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Abstract

The inability of the Bayesian model to accommodate Ellsberg-type behavior is well-known.

This paper focuses on another limitation of the Bayesian model, specific to a dynamic setting,

namely the inability to permit a distinction between experiments that are identical and those

that are only indistinguishable. It is shown that such a distinction is afforded by recursive

multiple-priors utility. Two related technical contributions are the proof of a strong LLN for

recursive multiple-priors utility and the extension to sets of priors of the notion of regularity of

a probability measure.
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1. Introduction

1.1. Objectives

In [6], we provide an axiomatic model of intertemporal utility that accommodates
aversion to ambiguity and exhibits dynamic consistency. Because utility is recursive
and the model builds on the atemporal multiple-priors model due to Gilboa and
Schmeidler [10], we call it recursive multiple-priors utility. An attractive feature of
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recursive multiple-priors utility is that, as shown in the companion paper [5], it
permits a model of learning under ambiguity.

This paper studies recursive multiple-priors when there is no learning because the
random variables generating observations through time are viewed by the agent as
independent. Besides being of interest for modeling situations where the agent has
learned all she can, the study of independence and the complete absence of learning
are of interest also because they constitute benchmarks that are important for proper
understanding of the associated model of learning. (Imagine, for example, Bayesian
theory in the absence of a compelling notion of probabilistic independence.) In
particular, some issues that are discussed in the more general context of [5] permit a
sharper treatment here in the absence of learning.

We make four principal contributions. First, we explicate the notion of
independence that emerges from recursive multiple-priors utility and compare it
with the notion appearing in [10,21]. More particularly, we focus on the counterpart
of the IID assumption for our model. Second, we adapt from Walley [20] the
distinction between experiments that are viewed as indistinguishable as opposed to
identical, and we show how such a distinction can be accommodated by recursive
multiple-priors utility. Third, inspired by Marinacci [12], we prove a strong LLN for
recursive multiple-priors utility satisfying the IID property.1 Besides the formal
interest in a generalization of the Bayesian LLN, this is of interest because it
supports our claims, described shortly, about the way in which our model improves
upon the reference Bayesian model. The usual LLN is typically formulated for
countably additive probability measures, or equivalently in our setting, for regular
probability measures. Our final contribution is to extend the notion of regularity of a
probability measure to IID sets of priors. Because this material may be of interest
only to the more technically inclined readers and because it is not essential for
understanding the other contributions, the treatment of regularity is for the most
part confined to an appendix.

1.2. The IID bayesian model

Motivation for the study of non-Bayesian models stems from limitations of the
Bayesian model. One that is well-known is the inability to accommodate aversion to
ambiguity such as demonstrated by the Ellsberg Paradox. Here we borrow from
Walley [20, pp. 457–471] and highlight other problematic features of the Bayesian
model that are specific to a dynamic setting.

For concreteness, consider a sequence of coins to be tossed sequentially. Suppose
that the agent is told that the coins are unrelated. Further she is told the same about
each coin, though possibly very little about any of them. The natural state space is
SN; where S ¼ fH;Tg; and the Bayesian agent forms a prior P on SN: Given the
symmetry of information about the coins and their unrelatedness, an IID prior is
called for. Then the usual strong LLN applies and states that the agent assigns
probability 1 to the event that the empirical frequency of the outcome H converges
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to the probability of H on a single toss. In particular, she is certain at the outset
that empirical frequencies converge. This expectation is intuitive if she is confident
that the coins are identical so that it is as though the same coin is being tossed
repeatedly. However, what is the basis for such confidence when the agent is told
nothing (or very little) about the coins beyond their being unrelated? In such cases,
she would presumably admit the possibility that the coins are not identical and
thus that empirical frequencies may fail to converge. On the other hand, given
the symmetry of information about the coins, she has no reason to distinguish
between them.

In summary, the IID Bayesian model imposes that the coins, or more generally,
the underlying experiments, are independently and identically distributed, while
frequently it might be appropriate to adopt only the weaker assumption that the
experiments are independently and indistinguishably distributed. Such a distinction is
not possible within the Bayesian framework, but we show that it is possible within
the framework of recursive multiple-priors.2 In particular, the corresponding LLN
reflects the agent’s relaxed view about empirical frequencies whereby she is certain
that they will lie in an interval, whose size reflects her ambiguity about the degree to
which coins differ. (Such a connection between subjective beliefs and empirical
frequencies is put forth also by Marinacci [12] in interpreting his results.)

Yet another way to describe the difference between the Bayesian IID model
and ours is that, while no learning takes place in either, the reasons differ.
In the former, the agent understands the data generating mechanism to the point
that she is confident that the coins are identical and thus that there is nothing left to
learn. In contrast, the non-Bayesian does not believe that the coins are identical.
However, she does not understand how they differ well enough to even formulate a
theory about these differences. Thus lack of understanding is the reason that she
does not learn.

