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Abstract

Most asset returns are uncertain, not merely risky: investors do not know
the probabilities of different possible future returns. A large body of evidence
suggests that investors are averse to uncertainty, as well as to risk. This paper
builds up an axiomatic foundation for the dynamic portfolio and consump-
tion choices of an uncertainty-averse (as well as risk-averse) investor who tries
to learn from historical data. The theory developed, model-based multiple-

priors, generalizes existing theories of dynamic choice under uncertainty aver-
sion by relaxing the assumption of consequentialism. Examples are given to
show that consequentialism, the property that counterfactuals are ignored,
can be problematic when combined with uncertainty aversion. An analog of
de Finetti’s statistical representation theorem is proven under model-based
multiple-priors, but consequentialism combines with multiple priors to rule
out prior-by-prior exchangeability. A simple dynamic portfolio choice prob-
lem illustrates the contrast between a model-based multiple-priors investor
and a consequentialist multiple-priors investor.

∗This paper is a revision of the first chapter of my doctoral thesis; I am indebted to Gary
Chamberlain and John Campbell for guidance and encouragement throughout the writing of my
thesis. I am also grateful for the insights of Brian Hall, Lars Hansen, Parag Pathak, Jacob Sagi,
Tom Sargent, Jeremy Stein, and James Stock, and for the helpful comments of seminar participants
at the University of California, Berkeley, the University of Chicago Graduate School of Business,
the Fuqua School of Business at Duke University, Harvard Business School, Harvard University,
the Kellogg School of Management at Northwestern University, New York University Stern School
of Business, Princeton University, and the Wharton School of the University of Pennsylvania. I
benefitted from detailed suggestions made by Larry Epstein and Martin Schneider. I am solely
responsible for the remaining shortcomings of this paper.
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1 Introduction

Most asset returns are uncertain, not merely risky: investors do not know the prob-
abilities of different possible future returns. An aversion to uncertainty, or a prefer-
ence for bets with known odds, has been used in recent studies, including Anderson,
Hansen, and Sargent (2000), Chen and Epstein (2002), and Maenhout (2001), to
explain the equity premium puzzle. However, as Maenhout (2001) notes, these
explanations often rely on investors ignoring data and dogmatically expecting the
worst. Whether uncertainty aversion remains a plausible explanation for the equity
premium puzzle when learning is accounted for is an open question. Uncertainty
aversion has also been used by Liu, Pan, and Wang (2003) to explain option smirk
effects, and by Routledge and Zin (2001) to model the dynamics of asset market
liquidity. In both cases, the impact of learning might also be of interest. Models of
learning in portfolio choice have received significant attention recently from authors
including Barberis (2000), Brennan (1998), Brennan and Xia (2001), Kandel and
Stambaugh (1996), Pástor (2000), Pástor and Stambaugh (2000), and Xia (2001).
However, these papers do not account for uncertainty aversion. Since uncertainty
aversion leads to behavior compatible with “extreme” priors, incorporating uncer-
tainty aversion may change portfolio choices significantly.

The intersection of learning and uncertainty aversion has only recently begun
to receive attention in portfolio choice and asset pricing with the work of Cagetti,
Hansen, Sargent, and Williams (2002), Epstein and Schneider (2002), Hansen, Sar-
gent, and Wang (2002), and Miao (2001). This paper lays the foundations for a novel
approach to learning and uncertainty aversion in portfolio choice, and contrasts this
approach with others in the literature.

First, a theory of model-based multiple-priors is built up from axioms on pref-
erences. The model-based multiple-priors approach can incorporate learning and
uncertainty aversion. It generalizes existing theories of dynamic choice under uncer-
tainty aversion by relaxing the assumption of consequentialism, the property that
counterfactuals are ignored. Model-based multiple-priors is then compared to con-
sequentialist approaches, with a special focus on the most obvious alternative to the
model-based multiple-priors approach: the work of Epstein and Schneider (2002) on
learning within the (consequentialist) recursive multiple-priors framework. Exam-
ples are given which suggest that consequentialism may be unattractive when com-
bined with multiple priors. Under model-based multiple-priors, a multiple-priors
statistical representation theorem is proven which provides an analog of the usual
single-prior de Finetti theorem; such an analog does not currently appear to be avail-
able for consequentialist multiple-priors theories. The central role of the de Finetti
theorem in single-prior subjective expected utility is discussed in Chapter 11 of Kreps
(1988) and in Section 7 of Chapter 3 of Savage (1954), and a large part of these dis-
cussions also applies to the multiple-priors analog proven here. Finally, model-based
multiple-priors is contrasted with consequentialist multiple-priors methods in the
context of a simple portfolio choice problem. A companion paper, Knox (2003),
builds on the foundation established here and solves in closed form a class of port-
folio and consumption choice problems with learning and uncertainty aversion in
continuous time, including problems in which the investor has uncertainty about
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the accuracy of an asset pricing model.
The most famous experimental demonstration of uncertainty aversion, and the

motivation for many economic applications of uncertainty aversion, is the Ellsberg
Paradox (Ellsberg (1961)): Consider two urns, each containing 100 balls. Each ball
is either red or black. The first (“known”) urn contains 50 red balls (and thus 50
black balls). The second (“ambiguous”) urn contains an unknown number of red
balls. One ball is drawn at random from each urn, and four bets based on the results
of these draws are to be ranked; winning a bet results in a 100 dollar cash prize.
The first bet is won if the ball drawn from the known urn is red; the second bet is
won if the ball drawn from the known urn is black; the third bet is won if the ball
drawn from the ambiguous urn is red; the fourth bet is won if the ball drawn from
the ambiguous urn is black. Many decision makers are indifferent between the first
and second bets and between the third and fourth bets, but strictly prefer either
the first or second bet to either the third or fourth bet. Since no distribution on
the number of red balls in the ambiguous urn can support these preferences through
expected utility, this ranking of gambles violates the axioms of subjective expected
utility theory.

In a seminal response to the Ellsberg Paradox, Gilboa and Schmeidler (1989)
provided an axiomatic foundation to support uncertainty aversion in static choice.
They worked in the Anscombe and Aumann (1963) framework, and weakened the
independence axiom. They then showed that, under this weakening, preferences
could be represented by the minimum expected utility over a set of (prior) distri-
butions. For example, an agent with Gilboa-Schmeidler preferences would exhibit
Ellsberg-type behavior if the set of distributions on the number of red balls in the
unknown urn included a distribution under which black balls were more numerous
and one under which red balls were more numerous. The optimal choice under these
assumptions is that which maximizes (over possible choices) the minimum (over the
set of distributions) expected utility, leading to the label “maxmin expected utility.”
Atemporal extensions of maxmin expected utility include the work of Casadesus-
Masanell, Klibanoff, and Ozdenoren (2000), who were able to obtain a maxmin
expected utility representation of preferences in the Savage (1954) framework, and
the smooth model of uncertainty aversion developed by Klibanoff, Marinacci, and
Mukerji (2003), which nests maxmin expected utility as a special case.

In extending the pioneering atemporal work of Gilboa and Schmeidler (1989) to
a dynamic setting, however, there has been little consensus. A number of impor-
tant recent studies, including Chamberlain (2000), Chamberlain (2001), Chen and
Epstein (2002), Epstein and Schneider (2003), Epstein and Schneider (2002), Ep-
stein and Wang (1994), Hansen, Sargent, and Tallarini (1999), Hansen and Sar-
gent (2001), Hansen, Sargent, Turmuhambetova, and Williams (2001), Klibanoff
(1995) (who appears to have given the first axiomatization of an explicitly dynamic
maxmin expected utility theory), Siniscalchi (2001), and Wang (2003) have attacked
the problem of dynamic choice under uncertainty aversion (in addition to risk aver-
sion). In the literature, a debate is in progress over which method is to be pre-
ferred: the recursive multiple-priors method (Chen and Epstein (2002), Epstein and
Schneider (2003), Epstein and Schneider (2002), and Epstein and Wang (1994))
or the robust control method (Anderson, Hansen, and Sargent (2000), Hansen
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and Sargent (1995), Hansen, Sargent, and Tallarini (1999), Hansen and Sargent
(2001), Hansen, Sargent, Turmuhambetova, and Williams (2001) and, with an im-
portant variation, Maenhout (2001)). Although Chamberlain’s work has been more
econometrically focused, he is evidently aware of the portfolio-choice implications of
his research, and his approach is a third angle of attack on the problem. Of these
three approaches, model-based multiple-priors is closest to Chamberlain’s, although
he does not build an axiomatic framework or study the investment implications of
his approach.

The recursive multiple-priors approach began nonaxiomatically in discrete time
with the work of Epstein and Wang (1994). In Chen and Epstein (2002) the ap-
proach was brought into a continuous-time framework, the portfolio choice problem
was considered generally and solved analytically in some cases, and the separate ef-
fects of “ambiguity” (uncertainty) and risk were shown in equilibrium. The recursive
multiple-priors approach was given axiomatic foundations in Epstein and Schneider
(2003), and learning was explicitly incorporated by Epstein and Schneider (2002).
Despite the obvious importance of this strand of the literature, it is argued in Sec-
tion 6 that model-based multiple-priors enjoys some significant advantages over the
approach of Epstein and Schneider (2002).

Hansen and Sargent (1995) first used the robust control approach for economic
modeling, although a large literature on robust control in engineering and optimiza-
tion theory predates their work. The development of the model continued with the
discrete-time study of Hansen, Sargent, and Tallarini (1999), and was then brought
into a continuous-time setting by Anderson, Hansen, and Sargent (2000). Filter-
ing, which may be regarded as learning about an ever-changing state, was combined
with robust control in discrete time by Hansen, Sargent, and Wang (2002), and
was analyzed in continuous time by Cagetti, Hansen, Sargent, and Williams (2002).
The work of Hansen and Sargent (2001) and Hansen, Sargent, Turmuhambetova,
and Williams (2001) responded to criticisms of the robust control approach made
in some studies using the recursive multiple-priors approach (notably Epstein and
Schneider (2003)). Finally, Maenhout (2001) modified the robust control “multiplier
preferences” to obtain analytical solutions to a number of portfolio choice problems.

