡
γ̄ − γ

¢
min {s, 0}¤

= m− ¡γ̄ − γ
¢ 1p

2πγ

q
ασ2a + σ2i (9)

The date zero price thus exhibits a discount, or ambiguity premium. This premium is
directly related to the extent of ambiguity, as measured by γ̄ − γ. It is also increasing
in the volatility of fundamentals, including the volatility σ2i of idiosyncratic risk. Again
without ambiguity aversion, we obtain risk neutral pricing (q0 = m), exactly as in the
case of no risk aversion (ρ = 0 in 7)

Comparison of (9) and (7) reveals two key differences between risk premia and premia
induced by ambiguous news. The first is the role of idiosyncratic shocks for the price of
small assets. Ambiguous company-specific news not only induces a premium, but the size
of this premium depends on total (including idiosyncratic) risk. In the Bayesian case,
whether company-specific news is of low quality barely matters even ex post. Indeed, for
σ2a = 0 and n large, the effect of (in . Second, under ambiguity, prices depend on the
prospect of low information quality. It is intuitive that if it becomes known today that
information about asset A will be more difficult to intepret in the future, this makes asset
A less attractive, and hence cheaper, already today. This is exactly what happens when
the signal is ambiguous. In contrast, a change of information quality in the Bayesian
model does not have this effect. While the prospect of lower information quality in the
future produces a larger discount ex post after the news has arrived (q1 is increasing in
γ), the ex ante price q0 is independent of γ.

Both properties can be traced to one behavioral feature: for ambiguity averse in-
vestors, uncertainty about the distribution of future payoffs is a first-order concern. We
have discussed above that the Bayesian model fails to predict behavior in the Ellsberg
experiment, because it assumes that agents treat all model uncertainty as risk. The
multiple-priors model accomodates Ellsberg-type behavior because agents act as if they
adjust the mean of the uncertain assets (or bets). The same effect is at work here. To
elaborate, consider first the impact of idisoyncratic shocks. If uncertainty about mean
earnings changes because of company-specific news, then Bayesians treat this as a change
in risk. There will be only a second order effect on Bayesian valuation of a company as
long as the covariance with the market remains the same. In contrast, ambiguity averse
investors act as if mean earnings themselves have changed. This is a first-order effect,
even if the company is small.

Second, suppose that Bayesian market participants are told at date 0 that hard-to-
interpret news will arrive at date 1. They believe that, at date 1, everybody will simply
form subjective probabilities about the meaning of the signal at date 1 and average
different scenarios to arrive at a forecast for dividends. As long as the volatility of
fundamentals does not change, total risk is the same and there is no need for prices
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to change. In contrast, ambiguity averse market participants know that they will not
be confident enough to assign subjective probabilities to different interpretations of the
signal at date 1. Instead they will demand a discount once they have seen the signal. As
a result, prices reflect this discount even at date 0. The prospect of ambiguous news is
thus enough to cause a drop in prices.

3.3 Asset Price Properties

To compare the predictions of the model to data, we embed the above three-period
model of news release into an infinite-horizon asset pricing model. Specifically, we chain
together a sequence of short learning episodes of the sort modeled above. Agents observe
just one intangible signal about the next innovation in dividends before that innovation
is revealed and the next learning episode starts.

Assume that there is an exogenous riskless interest rate r and that the agent’s dis-
count factor is β = 1

1+r
. In addition, we omit the distinction between systematic and

idiosyncratic shocks, since agents’ reaction to ambiguous signals is similar in the two
cases. The level of dividends on some asset is given by a deterministic trend plus a
mean-reverting process,

dt = κd̄+ (1− κ) dt−1 + ut, (10)

where ut is a shock and κ ∈ (0, 1) . The parameter κ measures the speed with which
dividends adjust back to their mean d̄.4

Every period, agents observe an ambiguous signal about next period’s shock:

st = ut+1 + εst ,

where the variance of εst is σ
2
s,t ∈ [σ2s, σ2s]. The relevant state of the world for the agent

is (st, dt). The components st and dt are conditionally independent, because st provides
information only about ut+1, which in turn is independent of dt. Beliefs about st+1 are
normal with mean zero and (unknown) variance σ2u + σ2s,t. Beliefs about dt+1 are given
by (10) and the set of posteriors about ut+1 given st described in the previous section.