2. Recursive multiple-priors

We work with a finite period state space S; identical for all times, so that the (full)

state space is SN ¼
Q

N

t¼1 St; St ¼ S all tX1: At t; the agent has observed the realized

history st
1 ¼ ðs1;y; stÞ; denote by fFtg the corresponding filtration. Unless

otherwise specified, measures on SN are understood to be defined on FN ¼
sð
S

N

1 FtÞ and those on any St are understood to be defined on the power set of S:
Both finitely additive and countably additive measures on SN will be relevant. The
corresponding sets are denoted baðSNÞ and caðSNÞ: The corresponding subsets of

probability measures are denoted ba1
þðSNÞ and ca1

þðSNÞ: We denote by DðSÞ the

probability simplex for the finite set S:
The agent ranks consumption processes c ¼ ðctÞ that are adapted to the filtration

fFtg: At any time t ¼ 0; 1;y; and given the history st
1; her ordering is represented
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by the conditional utility function Vt; defined recursively by

Vtðc; st
1Þ ¼ min

QAPtðst
1
Þ

EQ½uðctÞ þ bVtþ1ðcÞ	; ð2:1Þ

where b and u satisfy the usual properties and where Ptðst
1Þ is a primitive set of

1-step-ahead measures conditional on the history st
1: These embody beliefs about the

next step (about stþ1) given the history of observations st
1: Such beliefs reflect

ambiguity when Ptðst
1Þ is a nonsingleton. (See [6] for the model’s axiomatic

underpinnings and for a more detailed discussion.)
The hypothesis that successive realizations of st are viewed as independent is

naturally expressed by specializing 1-step-ahead conditionals to be independent of
history, while indistinguishability is expressed by assuming also time stationarity.
Thus suppose that

Pt ¼ L; ð2:2Þ

where LCDðSÞ is a convex and closed set of probability measures. Assume also
mutual absolute continuity within L:

When L is the singleton fcg; then the 1-step-ahead conditional c determines a
unique countably additive measure P on SN whose 1-step-ahead conditionals equal
c; namely, P is the countably additive product measure #N

1 c: The Kolmogorov

extension theorem ensures this uniqueness but only within caðSNÞ:
For the general case of nonsingleton L; the latter generates the following set of

priors P on SN:3

P ¼ clðfPAca1
þðSNÞ: PtAL all tgÞ; ð2:3Þ

where Pt denotes the 1-step-aheadFt-conditional of P and clð
Þ denotes closure with
respect to the weak topology on baðSNÞ; namely the topology induced by bounded
measurable functions. We refer to P as modeling IID beliefs, where IID means
independently and indistinguishably distributed.

We offer a number of observations to reassure the reader that this is a natural
specification of multiple priors P on the full state space given that 1-step-ahead
beliefs are given by L; see Appendix A for a more detailed rationale for (2.3). First,
P is consistent with L in that it satisfies (2.2). Second, the subset of P equal to

fPAca1
þðSNÞ: PtAL all tg would seem to capture the ‘countable additivity’

appropriate for nonsingleton sets of priors. However, the multiple-priors model, as
in both [10] and [6], imposes the technical condition that the set of priors be weakly
closed in baðSNÞ: Thus we define P to be the weak closure of the noted set. Note
that so defined it is convex, which is another technical condition imposed by the
theory.

A critical property of P is rectangularity, a notion defined in [6]. For the present
IID specification, rectangularity takes the form: PAP if and only if there exist cAL
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and a collection fQsAP: sASg satisfying

PðA1 � A�1Þ ¼
X
sAA1

cðsÞQsðA�1Þ; for all A1CS and A�1C
Y
tX2

S: ð2:4Þ

Any P that is a product measure #N

1 c�t with every c�t AL can be written in this form

by taking c ¼ c�1 and Qs ¼ #N

2 c�t for each s: The essential content of rectangularity
is that the measure P defined in (2.4) is in P for arbitrary choices of cAL and
measures Qs in P that may vary with s:

Rectangularity has an immediate and revealing implication for the minimum
probability of events. If we define

PðAÞ 
 min
PAP

PðAÞ; AAFN; ð2:5Þ

then we have the recursive relation

PðAÞ ¼ min
cAL

X
sAS

cðsÞPðAsÞ
" #

; ð2:6Þ

where As ¼ fðstÞN2 : ðs; ðstÞN2 ÞAAg: This recursivity plays a critical role below in

establishing the LLN.
A final noteworthy implication of rectangularity is the following explicit formula

for utility equivalent to (2.1):

Vtðc; st
1Þ ¼ min

QAP
EQ

X
sXt

bs�tuðcsÞ j st
1

" #
: ð2:7Þ

In particular, conditional utility conforms to the multiple-priors model [10], with the
set of priors for time t determined by updating the set P prior-by-prior via Bayes’
Rule.

3. Independence and identical/indistinguishable

This section is designed to clarify both our notion of independence and the
distinction between identical and indistinguishable mentioned in the introduction.