The debate between the recursive multiple-priors school and the robust con-
trol school has focused on the “constraint preferences” generated by robust control.
However, in applications the robust control school typically uses the “multiplier pref-
erences” generated by robust control, which are acknowledged by both schools to
differ from the constraint preferences (though they are observationally equivalent to
the constraint preferences in any single problem; see Epstein and Schneider (2003)
and Hansen, Sargent, Turmuhambetova, and Williams (2001)).

The continuing debate regarding how to extend atemporal maxmin expected
utility to intertemporal situations is essentially a debate about the structure of the
set of prior distributions with which expected utility is evaluated. This paper shows
the implications of the existence of general consistent conditional preferences for the
set of distributions used to represent utility. In this connection, a novel restricted
independence axiom is introduced, and a class of distributions, termed prismatic,
is characterized. The set of prismatic distributions is a strict superset of the set of
rectangular distributions introduced by Epstein and Schneider (2003) (see below),
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and allows the consequentialism assumption to be relaxed.
The remainder of the paper proceeds as follows. Section 2 lays out the domain

of preferences, that is, the set of bets or gambles over which the decision maker
is to choose. Section 3 presents the axioms used to formalize the decision maker’s
preference structure. Section 4 delivers basic results concerning the existence of con-
sistent conditional preferences, their link to the restricted independence axiom, and
the associated shape of the set of priors used by the decision maker. Section 5 special-
izes these basic results to justify model-based multiple-priors in a dynamic domain
which includes consumption at various points in time. Section 6 puts model-based
multiple-priors in perspective by comparing and contrasting it with consequentialist
multiple-priors theories. Section 7 contrasts model-based multiple-priors with con-
sequentialist multiple-priors theories in a simple dynamic portfolio choice problem.
Section 8 concludes. All proofs are placed in an appendix which follows the text of
the paper.

2 The Domain of Preferences

The domain of preferences used here is similar to that used by Gilboa and Schmeidler
(1989), which in turn is based on the setting of Anscombe and Aumann (1963). Let
X be a non-empty set of consequences, or prizes. In applications of the theory X will
often be the set of possible consumption bundles. Let Y be the set of probability
distributions over X having finite supports, that is, the set of simple probability
distributions on X.

Let S be a non-empty set of states, let Σ be an algebra of subsets of S, and define
L0 to be the set of all Σ-measurable finite step functions from S to Y . Note that L0

is a set of mappings from states to simple probability distributions on consequences,
rather than mappings from states directly to consequences, and that each f ∈ L0

takes on only a finite number of different values (since it is a finite step function).
This is the same L0 used by Gilboa and Schmeidler (1989). Let Lc denote the
constant functions in L0. Following Anscombe and Aumann (1963), elements of
L0 will be termed “horse lotteries” and elements of Lc will be termed “roulette
lotteries.” It is important to note that convex combinations in L0 are to be performed
pointwise, so that ∀f, g ∈ L0, αf + (1 − α) g is the function from S to Y whose
value at s ∈ S is given by αf (s) + (1 − α) g (s). In turn, convex combinations in Y

are performed as usual: if the probability mass function (not the density function,
since all distributions in Y have finite support) of y ∈ Y is py(x) and the probability
mass function of z ∈ Y is pz(x), then the probability mass function of αy+(1 − α) z

is αpy(x) + (1 − α) pz(x).

3 Axioms

The decision maker ranks elements of L0 using the preference ordering %. The
axioms below are placed on % and on the strict preference ordering, �, derived from
it by: ∀f, g ∈ L0, f � g ⇔ f % g and not f - g. The indifference relationship, ∼,
is defined by: ∀f, g ∈ L0, f ∼ g ⇔ f % g and f - g.
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3.1 The Restricted Independence Axiom

The key, novel axiom presented here is the restricted independence axiom. It is stated
relative to a subset A ∈ Σ (recall that Σ is the algebra of subsets of S with respect
to which the functions in L0 are measurable), and is thus referred to as restricted
independence relative to A.

Axiom 1 For all f, g ∈ L0, if f (s) = g (s) ∀s ∈ AC , and if h (s) is constant on
A, then

∀α ∈ (0, 1) , f � g ⇔ αf + (1 − α)h � αg + (1 − α)h.

Suppose two gambles give the same payoff for each state in some set of states.
Descriptively, a decision maker may find it relatively easy to consider changing
each of these gambles in the same way on that set of states (so that they continue
to agree on that set). The decision maker’s preferences might be preserved by
changing each of these gambles in the same way on their set of agreement. The
restricted independence axiom (relative to the set on which the two gambles differ)
goes slightly beyond this, by saying that preferences are still preserved if, in addition
to being changed on their set of agreement as described above, each gamble is also
mixed with the same roulette lottery (or gamble that does not depend on the state)
on the set on which they disagree. Still, this seems quite plausible descriptively. In
contrast, the Ellsberg (1961) paradox shows the descriptive failings of the usual (or
unrestricted) independence axiom.

Preferences that satisfy the restricted independence axiom relative to a collection
of sets will be of special interest. Preferences will be said to satisfy the restricted in-
dependence axiom (or Axiom 1) relative to A if A = {A1, . . . , Ak}, where preferences
satisfy Axiom 1 relative to Ai for each i ∈ {1, . . . , k}.

In working with partitions of S, the following axiom is often useful. It is the
“roulette lottery partition-independence” analog of the “state-independence” ax-
iom used to obtain an expected utility representation from an additively separable
(“state-dependent expected utility”) representation in the Anscombe and Aumann
(1963) framework (see Kreps (1988), page 109).

Axiom 2 Given roulette lotteries l, q ∈ Lc, a finite partition A = {A1, . . . , Ak} ⊂
Σ of S, and h ∈ L0, define

(l; h)i =

{

l for s ∈ Ai,

h for s ∈ AC
i ,

(1)

and

(q; h)i =

{

q for s ∈ Ai,

h for s ∈ AC
i .

(2)

Then ∀i, j ∈ {1, . . . , k} , (l; h)i % (q; h)i ⇔ (l; h)j % (q; h)j.

6



3.2 The Gilboa-Schmeidler Axioms

The axioms of Gilboa and Schmeidler (1989) are grouped together into the following
axiom.

Axiom 3

Weak Order: % is complete and transitive.

Certainty Independence: ∀f, g ∈ L0, ∀l ∈ Lc, and ∀α ∈ (0, 1) ,

f � g ⇔ αf + (1 − α) l � αg + (1 − α) l.

Continuity: ∀f, g, h ∈ L0, f � g � h ⇒ ∃α, β ∈ (0, 1) such

that αf + (1 − α)h � g � βf + (1 − β)h.

Monotonicity: ∀f, g ∈ L0, f (s) % g (s) ∀s ∈ S ⇒ f % g.

Uncertainty Aversion: ∀f, g ∈ L0, f ∼ g ⇒ αf + (1 − α) g % g

∀α ∈ (0, 1) .

Non-degeneracy: ∃f, g ∈ L0 such that f � g.

The labels attached to each portion of the axiom are those used by Gilboa and
Schmeidler (1989). Of these portions of the axiom, Weak Order, Continuity, Mono-
tonicity, and Non-degeneracy are completely standard in the axiomatic literature on
choice under uncertainty. The usual independence axiom is strictly stronger than
the Certainty Independence and Uncertainty Aversion portions of the axiom above.
Descriptively, it seems more plausible that Certainty Independence would hold than
full-blown independence: Decision makers may find it easier to work through the
implications of mixing with a roulette lottery, which yields the same probability
distribution over consequences in every state, than to see the implications of mixing
with a horse lottery, which generally yields different probability distributions over
consequences in different states.

These axioms are the standard “maxmin expected utility” axioms. The theory
developed here is built on the base they form.

3.3 The Consistent Conditioning Axiom

In developing a theory of conditional preferences, the notion of a null set will be
useful.

Definition 1 A set B ∈ Σ is a null set if and only if ∀ f, g ∈ L0, f (s) =
g (s) ∀s ∈ BC ⇒ f ∼ g.

The axiom below formalizes the notion that conditional preferences should be
genuinely conditional; that is, if two horse lotteries (elements of L0) have identical
payoffs on some set of states, then a preference relation conditional on the state
being in that set ought to display indifference between the two horse lotteries. This
property is termed focus, and when conditioning is based in a particular way on the
filtration describing the information structure of a dynamic problem it specializes
to consequentialism, which has been extensively investigated by Hammond (1988).
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In Skiadas (1997a) and Skiadas (1997b), preferences satisfying the focus property
are referred to as “separable.”

There should also be some minimal link between conditional and unconditional
preference relations: if every conditional preference relation in an exhaustive set
displays a weak preference for one horse lottery (element of L0) over another, then
the unconditional preference relation ought to display a weak preference for the
first horse lottery, too. If, in addition, one of the conditional preference relations,
conditional on a set of states that is not null, displays a strict preference for the first
horse lottery, then the unconditional preference relation ought to display a strict
preference for the first horse lottery, too. This is a notion of consistency, and is
part of the axiom below. Consistency is closely related to the “coherence” property
introduced by Skiadas (1997a) and used by Skiadas (1997b).

Finally, the following axiom allows conditional preferences to display uncertainty
aversion by assuming that each conditional preference relation satisfies an appropri-
ate modification of Axiom 3.

Axiom 4 Given a finite partition A = {A1, . . . , Ak} ⊂ Σ of S, % admits consistent
conditioning relative to A if and only if there exists a conditional preference ordering
%i on L0 for each Ai ∈ A, and these conditional preference orderings satisfy:

Focus: ∀i ∈ {1, . . . , k} , f (s) = g (s) ∀s ∈ Ai ⇒ f ∼i g.

Consistency: f %i g ∀i ∈ {1, . . . , k} ⇒ f % g.

If, in addition, ∃Ai ∈ A such that f �i g

and Ai is not null, then f � g.