Our goal is to derive asset pricing properties that would be observed by an econome-
trician who studies the above asset market. We thus assume that there is a true variance
of noise σ∗2s ∈ [σ2s, σ2s]. It is also useful to define γ∗ = γ (σ∗2s ) , a measure of the true
information content of the news that arrives in a typical trading period. In addition, we
assume that the true distribution of the fundamentals u coincides with the subjective

4Under these assumptions, dividends are stationary in levels, which is not realistic. However, it is
straightforward to extend the model to allow for growth. Let observed dividends be given by

d̂t = gt(d̄+ dt)

dt = (1− κ) dt−1 + ut, (11)

where g − 1 is the average growth rate, g − 1 < r. The observed stock price in the growing economy is
then bqt = gtqt. The analysis below applies to the detrended stock price qt if β is replaced by βg.
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beliefs of agents. The latter assumption distinguishes the present model from existing
approaches to asset pricing under ambiguity. Indeed, existing models are driven by ambi-
guity about fundamentals. The degree of ambiguity is then often motivated by how hard
it is to measure fundamentals. The present setup illustrates that ambiguity can matter
even if the true process of dividends is known by both the econometrician and market
participants. The point is that market participants typically have access to ambiguous
information other than past dividends that is not observed by the econometrician.

Let qt denote the stock price. In equilibrium, the price at t must be the worst-case
conditional expectation of the price plus dividend in period t+ 1:

qt = min
(σ2s t,σ2s,t+1)∈[σ2s,σ2s]

2
βEt [qt+1 + dt+1] . (12)

We focus on stationary equilibria. The price is given by

qt =
d̄

r
+
1− κ

r + κ
dt +

1

r + κ
γtst −

¡
γ̄ − γ

¢ σu
r
p
2πγ

, (13)

where γt is a random variable that is equal to γ̄ if st < 0 and equal to γ otherwise.5

The first two terms reflect the present discounted value of dividends — without news,
the model reduces to a version of the Gordon growth model, where prices are determined
by the interest rate, the growth rate and the current dividend level. The third term
captures the response to the current ambiguous signal. As in (8), this response is asym-
metric: the distribution of γt implies that bad news are incorporated into prices more
strongly. In addition, the strength of the reaction now depends on the persistence of
dividends: if κ is smaller, then the effect of news on prices is stronger since the infor-
mation matters more for payoffs beyond just the next period. The fourth term captures
anticipation fear of future ambiguous news — it is the present discounted value of the
discount in (9). As before, it may contain compensation for asset-specific shocks.

We are interested also in the behavior of excess returns. In the present setup, it is
convenient to focus on per share excess returns, defined as

Rt+1 = qt+1 + dt+1 − (1 + r) qt

=
1 + r

r + κ

¡
βγt+1st+1 + ut+1 − γtst

¢
+
¡
γ̄ − γ

¢ σup
2πγ

(14)

If there is no intangible information, we have risk neutral pricing. In this case, all γs are
zero and excess returns are 1+r

r+κ
ut+1 — they depend only on the shock to fundamentals

and are always expected to be zero. The gradual diffusion of information through news
implies that returns will also depend on the signals, and hence on noise.

Equity Premium and Idiosyncratic Risk

5Conjecture a time invariant price function of the type qt = Q̄+Qd̂d̂t +Qsγtst. Inserting the guess
into (12) and matching undetermined coefficients delivers (13).

17



The mean excess return under the true probability is

E∗ [Rt+1] =
¡
γ̄ − γ

¢ 1p
2πγ

µ
1 +

r

r + κ

q
γ/γ∗

¶
σu.

The presence of ambiguous news induces an ambiguity premium. It is well-known that
such a premium can arise as a result of ambiguity in fundamentals. What is new here
is that it is driven by ambiguity about the quality of news. Since news is in turn driven
by fundamentals, this introduces a direct link between the volatility of fundamentals and
the ambiguity premium: E∗ [Rt+1] is increasing in σu. Ambiguous signals thus provide
a reason why idiosyncratic risk is priced. Indeed, as discussed above, it does not matter
for the order of magnitude of the effect whether the news is company-specific or not.

Recent literature has documented a link between idiosyncratic risk and excess returns
in the cross section (for example, Lehmann [28] and Malkiel and Xu [29]). The explana-
tion typically put forward is that agents do not fully diversify. There is indeed evidence
that some agents, such as individual households, hold undiversified portfolios.6 However,
a Bayesian model will produce equilibrium premia for idiosyncratic risk only if there is
no agent who holds a well-diversified portfolio. Any well-diversified mutual fund, for
example, will bid up prices until the discount on idiosyncratic risk is zero. In contrast,
the present model features one, well-diversified, investor. As long as this investor views
company-specific news as ambiguous, he will want to be compensated for it. Since in-
stitutional investors with low transaction costs still have to process news, this delivers a
more robust story for why idiosyncratic risk can matter.

Additional implications of the ambiguous news model could be used to explore further
the tradeoff between idiosyncratic shocks and expected returns. In particular, the pre-
mium changes to different degrees depending on the way in which information quality is
increased. Other things equal, the premium is increasing in both γ̄ and γ, but the deriv-
ative with respect to γ̄ is always larger. This implies that, at the margin, an increase in
coverage by potential experts (higher γ̄) induces a larger increase in the premium than an
increase in popular news coverage

¡
lower γ

¢
. The intuition is that potential high quality

news moves prices more, and hence induces more uncertainty per unit of volatility of
fundamentals σu.