3.1. Independence

Our definition of independence is most easily clarified by comparing it with that
adopted by Gilboa and Schmeidler [10].4 Since the time invariance of L imposed to
model indistinguishability is not germane to this comparison of notions of
independence, we continue to assume it. With this qualification, the notion of
independence used by Gilboa and Schmeidler is captured in the present setting via
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the set of priors PGS; where

PGS ¼ co #
N

t¼1
ct: ctAL

� �
;

coð
Þ denotes the weakly closed convex hull. It is readily seen that PGS is a strict
subset of P:5 We proceed to examine differences between the two sets. Convexity
and closure are both technical regularity conditions; the former is imposed to ensure
uniqueness of the representing set of priors as in [10, Theorem 1], and the latter to
justify writing min rather than inf when defining utility as in (2.7), for example. Thus
the essential comparison is between

#PGS ¼ #
N

t¼1
ct: ctAL

� �
and #P ¼ fPAca1

þðSNÞ: PtAL all tg:

One difference is that while #PGS consists entirely of product measures, that is not

the case for #P: For example, in the coin tossing setting with S ¼ fH;Tg; suppose
that L is the convex hull of the measures ð1

3
; 2
3
Þ and ð2

3
; 1
3
Þ; that is, beliefs about the

outcome H on any single toss are modeled by the probability interval ½1
3
; 2
3
	: Then it is

apparent from (2.4) that #P contains P such that

PðH1Þ ¼ 2
3
; PðH1;H2Þ ¼ 2

3

 2
3

and PðT1;H2Þ ¼ 1
3

 1
3
;

so that PðH2 j H1ÞaPðH2 j T1Þ:
At a formal (functional form) level, this feature of our definition may strike the

reader as odd. However, sets of priors are properly interpreted only as part of the
representation of preference and properly evaluated only via their behavioral
implications. For our model, these are clear from (2.1) and (2.2) —the conditional
preference order at any time-event pair does not depend on history, reflecting
perceived independence between experiments. On the other hand, the significance of

the specification #PGS for dynamic behavior is unclear. That is because it violates
rectangularity and hence, by Epstein and Schneider [6], is not compatible with
dynamically consistent preferences. Thus, preferences alone do not determine
behavior without a specification of how intrapersonal conflicts are resolved and this
is not addressed in [10].

The upshot is that our model and the associated notion of independence take time
‘seriously,’ while Gilboa and Schmeidler are concerned with a formally atemporal,
one-shot choice setting. In their model, the experiments could be viewed as occurring
simultaneously, where no economic decisions are made between realizations, in

which case #PGS arguably captures an intuitive notion of cross-sectional indepen-
dence. On the other hand, our approach is not applicable to a cross-sectional setting.
That is because recursive multiple-priors utility presumes a given sequential ordering
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of experiments and the latter is available only in a temporal setting, where the order
in which experiments are conducted is typically given.

3.2. Identical vs. indistinguishable

The importance of this distinction rests on its being behaviorally meaningful. This
raises the question: ‘‘what behavior would reveal that the agent views the
experiments as indistinguishable but not necessarily identical?’’

To illustrate our response, turn again to the coins example from the introduction.
Consider the choice at time 0 between bets on the first two outcomes where prizes are
awarded at time 2 and are denominated in utils.6 If evidence about the coins is
symmetric, then indifference between betting on HT and TH seems intuitive.

Consider now the choice between either of the above bets and 1
2

HT þ 1
2

TH; the act

paying 1
2
if fHT ;THg and 0 otherwise. If the coins are identical, then there is nothing

to be gained by mixing and one would expect the rankings

HTBTH and 1
2

HT þ 1
2

TH BHT :

On the other hand, uncertainty that the coins are identical plausibly generates an
incentive to smooth utility across HT and TH; leading to a strict preference for the
mixture. Thus we take the rankings

HTBTH and 1
2

HT þ 1
2

THgHT ð3:1Þ

as reflecting that the coins are viewed as indistinguishable but not identical.
For our IID model consisting of (2.2), (2.3) and (2.7), where we assume that

mincAL cðHÞ and mincAL cðTÞ are both positive, the rankings in (3.1) are valid if
and only if L is not a singleton (the proof follows below). Thus the Bayesian IID
model (singleton L) is incapable of modeling ‘indistinguishable but not identical.’
The way in which this is accommodated within the multiple-priors framework is
roughly that the use of the same set L at every time delivers indistinguishability,
while the nonsingleton nature of L admits the possibility that coins differ.

The preceding claim can be proven as follows: Abbreviate mincAL cðHÞ by LðHÞ
and similarly for T : Then by (2.6) V0ðHTÞ ¼ b2 minPAP PðHTÞ ¼ b2LðHÞLðTÞ ¼
V0ðTHÞ: From (2.4),

V0ð12 HT þ 1
2

THÞ ¼ b2 min
PAP

½1
2

PðHTÞ þ 1
2

PðTHÞ	

¼ b2 min
cAL

QH ;QTAP

½1
2
cðHÞQHðTÞ þ 1

2
cðTÞQT ðHÞ	

¼ b2 min
cAL

½12 cðHÞLðTÞ þ 1
2 cðTÞLðHÞ	

¼ b2
1
2
LðHÞLðTÞ þ 1

2
ð1�LðHÞÞLðHÞ if LðTÞXLðHÞ;

1
2
ð1�LðTÞÞLðTÞ þ 1

2
LðTÞLðHÞ if LðTÞpLðHÞ:

(
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Thus V0ð12 HT þ 1
2 THÞ ¼ 1

2V0ðHTÞ þ 1
2V0ðTHÞ ¼ b2LðHÞLðTÞ ) LðTÞ þLðHÞ ¼

1 ) mincAL cðHÞ ¼ maxcAL cðHÞ; in other words, L is a singleton.
The preceding is readily generalized beyond the specific example to the setting of

the abstract state space S: For any tX2; let h denote the bet on the outcome sequence

