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We present and axiomatize several update rules for probabilities (and
preferences) where there is no unique additive prior. In the context of non-additive
probabilities we define and axiomatize Bayesian update rules: in the context of
multiple (additive) priors we define maximum likelihood rules. It turns out that for
decision makers which can be described by both theories, the two approaches coin-
cide. Thus, we suggest an axiomatically based ambiguous beliefs update rule, which
is needed for applications in many economic theory models. Journal of Economic
Lijterature classification numbers: D80, D81, C11, C71.  « 1993 Academic Press, Inc

1. INTRODUCTION

The Bayesian approach to decision making under uncertainty prescribes
that a decision maker have a unique prior probability and a utility function
such that decisions are made so as to maximize the expected utility. In par-
ticular, in a statistical inference problem the decision maker is assumed to
have a probability distribution over all possible distributions which may
govern a certain random process.

This paradigm was justified by axiomatic treatments, most notably that
of Savage [26], and it enjoys unrivaled popularity in economic theory,
game theory, and so forth.

However, this theory is challenged by two classes of evidence: on the one
hand, there are experiments and thought experiments (such as Ellsberg
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[12] and many others) which seem to show that individuals tend to violate
the consistency conditions underlying (and implied by) the Bayesian
approach. On the other hand, people seem to have difficulties with
specification of a prior for actual statistical inference problems. Thus,
classical— rather than Bayesian—methods are used for practical purposes,
although they are theoretically less satisfactory.

The last decade has witnessed---among numerous and various
generalizations of von Neumann and Morgenstern’s [25] expected utility
theory—gencralizations of the Bayesian paradigm as well. We will not
attempt to provide a survey of them here. Instead, we only mention the
models which are relevant to the sequel.

1. Non-additive Probabilities. First introduced by Schmeidler [27, 29,
307 and also axiomatized in Gilboa [16], Fishburn [14], and Wakker
[35], non-additive probabilities are monotone set-functions which do not
have to satisfy additivity. Using the Choquet integral (Choquet {7]) one
may define expected utility, and the works cited before axiomatize
preference relations which are representable by expected utility in this
sense.

2. Multiple Priors. As axiomatized by Gilboa and Schmeidler [18],
this model assumes that the decision maker has a set of priors, and each
alternative is assessed according to its minimal expected utility, where the
minimum is taken over all priors in the set. (This idea is also related to
Bewley [3-5], who suggests a partial order over alternatives, such that one
alternative is preferred to another only if its expected utility is higher
according to «// priors in the set.)

Of particular interest to this study is the intersection of the two models:
it turns out that if a non-additive measure exhibits uncertainty aversion
(technically, if it is convex in the sense

(AU BY+ (AN B)=0v(A)+v(B)),

then the Choquet integral of a real-valued function with respect to v equals
the minimum of all its integrals with respect to additive priors taken from
the core of v. (The core is defined as in cooperative game theory, ie., p is
in the core of v if p(4) = v(A) for every event 4 with equality for the whole
sample space. Convex non-additive measures have nonempty cores.)

While these models—as many others—suggested generalizations of the
Bayesian approach for a one-shot decision problem, they shed very little
light on the problem of dynamically updating probabilities as new informa-
tion is gathered. We find this problem to be of paramount importance for
several interrelated reasons:
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I. The theoretical validity of any model of decision making under
uncertainty is quite dubious if it cannot cope successfully with the dynamic
aspect.

2. The updating problem is at the heart of statistical theory. In fact,
it may be viewed as the problem statistical inference is trying to solve.
Some of the works in the statistical literature which pertain to this study
are Agnew [1], Genest and Schervish [15], and Lindley, Tversky, and
Brown [23].

3. Applications of these models to economic and game theory models
require some assumptions on how economic agents change their beliefs
over time. The question naturally arises, then: What are reasonable ways
to update such beliefs?

4. The theory of artificial intelligence, which in general seems to have
much in common with the foundations of economic, decision, and game
theory, also tries to cope with this problem. See, for instance, Fagin and
Halpern [13], Halpern and Fagin [19], and Halpern and Tuttle [20].