Excess Volatility

A classic question in finance is why stock prices are so much more volatile than measures
of the expected present value of dividends. We now reconsider the link between “excess
volatility” and information quality. The variance of the stock price is

var (qt) = σ2u

µ
1− κ

r + κ

¶2µ
1

κ (2− κ)
+

1

2γ∗

µ
γ̄2 + γ2 − 1

π

¡
γ̄ − γ

¢2¶¶
.

Price volatility is proportional to the volatility of the shock u. When there is no intangible
information

¡
γ = γ̄ = 0

¢
, the second term in the big bracket is zero, and the volatility

of prices is equal to that of the present value of dividends .
6In fact, ambiguity aversion may be responsible for such underdiversification. See Epstein and Schnei-

der [19] for an analysis of portfolio choice with recursive multiple-priors.
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The big bracket reflects the propagation of shocks through news. In the Bayesian
case (γ = γ̄ = γ∗), it is equal to 1

κ(2−κ) + γ∗: given persistence κ, price volatility is
increasing in information quality and bounded above. In particular, with persistent
dividends (κ small), changes in information quality will typically have only a small effect
on price volatility — it is dominated by the volatility of the present value of dividends.
With ambiguous signals, at the benchmark γ̄ = γ = γ∗, var (qt) is increasing in both
γ̄ and γ. In other words, more news coverage by potential experts (higher γ̄) increases
volatility, while more popular coverage (lower γ) tends to reduce it. Also, the possibility
of ambiguous news removes the upper bound on price volatility imposed by the Bayesian
model.7 Ambiguous signals can thus contribute to excess volatility of prices.

Recent empirical work on firm level volatility has mostly focused on volatility of
returns. In our model,

var (Rt) = σ2u

µ
1 + r

r + κ

¶2½
1− γ̄ − γ +

1 + β2

2γ∗

µ
γ̄2 + γ2 − 1

π

¡
γ̄ − γ

¢2¶¾
At the point γ̄ = γ = γ∗, the derivatives of var(Rt) with respect to both γ̄ and γ are
again positive. Changes in information quality due to changes in the ambiguity of signals
thus affect the volatility of prices and returns in the same way. This is in sharp contrast
to the Bayesian case, where price and return volatilities move in opposite directions.8

As explained by West [40], the latter result obtains because higher information quality
simply means that more information about future cash flows is released earlier, when the
cash flows are still being discounted at a higher rate.

Campbell et al. [12] have documented an upward trend in individual stock return
volatility. One question is whether this development can be connected to improvements
in information technology. Campbell et al. interpret such improvements as an increase
in γ∗, and dismiss the explanation, because return volatility should decrease, rather
than increase. In our framework, this argument only applies if the effect of the new
technology is immediately fully known. If agents have also become less certain about
how much improvement there is, the outcome is no longer obvious. In particular, while
higher γ∗ lowers return volatility, higher γ̄ increases it. Increased uncertainty about the
potential of information technology is thus consistent with higher volatility of returns.

Negative Skewness

Since ambiguity averse market participants respond asymmetrically to news, the model
tends to produce skewed distributions for prices and returns, even though both dividends

7This does not mean that that price volatility in the ambiguous news model is arbitrary. It just says
that the model cannot be rejected using relative volatility of prices and dividends. In a quantitative
application, γ̄, γ and γ∗ can be identified from the full distribution of prices. See Section 4 for an
example.

8Formally, in the Bayesian case,

var (Rt) =
σ2u

(1− βκ)
2

¡
1− γ∗(1− β2)

¢
,

so that an increase in γ∗ makes price more volatile but returns less so.
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and noise have symmetric (normal) distributions. Skewness of a random variable x is
usually defined by r = µ3 (x) / (σ (x))

3, where µ3 is the centered third moment and σ is
the standard deviation. For returns, the third moment is

µ3 (Rt+1) =

µ
1 + r

r + κ

¶3(
− ¡1− β3

¢
µ3 (γtst)−

3σ3up
2πγ∗3

µ
1− 1

π

¶¡
γ̄ − γ

¢ ¡
γ̄ + γ − γ∗

¢)
.

The appendix shows that µ3 (γtst) is negative and proportional to σ
3
u, where the propor-

tionality factor depends on γ̄, γ and γ∗. Since γ∗ ≤ γ̄, the second term is negative, so
that returns are negatively skewed, provided that the discount factor β is high enough.
Moreover, since the standard deviation of returns is proportional to σu, skewness is in-
dependent of the volatility of fundamentals and depends only on relative information
quality. In the Bayesian case, skewness is zero.