%st
1 ¼ ð%s1;y; %stÞ that delivers payoff ht time t; where

htðs1;y; stÞ ¼
1 if st

1 ¼ %st
1;

0 otherwise;

(

and where the payoff is denominated in utils. By associating a zero payoff to all other time
periods we may identify h with a random payoff stream and thus compute its utility via
V0 defined in (2.7). For any permutation p on f1;y; tg; ph denotes the ‘permuted act’

phðs1;y; stÞ ¼ hðp�1 st
1Þ for all ðs1;y; stÞ in St;

which is a bet on the permuted sequence p%st
1 ¼ ðspð1Þ;y; spðtÞÞ: Then the general-

ization of (3.1) is: for all t; p and h as above,

V0ðhÞ ¼ V0ðphÞ and V0ð12 h þ 1
2
phÞXV0ðhÞ;

with strict inequality on the right occurring for every t and p for some choice of h:
This is delivered by our model if and only if L is not a singleton. (The proof is a
straightforward extension of the above argument.)

4. Strong LLN

Let X : S-R1 and Xt 
 XðstÞ for each t: For the Bayesian special case of our
model, where L ¼ fc�g and P ¼ fP�g are singletons, with P� being IID, the strong
LLN states that

P� lim
Xk

t¼1

Xt=k ¼ Ec�X

( )
¼ 1: ð4:1Þ

As discussed in Section 1.2, certainty that sample averages converge is not intuitive
in many situations. Here we establish a version of the LLN for the IID recursive
multiple-priors model that reflects a less confident agent, in particular, one who is
not certain that the experiments underlying the Xt’s are identical.

To proceed, restrict L further by assuming that its lower envelope n defined by

nðAÞ ¼ min
cAL

cðAÞ; ACS ð4:2Þ

is supermodular.7 It is well-known that this characterizes sets L that conform to the
Choquet model [19] in the sense that

min
cAL

Z
f dc ¼

Z
f dn 
 En f ; ð4:3Þ

for all f : S-R1; where the integral
R

f dn is in the sense of Choquet.
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Though restrictive, assumption (4.3) is common and admits many specifications
forL:Moreover, it is totally unrestrictive in the binary case. Thus when S ¼ fR;Bg;
and wlog if f ðRÞXf ðBÞ; then for any L;

min
cAL

½cðRÞ f ðRÞ þ cðBÞ f ðBÞ	 ¼ min
cAL

cðRÞ
� �

f ðRÞ

þ 1�min
cAL

cðRÞ
� �

f ðBÞ ¼ En f ;

for the capacity defined in (4.2).

Theorem 4.1. For the finite IID model, where L conforms to the Choquet model as in

(4.3), we have

min
PAP

P EnXplim inf
Xk

t¼1

Xt=kplim sup
Xk

t¼1

Xt=kp� Enð�XÞ
( )

¼ 1; ð4:4Þ

min
PAP

P EnXolim inf
Xk

t¼1

Xt=k

( )

¼ 0 ¼ min
PAP

P lim sup
Xk

t¼1

Xt=ko� Enð�X Þ
( )

: ð4:5Þ

In the Bayesian case, n is additive and EnX ¼ �Enð�XÞ; which delivers the standard
strong LLN.

Condition (4.4) is the central result and constitutes the counterpart of P�-a.s.
convergence in the Bayesian case. The agent is certain that sample averages lie in the
interval

½EnX ; � Enð�XÞ	 ¼ min
cAL

Z
X dc; max

cAL

Z
X dc

� �
;

whose size is determined by the set of likelihoods L: In the coins example, where
X ¼ 1 or 0 according as the outcome is H or T , the endpoints of the interval are the
minimum and maximum probabilities for H:

The second result (4.5) describes a sense in which the interval provides tight
bounds. Further results follow immediately from the superadditivity property: for all
disjoint B and C in FN;

min
PAP

PðB,CÞXmin
PAP

PðBÞ þmin
PAP

PðCÞ:

For example, an immediate consequence of the preceding and (4.4) is that

min
PAP

P lim inf
Xk

t¼1

Xt=koEnX

( )

¼ 0 ¼ min
PAP

P �Enð�X Þolim sup
Xk

t¼1

Xt=k

( )
:
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Marinacci [12] proves a (strong) LLN for nonadditive probabilities that is very
general in many respects, but it does not cover our result.8 One reason is that he
assumes that his set P conforms to the Choquet model, while we adopt the strictly
weaker assumption that 1-step-ahead beliefs in the form of L conform to Choquet
as in (4.3). In fact, our set of priors P; because it is rectangular, conforms to the
Choquet model only in the degenerate case where L and P are singletons, which
means that Marinacci’s analysis has little to say about recursive multiple-priors.9

Though we assume structure, in the form of rectangularity, that Marinacci does not,
this added structure has two obvious advantages. First, it ensures that our analysis is
tied to a coherent model of dynamic choice, namely recursive multiple-priors utility.
Second, rectangularity facilitates a simpler and more transparent proof. In
particular, our proof exploits heavily the recursivity ((2.6), for example) delivered
by rectangularity and reveals the analytical power that such recursivity affords. For
these reasons we view the proof as an important part of the message and thus we
include it in the main body of the paper (see the next section).