Multiple Priors: ∀i ∈ {1, . . . , k} , %i satisfies Axiom 3, but with Ai

substituted for S in the definition of monotonicity

and non-degeneracy holding only for Ai that are not null.

The concept of consistency is most familiar in the form of dynamic consistency,
but consistency seems to be a desirable property in any situation involving a set of
conditional preferences relative to a partition. Below, consistency is examined in the
context of preferences conditional on the value of a parameter (broadly defined so
as to include high-dimensional parameters, structural breaks, and the like). While
the descriptive merits of consistency, and especially dynamic consistency, are not
uncontroversial, the normative appeal of consistency is difficult to question.

Of course, the appeal of consistency as a property of conditional preferences does
not speak to the appeal of the “focus” section of the axiom above. If the partition
involved is linked to a filtration (that is, represents the revelation of information
to the decision maker over time), then the “focus” property is better known as
“consequentialism.” When the full independence axiom is assumed, the normative
appeal of consequentialism seems clear; however, when the independence axiom is
relaxed, consequentialism can become very unattractive. This issue is discussed
extensively in Section 6, where it is shown that conditional preferences that have
the focus property but are not consequentialist (because the partition is not linked
to the revelation of information) can avoid many of the difficulties of consequentialist
conditional preferences.
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As with the restricted independence axiom, it is sometimes desirable to strengthen
the consistent conditioning axiom by imposing an axiom linking conditional prefer-
ences over roulette lotteries. This is intuitively quite sensible: it seems natural that
preferences over constant acts should not depend on the element of the partition the
decision maker finds herself in.

Axiom 5 Given a finite partition A ⊂ Σ of S and roulette lotteries l, q ∈ Lc,

∀i, j ∈ {1, . . . , k} , l %i q ⇔ l %j q.

4 General Results

4.1 The Relation of Restricted Independence to Consistent

Conditional Preferences

Theorem 1 Assume Axiom 3, and consider a finite partition A = {A1, . . . , Ak} ⊂
Σ of S. Then the restricted independence axiom holds relative to each Ai ∈ A if and
only if preferences admit consistent conditioning relative to A. That is, Axiom 1
holds if and only if Axiom 4 holds (each being relative to A).

Like all other results in this paper, the proof of this theorem has been placed in
a separate appendix. This theorem allows one to precisely gauge the strength of the
assumption that a given set of consistent conditional preferences exists (with respect
to some partition). It links preferences over strategies, or contingent plans formed
before information arrives and is conditioned upon, to conditional preferences. It is
of particular interest because it exposes the relationship between the independence
axiom, which has been the focus of the axiomatic work on uncertainty aversion, and
the existence of consistent conditional preferences.

4.2 Prismatic Sets of Priors

Definition 2 A set P of priors will be said to be prismatic with respect to the
finite partition A if and only if there exist closed convex sets Ci , i ∈ {1 , . . . , k} of
finitely additive probability measures, where each measure Pi ∈ Ci has Pi (Ai) = 1,
and a closed convex set of finitely additive measures Q, where each Q ∈ Q has
Q (Ai) > 0 ∀i ∈ {1, . . . , k}, such that

P =

{

P : ∀B ∈ Σ, P (B) =
∑k

i=1 Pi (B) Q (Ai)
for some Pi ∈ Ci , i ∈ {1 , . . . , k} and Q ∈ Q

}

.

Prismatic sets of priors generalize the rectangular sets of priors introduced in Ep-
stein and Schneider (2003) in a straightforward way: the shape of a prismatic set
of priors need not be linked to how information is revealed to the decision maker,
while the shape of a rectangular set of priors is tightly linked to the order in which
information is revealed to the decision maker. If a set of priors were prismatic with
respect to the set of partitions induced by the flow of information to the decision
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maker over time, that set of priors would also be rectangular. However, a set of pri-
ors may be prismatic without being rectangular; this will occur if the partition with
respect to which the set of priors is prismatic is unrelated to the filtration describing
the revelation of information to the decision maker over time. Situations in which it
is natural to break the link between the filtration and the shape of the set of priors
are examined in Section 6. In general, if all of the uncertainty in a decision problem
is concentrated in the parameters of a model, prismatic sets of priors may lead to
behavior that is more intuitive and appealing than the behavior that would result
from rectangular sets of priors.

The defining property of a prismatic set of priors is that any conditional may
be chosen from the set Ci , regardless of how other conditionals or the marginals
are selected. This freedom in the selection of different components of a prior has
important behavioral implications which are laid out in Theorem 2 below.

4.3 The Basic Representation Result

Theorem 2 Given a finite partition A = {A1, . . . , Ak} ⊂ Σ of S such that each
Ai ∈ A is non-null, the following conditions are equivalent:

(1) Axioms 1 and 2 (relative to the partition A) and Axiom 3.
(2) Axioms 4 and 5 (relative to the partition A) and Axiom 3.
(3) There exists a closed, convex set of finitely additive measures P that is pris-

matic with respect to A and a mixture linear and nonconstant u : Y → R such that
% is represented by

min
P∈P

{∫

s∈S

u (f (s)) dP (s)

}

.

In this representation, P is unique and u is unique up to a positive affine transforma-
tion. Moreover, there is a set of conditional preference relations %i, i ∈ {1, . . . , k}
relative to A, and for each i ∈ {1, . . . , k}, %i is represented by

min
Pi∈Ci

{∫

s∈Ai

u (f (s)) dPi (s)

}

.

In this representation, Ci = {Pi : ∀B ∈ Σ , Pi (B) = P (B |Ai) for some P ∈ P},
and is thus a closed convex set of finitely additive measures, and is unique by the
uniqueness of P.

This theorem refines the result of Gilboa and Schmeidler (1989) by obtaining
a set of distributions P that has a special structure. It is a natural generalization
of the situation explored by Epstein and Schneider (2003), who obtained a result
similar to the equivalence between (2) and (3). However, they do not consider
restricted independence and the structure of the set of priors in their result is tied
to the filtration that governs the revelation of information to the decision maker. In
contrast, the result above holds for any partition of states of the world (subject to
the stated conditions). This added generality will prove crucial in the development
of model-based multiple-priors.

As noted above, the key to the structure of a prismatic set of distributions is that
any conditional may be selected from the set Ci , regardless of how other conditionals
or the marginals are chosen. Intuitively, it is sensible that this “independence” in the
selection of the distribution corresponds to the restricted independence of Axiom 1.
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5 Model-based Multiple-priors

The theory of model-based multiple-priors is formulated in a dynamic setting. Time
is discrete and the horizon is finite: t ∈ {0, 1, . . . , T}.

To maintain continuity of notation, let the state space be denoted S as before
(rather than the notation Ω more typical in the stochastic-process literature). Each
state of the world is composed of a model parameter value and a vector of observable
variables:

s = (θ, z0, . . . , zT ) , (3)

where at time t ∈ {0, 1, . . . , T} the investor has observed (z0, . . . , zt). Note that
the value of the model parameter θ is, in general, never observed by the investor.
Let the set of model parameters be denoted Θ and the set of vectors of observable
variables be denoted Z.

The variables zt are revealed to the investor in a certain order, and may be
considered as a stochastic process indexed by t ∈ {0, 1, . . . , T}. Denote the filtration
that the process {zt}T

t=0 generates by {Ft}T

t=0, where F0 is trivial (includes only Z

and φ, the empty set). For any t ∈ {0, 1, . . . , T}, the atoms of the σ-algebra Ft will
be of special interest. The atoms of a σ-algebra are the sets in that σ-algebra such
that any other set in the σ-algebra is the union of some collection (possibly empty)
of atoms. The atoms of Ft, taken together, thus make up the finest partition of S

that can be formed using sets in Ft. It is assumed that there is a finite number of
atoms in each Ft for t ∈ {0, 1, . . . , T}. This amounts to the assumption that the
range of each zt is a finite set (this assumption is made for clarity, and could easily
be relaxed). Any filtration {Ft}T

t=0 satisfying this assumption has an event-tree
representation, in which each atom of Ft is identified with a set of terminal nodes
that originate from some node at the time-t level of the tree. The branches from a
node at time t to nodes at time t + 1 can be thought of as connecting an atom in
Ft to the atoms in Ft+1 which partition it.

Given any σ-algebra ΣΘ on Θ, the set of model parameters, let the σ-algebra on
S = Θ×Z be defined by Σ = ΣΘ×FT . Observe that the definition of Σ makes clear
that the value of the model parameter is, in general, never revealed to the investor.

The set X of consequences or prizes will be the set of (T + 1)-long sequences of
consumption bundles, (c0, c1, . . . , cT ), such that each ct ∈ C for some set C (which
might, for example, be the positive reals). It is now tempting to proceed with L0

equal to the set of all FT measurable finite step functions from Z into Y , the set of
simple probability distributions on X (note that direct dependence on θ, the model
parameter, is not allowed, although θ will generally have an impact through its in-
fluence on (z0, . . . , zT )). This is problematic because such a definition would fail to
account for the order in which information is revealed according to the filtration
{Ft}T

t=0, since L0 would then include, for example, horse lotteries in which c0, con-
sumption at time 0, was FT measurable but not F0 measurable (in other words,
constant, since F0 is trivial). This would mean that consumption at time zero was
dependent on some possible outcome not “known” (according to the filtration) until
some time in the future, making it difficult to use the filtration for its customary
purpose: to represent the information structure of the environment.

11



Instead, attention is restricted to the subset of {Ft}T

t=0 adapted acts in L0. A

horse lottery f ∈ L0 will be called {Ft}T

t=0 adapted if f : Z → Y is such that
f (z) = (f0 (z) , . . . , fT (z)) where for t ∈ {0, . . . , T}, ft (z) is a simple probability
distribution on C for fixed z, and is Ft measurable as a function of z. A roulette
lottery l ∈ Lc, then, is a constant horse lottery; thus, a roulette lottery is a (T + 1)-
long sequence of simple probability distributions (l0, . . . , lT ), where lt is a simple
probability distribution on C whose realization is ct. Note that the random variables
governed by the simple probability distributions ls and lt are independent if s 6= t.