In this study we try to deal with the problem axiomatically and suggest
plausible update rules which satisfy some basic requirements. We present
a family of pseudo-Bayesian rules, each of which may be considered a
generalization of Bayes’ rule for a unique additive prior. We also present a
family of “classical” update rules, each of which starts out with a given set
of priors, possibly rules some of them out in the face of new information,
and continues with the (Bayesian) updates of the remaining ones.

In particular, a maximum-likelihood update rule would be the following:
consider only those priors which ascribe the maximal probability to the
event that is known to have occurred, update each of them according to
Bayes’ rule, and continue in this fashion.

It turns out that if the set of priors one starts out with can also be
represented by a non-additive probability, the results of this rule are
independent of the order in which information is gathered.

Furthermore, for those preferences which can be simultaneously
represented by a non-additive measure and by multiple priors, the maxi-
mum likelihood update rule coincides with one of the more intuitive
Bayesian rules, and they boil down to the Dempster-Shafer rule (see
Dempster [8, 9], Shafer [31], and Smets [341). For recent work on belief
functions and their updating, see Jaffray [2]1], Chateauneuf and Jaffray
(6], and especially Jaffray [22].

Thus, we find that an axiomatically based generalization of the Bayesian
approach can accommodate multiple priors (which are used in classical
statistics). Moreover, the maximum likelihood principle, which is at the
heart of statistical inference (and implicit in the techniques of confidence
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sets and hypothesis testing) coincides with the generalized Bayesian
updating.

Due to the prominence of this rule, it may be a source of insight to study
it in a simple example. Consider Ellsberg’s example in which an urn with
90 balls is given, out of which 30 are red, and 60 are either blue or yellow.
For simplicity of exposition, let us model this situation in a somewhat
extreme fashion, allowing for a// distributions of blue and yellow balls.
Maxmin expected utility with respect to this set of priors is equivalent to
the maximization of the Choquet integral of utility w.r.t. to a non-additive
measure v defined as

v(R) =1, o(B)=uv(Y)=0
v(RuUB)=v(RUY)=1 (BuY)=13
t{RuBuUY)=1,

where R, B, and Y denote the events of a red, blue, or yellow ball being
drawn, respectively.

Assume now that it is known that a ball (which, say, has already been
drawn) is not red. Conditioning on the event Bu Y, «ll priors in the set
ascribe probability of  to it. Thus, they are all left in the set and updated
according to Bayes’ rule. This captures our intuition that no ambiguity was
resolved, and our complete ignorance regarding the event Bu Y has not
changed. (Actually, it is now highlighted by the fact that this event, about
which we know the least, is now known to have occurred.)

Consider, on the other hand, the same update rule in the case that Ru B
is known. The priors we started out with ascribe to this event probabilities
ranging from ! to 2. According to the maximum likelihood principle, only
one of them is chosen—namely, the p which satisfies

p(R)=% pB)=3i p(Y)=0.

In this particular case, the set of priors shrinks to a singleton and,
equivalently, the updated measure ¢ is additive (and equals p itself).
Ambiguity is thus reduced (in the case, eliminated) by the generalized
Bayesian learning embodied in the exclusion of some priors.

In the context of such examples it is sometimes argued that the
maximum-likelithood rule is too extreme, and that priors which, say,
only ¢-maximize the likelihood function should not be ruled out. Indeed,
classical statistics techniques such as hypothesis testing do allow for ranges
of the likelihood function.

At present we are not aware of a nice axiomatization of such rules. We
point out, however, that the other extreme rule, ie., updating all priors
without excluding any of them (see, for instance, Fagin and Halpern [13],
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and Jaffray [22]), does not appear to be any less “extreme” in general, nor
does it seem to be implied by more compelling axioms.

We believe that our theory can be applied to a variety of economic
models, explaining phenomena which are incompatible with the Bayesian
theory, and possibly providing better predictions. As a matter of fact, this
belief may be updated given new evidence: Dow and Werlang [10] and
Simonsen and Werlang [32] have already applied the multiple prior
theory to portfolio selection problems. These studies have shown that a
decision maker having ambiguous beliefs will have a (non-trivial) range of
prices at which he/she will neither buy or sell an uncertain asset, exhibiting
inertia in portfolio selection. Applying our new results regarding
ambiguous beliefs update, one may study the conditions under which these
price ranges will shrink in the face of new information.