Finally, turn from the formal result to the behavioral interpretation of our LLN.
Though one is tempted to interpret the LLN as above in terms of willingness to bet
on or against the events appearing in (4.4) and (4.5), such an interpretation is not
justified by the decision-theoretic foundations in [6] and outlined in Section 2. That is

because the indicator function for fEnXolim inf
Pk

t¼1 Xt=kg; for example, is not an

adapted consumption process and thus does not lie in the domain of recursive
multiple-priors utility. In fact, this difference is decidedly nontrivial because the
events appearing in the statement of the LLN are tail events while the realized

consumption profile depends only on the true event in
S

N

1 Ft:
10 Similar remarks

apply even in the Bayesian case—the fact that the Savage prior P� assigns probability
1 to the event that sample averages converge, as in (4.1), has no implications for the
ranking of consumption processes. This is a restatement of the point emphasized by
de Finetti that because tail events are unobservable, limit laws formulated in terms of
such events are of questionable importance for applications (see [17] for extensive
discussion of de Finetti’s view).

One response in the Bayesian case has been to formulate limit laws that may be

expressed exclusively in terms of events in
S

N

1 Ft and that are equivalent to usual

statements if countable additivity is assumed (see [3,17], for example). We suspect
that such reformulations are possible also in our multiple-priors framework, but
further examination is beyond the scope of this paper. Since the assumption of
countable additivity is so widespread and permits much simpler formulations of the
LLN, we feel that the corresponding analysis for multiple-priors is of interest in spite
of the gap in supporting behavioral interpretations.
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T
N

j¼1 sð
S

N

t¼j StÞ; where St is the (power set) s-algebra on St; consists of all
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5. Proof of LLN

The structure of the proof is as follows: First, show that (4.4) is equivalent to the
conjunction of

min
PAP

P EnXplim inf
Xk

t¼1

X t=k

( )
¼ 1 ð5:1Þ

and

min
PAP

P lim sup
Xk

t¼1

Xt=kp� Enð�XÞ
( )

¼ 1: ð5:2Þ

The key then is to show that in each case there is a minimizing measure P�; different
across cases, that is IID; rectangularity of P renders this step straightforward.
Finally, apply the Bayesian LLN to P� . Some details that rely (implicitly) on
regularity of P complete the proof.

Proof. Condition (4.4) is equivalent to (5.1) and (5.2): It is clear that (4.4) implies

(5.1) and (5.2). To prove the converse, write A ¼ fEnXplim inf
Pk

t¼1 Xt=kg
and B ¼ flim sup

Pk
t¼1 Xt=kp� Enð�X Þg: Then minPAP PðA-BÞ ¼ minPAP

f1� PðAc,BcÞg ¼ 1 �maxPAP ½PðAc,BcÞ	X1 �maxPAP ½PðAcÞ þ PðBcÞ	X1�
maxPAP PðAcÞ �maxPAP PðBcÞ ¼ 1:

Prove (5.1); the argument for (5.2) is similar. The assumption (4.3) for L that it
corresponds to a Choquet integral implies that there exists c�AL satisfyingX

sAS

cðsÞXðsÞXEnX ¼
X
sAS

c�ðsÞX ðsÞ

and X
sAS

cðsÞ f ðsÞXEn f ¼
X
sAS

c�ðsÞ f ðsÞ ð5:3Þ

for all c and for any f comonotone with X :11 Define P� to be the (countably
additive) IID product measure induced by c�: The strong law for P� implies that

1 ¼ P� EnX ¼ lim
Xk

t¼1

Xt=k

( )
pP� EnXplim inf

Xk

t¼1

Xt=k

( )
p1:

Thus for (5.1), it suffices to establish that

P EnXplim inf
Xk

t¼1

Xt=k

( )
XP� EnXplim inf

Xk

t¼1

Xt=k

( )
ð5:4Þ

for all P in P:
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Intuition for (5.4) is as follows: Denote by CX ;c the cdf on R1 induced by the

random variable X and the measure c: Then (5.3) implies

CX ;cXFSDCX ;c� :

(XFSD denotes the first-order stochastic dominance relation for cdf’s on the real
line.) Thus, at each t; the 1-step-ahead distribution under P dominates that under P�

in the FSD sense. One expects that this should lead to first-order dominance also for
distributions induced on RN: In other words, we claim that

PfðX1;y;Xt;yÞAAgXP�fðX1;y;Xt;yÞAAg

for any measurable ACRN that is increasing in the sense that

xAA and x0
Xx ) x0AA:

Intuition is sharper in the binary case. Let S ¼ fH;Tg; XðHÞ ¼ 1 and X ðTÞ ¼ 0:
Then cðHÞXc�ðHÞ for all c implies that every P attaches higher probability than P�

to the next step being H: It ‘should’ follow that any event faplim inf
Pk

t¼1 Xt=kg
has weakly higher probability under P; similarly for other increasing sets.