These are similar to the set of adapted horse lotteries and the set of roulette
lotteries that Epstein and Schneider (2003) work with, though θ is not part of the
state of the world for them. Following their notation, the set of adapted horse
lotteries is denoted H below.

To apply the results of Section 4, it is necessary to produce some set of conse-
quences, denoted XU , paired with the set of simple probability distributions on it,
labelled Y U , such that the set of FT -measurable finite step functions f : Z → Y U is
equivalent, from a preference perspective, to H. This is achieved by showing that un-
der Axiom 3, preferences over roulette lotteries are representable by a von Neumann-
Morgenstern utility function, which is, moreover, additively time-separable. The
vN-M utility function is also, as usual, unique up to a positive affine transformation.
Then one may take XU ⊂ R to be the set of all vN-M utility values arising from
consumption lotteries. Preferences over adapted acts naturally induce a preference
relation on f : Z → Y U , which then satisfies Axiom 3.

Proposition 1 Suppose that %, defined on H, satisfies Axiom 3. Then, on the
subset of H composed of roulette lotteries, % is represented by a mixture linear
function v (·), which is unique up to a positive affine transformation. Moreover, v

is additively time-separable.
Proposition 1 will now be used to show that the results obtained in Section 4

continue to hold when preferences are defined on the dynamic domain of the current
section.

Theorem 3 Theorems 1 and 2 continue to hold when % is defined on the dynamic
domain of this section. Moreover, the function u in Theorem 2 is additively time-
separable.

To obtain an axiomatic foundation for model-based multiple-priors, consider (for
clarity) the case in which Θ is finite and ΣΘ = 2Θ, and choose the partition in
Theorem 2 such that Ai = {θi} × Z. This partition is model-based: states of the
world are partitioned according to the values of an economic model’s parameters.
If one assumes Axiom 1, the restricted independence axiom, and Axiom 2 with
respect to this partition, and also assumes Axiom 3, then Theorem 2 implies that
there is a maxmin expected utility representation for preferences, and that the set
of distributions on the state of the world is prismatic with respect to the partition
{A1, . . . , Ak}. (In place of Axioms 1 and 2, one could assume Axioms 4 and 5
with respect to the partition.) The prismatic structure of the set of distributions
on S is, in fact, a “multiple-priors multiple-likelihoods” structure: there is a set of
distributions on the parameters of the economic model and, given any value of the
parameters of the model, there is a set of distributions on the vector of data.
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To obtain a model-based multiple-priors representation, the set of likelihoods
(distributions of the data given the model parameters) must be reduced to a single
likelihood. This can be done in one of two (equivalent) ways: a stronger version
of Axiom 1 may be assumed in which the mixing horse lottery h can be arbitrary,
or, equivalently, Axiom 4 may be strengthened by assuming that each conditional
preference ordering satisfies not only certainty independence, but the full indepen-
dence axiom. Either one of these (equivalent) strengthened assumptions will deliver
many priors (distributions on the parameters of the economic model) but only one
likelihood (the distribution of the data given the parameters of the economic model).
It is important to note that there are consistent conditional preferences, conditional
on the parameters of an economic model, in model-based multiple-priors.

Finally, it is worth contrasting model-based multiple-priors with an approach
which takes Θ alone as the state space and applies maxmin expected utility to
horse lotteries defined on Θ. The key difference between these two approaches is
that in model-based multiple-priors, the subjective nature of the distribution of z

given θ (the likelihood) is acknowledged and incorporated, while in a maxmin ap-
proach that takes Θ alone as its state space, the likelihood must be assumed to
be objectively given. In most economic settings, the assumption that the likeli-
hood is objectively given appears unrealistic. In that sense, the relation between
model-based multiple-priors and the “only Θ” maxmin approach is analogous to
the relation between Anscombe and Aumann (1963) (or Savage (1954)) subjective
expected utility and von Neumann-Morgenstern expected utility.

6 A Comparison of Uncertainty Aversion Frame-

works

Using the dynamic framework that has been developed above, it is possible to com-
pare and contrast model-based multiple-priors and the approaches to uncertainty
aversion that have been used in the asset pricing literature. The work of Cagetti,
Hansen, Sargent, and Williams (2002) and Hansen, Sargent, and Wang (2002) is not
examined in detail, because these studies are focused on filtering (which might be
thought of as learning about an infinite-dimensional parameter), and do not offer
the sort of general theory of learning about a model parameter that this paper seeks
to provide. The paper of Miao (2001) is also not discussed in depth, because his
work deals with what might be called a “single-prior, multiple-likelihoods” frame-
work. This does incorporate both learning and uncertainty aversion, but there is no
uncertainty (in a multiple-priors sense) about the model parameters in Miao (2001):
there is a single prior on the model parameters. The focus here is on situations
in which there is uncertainty about the model parameters. The study of Epstein
and Schneider (2002) offers an alternative to model-based multiple-priors, and their
work is discussed in detail below.

In model-based multiple-priors, as in the work of Chamberlain (2000), the state
of the world consists of both the parameters of an economic model and a vector of
data: s = (θ, z), where s is the state of the world, θ is a vector of model parameters,
and z is a vector of data. While the formal axiomatic development above treats
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finite partitions, it might be taken as motivation for the use of the model-based
multiple-priors approach when the parameter space is a subset of finite-dimensional
Euclidean space, or even when the parameter space is infinite-dimensional (so that
the problem is of the type typically referred to as “nonparametric” or the type usually
termed “semiparametric”). In any event, the model-based multiple-priors approach
can certainly be implemented in such settings, though working in a nonparametric
framework may incur a significant computational cost.

Some of the recent work of Epstein and Schneider (Epstein and Schneider (2003)
and Epstein and Schneider (2002)), on the other hand, uses a set of partitions. In-
deed, in any event tree, the Epstein and Schneider (2003) assumptions state that
consistent, consequentialist conditional preferences exist conditional on any node in
the tree. One could prove the Epstein-Schneider theorem by repeatedly applying
Theorem 2. In fact, the condition on the set of distributions that they term “rect-
angularity” is a special case of the prismatic condition, in which the basic partition
is linked to the way in which information is revealed to the decision maker. This
link to the information structure of the decision problem and the resulting conse-
quentialism of the preferences of a recursive multiple-priors decision maker are key
features that distinguish recursive multiple-priors from model-based multiple-priors.

A crucial point here is that the nonexistence of a set of consistent, consequential-
ist conditional preferences (for example, conditioned on the nodes at some level of an
event tree) does not imply dynamic inconsistency or a need for “committed updat-
ing.” Rather, a single (least favorable) prior will be selected, and that prior will be
updated in the usual, Bayesian way. The use of an economic model in model-based
multiple-priors, for instance, does not indicate that dynamic inconsistency arises.
Far from it: the decision maker selects a prior on the model parameters and updates
it using Bayes rule. In model-based multiple-priors, it is only at the beginning of the
observation and decision process that many priors are considered. Once the least
favorable among them has been isolated, it is used. A natural question would be:
“What if the decision maker were confronted with a choice between gambles at some
later date, after the selection of the least favorable prior?” The decision maker would
then step back to time zero and rank the gambles at that point, using the full set
of priors. There is absolutely nothing inconsistent about this behavior; rather, it is
not what one ordinarily thinks of as conditional choice behavior, since the decision
maker takes into account counterfactuals when weighing alternatives. (There is a
large literature on why one might want to take counterfactuals into account; Machina
(1989) is a good review of the earlier portion of this literature, and argues strongly
against consequentialism from both a normative perspective and a descriptive per-
spective.) Thus, it is not so much the consistency part of Axiom 4 that is of concern,
but the focus part of the axiom (which can lead to consequentialism, depending on
the partitions with respect to which it holds). This makes very good sense; it is well
known that consequentialism is fundamentally linked to the independence axiom,
and Theorem 1 makes the link explicit in the current setting. If one does not wish
to impose the restricted independence axiom with respect to a particular set of par-
titions (linked to the information structure of the problem) on preferences at date
zero, one must refrain from assuming the existence of consequentialist, consistent
conditional preferences.
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Three examples are now given to illustrate why consequentialism may be signifi-
cantly less appealing once the independence axiom has been relaxed. This point has
been made very persuasively by Machina (1989) in the context of risk. In the course
of one of these examples, a statistical representation theorem is proven which is the
model-based multiple-priors version of the classical de Finetti theorem (see Kreps
(1988) and Savage (1954)). Since such a statistical representation theorem is appar-
ently not currently available for consequentialist multiple-priors theories, this would
seem to increase the relative appeal of model-based multiple-priors.

6.1 A Three-color Ellsberg Urn

Epstein and Schneider (2003) give a three-color Ellsberg urn example which demon-
strates a potential hazard of consequentialism in the absence of the independence
axiom. In this example, a ball is drawn from an urn which contains red (R), blue
(B), and green (G) balls. In their Section 4.1, Epstein and Schneider (2003) focus
on the situation in which there are 90 balls in the urn, of which 30 are known to
be red and 60 are either blue or green. They note that “[a] natural state space is
Ω = {R, B, G},” and consider a decision problem in which there are three periods:
t ∈ {0, 1, 2}. Epstein and Schneider (2003) stipulate that “the color [of the ball] is
revealed to the decision-maker at t = 2,” and that “[a]t the intermediate stage time
1, the decision-maker is told whether or not the color drawn is G.” Any distribution
over the possible colors of the ball can be represented by a probability vector:

p = (pR, pB, pG) , (4)

where pR is the probability that the ball drawn is red, pB is the probability that the
ball drawn is blue, and pG is the probability that the ball drawn is green. Sets of
priors are sets of such probability vectors.