Dow, Madrigal, and Werlang [11] studied trade among agents, at least
one of whom has ambiguous beliefs. They show that the celebrated
no-trade result of Milgrom and Stokey [247] fails to hold in this context.
In this study, the Dempster—Shafer rule for updating non-additive measures
was used, a rule which is justified by the current paper. Casting the trade
set-up into a dynamic context raises the question of an asymptotic no-trade
theorem: Under what conditions will additional information reduce the
volume or probability of trade?

In another recent study, Yoo [36] addressed the question of why stock
prices tend to fall after the initial public offering and rise at a later stage.
Although Yoo uses ambiguous beliefs mostly as in Bewley’s [ 3] model, his
results can also be obtained using the models mentioned above. It seems
that the update rule justified by our study may explain the price dynamics.

These various models seem to point at a basic problem: given a convex
non-additive measure (or, equivalently, a set of priors which is the core of
such a measure}, under what conditions will the Dempster -Shafer rule
yield convergence of beliefs to a single additive prior? Obviously, the
answer cannot be “always.” Consider a “large” measurable space with all
possible priors (equivalently, with the “unanimity game™ as a non-additive
measure). In this set-up of “complete ignorance,” no conclusions about the
future may be drawn from past observations—that is, the updated beliefs
still include all possible priors. However, with some initial information
(say, finitely many extreme points of the set of priors) convergence is
possible. Conditions that will guarantee such convergence call for further
study.

The rest of this paper is organized as follows. Section 2 presents the
framework and quotes some results. Section 3 defines the update rules and
states the theorems. Finally, Section 4 includes proofs, related analysis, and
some remarks regarding possible generalizations.
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2. FRAMEWORK AND PRELIMINARIES

Let X be a set of consequences endowed with a weak order =. Let (S, 2)
be a measurable space of states of the world, where 2 is the algebra of
events. A function f: S — X is Z-measurable if for every xe X

(s1fs)>x),  Islfe)=xlel

Let F={f S—>X|f is Z-measurable} be the set of acts. Let
Fo={feF||range(f)] < = } be the set of simple acts. A function u: X — R,
which represents >, ie,

ulx)zuly)=xzy, vy, yeX
is called a wtility function.
A function v: 2 — [0, 1] satisfying
(1) v(F)=0; v(S)=1;
(ii) A< B=>0v(A)<v(B)
1s a non-additive measure. 1t is convex if

(AU B)Y+v(An B)y=uv{A)+ v(B)

for all 4, Be X 1t is additive, or simply a measure, if the above inequality
is always satisfied as an equality.
A real-valued function is 2-measurable if for every re R

{siw(s)zt), {s|ws)>r}elk.

Given such a function w and a non-additive measure v, the (Choquet)
integral of w w.r.t. (with respect to) v on S is

¥, 0
f W dvzf w a'v:f o({s | wis)= r}»)dr+f [o({s)w(s)=r})—1]de

s 0

For a non-additive measure v we define the core as for a cooperative game,
ie,

Core(v)={p | p is a measure s.t. p(4) = v(ANWAe X}

Recall that a convex v has a nonempty core (see Shapley [33]).

We are now about to define two classes of binary relations on F: those
represented by maximization of expected utility with non-additive measures
(NA), and those represented by maxmin of expected utility with multiple
priors (MP).
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Denote by NA: (=NA.(X, =, §, 2)) the set of binary relations > on F
such that there are a utility w», unique up to p.l.t. (positive linear trans-
formation), and a unique non-additive measure v satisfying:

(1) for every fe F, u-fis X-measurable;
(i1) for every f, ge F

f‘;g@f u-fdvz f u-g du.

Note that in general the measurability of /' does not guarantee that of
u-f, and that (ii) implies that > on F, when restricted to constant func-
tions, extends > on X. Hence we use this convenient abuse of notation.
Similarly, we will not distinguish between x € X and the constant act which
equals x on S.

Characterizations of NA. were given by Schmeidler [29, 30] for the
Anscombe-~Aumann [2] framework, where X is a mixture space and u is
assumed affine; by Gilboa [16] in the Savage [26] framework, where X is
arbitrary but 2 = 2% and ¢ is nonatomic; and by Wakker {35] for the case
where X is a connected topological space. Fishburn [14] extended the
characterization to non-transitive relations.