To proceed with the formal argument, write X̃ðs1; s2;yÞ ¼ ðXðstÞÞN1 and, for any

given A; define

X̃�1ðAÞ ¼ fðstÞ : X̃ðs1; s2;yÞAAg:

Denote by PX̃�1 the induced measure on RN and adopt the notation

PðBÞ 
 min
PAP

PðBÞ; all BAFN:

Our objective is to prove, for all P in P;

PðX̃�1ðAÞÞXP�ðX̃�1ðAÞÞ for all increasing ACRN: ð5:5Þ

Then, because P� lies in P; it would follow that

PðX̃�1ðAÞÞ ¼ P�ðX̃�1ðAÞÞ for all increasing ACRN:

We proceed in three steps.
Step 1: Prove (5.5) for increasing sets A such that

X̃�1ðAÞAFt for some finite t: ð5:6Þ

For any such A; rectangularity and IID deliver (recall (2.4))

PðX̃�1ðAÞÞ ¼
X
s1AS

cðs1ÞQs1ðfðstÞN2 : ðXðs1Þ; ðXðstÞÞN2 ÞAAgÞ:
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In computing the minimum as P varies over P; note that each Qs1 can be varied
independently over P: Thus one obtains the following recursion analogous to (2.6):

PðX̃�1ðAÞÞ ¼ min
cAL

X
s1AS

cðs1ÞPðX̃�1ðAs1ÞÞ
" #

; ð5:7Þ

where

As1 ¼ fðX ðstÞÞN2 : ðX ðs1Þ; ðX ðstÞÞN2 ÞAA; ðstÞÞN2 ASNg:

Note that Xðs01ÞXXðs1Þ ) As0
1
*As1 ) PðX̃�1ðAs0

1
ÞÞXPðX̃�1ðAs1ÞÞ: The implied

comonotonicity implies further, by (5.3), that c� is a minimizer in (5.7), and hence
that

PðX̃�1ðAÞÞ ¼
X
s1AS

c�ðs1ÞPðX̃�1ðAs1ÞÞ: ð5:8Þ

Argue by induction on t: If t ¼ 1; then A has the form A ¼ fXðs1ÞAIg for some

increasing interval I in the real line, As1 ¼ | or RN according as Xðs1ÞeI or AI ;
hence

PðX̃�1ðAÞÞ ¼
X

s1AX�1
1

ðIÞ
c�ðs1Þ ¼ P�ðX̃�1ðAÞÞ;

which is the appropriate version of (5.5). If t41; then As1 is increasing and

X̃�1ðAs1ÞAFt�1: Thus the induction hypothesis combined with (5.8) implies that

PðX̃�1ðAÞÞ ¼
X
s1AS

c�ðs1ÞP�ðX̃�1ðAs1ÞÞ ¼ P�ðX̃�1ðAÞÞ:

Step 2: Denote by pt the projection operator from RN to Rt and let

At ¼ ptA � R� R�y :

Then AtrA if A is closed:12 Let xA-At so that for every t; x ¼ ðx1;y; xt; ytÞAA for
some yt in

Q
i4t R: By the nature of the product topology, ðx1;y; xt; ytÞ-x; which

must lie within the closed set A:
Step 3: Prove (5.5) for countably additive measures P: First, if A is closed, then At

is increasing and X̃�1ðAtÞ lies in Ft: By Step 1, PðAtÞXP�ðAtÞ: This implies that
PðAtÞrPðAÞ and similarly for P�; which proves (5.5) for A closed.

To generalize (5.5) to arbitrary increasing sets, observe that

PX̃�1ðAÞ ¼ supfPX̃�1ðKÞ: K closed; KCAg; ð5:9Þ

because PX̃�1 is a regular measure. Define K inc ¼ fxARN : (yAK; xXyg: Then K inc

is closed and increasing. Moreover, if A is increasing, then KCA ) K incCA and

PX̃�1ðAÞ ¼ sup fPX̃�1ðKÞ: K closed and increasing; KCAg:

Since a similar relation holds for P�; (5.5) follows.
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Step 4: Countably additive measures are dense in P; see (2.3). Thus (5.5) is
established.

Because (5.5) applies to all increasing sets A; it yields also that

min
PAP

P EnXolim inf
Xk

t¼1

Xt=k

( )
¼ P� Ec�Xolim inf

Xk

t¼1

Xt=k

( )
¼ 0;

where the last equality follows from the LLN for P�: This proves the first equality
in (4.5).

The remainder of the proof is evident. &
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Appendix A. Regularity

This appendix is an attempt to clarify and provide foundations for (2.3). The issue
is that, while in the finite horizon context 1-step-ahead conditionals uniquely
determine a rectangular P (apply backward induction to (2.4)), that is not true if the

horizon is infinite. For example, rectangularity restricts measures only on
S

N

1 Ft;
leaving scope for arbitrary assignments on the tail s-field. Even in the Bayesian
special case, we know from the Kolmogorov Theorem that uniqueness can be
ensured only given regularity, which in our setting is equivalent to countable
additivity. Thus one perspective on (2.3) to be described below is that it embodies a
form of regularity that is appropriate for nonsingleton sets of priors. (See [15] for the
definition of regularity of a measure and a statement of the Kolmogorov Theorem.)

More precisely, the objective of this appendix is to define a notion of regularity for
sets of priors that extends the usual definition for probability measures and for which
the following theorem can be proven:

Theorem A.1. The set P defined in (2.3) is the unique regular and rectangular set of

priors conforming with L; that is, satisfying (2.4).