As noted by Epstein and Schneider (2003), in order to be rectangular (in accord
with recursive multiple-priors), a set of priors that admits a range of probabilities of
a green ball versus a blue ball must also admit a range of probabilities of a red ball.
But this is troubling: the probability of a red ball being drawn is known to be 1

3
,

since there are 30 red balls and 90 balls in all. Even in the most favorable scenario,
in which the interior of the interval of probabilities of a red ball includes the true
probability 1

3
, this means that a recursive multiple-priors decision maker who owned

the contingent claim “one hundred dollars if the ball drawn is red, otherwise zero
dollars” and who had a range of priors would be willing to pay someone to trade
this claim for a bet that paid one hundred dollars with probability 1

3
. Since the

contingent claim and the bet are probabilitistically identical, this willingness to pay
in order to trade one for the other is disturbing.

Note that a model-based multiple-priors decision maker who used the partition of
states into {R} and {G, B} would not exhibit the problematic preferences discussed
above.

6.2 Exchangeability and De Finetti

Consider sampling with replacement from an ordinary, two-color Ellsberg urn. Fig-
ure 1 shows what form a rectangular set must take in this context.
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p ∈
[

p, p
]

D0 = R, D1 = Rp
R

∈
[

p
R
, p

R
]

D0 = R, D1 = B

D0 = B, D1 = Rp
B

∈
[

p
B

, p
B
]

D0 = B, D1 = B

Figure 1: A Rectangular Set of Priors for Sampling with Replacement

from an Ellsberg Urn
The event tree above applies to sampling with replacement from a (two-color) Ellsberg
urn. The set of priors depicted is rectangular, and any rectangular set of priors in
this context must take the form shown.
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clearpage
In this setting, the ex ante probability of a red ball followed by a black ball

should equal the ex ante probability of a black ball followed by a red ball:

p
(

1 − pR
)

= (1 − p) pB. (5)

However, if the intervals
[

p, p
]

,
[

pR, pR
]

, and
[

pB, pB
]

are nontrivial in a rectangular
set of priors, the typical prior in that rectangular set will not satisfy exchangeability.
Indeed, if the rectangular set is thought of in three-dimensional Euclidean space,
with p on the first axis, pR on the second axis, and pB on the third axis, the subset
of priors that satisfy exchangeability will have Lebesgue measure zero. This can be
seen by observing that an exchangeable prior must satisfy the equation above, and
that thus the set of exchangeable priors forms a surface in the three-dimensional
space described.

In contrast, in model-based multiple-priors, exchangeability is natural. In fact,
a de Finetti theorem under uncertainty can be proven: any closed, convex set of
distributions on an infinite sequence of Bernoulli (zero-one) random variables is
exchangeable if and only if it can be represented as the set of distributions derived
from a single i.i.d. binomial likelihood and a closed, convex set of priors on p =
Pr (Xi = 1). The closedness of a set of distributions is under the topology of weak
convergence, matching the representation result obtained by Gilboa and Schmeidler
(1989) and specialized here.

To state and prove the result, one must specify the metric with respect to which
the continuity of real-valued functions of infinite sequences of zeros and ones will
be judged. This will determine which sets of distributions over infinite zero-one
sequences are considered to be closed. Although the result is not overly sensitive to
the precise choice of metric, a convenient choice is the metric

d (x, y) ≡
∞
∑

i=1

1

2i
|xi − yi| , (6)

where x = (x1, x2, . . .) and y = (y1, y2, . . .) are infinite sequences such that xi, yi ∈
{0, 1} ∀i. The metric used to determine the continuity of real-valued functions on
[0, 1] is the usual Euclidean distance.

Theorem 4 Given any closed, convex set P of distributions on [0, 1], define the set
E of distributions on {0, 1}∞ (the set of all infinite sequences of zeros and ones) as
the set of all distributions E on {0, 1}∞ such that ∃ Q ∈ P with the property that,
for any N < ∞ and for any distinct i1, i2, . . . , iN ∈ N,

PrE (xi1 , xi2 , . . . , xiN ) ≡
∫ 1

0

p
∑N

j=1
xij (1 − p)N−

∑N
j=1

xij dQ (p) . (7)

Then every distribution in E is exchangeable, and E is closed and convex.
Conversely, given any closed, convex set E of distributions on {0, 1}∞ such that

every E ∈ E is exchangeable, there is a closed, convex set P of distributions on [0, 1]
with the property that, ∀ E ∈ E , ∃ Q ∈ P such that, for any N < ∞ and for any
distinct i1, i2, . . . , iN ∈ N,

PrE (xi1 , xi2 , . . . , xiN ) ≡
∫ 1

0

p
∑N

j=1
xij (1 − p)N−

∑N
j=1

xij dQ (p) . (8)
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This theorem provides a statistical representation of any set of exchangeable
distributions on infinite sequences of zero-one random variables. It is of particu-
lar importance for model-based multiple-priors because it justifies, in terms of the
properties of distributions on observables, an approach in which uncertainty is con-
centrated in model parameters. The importance of de Finetti’s theorem in the con-
text of standard subjective expected utility is discussed in detail by Kreps (1988)
and Savage (1954). Theorem 4 provides an analog of this fundamental result in
the model-based multiple-priors framework. Crucially, however, it seems difficult
to prove a result of this nature for multiple-priors theories other than model-based
multiple-priors; certainly, the proof given here for model-based multiple-priors could
not be used in a consequentialist multiple-priors context.

6.3 Preferences over Derivative Assets

A specific set of derivative assets can reveal some counterintuitive behavior on the
part of a consequentialist multiple-priors investor. Suppose there is a risky asset
whose return in each of two periods is either high (H) or low (L). Label the first
period “period zero” and the second period “period one.” Consider one derivative,
A, on the risky asset that pays off 1,000 dollars at the end of period one if the return
sequence is (H, L) and otherwise pays off one dollar at the end of period one, and
another derivative, B, that pays off 1,000 dollars at the end of period one if the
return sequence is (L, H) and otherwise pays off one dollar at the end of period one.
A and B are essentially bets on the order of the high and the low return, if one high
and one low return are realized.

For a recursive multiple-priors investor, the set of distributions over possible pairs
of period-zero and period-one returns is rectangular:

Pr (R0 = H) ∈
[

p, p
]

(9)

Pr (R1 = H|R0 = H) ∈
[

pH , pH
]

(10)

Pr (R1 = H|R0 = L) ∈
[

pL, pL
]

. (11)

One might expect that an investor would be indifferent between holding a port-
folio of only A and a holding a portfolio of only B. Indeed, it would seem reasonable
that the investor would be indifferent between A, B, and flipping a fair coin, then
holding a portfolio of only A if the coin came up heads, and only B if the coin
came up tails. However, if p > p, so that the investor has uncertainty aversion over

the time-zero return, and if pL > 0 and pH < 1 (ruling out dogmatic beliefs about
time-one returns), then a recursive multiple-priors investor cannot be indifferent be-
tween A, B, and randomizing over A and B with equal probabilities. In contrast,
a model-based multiple-priors investor using an i.i.d. model for returns will always
be indifferent between these three choices.

First, consider the preferences of a model-based multiple-priors investor whose
model is that returns are i.i.d. It is innocuous, given the invariance of von Neumann-
Morgenstern utility rankings to positive affine transformations of the utility function,
to normalize the utility of one dollar to zero and the utility of 1,000 dollars to one.
Then the maxmin expected utility of holding A (to a model-based multiple-priors
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investor) is:

min
π∈Π

{
∫ 1

0

p (1 − p) dπ (p)

}

, (12)

where p is the probability of a high return in any given period, and Π is a set of priors
on that probability. But this is also the maxmin expected utility of holding B, and
it is the maxmin expected utility of holding any roulette lottery whose prizes are A

and B. Essentially, this is due to exchangeability; the model-based multiple-priors
investor feels that (H, L) and (L, H) are equiprobable return sequences.

In contrast, the preferences of a recursive multiple-priors investor must reflect
the rectangular structure of her set of priors (see Figure 3). Thus, the maxmin
expected utility of holding A is, by the normalization of von Neumann-Morgenstern
utility given above, just the minimized probability of a high return followed by a
low return:

p
(

1 − pH
)

, (13)

while the maxmin expected utility of holding B is just the minimized probability of
a low return followed by a high return:

(1 − p) pL. (14)

Now consider the maxmin expected utility of a roulette lottery delivering A with
probability 1

2
and B with probability 1

2
to the recursive multiple-priors investor. It

is:

min
p∈[p,p]

{

1

2
p
(

1 − pH
)

+
1

2
(1 − p) pL

}

. (15)

The following calculation reveals that it is not possible for all three of these maxmin
expected utility values to be the same if p > p (so that there is uncertainty, as well

as risk, regarding the time-zero return), pL > 0 (ruling out dogmatic beliefs after

a low time-0 return), and pH < 1 (ruling out dogmatic beliefs after a high time-0
return). If the maxmin expected utilities of holding A and holding B differ, there is
no more to show.

Suppose, then, that they are the same, so that

p
(

1 − pH
)

= (1 − p) pL. (16)

Under this condition, it is now shown that the maxmin expected utility of the
roulette lottery delivering A with probability 1

2
and B with probability 1

2
will be

greater than the maxmin expected utility of holding A or B. If p ∈
(

p, p
]

, so that
p > p, then

p
(

1 − pH
)

> p
(

1 − pH
)

(17)

(1 − p) pL ≥ (1 − p) pL, (18)
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where the first, strict inequality follows from the fact that pH < 1 by assumption.
But then

1

2
p
(

1 − pH
)

+
1

2
(1 − p) pL >

1

2
p
(

1 − pH
)

+
1

2
(1 − p) pL (19)

= p
(

1 − pH
)

(20)

= (1 − p) pL. (21)

It remains only to consider p = p. But in this case,

(

1 − p
)

pL > (1 − p) pL, (22)

since pL > 0 by assumption. Thus,

1

2
p
(

1 − pH
)

+
1

2

(

1 − p
)

pL >
1

2
p
(

1 − pH
)

+
1

2
(1 − p) pL (23)

= p
(

1 − pH
)

(24)

= (1 − p) pL. (25)

Thus, if the maxmin expected utilities of holding A and B are the same, then the
maxmin expected utility of the roulette lottery delivering A with probability 1

2
and

B with probability 1
2

will be greater than the maxmin expected utility of holding A

or B. Therefore, these three maxmin expected utility values cannot all be the same.
A preference for randomization is part of the definition of uncertainty aversion,

but the key point is that the model-based multiple-priors investor discussed here
does not experience uncertainty about the order of returns, given that there is one
high and one low return. This is due to the model-based multiple-priors investor’s
belief in the i.i.d. model. In contrast, the recursive multiple-priors investor discussed
here does experience uncertainty aversion about the order of returns, even given the
fact that there is one high and one low return.