Let MP. (= MP.(X, =, S, 2)) denote the set of binary relations > of F
such that there are a utility » unique up to a p.lt., and a unique nonempty,
closed (in the weak* topology), and convex set C of (finitely additive)
measures on 2 such that:

(1) for every fe F, u-fis 2-measurable;
(1) for every /. ge F

f;g¢minju - fdp > min j u-gdp.
peC

peC

A characterization of MP. in the Anscombe: Aumann framework was
given in Gilboa and Schmeidier [18]. To the best of our knowledge, there
is no such axiomatization in the framework of Savage. However, the set
NA-MP., which will play an important role in the sequel, may be
characterized by strengthening the axioms in Gilboa [16].

It will be convenient to include the trivial weak order 2*=Fx F in
both NA and MP. Hence, we define NA=NA.u { 2*} and MP=MP. u
{=2*

For simplicity we assume that X has >-maximal and -minimal elements.
More specifically, let x*, x, e X satisfy x, <x<x* for all veX. Wlog
(without loss of generality), assume that x, and x* are unique. Since for
both NA. and MP. the utility function is unique only up to a p.L.t. we will
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assume w.lo.g that u(x,)=0 and w(x*)=1 for all utilities henceforth
considered.

When X is a mixture space we define NA” and MP’ (o be the subsets of
NA and MP, respectively, where the utility « is also required to be affine.
For such spaces X we recall the following results.

PROPOSITION 2.1. Suppose that = e NA' and let v be the associated
non-additive measure. Then = e MP" iff v is convex.

PROPOSITION 2.2.  Suppose that = € MP’ and let C be the associated set
of measures. Define
v{A)y=min p(A) for Ak
pe

Then v is a non-additive measure and = e NA' iff v is convex and
C =Core(r).

The proofs of these appear, explicitly or implicitly, in Schmeidler
[28-30]. Note that the axiomatization of NA’ (Schmeidler [30]) uses
comonotonic independence, and given this property the convexity of v is
equivalent to uncertainty aversion. The axiomatization of MP' (Gilboa and
Schmeidler [18]) uses a weaker independence notion—termed C-inde-
pendence  and uncertainty aversion. Given these, the convexity of v and
the equality € =Core(r) (where v is defined as in Proposition 2.2) is
equivalent to comonotonic independence.

We now define update rules. We need the following definitions.
Given a measurable partition /T=1{4,}" |, of § and {f;}7_,SF, let
{(fi.4,:..:/,. A,) denote the act ge F satisfying g(s)=/(s) for all se A4,
and all 1 <i/<n. Given a binary relation > on F, anevent A€ X i1s = -null
iff the following holds: for every f. g, iy, h, e F,

f=g iff(f, A h, AY=2 (g, A% hy, A).

Let Z denote the set of all binary relations on F. Given 4 < &, an update
rule for # is a collection of functions, U= {U } .., where U,: %~ &
such that for all > e# and AeX, A 1s Uy =)null and Uy z)= 2.
U (=) should be thought of as the preference relation once 4 is known to
have occurred.

Given # and an update rule for it, U={U,} .5, U is said to be
commutative w.rt. = or z-commutative if for every 4, Be X we have
UA(?)G,% and

UB(UA(?)): U.qmlx(?)-
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It is commutative if it is commutative w.r.t. > for all > € 4. (Note that this
condition is stronger than strict commutativity, ie, U, Ug=Ugz- U,.
However, “commutativity” seems to be a suggestive name which is not
overburdened with other meanings.)

3. BAYESIAN AND CLASSICAL RULES

Given a set # of binary relations of F, every fe F suggests a natural
update rule for #: define BU'= [BU’,} ., by

gBU (=) h<(g A f, AV = (h, AL f, A°) for all g, he F.

[t is obvious that for every f, BU’ is an update rule, ie., that A° is
BU’ (= )-null for all > € # and A€ X. We will refer to it as the f-Bavesian
update rule and {BU’},_ . will be called the set of Bayesian update rules.

Note that for > € NA with an additive v, all the Bayesian update rules
coincide with Bayes’ rule, hence the definition of the Bayesian update rules
may be considered a formulation and axiomatization of Bayes' rule in the
case of (a unique) additive prior.

ProrosiTION 3.1.  For every = € B and fe F, BU/ is =-commutative.