The intuition follows from the definition of returns and agents’ asymmetric response,
captured by the distribution of γt. At date t+ 1, the realized return Rt+1 is affected by
two pieces of news. First, the signal st+1 will be weighted more heavily the less favorable
it is, which tends to make returns negatively skewed. Second, the dividend shock ut+1
will often offset strong negative reponses to signals in the previous period. As a result,
the “dividend surprise” ut+1 − γtst will be positively skewed. Since the signal st+1 is
about future cash flows (beyond t + 1), the first effect becomes more important as the
discount factor increases. Indeed, for β → 1 we will always obtain negative skewness.
The dividend surprise is less positively skewed than the signal itself is negatively skewed,
because the signal does provide some information. We conclude that, at least at high
frequencies, the model predicts negative skewness in returns.

Negative skewness of stock returns at high frequencies has been widely documented
in the empirical literature. It is closely connected to the finding that volatility increases
in times of low returns, which has been found in both aggregate (index) and individual
stock returns.9 In the cross section, conditional negative skewness tends to be more
pronounced in stocks that have (i) witnessed a runup in prices in the last six months and
(ii) low book-to-market value (Harvey and Siddique [26], Chen et al. [15]). This evidence
is consistent with our comparative statics analysis of information quality. Stocks that
have recently risen in price and glamour stocks with low book-to-market value all tend to
attract a lot of popular media attention. As traders grapple with intangible information
— news of uncertain quality — they induce negative skewness in returns.

The above cited papers also show that negative skewness tends to be more pronounced
for stocks with larger market capitalization. A potential explanation is again that large
cap stocks are “in the news” more, so that traders in those stocks have to digest more
ambiguous, intangible information. It is important for this point that our model does
not predict that skewness and volatility are related in the cross section: large stocks can
be more negatively skewed, but still have lower volatility and hence ambiguity premia,
since their fundamentals are more stable (lower σ2u). It is also important that skewness is
driven by the ambiguity of signals, and not by ambiguous prior information. One might

9See, for example, Bekaert and Wu [5] for references.
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expect that investors perceive small stocks to be more ambiguous ex ante. Incorporating
prior ambiguity about the mean of ut, say, would increase the ambiguity premium and
could thus help explain the size effect. However, it would not change the centered third
moment and skewness. The latter would still only depend on the perception of news.

4 SHOCKS TO INFORMATION QUALITY

The previous section compared markets with different information quality. We now focus
on changes to information quality in a given market. In particular, asset markets often
witness shocks that not only increase uncertainty about fundamentals, but also force
markets to deal with unfamiliar news sources. Our leading example for such a shock is
September 11, 2001. On the one hand, the terrorist attack increased uncertainty about
economic growth. On the other hand, news about terrorism and foreign policy — that
were arguably less important for U.S. growth and stock returns earlier — suddenly became
important for market participants to follow. It thus became more difficult for market
participants to assess how much weight to place on any given piece of news. For familiar
news, such as Fed announcements and macro statistics releases, market participants had
— through years of experience — developed a feel for the relevance of any given piece of
news. Such experience was lacking for the news that became relevant after 9/11.

We view 9/11 as the beginning of a learning process where market participants were
trying to infer the possibility of structural change to the U.S. economy from unfamiliar
signals. Figure 2 plots the price-dividend ratio for the S&P 500 index for 19 trading days,
starting 9/17, including the pre-attack value, 9/10, as day 0. The stock market was closed
in the week after the attack; trading resumed on Monday, 9/ 17. The large drop on that
day was followed by another week of losses, before the market began to rebound. At
the end of our window — Friday, October 5 — the market had climbed, for the first time,
to the pre-attack level. It subsequently remained between 68 and 73 for another three
weeks (not shown). With hindsight, we know that structural change did not occur. The
goal is thus to explain what moved the market during the learning process, conditional
on that knowledge. We argue that the key implications of ambiguous news, asymmetric
response and price dicsount, help to explain the observed price pattern. The exercise
also illustrates how belief parameters can be identified from the distribution of prices.

Setup

There is an infinitely-lived representative agent. A single Lucas tree yields dividends
Yt = exp

³Pt
j=1∆yj

´
Y0, with Y0 given. According to the true data generating process,

the growth rate of dividends is ∆yt ∼ i.i.N ¡
θhi, σ2

¢
for all t. The agent knows that the

mean growth rate is θhi from time 0 up to some given time T + 1. However, he believes
that with probability 1− µ, the mean growth rate drops permanently to θlo after T + 1.
Information about growth beyond T + 1 is provided, at each date t ≤ T , by a signal st
that takes the values 1 or 0. Signals are serially independent and also independent of
dividends before T + 1; they satisfy Pr (st = 1) = π. At time T + 1, the long run mean
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growth rate is revealed.