7 A Simple Two-period Example

In this section, an extremely simple model of portfolio choice is used to illustrate the
basic differences between model-based multiple-priors and consequentialist multiple-
priors approaches. Specifically, model-based multiple-priors is compared to recursive
multiple-priors (Epstein and Schneider (2003)). There are two periods: t = 0, 1.
Investment decisions are made at the beginning of each period, and the return for
each period is realized at the end of that period. This corresponds to the event tree
depicted in Figure 2.

Initial wealth is W0 > 0. Utility is of the power form over final wealth:

U (W2) =

{

W
1−γ
2

1−γ
if γ 6= 1,

ln (W2) if γ = 1
, (26)

where W2 denotes wealth at the end of period 1 (or the beginning of period 2). In
the continuous-time models analyzed in Knox (2003), intermediate consumption is
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R0 = H

R0 = H, R1 = H

R0 = H, R1 = L

R0 = L

R0 = L, R1 = H

R0 = L, R1 = L

Figure 2: The Two-period Binomial Model
This figure depicts an event-tree representation of the two-period model with a bino-
mial risky asset, which is described in Section 7.
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considered; it could be included here, but is omitted for the sake of simplicity. There
is one riskless asset, and the (gross) riskless rate is denoted Rf > 1. There is one
risky, and uncertain, asset; in each period, the gross return on this asset takes on
one of two possible values. The higher of these two values is denoted H and the
lower is denoted L, while the (uncertain) gross return on the risky asset in period t

is denoted Rt. In order to avoid arbitrage, H > Rf > L is assumed. At each of the
two periods, the investor chooses how much to invest in the risky (and uncertain)
asset.

Under the conditions on preferences given by Gilboa and Schmeidler (1989), the
investor has a set of (subjective) prior probability distributions on the four possible
pairs of returns. This set is closed and convex. The investor evaluates any potential
portfolio choice by calculating the minimum expected utility of that portfolio choice,
where the minimum is taken over the set of priors.

In the recursive multiple-priors approach, the set of priors is rectangular:

Pr (R0 = H) ∈
[

p, p
]

(27)

Pr (R1 = H|R0 = H) ∈
[

pH , pH
]

(28)

Pr (R1 = H|R0 = L) ∈
[

pL, pL
]

. (29)

This set of priors is shown in Figure 3.
For a given portfolio choice rule, minimization takes place separately over each

of the three intervals of probabilities. This separate minimization over each of the
three intervals is a cornerstone of recursive multiple-priors, and must hold whether
the interval endpoints are set according to the type of learning advocated by Epstein
and Schneider (2002) or according to the “κ-ignorance” specification of Chen and
Epstein (2002) (which further specializes the above to sets in which p = pH = pL

and p = pH = pL, so that the three returns have the same ranges of uncertainty).
To see the contrast between model-based multiple-priors and a consequentialist

approach to uncertainty aversion in dynamic portfolio choice, consider the following
investment problem. The set of priors on the probability of a high return is a set of
mixtures of two point masses:

Π ≡
{

Pr (Rt = H) = 0.75 with probability q

Pr (Rt = H) = 0.25 with probability 1 − q
: q ∈ [0.1, 0.9]

}

. (30)

Note that Π is convex and closed. There is a two-period binomial likelihood for the
pair of returns on the risky asset given the probability of a high return, as described
above. To make this example fully concrete, suppose that H = 1.25 = 1

L
, so that

L = 0.8, and that Rf = 1
2
H + 1

2
L = 1.025 (the values chosen are convenient, but

not essential; this is not a knife-edge situation). Further suppose that γ = 2 (again,
this is not essential).

Using the minimax theorem as in Chamberlain (2000) and Knox (2003), the
portfolio choice problem of a model-based multiple-priors investor may be solved
as follows: solve the standard Bayesian dynamic portfolio choice problem for each
prior π ∈ Π on p. This maps the set of priors to a set of date-zero utilities. Choose
the minimal utility from that set; the prior corresponding to that minimal utility is
the least-favorable prior. The model-based multiple-priors investor makes portfolio
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R0 = H

p ∈
[

p, p
]

R0 = H, R1 = H
pH ∈

[

pH , pH
]

R0 = H, R1 = L

R0 = L

R0 = L, R1 = HpL ∈
[

pL, pL
]

R0 = L, R1 = L

Figure 3: The Recursive Multiple-Priors Rectangular Set of Priors in the

Two-period Binomial Model
Under the Epstein-Schneider axioms, the investor has a rectangular set of priors,
which is shown in the figure above. The quantity p shown in the figure is the proba-
bility that the time-0 return on the risky asset is H. Because of uncertainty aversion,
this probability is not fixed: the investor is only willing to specify that it is in some
interval, denoted

[

p, p
]

. Likewise, the probability pH is the probability that the time-
1 return on the risky asset is H, given that the time-0 return on the risky asset was
H. As with the probability p, the probability pH is only specified to be within some
interval, which is denoted

[

pH , pH
]

. Finally, the probability pL is the probability that
the time-1 return on the risky asset is H, given that the time-0 return on the risky
asset was L. It is also known only up to some interval, denoted

[

pL, pL
]

in the figure
above.
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choices as a Bayesian would, if that Bayesian’s prior happened to be the least-
favorable prior in the set Π. For a given q, the value function at time zero is:

Jq (W0, 0)

= −W−1
0 R−2

f (H − L)−2
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(31)
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The above expression is minimized over q ∈ [0.1, 0.9] by any q ∈ [0.1, 0.9] which
maximizes

G (q) ≡
√

1 + 8q (Rf − L) (33)

+2
√

3
√

Rf − L
√

H − Rf

+
√

9 − 8q (H − Rf) .

The unique maximizer of G, and thus the unique q minimizing the value function,
is:

qLF =
9 (Rf − L)2 − (H − Rf )

2

8
[

(Rf − L)2 + (H − Rf)
2] (34)

=
9
(

9
40

)2 −
(

9
40

)2

8
[

(

9
40

)2
+
(

9
40

)2
] (35)

=
1

2
. (36)

The prior expected probability of a high return in the next period at time zero
is thus E [p] = 1

2
, but the posterior expected probability of a high return in the

next period after a high return has been observed is E [p|R0 = H] = 5
8
, while the

posterior expected probability of a high return in the next period after a low return
has been observed is E [p|R0 = L] = 3

8
. At time zero, the investor will not hold or

short the risky asset; after a high return, the investor will hold the risky asset at
time one; after a low return, the investor will short the risky asset at time one.

The minimized value function, found by substituting qLF = 1
2

and the given
values of H, L, and Rf into the formula above and simplifying, is:

JLF (W0, 0) = −W−1
0 R−2

f

(

6.35 + 3
√

3

16

)

(37)
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≈ −W−1
0 R−2

f × 0.72163453. (38)

This will be of interest when the model-based multiple-priors method is contrasted
with consequentialist multiple-priors methods.

To examine the behavior of a consequentialist multiple-priors investor, it is con-
venient (and not overly restrictive) to focus on an investor whose preferences are
described by the recursive multiple-priors theory of Epstein and Schneider (2003).
In Epstein and Schneider (2002), a method of applying recursive multiple-priors
to learn about a parameter of a model is clearly spelled out. Below, the method
explicated by Epstein and Schneider (2002) is applied to the current setting. Recur-
sive multiple-priors is, by axiomatic design, consequentialist. Because it is axioma-
tized without reference to a recursive domain of choice, it is simpler to work with
than alternative consequentialist multiple-priors theories such as those formulated
by Klibanoff (1995) and Wang (2003).

In order to apply the Epstein and Schneider (2002) method, one must “rectangu-
larize” the set of distributions on returns implied by the likelihood of returns given
p and the set of priors on p. This is accomplished by, at each date and in each state
of the world (that is, for each possible return history), considering a set of posterior
distributions for p obtained by updating the set of time-zero prior distributions on
p. At each date and in each state, this set of posteriors implies a set of predictive
distributions on returns, and the overall set of distributions on the entire sequence of
returns is built up from these sets of one-step-ahead predictive distributions. These
operations will be performed explicitly below. The process of “rectangularizing” al-
ways produces a set of distributions at least as large as the original set: it constructs
the smallest rectangular set of distributions (see Epstein and Schneider (2003)) that
contains the original set of distributions.

An important property of all consequentialist multiple-priors theories, including
recursive multiple-priors, is that the minimization over the set of distributions, for
a fixed horse lottery (e. g., for a fixed portfolio choice strategy), can be performed
recursively using dynamic programming. This is a direct consequence of the fact
that the set of one-step-ahead predictive distributions at any date and in any state
is the same regardless of how minimization might proceed at other dates or in other
states. Note that this is the minimization portion of the maxmin expected utility
problem: in order to solve the full problem, there will need to be both a minimization
(over the set of one-step-ahead predictive distributions) and a maximization (over
the choice variables) at each node in the event tree. Of course, the set of priors
will typically have to be rectangularized, and thus enlarged, in order to employ this
approach, so it is not true, in general, that consequentialist methods will be more
tractable than alternatives such as model-based multiple-priors. Further, it is not
true that only consequentialist methods permit the use of dynamic programming;
dynamic programming can be used to maximize expected utility, for a fixed prior,
in model-based multiple-priors. Minimization in model-based multiple-priors is then
performed over the resulting time-zero value functions.