THEOREM 3.2. Let fe F and assume that |X| > 4. Then the following are
equivalent:

(i) BU{NA")= NA’ Jor all Ae X,
(i) f=(x*T:x,, T for some Tel.

Of particular interest are the Bayesian update rules corresponding to
Sf=x*and f=x, (ie, T=5§ or T=(J in (ii) above). For the latter (x,)
there is an “optimistic” interpretation: when comparing two actions given
a certain event 4, the decision maker implicitly assumes that had 4 not
occurred, the worst possible outcome (x,) would have resulted. In other
words, the behavior given 4--BU’ (> J-—exhibits “happiness™ that 4 has
occurred; the decisions are made as if we are always in “the best of all
possible worlds.”

Note that the corresponding non-additive measure 1s

v ABy=v(Bn A)v(A).

On the other hand, for /= x*, we consider a “pessimistic” decision
maker, whose choices reveal the hidden assumption that all the impossible



42 GILBOA AND SCHMEIDLER

worlds are the best conceivable ones. This rule defines the non-additive
function by

va(B)=[tl(BNA)U A) —v(AY) J/(1 —v(A°)),

which is identical to the Dempster-Shafer rule for updating probabilities.
It should not surprise us that this “pessimistic™ rule is going to play a
major role in relation to MP - -i.e, to uncertainty-averse decision makers
who follow a maxmin (expected utility) decision rule. In a similar way one
may develop a “dual” theory of “optimism” in which uncertainty-seeking
will replace uncertainty-aversion, concavity of v will replace convexity, and
maxmax will supercede maxmin. For this “dual” theory, the update rule

v (B)=0(Bn A)r(A4)

would be the “approriate” one (in a sense that will be clear shortly). Note
that this rule was used-—without axiomatization-—-as a definition of
probability update in Gilboa [17].

Taking a classical statistics point of view, it is natural to start out with
a set of priors. Hence we only define classical update rules for 4 =MP’.
A natural procedure in the classical updating process is to rule out some
of the given priors, and update the rest according to Bayes’ rule. Thus, we
get a family of update rules, which differ in the way the priors are selected.

Formally, a classical update rule 1s characterized by a function
R (C, A)— (' such that C"= C is a closed and convex set of measures for
every such C and every A€ 2, with R(C, §)=C. The associated update
rule will be denoted CUR={CUX}, .. (If R(C,4A)= we define
CUﬁ(})z 2 *) Note that these are indeed update rules, ie., for every
> eMP’, every R and every AeX, A is CUR(=)-null. Furthermore,
for > e MP’ with an associated set C, CU%(>)e MP’ provided that
inf{ p(4) | R(C, A)} >0 for all 4.

Of particular interest will be the classical update rule called maximum
likelihood and defined by

RUC A)={peC|p(A)=max ¢q(4)>0}.
ge C
THEOREM 3.3. CUX is cummutative on NA' A MP". Furthermore, for
= eNA'nMP',
BU,“*(>)=CU®(2)eNA' A MP".

Le., the Bayesian update rule with f=(x*, S) coincides with the maximum-
likelihood classical update rule. Moreover, they are also equivalent to the
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Dempster- Shafer update rule for belief functions. (Note that every belief
Jfunction (see Shafer [317) is convex, though the converse is false. Yet one
may apply the Dempster—Shafer rule for every non-additive measure v.)

4. PROOFS AND RELATED ANALYSIS

4.1. Proof of Proposition 3.1. It only requires to note that for every
fg.eF, A, BeX

((g. A/, A), B.f, B')=(g, AN B, /. (A~ B)).

4.2. Proof of Theorem 3.2. First assume (ii). Let there be given
> € NA' with associated u« and v. Define for Be 2 a non-additive mecasure

vy by
vp(A)=[t((ANBYU(T N B))— (T BYY/[(BuT)—o(Tn B)]

if the denominator is positive. (Otherwise the result is trivial.) For every
ge F we have