The information structure captures the following scenario. First, there was no actual
permanent structural change caused by the attack.10 Second, agents were initially unsure
if there would be such a change. Third, news reports were initially much more informative
about the possibility of structural change than were dividend or consumption data. Of
course, to the extent that dividend data were available, they may have provided some
information. But initially, they are likely to have largely reflected decisions taken before
the attack occurred, becoming more informative only with time. Our model captures
this shift in relative informativeness in a stark way. We divide the time after the attack
into two phases, a learning phase (t ≤ T ) where dividends are entirely uninformative
about structural change, and a “new steady state” phase (t > T ) where structural change
actually materializes in dividends. In our calibration below, T corresponds to 26 days.11

Finally, imposing a fixed T at which θ is revealed is not a strong restriction if beliefs are
already close to the true θ at time T. We show a plot of our posterior means below.

The agent believes that signals are informative about growth, but views them as
ambiguous. This feature is modeled via a set of likelihoods c, where

c
¡
st = 1|θhi

¢
= c

¡
st = 0|θlo

¢
= λ ∈ [λ, λ], (15)

with λ > 1
2
. Beliefs about signals up to time T are represented by the parameter space

Θ =
©
θhi, θlo

ª
, the single prior given by µ and the set of likelihoods L defined by (15).

The special case λ = λ is a Bayesian model. To ease notation, assume that signals
continue to arrive after T , but that for t > T, c

¡
st = 1|θhi

¢
= 1 = c

¡
st = 0|θlo

¢
.

In terms of the notation of Section 2, the state space is S = {0, 1} × R. Since Y
is independent of s, the one-step-ahead beliefs Pt (s

t, Y t) for t ≤ T are given by the
appropriate product of one-step-ahead beliefs about st+1 and the conditional probability
law for Yt+1. Preferences over consumption streams are then defined recursively by

Vt
¡
c; st, Y t

¢
= min

pt∈Pt(st,Y t)

³
c1−γt + βEpt

h¡
Vt+1

¡
c; st+1, Y t+1

¢¢1−γi´ 1
1−γ
, (16)

where β and γ are the discount factor and the coefficient of relative risk aversion, respec-
tively. Since only the signals are ambiguous, the minimization in (16) may be viewed as
a choice over sequences λt+1 = (λ1, ..., λt+1) of precisions.

Connection between Truth and Beliefs

Discipline on beliefs is imposed in two ways. First, as above, assume that the true
precision λ lies in [λ, λ]. This condition ensures that an agent’s view of the world is not
10The model can nevertheless accommodate drops in dividends in September and stock price move-

ments that reflect these drops. All that is required is that such movements come from the same distrib-
ution as movements before September 11.
11The model could be extended to relax this strict division into phases. One might want to assume

that both news reports and dividends are informative about structural change at all times. However, in
such a setup, one would still like to let the informativeness of news reports decrease over time relative to
that of dividends. It is plausible that the main effects of our setup would carry over to this more general
environment.
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contradicted by the data. Suppose the agent looks back at the history of signals after
he is told the true parameter at time T . If he is Bayesian (λ = λ), the distribution
of the signals at the true parameter value is the same as the true distribution of the
signals. In this sense, the agent has interpreted the signals correctly.12 More generally,
an ambiguity averse agent contemplates many ‘theories’ of how the signal history has
been generated, each corresponding to a different sequence of precisions. One might thus
be concerned that theories that do not satisfy λt = λ infintely often are contradicted by
the data. However, this is not the case if λ ∈ [λ, λ]: there exists a large family of signal
processes with time varying precision λt ∈ [λ, λ] that cannot be distinguished from the
true distribution on the basis of any finite sample.13 While some of these processes will
appear less likely than others in the short run, any of them is compatible with a sample
that looks i.i.d. with precision λ. An agent who believes in the whole range [λ, λ] need
not, with hindsight, feel that he interpreted the signals incorrectly.

The second way in which discipline is imposed on beliefs is through the restriction
that agents would learn the true state θhi even if it were not revealed at T + 1. This
precludes an excessively pessimistic interpretation of news. A sufficient condition is that
the posterior probability of θhi, µt

¡
st, λt

¢
, converges to 1 if the truth equals the lower

bound of the precision range:

lim
t→∞

min
λt1

µt
¡
st, λt

¢
= 1, a.s. for st i.i.d. with Pr (st = 1) = λ. (17)

If λ were too large for given λ, agents could interpret negative signals as very precise and
never be convinced that the true state has occurred if the fraction of good signals is λ.
Thus the condition bounds λ for a given λ.

Supporting Measure and Asset Prices

Following [20], equilibrium asset prices can be read off standard Euler equations once
a (one-step-ahead) “supporting measure” that achieves the minimum in (16) has been
determined. Suppose that the intertemporal elasticity of substitution is greater than one.
It is then easy to show that continuation utility is always higher after good news (s = 1)
than after bad news (s = 0). Thus the sequence of precisions

¡
λ∗t+1

¢
that determines

the supporting measure at time t and history st is chosen to minimize the probability
of a high signal in t + 1. For the past signals st, this requires maximizing the precision
of bad news (λ∗j = λ if sj = 0) and minimizing the precision of good news (λ∗j = λ if
sj = 1). For the future signal st+1, it requires maximizing (minimizing) the precision
λ∗t+1 whenever news are more likely to be bad (good) next period, that is, whenever the
posterior probability of θhi is smaller (larger) than 1

2
.