In the present setting with state space SN; regularity of a probability measure is
equivalent to countable additivity. Thus one might view the relevant task as
extending the notion of countable additivity from single to multiple-priors. Some
seemingly natural ways of doing so have been studied in the literature. For example,
Marinacci et al. [13] adopt an axiom of monotone continuity very much like the one
used in [1] to deliver countable additivity of the Savage prior, and they show that it
characterizes a form of compactness for P; a related analysis and compactness
property appear in [7, pp. 43–45]. However, these compactness properties imply that
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all measures in P are absolutely continuous with respect to some P� in P and thus
that there is asymptotic merging to a single measure as in [2]. Such asymptotic
vanishing of ambiguity is intuitive in some but possibly not in all situations; for
example, it may not be intuitive in the IID environment of this paper where nothing
is learned because experiments are not viewed as identical. Thus we do not want to
impose it a priori on our theoretical framework. In particular, note that for the set P
defined in (2.3), there is no single P� for which P{P� for all P in P:

We proceed in several steps towards Theorem A.1. First, we list some properties of
P that follow from definition (2.3), restated here for convenience:

P ¼ clðfPAca1
þðSNÞ: PtAL all tgÞ:

Below refer to the weak topology on baðSNÞ induced by bounded measurable
functions as the weak topology. By the weak convergence (wc) topology on caðSNÞ
we mean the topology on SN induced by continuous functions; since S is finite, it has
a natural topology and SN is endowed with the product topology, which renders it
compact metric.

Lemma A.2. (i) P is nonempty, rectangular, weakly closed and convex.
(ii) P-caðSNÞ is nonempty, wc-closed in caðSNÞ and weakly dense in P:
(iii) P-caðSNÞ is weakly closed relative to caðSNÞ; that is,

Pn-PAcaðSNÞ; PnAP-caðSNÞ	 ) PAP:

(iv) For any P in P; there exists P� in P-caðSNÞ such that Pt ¼ P�
t for all t:

Proof. (i) Verify that fPAca1
þðSNÞ: PtAL all tg is a rectangular set and observe

that rectangularity is preserved by taking the weak closure.
(ii) Denseness is by construction. Nonemptiness follows from Kolmogorov.

Alternatively, it is implied by denseness of P-caðSNÞ and nonemptiness of P: For

wc-closed, let PnAP-caðSNÞ and Pn !wc PAcaðSNÞ: Then the 1-step-ahead

conditionals Pn
t lie in L; which is wc-closed (S is finite), and Pn

t !
wc

Pt: Hence

PtAL and PAP:
(iii) Straightforward.
(iv) Let Q be any countably additive measure in P; it exists by (ii). Define a

sequence of measures on SN via

Pnð
Þ ¼
Z

Qð
 jFnÞðoÞ dPðoÞ:

Roughly, Pn is constructed so as to agree with P on Fn: The construction ensures
also that Pn is countably additive (because S is finite and Q is countably additive)
and, by rectangularity, that it lies in P: Thus fPng is a sequence in P-caðSNÞ;
which is wc-compact. Let Pnk !wc P�: Given any t; eventually every Pnk agrees with P
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on Ft: Therefore, P� agrees with P on any Ft as asserted. (We can say more: The
Kolmogorov Theorem ensures that P� is unique, that is, it equals the limit also for

any other subsequence of fPng: In other words, Pn !wc P�:) &

Corollary A.3. (a) The set P defined by (2.3) is the smallest rectangular weakly closed

and convex set of priors P0 conforming with L and such that P0-caðSNÞ is nonempty

and wc-closed in caðSNÞ:
(b) For any rectangular weakly closed and convex set of priors P0 that conforms with

L; P0-caðSNÞCP-caðSNÞ: Moreover, the latter two sets coincide if P0-caðSNÞ
is nonempty and wc-closed in caðSNÞ: In the latter case, if also P0-caðSNÞ is weakly

dense in P0; then P0 ¼ P:

Proof. (a) Argue as in the proof of part (iv) of the lemma that P0 contains

fPAca1
þðSNÞ: PtAL all tg: Because P0 is also weakly closed, it contains P:

(b) QAP0-caðSNÞ ) QtAL ) QAP-caðSNÞ: The second assertion follows

from (a). The asserted equality follows from P0-caðSNÞ ¼ P-caðSNÞ ¼
fPAca1

þðSNÞ: PtAL all tg: &

The corollary provides a characterization of sorts for (2.3), though admittedly not
one expressed exclusively in terms of the given P:

Now we apply the lemma to study ‘regularity’. The two properties ofP established
next reduce to the standard definition of regularity of the probability measure P

when P ¼ fPg: Further, for general P; and viewed as properties of the lower
envelope nð
Þ ¼ minP Pð
Þ; they are the standard notions of regularity for capacities
(see [8, p. 1356] and the references therein).