" I
| u e B.f Bydo={ v({s|u-(g Bif. B}s)>1})dr

S ~0

= [l v({TABYU({s|ugls)=t)n B)dr

‘0
~l

=| [o(TnB)
Y0

+[e(BOT)—=o{TnB) vgl({slu-glsyz1})] dt

=o(TAB)+ [e(BUT)—o(Tr B [ w gdes,

o

where v, and u represent BU/;, which implies that the latter is in NA',
Conversely, assume (i) holds. Assume, to the contrary, that f(s)~x
for seD where Del, D#S and x,<x<x* (where ~ denotes
2 -equivalence}. Let E, Fel satisfy EnF=FnD=Dn F= . Denote
x=u(x) (where 0 <a < 1). Choose me (a, 1) and a non-additive v such that

WE)=uv(FY=uv(D)=m
WEUF)y=v(EuD)=v(FuD)=m

and v(T)=v(Tn(Eu Fu D)) for all Te 2. Next define > € NA’ by ¢ and
(the unique) u.
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Choose g,, g, such that

uogs)=u gos)=uxa seD
u g\s)=1u g(s)=a+ (1 —a/m) seFE
u gs)=0,u-gis)=a+(l —o/m) seF.

Let =’ be BU% (=) By assumption it belongs to NA’; hence, there
correspond to it ¥’ =u and ¢'. Note that ¢v' is unique as >’ is nontrivial,
and that v'(T)=v(T(Eu F)) for all Tel.

As fu g, dv=[u g,dv, g, ~g,, whence g, ~'¢,. Hence, [u g, dv'=
fu grdv', ie, v(E)y=a+ (1 —ajm).

Next chose fe{0, 2) and choose an act g, € F such that

o seD
usgi(s)=<f sek
0 seF.

For every y € (0, ) choose g. e F such that

x seD
weg) =y, se EUF.

Then ju g5 dv=am and ju g, dv=oum+7(1 —m). Hence, g.>g; and
g,>"g,forall y>0. However, [u g dv'=7 and [ u g, dv' = Bv'(E), where
v'(E)=0, a contradiction.

Remark 4.3. In the case of no extreme outcomes, i.e., when X has no
>-maximal or no >-minimal elements, and in particular when the utility
is not bounded, there are no update rules BU/ which map NA’ into itself.
However, one may choose for g, heF.x* x,eX such that x*>g(s),
h(s)>=x,, ¥se S, and for every Te X define BU/(>) = {BU’,} . » between
g and A by f=(x* T;x,. T"). I > e NA, this definition is independent of
the choice of x* and x . The resulting update rule will be commutative for
any (fixed) TeZ.

4.4. Proof of Theorem 3.3. Let > € MP’ be given, and let C denote its
associated set of additive measures. Define v(-)=min, . p(-).

Assume that v is convex and = Core(r). For A€ 2 with ¢{A4)>0 for
some ¢ € C, we have

RYC, A)= {peCl/’(A)=ma(x g(A)y={peC|p(4)=0v(4")].
4 €

(Note that if o(4<)=1, CUX (CUX(2))=CURCUX(=2)=2*)



UPDATING AMBIGUOUS BELIEFS 45

As was shown in Schmeidler [28], v is convex iff for every chain
GF=E,SE, c --- cE, =S5 there is an additive measure p in Core(v)=C
such that p(£;)=uv(E;), 0 <i<n. Furthermore, this requirement for n=3 is
also equivalent to convexity.

Next define

vT)=min{p(T A} | pe R(C, A)}.
Claim. v (T)=v({TNA)LVA)—v(A°).
Proof. For pe RY(C, A) we have
T A)y=p((TNA)U A°)—p(A°)
=p{TAyu A)—v(A)
>o((TAA)U A) — 0(A°)
whence
V(T Zzo((TnAYyU A)—v(A°).

To show the converse inequality, consider the chain o A°c A U
(A T)< S. By convexity there is p e Core(v) = C satisfying p(A4<) = v(A*)
and p(A“U(TnA))=uv(A° (TN A)) which also implies pe R(C, A).
Then

vATYSp(TNA)=p(TnA)u A4")—p(A°)
=o({(TAA)U A)— (4. §

Consider CU 5“(2 ). If it is not equal to = *, it has to be the case that
o(A9)< 1, and then it is defined by the set of additive measures

C,=1{pslpeRAC, 4)}
where

pATy=p(T A)p(A)=p(T  A)/(1 —v(A)).
Note that C, is nonempty, closed, and convex. Define
v (T)=min{p(T) | peC ]
and observe tht v (T)=v'(T)/(1 —v(A4)), Le.,
vl Ty =[o({Tn Ao A )= o(A) ]/ [T~ (4] (*)