Let qt denote the price of the Lucas tree. Since signals and dividends are independent
12For example, he has not been “overconfident”, interpreting every signal as more precise than it

actually was.
13To construct such precision sequences, pick any ω such that ωλ + (1− ω)λ = λ. Let λ̃t be an

i.i.d. process valued in
©
λ, λ

ª
with Pr

³
λ̃t = λ

´
= ω. For almost every realization (λt) of

³
λ̃t

´
, the

empirical distribution of the nonstationary signal process with precision sequence (λt) converges to the
true distribution of the signals. See Nielsen [33] for a formal proof.
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for t ≤ T , the price-dividend ratio vt = qt/Yt depends only on the sequence of signals. It
satisfies the difference equation

vt
¡
st
¢
= β̂E∗t

£¡
1 + vt+1

¡
st+1

¢¢¤
where E∗t denotes expectation with respect to the (one-step-ahead) supporting measure
and where the new discount factor β̂ = βe(1−γ)θ

hi− 1
2
(1−γ)2σ2 is adjusted for dividend risk,

where γ here is the coefficient of relative risk aversion. Once θ has been revealed at date
T + 1, the price dividend ratio settles at a constant value.

Calibration

We set the discount rate to 4% p.a. and the coefficient of relative risk aversion to one
half. The average growth rate of dividends is fixed to match the price-dividend ratio,
yielding a number of 5.2% p.a. This is clearly larger than the historical average, which
reflects the high p/d ratio. The volatility of consumption is set at the historical value
of 2% p.a. reported by Campbell [11] for postwar data. Finally, we assume that the
potential permanent shock corresponds to a drop in consumption growth of .5 % p.a. In
steady state, this would correspond to a price-dividend ratio of 61.

Having fixed these parameters, we infer, for every learning model, the sequence of
signals that must have generated our price-dividend ratio sample if the model is correct.
If the signals had a continuous distribution, this map would be exact. Here we assume
that agents observe 20 signals per day. We then compute the model-implied price path
that best matches the data. While the price distribution is still discrete, it is sufficiently
fine to produce sensible results. A model is discarded if its ‘pricing errors’ are larger
than .5 at any point in time. Finally, we compute the likelihood conditional on the first
observation for each model, using the distribution of the fitted price paths. This is a
useful criterion for comparing models, since the first observation is basically explained
by the choice of the prior.

Numerical Results

To select a Bayesian model, we search over priors µ and precision parameters λ to max-
imize the likelihood. This yields an interior solution for both parameters. For example,
for precision, the intuition is as follows: the path of posteriors is completely determined
by the path of p/d ratios. Thus performance differences across Bayesian models depend
on how likely the path of posteriors is under the truth. If precision is very large, then it
is highly unlikely that there could have been enough bad news to explain the initial price
decrease. In contrast, if precision is very small, then signals are so noisy that posteriors
do not move much in response to any given news. Highly unlikely ‘clusters’ of first bad
and then good news would be required to explain the price path. This tradeoff gives rise
to an interior solution for precision.

To select a multiple-priors model, we need to specify both the true precision and the
range of precisions the agent thinks possible. To sharpen the contrast with Bayesian
models, we focus on models where ambiguity is large; we set λ slightly (.001) below
the upper bound associated with the requirement (17). We also assume that the truth
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Figure 2: Data and In-Sample Forecasts for 9/11 Calibration.

corresponds to λ.14 With these two conventions, we search over λ to find our favorite
multiple-priors model. This model is compared to the Bayesian model in Figures 2 and
3. The favorite multiple-priors model begins with a much higher prior probability, and
the precision range for λ ∈ [.58, .608] is higher than the precision for the best Bayesian
model, λ = .56. The multiple-priors model (log likelihood = −33.29) outperforms the
Bayesian model (log likelihood = −36.82). Figure 2 plots the one-step-ahead conditional
likelihoods to illustrate the source of the difference. The multiple-priors model is better
able to explain the downturn in the week of September 17. The models do about the
same during the recovery. Figure 2 plots, together with the data, three-trading-day-ahead
in-sample forecasts. This shows that the Bayesian model predicts a much faster recovery
than the multiple-priors model throughout the sample.