Applying the Epstein and Schneider (2002) method to the simple example being
explored here leads to the consideration of different values of q at time zero, at time
one after a high return, and at time one after a low return. Label these values q0, qH ,
and qL respectively. The recursive multiple-priors investor behaves as though q might
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change depending on the date and the return history. Under the rectangularized set
of distributions q0, qH , qL ∈ [0.1, 0.9], but it is not required that all three of these
variables take on the same value. Quite the opposite: minimization occurs separately
over q0 ∈ [0.1, 0.9], qH ∈ [0.1, 0.9], qL ∈ [0.1, 0.9]. With the potential for differences
in q values, the time-zero value function for a Bayesian investor would be:

Jq,qH ,qL
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The expression above shows that the minimization problem in the sort of learning
advocated by Epstein and Schneider (2002) will typically be higher-dimensional
than the model-based multiple-priors minimization problem, which suggests that
model-based multiple-priors investors’ problems may be more tractable than those
of investors who learn as in Epstein and Schneider (2002). This suggestion is born
out by the closed-form solutions to a class of model-based multiple-priors continuous-
time consumption and portfolio choice problems given in Knox (2003).

Minimizing the above expression over q0, qH , and qL subject to the constraints
laid out above yields the least-favorable values of these variables:

qLF
0 =

1

2
(40)

qLF
H =

1

4
(41)

qLF
L =

3

4
. (42)

Under these least-favorable values of q0, qH , and qL, the recursive multiple-priors
investor never holds or shorts the risky asset at any time or after any return his-
tory. Upon substituting these values into the time-zero value function, the recursive
multiple-priors investor’s time-zero value function is obtained:

JLF
RMP (W0, 0) = −W−1

0 R−2
f . (43)

This is sensible: wealth grows at the riskless rate for two periods, since the investor
never holds or shorts the risky asset. It should be emphasized that, if q were con-
strained to an interval that was a strict subset of

[

1
4
, 3

4

]

, the recursive multiple-priors
investor would hold the risky asset at time one after a high return and would short
the risky asset at time one after a low return. However, since rectangularizing the
set of distributions used by the model-based multiple-priors investor always yields
a set at least as large as the original set, the recursive multiple-priors investor is
always at least as uncertainty-averse as the model-based multiple-priors investor.
The recursive multiple-priors investor will never hold more of the risky asset after a
high return nor short more of the risky asset after a low return than the model-based
multiple-priors investor whose set of priors was rectangularized.
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The greater uncertainty aversion of the recursive multiple-priors investor has sig-
nificant implications for welfare. Comparing the least favorable time-zero value func-
tion of the model-based multiple-priors investor with that of the recursive multiple-
priors investor, it is clear that the maxmin expected utility of the model-based
multiple-priors investor is greater (recall that the utilities are negative). In fact,
in order to experience maxmin expected utility equal to that of the model-based
multiple-priors investor, the recursive multiple-priors investor would need to have
initial wealth that was approximately 38.5743 percent greater than the initial wealth
of the model-based multiple-priors investor. If the model-based multiple-priors in-
vestor began with initial wealth of 500, 000 dollars, the recursive multiple-priors
investor would require an initial wealth of approximately 692, 872 dollars to equalize
the certain equivalents for the portfolio choice problem.

8 Conclusion

Most asset returns are uncertain, not merely risky: investors do not know the prob-
abilities of different possible future returns. The Ellsberg paradox (Ellsberg (1961))
suggests that investors are averse to uncertainty, as well as to risk. This paper ax-
iomatized the dynamic portfolio and consumption choice behavior of an uncertainty-
averse (as well as risk-averse) investor who tries to learn from historical data. The
theory developed, model-based multiple-priors, relaxes the assumption of consequen-
tialism, which has been imposed in existing axiomatic studies of uncertainty-averse
dynamic choice. Examples were given to show that consequentialism, the property
that counterfactuals are ignored, can be problematic when combined with uncer-
tainty aversion. A model-based multiple-priors analog of de Finetti’s statistical
representation theorem was proven; in contrast, consequentialism combines with
multiple priors to rule out prior-by-prior exchangeability. A simple dynamic port-
folio choice problem illustrated the contrast between a model-based multiple-priors
investor and a consequentialist multiple-priors investor. Building on the foundations
provided here, a class of continuous-time portfolio and consumption choice problems
under learning and uncertainty aversion, including problems in which the investor
is uncertain about the accuracy of an asset pricing model, is solved in closed form
for a model-based multiple-priors investor in a companion paper, Knox (2003).

A model-based multiple-priors investor has a set of prior distributions on the pa-
rameters of some economic model, but a single likelihood (or conditional distribution
of the data given the model parameters). Future work will explore frameworks in
which there are multiple likelihoods, as well as multiple distributions on the model
parameters. The axioms used here, without the specialization of Section 5, can be
used to justify such frameworks when the partitions involved are based on the val-
ues of model parameters. Research in the future will also focus on evaluating the
empirical implications of model-based multiple-priors, particularly for equilibrium
asset prices. To accomplish this goal, it will be necessary to characterize general
equilibrium when agents’ preferences are described by model-based multiple-priors.
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Appendix

This Appendix contains proofs of the propositions and theorems stated in the text.
To avoid confusion between equations in the text of the paper and equations in this
Appendix, the equations in this Appendix are numbered (A.1), (A.2), etc. Through-
out the proofs below, A = {A1, . . . , Ak} is a partition of S, and given any Ai ∈ A,

we define (f ; g)i ≡
{

f for s ∈ Ai,

g for s ∈ AC
i .

.

Proofs

Lemma 1 Under Axiom 1 relative to A, and under Axiom 3, ∀f, g, h ∈ L0, ∀l ∈ Lc,
∀i ∈ {1, . . . , k}, and ∀α ∈ (0, 1),

(f ; h)i % (g; h)i ⇔ (αf + (1 − α) l; h)i % (αg + (1 − α) l; h)i .

Proof of Lemma 1: By definition, (f ; h)i and (g; h)i are identical on AC
i .

Consider m = (l; h)i, which by definition is constant on Ai. By Axiom 1 relative
to Ai, ∀α ∈ (0, 1) , (f ; h)i � (g; h)i ⇔ α (f ; h)i + (1 − α)m � α (g; h)i + (1 − α)m.
But ∀s ∈ S, we have that

(α (f ; h)i + (1 − α) m) (s)

= (αf + (1 − α) l; αh + (1 − α)h)i (s)

= (αf + (1 − α) l; h)i (s) .

Thus, by monotonicity, α (f ; h)i + (1 − α)m ∼ (αf + (1 − α) l; h)i. Since exactly
analogous reasoning can be applied to α (g; h)i + (1 − α)m, we also have that
α (g; h)i + (1 − α)m ∼ (αg + (1 − α) l; h)i. Then, by transitivity, we have that
∀α ∈ (0, 1) , f � g ⇔ (αf + (1 − α) l; h)i � (αg + (1 − α) l; h)i. Q.E.D.

Lemma 2 Under Axiom 1 relative to A, and under Axiom 3, ∀f, g, h, m ∈ L0,
∀i ∈ {1, . . . , k}, and ∀α ∈ (0, 1),

(f ; h)i � (g; h)i ⇔ (f ; αh + (1 − α)m)i � (g; αh + (1 − α)m)i .

Proof of Lemma 2: Let l ∈ Lc, so that l is a roulette lottery. We have that
∀α ∈ (0, 1),

(f ; h)i � (g; h)i

⇔ (αf + (1 − α) l; αh + (1 − α)m)i � (αg + (1 − α) l; αh + (1 − α) m)i

⇔ (f ; αh + (1 − α)m)i � (g; αh + (1 − α)m)i .

The first equivalence follows from applying Axiom 1 relative to Ai, where the mixing
lottery is (l; m)i (which is constant on Ai since l is a roulette lottery). The second
equivalence follows from Lemma 1 (which we apply with the act on AC

i being αh +
(1 − α)m). Q.E.D.
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Lemma 3 Under Axiom 1 relative to A, and under Axiom 3, ∀i ∈ {1, . . . , k},

∀f, g, h, m ∈ L0, (f ; h)i � (g; h)i ⇔ (f ; m)i � (g; m)i

Proof of Lemma 3: Suppose that the statement of the lemma does not hold.
Then ∃f, g, h, m ∈ L0 such that (f ; h)i � (g; h)i but (f ; m)i - (g; m)i. Since
(f ; h)i � (g; h)i, Lemma 2 implies that

(

f ; 1
2
h + 1

2
m
)

i
�
(

g; 1
2
h + 1

2
m
)

i
. However,

since (f ; m)i - (g; m)i, Lemma 2 also implies that
(

f ; 1
2
h + 1

2
m
)

i
-
(

g; 1
2
h + 1

2
m
)

i
.

This is a contradiction, so the statement of the lemma must hold. Q.E.D.