Lemma A.4. (i) For any compact KCSN;

min
P

PðKÞ ¼ inf
G

min
P

PðGÞ: G open; G*K

� �
: ðA:1Þ

(ii) For any measurable ACSN;

min
P

PðAÞ ¼ sup
K

min
P

PðKÞ: K compact; KCA

� �
: ðA:2Þ

Proof. (i) Given e; the denseness portion of Lemma A.2(ii) implies that there exists
P�AP-caðSNÞ such that

P�ðKÞomin
P

PðKÞ þ e:

But P� is regular and hence infG fminP PðGÞ: G open; G*KgpinfG

fP�ðGÞ: open; G*KgoP�ðKÞ þ eominP PðKÞ þ 2e:
(ii) Henceforth, K and K 0 denote compact sets even where not stated explicitly.
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Suppose contrary to the assertion that for every KCA; there exists PK in P such
that

PKðKÞomin
QAP

QðAÞ � e 
 nðAÞ � e: ðA:3Þ

The collection of compact subsets of A forms a directed set with respect to the partial

order of set inclusion. Thus fPK : KCAg is a net in P: Because the latter is weakly

compact, assume w.l.o.g. that PK converges weakly to PAP:
For every K and K 0CK;

PKðK 0ÞpPKðKÞonðAÞ � e:

But PKðK 0Þ
K
!PðK 0Þ: Conclude that

PðK 0ÞonðAÞ � epPðAÞ � e; for all K 0CA: ðA:4Þ

If we knew that P were countably additive, this would contradict regularity of P and
complete the proof. Thus it remains only to show that there exists a measure
PcaAP- caðSNÞ satisfying an appropriate version of (A.4).

By the Yosida–Hewitt decomposition [16, Theorem 10.2.1], we can write P as

P ¼ Pca þ Pch;

where Pca is countably additive and Pch is a pure charge. Because the latter is
necessarily nonnegative,

PcaðK 0ÞonðAÞ � e; for all K 0CA:

The final step is to show that PcaAP: By the nature of a pure charge [16, Theorem

10.1.2], Pch vanishes on
S

N

1 Ft: Thus P ¼ Pca there. Let P� be the measure in

P- caðSNÞ provided by Lemma A.2(iv). Then also P� ¼ Pca on
S

N

1 Ft: But both
measures are countably additive and hence equality holds on all of FN: Conclude
that PcaAP as desired. &

Our objective is to define regularity for sets of priors in such a way that P defined
in (2.3) is the unique regular and rectangular set of priors conforming with L: Think
for the moment of using (A.1) and (A.2) as the definition of regularity and suppose

that P0 is another regular and rectangular set of priors. The question then is whether

P0 ¼ P:
One can reason as follows: Since both sets conform with the same L; they agree

on
S

N

1 Ft: Since basic open sets in the product topology are cylinders, (A.1) implies

that their lower envelopes agree also on compact sets in SN: Agreement of the lower
envelopes on all events is subsequently implied by (A.2). Thus indeed,

nðAÞ 
 min
QAP

QðAÞ ¼ min
QAP0

QðAÞ 
 n0ðAÞ

for all measurable A: However, identity of the lower envelopes does not imply
equality of the two sets of priors. It is apparent that (A.1) and (A.2) are too weak to
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constitute the sought-after definition of regularity because they (implicitly) deal with
the utilities of binary acts only.

An appropriate strengthening of these conditions is borrowed from [8], which
describes a general notion of regularity and to which the reader is referred for further

details and discussion. Call h : SN-R1

* simple if fhððstÞÞ: ðstÞASNg is finite;
* usc if fðstÞASN: hððstÞÞXxg is closed for every real number x;
* lsc if fðstÞASN: hððstÞÞ4xg is open for every real number x:

The set of bounded and FN-measurable acts h is B: The subset of simple usc (lsc)

acts is Bu ðBcÞ:
Say that the set of priors P0 is regular if both of the following conditions are

satisfied for V 0 : B-R1 defined by V 0ðhÞ ¼ minQAP0
R

h dQ:

Outer regularity: V 0ðkÞ ¼ inffV 0ðgÞ: gXk; gABcg for all kABu:
Inner regularity: V 0ðhÞ ¼ supfV 0ðkÞ: hXk; kABug for all hAB:
Because the indicator function of a closed (open) subset of SN is simple and usc

(lsc), it follows that regularity implies the counterparts of (A.1) and (A.2). For a

singleton P0 ¼ fPg; the converse is also true and thus P0 is regular if and only if P is
regular in the usual sense [8, Theorem 4.1].

Proof of Theorem A.1. The proof that P is regular is similar to the proof of Lemma
A.4.

Suppose that P0aP is another regular and rectangular set. W.l.o.g. let

P�AP\P0: When baðSNÞ is endowed with the weak topology, its dual space is
isomorphic to B [14, p. 223]. Thus a separation theorem [4, Theorem V.2.10] implies

that P� can be separated from the convex and weakly closed set P0 by some hAB;
that is,

min
QAP

Z
hdQp

Z
hdP�o min

QAP0

Z
hdQ: ðA:5Þ

Denote by V 0 and V the functionals corresponding to P0 and P as defined

prior to the definition of regularity. Rectangularity (2.4) implies that P0

and P agree on
S

N

1 Ft; that is, they induce the same set of measures on
S

N

1 Ft:
Hence,

V 0ðhÞ ¼ VðhÞ for all Ft-measurable h and all t:

Then outer regularity implies also equality for all acts kABu: (Use the fact that basic
open sets are cylinders and also [8, Lemma A.1] to argue that

V 0ðkÞ ¼ inf fV 0ðgÞ: gXk; gABc and g is Ft-measurable for some tg;

and similarly for V :) Finally, inner regularity implies that V 0 and V agree on B;
contradicting (A.5). &
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