The result shows how the effects discussed in the previous section operate in a setting
with many signals. The two models represent two very different accounts of market
movements in September 2001. According to the Bayesian story, all price movements
reflect changes in beliefs about future growth. In particular, the initial drop in prices
arose because market participants expected a permanent drop in consumption of .2%
(see Figure 3). During the first week, bad news increased the expected drop to almost
.5%. In contrast, the ambiguity story says that agents begin with a prior opinion that
basically nothing has changed. However, they know that the next few weeks will be one

14Strictly speaking, this polar case is not permitted by the restriction that the truth lie in the interior
of the precision range. However, there is always an admissible model arbitrarily close to the model we
compute.
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Figure 3: Conditional Probabilities and Posterior Mean for 9/11 Calibration.

of increased confusion and uncertainty. Anticipation of this lowers their willingness to
pay for stocks. In particular, they know that future bad news will be interpreted (by
future ambiguity averse market participants) as very precise, whereas future good news
will be interpreted as noisy. This makes it more likely that the market will drop further
in the short run than for the Bayesian model.

For representative agent asset pricing models with multiple-priors utility, there is
always an observationally equivalent Bayesian model that yields the same equilibrium
price. This begs the questions why one should not consider this Bayesian model directly.15

Here, the reason is that this Bayesian model cannot be motivated by the same plausible
a priori view of the environment as our ambiguity aversion model. We want to capture
a scenario where signals are generated by a memoryless mechanism, and where precision
does not depend on the state of the world: learning in good times is not expected to
occur at a different speed than in bad times. An ambiguity aversion model with these
features outperforms a Bayesian model with these features. Some other Bayesian model
which does not have these features is not of interest. In addition, such a model would
yield misleading comparative static predictions. The observationally equivalent model is
much like a ‘reduced form’ which is not invariant to changes in the environment.

15This model would be an expected utility model with pessimistic beliefs, similar to the one in Abel
[1].
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5 RELATED LITERATURE

As mentioned above, our paper [17] provides axiomatic foundations for recursive multiple-
priors utility and derives measure-by-measure Bayesian updating as a dynamically con-
sistent updating rule for sets of priors. In Epstein and Schneider [19], we impose further
structure on belief sets in order to capture learning from a sequence of conditionally
independent signals. That paper introduces the general notion of “ambiguous signals”;
formally, they are signals for which connection to the underlying parameter is described
by a nonsingleton set of likelihoods. In the present paper, “ambiguous information”
refers to ambiguous signals for which likelihoods differ only in precision, or information
that is hard to interpret in the sense that its reliability is uncertain. The applications in
the present paper also differ from that in [19]. The latter considers partial equilibrium
portfolio choice behavior, while here our focus is on equilibrium pricing of securities.

Several papers have derived and discussed the emergence of ambiguity premia in
general settings (for example, Epstein and Wang [20], Chen and Epstein [14]). What
is new in the present paper is that the premium is due to ambiguity in signals. This
additional structure (i) clarifies that the anticipation of ambiguous news is sufficient for
premia and (ii) creates a direct link between the size of the premium and the measured
volatility of fundamentals. In addition, we emphasize that the size of the ambiguity
premium need not have anything to do with the asset’s covariance with the market, as
long as the latter is not zero. Uncertainty about asset-specific news cannot be dismissed as
negligible, because ambiguity averse agents do not diversify it away. This result is related
to the fact that the law of large numbers needs to be modified under ambiguity (see, for
example, Marinacci [31]). With ambiguous signals, it naturally leads to compensation
for measured idiosyncratic volatility.

The relevance of information not observed by the econometrician has long been recog-
nized. Traditional Euler equation tests (for example, Hansen and Singleton [25]) are
attractive precisely because they are robust to agents having more information than the
econometrician. However, fully specified equilibrium asset pricing models typically as-
sume that all information is tangible — information sets tend to include only past and
present prices, consumption and dividends. An exception is Veronesi [39], who has ex-
amined the effect of information quality on the equity premium in a Lucas asset pricing
model that also features an intangible (but unambiguous) signal. He shows that with
high risk aversion there is no premium for low information quality in a Bayesian model.

Several recent papers have pointed to overconfidence as a source of overreaction to
signals and excess volatility (see, for example, Daniel et al. [16], and also the references
in Barberis and Thaler [4]). In these models the agent’s perceived precision of an in-
tangible (private) signal is higher than “true” precision. This makes reactions to signals
more aggressive than under rational expectations. The mechanism that leads to excess
volatility is thus similar to that in our model. However, overconfidence by itself does
not entail an asymmetric response to news. Moreover, overconfidence is an assumption
about the relationship between true and subjective precisions while ambiguity aversion
is an assumption about (subjective) preferences only. The two concepts are thus comple-
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mentary: one can consider a model in which agents are uncertain about precision, but
the true precision lies close to (or even below) the lower bound of the range. This would
describe overconfident, ambiguity averse agents.