Hence, v, is also convex. We have to show that C, = Core(v ).
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To see this, let peCore(v,). We will show that p=g¢, for some
g€ R%(C, A). Take any ¢' € Core(v) and define

HT)=p(Tr A1 —o(A)]+¢(Tr A%,
Note that

YT Ay=p(Tn )1 —v(A) ]z AT D1 —v(49)]
=v((TNnA)yu A°)—v(A°)
(As pe Core(r ;) and by definition of the latter.) Next, since ¢’ € Core(v),
JTOAY=g (TN A )z (TN AY).
Hence,
YT =g(TnA)+q(Tn A4

z2o({(TnA)yuA)—v(A)+ (TN AY)
=(TUA)—-0(A)+v(TnA) 2z o(T),

where the last inequality follows from the convexity of v. Finally,
q(S)=g(A) +g(A4")=plA)[1 —v(A) ] +v(4" )= 1.

Hence, ¢ € Core(v). Furthermore, ge R°(C, A). Obviously, p=gq,.

Thus we establish CUX’(>)e NA'. Furthermore, CUX'(>)=BU " %(>)
and the non-additive probability update rule (*) coincides with the
Dempster -Shafer rule. Any of these two facts, combined with the observa-
tion CUX'(>)e NA’, implies that CU*" is cummutative. [

Remark 4.5. 1t is not difficult to see that the maximum-likelihood
update rule is not commutative in general. In fact, one may ask whether
the coverse of Theorem 3.3 is true, ie., whether a relation > e MP’ with
respect to which CU*® is commutative has to define a set C which is a core
of a non-additive measure. The negative answer is given by the following
example: S={1,2,3,4}, £=2° C=conv{p,,p,} defined by

1 2 3 4
I3 7 1 1 1
P N 3 3 3

It is easily verifiable that the maximum-likelihood update rule is
commutative w.r.t. the induced > e MP’, though C is not the core of

any v.



UPDATING AMBIGUOQUS BELIEFS 47

Remark 4.6. 1t seems that the maximum-likelihood update rule is not
commutative in general, because it lacks some “look-ahead” property. One
is tempted to define an update rule that will retain all the priors which
may, at some point in the future, turn out to be likelihood maximizers.
Thus, we are led to the “semi-generalized maximum likelihood™:

RYC,A)=clconv{peC | p(E)= max g{E} > 0 for some measurable F< 4}
g€

{where cl means closure in the weak* topology). Note that the resulting set
of measures may include pe C such that p(4)=0. In this case define
CUK(z)=>2*

However, the following example shows that this update rule also fails to
be commutative in general.

Consider S=1{1,2,3,4,5}, 3 =2% and let C be conv{p,, p.,ps, 4}
defined by the following table:

1 2 3 4 5
P 2 2 01 09 5
s 0 0 A 4 2
’y 27 0 03 0 7
P 0 27 03 0 i

Taking A={1,2,3,4} and B={1,2, 3}, one may verify that
Rl(Rl(Cs A)w B): {pl’ P, Pa }
and
RYUC, B)=1{p1. P2, 3. Pa}

and that p,, is not in the convex hull of {p,,, ps,. pa,}-

We may try an even more generalized version of the maximum
likelihood criterion: retain all priors according to which the integral of
some nonnegative simple function is maximized. l.e., define

RYC, 4)
=cl conv {peCljuo,fdpzmax {fu’qu [ qu}>0f0r somefeF‘,}.

The maximization of { u-fdp for some f may be viewed as maximization
of some convex combination of the likelihood function at several points of
time.

However, the same example shows that CUX is not commutative in
general. §

642 89 1.4
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Remark 4.7. Although our results are formulated for NA” and MP’,
they may be generalized easily. First, one should note that none of the
results actually requires that X be a mixture space. All that is needed is that
the utility on X be uniquely defined (up to a p.l.t.) and that its range will
contain an open interval. In particular, connected topological spaces with
a continuous utility function wili do.

Moreover, most of the results do not even require such richness of the
utility’s range. In fact, this richness was only used in the proof of (i) = (iii)
in Theorem 3.2.
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