Other recent work in behavioral finance is also motivated by psychological evidence
and explores the effect of deviations from expected utility for asset pricing. Caplin and
Leahy [13] have studied a model of utility over belief states to formalize anxiety as an
anticipatory emotion. As in our model, information flow in the future matters for current
utility, which is consistent with experiments on anxiety. In a series of papers, Barberis
and Huang (for example, [2], [3]) have looked at the effects of narrow framing. They
assume that agents derive utility directly from individual asset positions. This gives rise
to premia on individual assets that are unrelated to correlation with the market. Our
results show that a concern for both future information flow and asset-specific uncertainty
also follow from the first-order concern with uncertainty exhibited by ambiguity averse
agents.

A large literature on asset pricing with Bayesian learning argues that learning can
explain excess volatility and in-sample predictability of returns. Excess volatility arises
because agents’ subjective variance of dividends is higher than the true variance. Agents
with such diffuse priors react more strongly to news than agents with rational expecta-
tions. To keep priors diffuse, the learning process is usually reset periodically, for example
because of regime shifts.16 The model of Section 3.3 is related to this literature since it
also chains together a sequence of short learning processes: in fact, agents observe just
one intangible signal about the next innovation in dividends before that innovation is
revealed and the next “learning process” starts. However, a crucial difference is that
in our model the sequence of priors about dividends is equal to their true distribution.
Excess volatility therefore is not due to a high subjective variance of fundamentals. This
feature is important — it implies that our model applies when the distribution of (tangi-
ble) fundamentals is well understood. The only deviation from rational expectations in
our setup is the presence of ambiguous intangible signals.

The model of 9/11 in Section 4 focuses on a learning process triggered by an event
that increases uncertainty. It is thus closer to a second group of papers that tries to
explain post-event abnormal returns (“underreaction”) through the gradual incorporation
of information into prices.17 It may be viewed as a model of negative underreaction in
periods of ambiguous news. In these periods, underreaction is likely even if there is
no change in fundamentals that is gradually revealed. Moreover, the slide in prices is
reversed in the long run as agents learn that fundamentals have not changed.

The mechanism that generates negative skewness in our model differs from existing
explanations. Veronesi [38] shows, in a Bayesian model with risk averse agents, that
prices respond more to bad news in good times and conversely. This obtains because,

16See Timmermann [35, 36], Bossaerts [6], and Lewellen and Shanken [30] for models of nonstationary
transitions and Brandt, Xeng, and Zhang [7], Veronesi [38] and Brennan and Xia [9] for models with
persistent hidden state variables.
17See, Brav and Heaton [8] for an overview and discussion of this literature.
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in his setup, news that contradict the current belief increase the conditional variance of
asset payoffs. Our result differs in two ways. First, since it does not rely on risk aversion,
it is relevant also if uncertainty is idiosyncratic and investors are well diversified. Second,
ambiguous signals entail an asymmetric response whether or not times are good. They
thus induce unconditional negative skewness in returns. To explain the latter fact, Hong
and Stein [27] and Veldkamp [37] have proposed mechanisms for bad news to be more
clustered. Such mechanisms could reinforce skewness in our setting, but they are not
necessary for it to obtain. In terms of cross-sectional implications, our model predicts
that the relative importance of intangible information generates skewness. As discussed
in Section 3, this is consistent with existing evidence on the cross section of stocks in the
U.S.

6 Appendix

The key step in calculating moments of prices and returns in Section 3.3 is to find
moments of γtst, where γt denotes the random variable that is equal to γ̄ when st ≤ 0,
and equal to γ otherwise. We summarize the properties of γtst here. All moments are
calculated under the true signal distribution. Since E [st|γt = γ̄] = Et [st|st ≤ 0]), the
calculations make heavy use of formulas for moments of truncated normal distributions,

E [st|st ≥ 0] = σ
q

2
π
, E [s2t |st ≥ 0] = σ2 and E [s3t |st ≥ 0] = σ3√
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To determine the variance of returns, we also need the term

cov (γtst, ut+1) = E [γtstut+1] = E [γtstE [ut+1|st, γt]]
= γ∗E
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The third centered moment of γtst is

µ3 (γtst) = E
£
γ3ts

3
t

¤− E [γtst]
3 − 3E [γtst] var (γtst) .

The only as yet unknown term is
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where the second equality follow from algebra and the third moment of the truncated
normal distribution. More algebra then delivers
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Since σ2s = σ2u/γ
∗, this expression is indeed proportional to σ2u, where the factor of

proportionality depends only on γ̄, γ and γ∗.

Finally, consider the third centered moment of returns. Since ut+1−γtst and γt+1st+1
are independent, we just need to compute

µ3 (ut+1 − γtst) = µ3 (ut+1)− µ3 (γtst)

+3E
£
ut+1 (γtst − E [γtst])

2¤− 3E £u2t+1 (γtst −E [γtst])
¤
.

The first term is zero since since ut+1 is normal. In the third and fourth terms, use
conditional normality of ut+1 to get
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Putting terms together, we have,
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Since σ2s = σ2u/γ
∗, we obtain the expression in the text.
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