Proof of Theorem 1: First we prove that Axiom 4 implies Axiom 1 (each
being relative to A). Suppose f, g ∈ L0 are such that f (s) = g (s) ∀s ∈ AC

i , and
that f � g. Then Ai is not a null set, since Ai null and f (s) = g (s) ∀s ∈ AC

i would
imply f ∼ g. ∀j 6= i, f (s) = g (s) ∀s ∈ Aj, since the Aj, j 6= i, partition AC

i .
Thus, by the “focus” portion of Axiom 4, f ∼j g ∀j 6= i. If f -i g, then f -l g ∀l ∈
{1, . . . , k} (since f ∼l g ⇒ f -l g by definition), so by the “consistency” portion of
Axiom 4 we would have f - g. But f � g, so f �i g. Given h that is constant on
Ai, ∃y ∈ Y such that h (s) = y ∀s ∈ Ai. By the “focus” portion of Axiom 4, and
letting l ∈ Lc be such that l (s) = y ∀s ∈ S, l ∼i h, since l and h are equal (with
value y) at each element of S. By the “multiple priors” portion of Axiom 4, and
the “certainty independence” portion of Axiom 3, ∀α ∈ (0, 1) , αf + (1 − α) l �i

αg+(1 − α) l. Since (αf + (1 − α) l) (s) = (αf + (1 − α)h) (s) ∀s ∈ Ai, the “focus”
portion of Axiom 4 implies that αf + (1 − α) l ∼i αf + (1 − α)h. Likewise, since
(αg + (1 − α) l) (s) = (αg + (1 − α)h) (s) ∀s ∈ Ai, the “focus” portion of Axiom 4
implies that αg + (1 − α) l ∼i αg + (1 − α)h. The transitivity of %i is implied by
Axiom 4 and the “weak order” portion of Axiom 3. By this transitivity, then,

αf + (1 − α) h ∼i αf + (1 − α) l

�i αg + (1 − α) l ∼i αg + (1 − α)h,

each step of which is proven above, implies that ∀α ∈ (0, 1) , αf + (1 − α)h �i

αg + (1 − α) h.
Now, since ∀j 6= i, f (s) = g (s) ∀s ∈ Aj as noted above, we have that

∀j 6= i, ∀α ∈ (0, 1) , αf (s) + (1 − α)h (s) = αg (s) + (1 − α)h (s) ∀s ∈ Aj.
Thus, by the “focus” portion of Axiom 4, ∀j 6= i, ∀α ∈ (0, 1) , αf + (1 − α)h ∼j

αg + (1 − α)h. Now, since Ai was shown to be non-null above, we can invoke the
“if, in addition” portion of the “consistency” part of Axiom 4 to conclude that
∀α ∈ (0, 1) , αf + (1 − α)h � αg + (1 − α) h.

From the above, we have that ∀α ∈ (0, 1) , f � g ⇒ αf + (1 − α)h � αg +
(1 − α)h. We must now prove the other part of the assertion made by Axiom 1. We
want to show the converse of what we have just proven: ∀α ∈ (0, 1) , αf+(1 − α)h �
αg + (1 − α) h ⇒ f � g.

Given α ∈ (0, 1), suppose that f, g, h are as described in the previous section of
the proof, and that αf + (1 − α)h � αg (1 − α)h. The steps to follow are quite
similar to those above, but we include them for the sake of completeness. Ai cannot
be a null set; if it were, then (since αf +(1 − α)h and αg+(1 − α)h are identical on
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its complement) αf +(1 − α)h ∼ αg+(1 − α)h would have to hold by the definition
of a null set. Now, ∀j 6= i, (αf + (1 − α)h) (s) = (αf + (1 − α)h) (s) ∀s ∈ Aj,
since the Aj, j 6= i, partition AC

i . Thus, by the “focus” portion of Axiom 4,
αf +(1 − α) h ∼j αg+(1 − α)h ∀j 6= i. If we had αf +(1 − α) h -i αg+(1 − α)h,
then we would have αf + (1 − α)h -l αg + (1 − α)h ∀l ∈ {1, . . . , k} (since αf +
(1 − α)h ∼l αg +(1 − α)h ⇒ αf +(1 − α)h -l αg +(1 − α)h by definition), so by
the “consistency” portion of Axiom 4 we would have αf +(1 − α)h - αg+(1 − α)h,
which does not hold. Thus, we must have αf +(1 − α)h �i αg+(1 − α)h. We have
by definition that ∃y ∈ Y such that h (s) = y ∀s ∈ Ai. Letting l ∈ Lc be such that
l (s) = y ∀s ∈ S, we have that (αf + (1 − α) l) (s) = (αf + (1 − α)h) (s) ∀s ∈ Ai.
Thus, the “focus” portion of Axiom 4 implies that αf + (1 − α) l ∼i αf +(1 − α)h.
Likewise, (αg + (1 − α) l) (s) = (αg + (1 − α)h) (s) ∀s ∈ Ai. Thus, the “focus”
portion of Axiom 4 implies that αg + (1 − α) l ∼i αg + (1 − α) h. The transitivity
of %i is implied by Axiom 4 and the “weak order” portion of Axiom 3. By this
transitivity and the above observations,

αf + (1 − α) l ∼i αf + (1 − α)h

�i αg + (1 − α)h ∼i αg + (1 − α) l

implies that αf + (1 − α) l �i αg + (1 − α) l. By the “multiple priors” portion of
Axiom 4, and the “certainty independence” portion of Axiom 3, αf + (1 − α) l �i

αg + (1 − α) l ⇒ f �i g. We therefore have that f �i g.
Now, since ∀j 6= i, f (s) = g (s) ∀s ∈ Aj as noted above, we have that

∀j 6= i, f ∼j g by the “focus” portion of Axiom 4. Now, since Ai was shown to be
non-null above, we can invoke the “if, in addition” portion of the “consistency” part
of Axiom 4 to conclude that f � g.

The above reasoning proves that the restricted independence axiom holds relative
to Ai. However, the choice of i ∈ {1, . . . , k} was completely arbitrary. Thus, we
have proven that the restricted independence axiom holds relative to any Ai ∈ A.
But then, by definition, Axiom 1 holds relative to A.

We now need to prove that, in the presence of Axiom 3, Axiom 1 (relative to
A) implies Axiom 4 (also relative to A). Recall the following notation: given any

Ai ∈ A, let (f ; g)i =

{

f for s ∈ Ai,

g for s ∈ AC
i .

.

Given Ai ∈ A, define the conditional preference relation %i by:

f %i g ⇔ ∃h ∈ L0 such that (f ; h)i % (g; h)i .

Lemma 3 shows that this results in %i being well-defined, since ∀f, g, h, m ∈ L0,
(f ; h)i % (g; h)i ⇔ (f ; m)i % (g; m)i.

First we demonstrate that %i satisfies the “focus” property of Axiom 4. If f (s) =
g (s)∀s ∈ Ai, then (f ; h)i (s) = (g; h)i (s) ∀s ∈ S and ∀h ∈ L0. Thus, (f ; h)i ∼ (g; h)i

∀h ∈ L0. This implies, by definition, that f ∼i g.
Now we verify that %i satisfies each of the portions of Axiom 3. These follow

because % satisfies Axiom 3 and by the definition of %i. First we show that %i is
a weak order (that is, that %i is complete and transitive). Suppose that f %i g

and g %i h. Then ∃m ∈ L0 such that (f ; m)i % (g; m)i and ∃n ∈ L0 such that
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(g; n)i % (h; n)i, by the definition of %i. By Lemma 3, (g; n)i % (h; n)i implies
(g; m)i % (h; m)i. Thus, by the transitivity of % (which is part of Axiom 3), we
have that (f ; m)i %i (h; m)i. But then, by the definition of %i, we have that f %i h.
This proves that %i is transitive. To see that it is complete, suppose that it is not.
Then ∃f, g ∈ L0 such that neither f %i g nor f -i g. Given any m ∈ L0, we would
have (by the definition of %i) that neither (f ; m)i % (g; m)i nor (f ; m)i - (g; m)i.
However, this contradicts the completeness of %, as implied by Axiom 3, so %i must
be complete.

Lemma 1 shows that %i satisfies the “certainty independence” portion of Ax-
iom 3.

We proceed to verify the “continuity” portion of Axiom 3 for %i. Suppose that
f �i g �i h. Then ∃m, n ∈ L0 such that (f ; m)i � (g; m)i and (g; n)i � (h; n)i.
By Lemma 3, (g; m)i � (h; m)i. Then we have (f ; m)i � (g; m)i � (h; m)i, and
since % satisfies Axiom 3 (and its “continuity” portion in particular), ∃α, β ∈ (0, 1)
such that α (f ; m)i + (1 − α) (h; m)i � (g; m)i � β (f ; m)i + (1 − β) (h; m)i. By the
definition of %i, this implies that αf + (1 − α)h �i g �i βf + (1 − β)h, verifying
the continuity property.

We now show that %i satisfies the “monotonicity” portion of Axiom 3. Suppose
that f, g ∈ L0 are such that f (s) %i g (s)∀s ∈ Ai. Then, for any h ∈ L0, (f ; h)i (s) %

(g; h)i (s) ∀s ∈ S. Thus, by the monotonicity of % (guaranteed by Axiom 3), we
have that (f ; h)i % (g; h)i. By the definition of %i, this implies that f %i g, verifying
the monotonicity property.

Consider the “uncertainty aversion” portion of Axiom 3. Suppose that f, g ∈ L0

satisfy f ∼i g. Then, by definition of %i, ∃h ∈ L0 such that (f ; h)i ∼ (g; h)i.
Since % satisfies uncertainty aversion (by Axiom 3), this implies that α (f ; h)i +
(1 − α) (g; h)i % (g; h)i ∀α ∈ (0, 1). By the definition of %i, this, in turn, implies
that αf + (1 − α) g %i g ∀α ∈ (0, 1), confirming that %i satisfies the uncertainty
aversion property.

To complete our demonstration that %i satisfies an appropriately-modified Ax-
iom 3, we need only show that if Ai is not a null set of %, then it is “non-degenerate”:
∃f, g ∈ L0 such that f �i g. By the definition of a null set, Ai non-null implies that
∃ (f ; h)i , (g; h)i such that either (f ; h)i � (g; h)i or (f ; h)i ≺ (g; h)i (otherwise, there
would be indifference between any two acts agreeing on AC

i ; that is, Ai would be
null). By the definition of %i, this implies that ∃f, g ∈ L0 such that f �i g or
g �i f . Either possibility shows the desired non-degeneracy.

Since Ai was selected completely arbitrarily in the above argument, our con-
clusions hold ∀i ∈ {1, . . . , k}. Thus, the conditional preference orderings %i, i ∈
{1, . . . , k} satisfy the “focus” and “multiple priors” portions of Axiom 4. It remains
only to prove that they satisfy the “consistency” portion of Axiom 4. To do so, sup-
pose that f %i g ∀i ∈ {1, . . . , k}. Then by definition we have that ∀i ∈ {1, . . . , k},
∃hi ∈ L0 such that (f ; hi)i % (g; hi)i. In fact, Lemma 3 proves that this is equivalent
to: ∀i ∈ {1, . . . , k} and ∀hi ∈ L0, (f ; hi)i % (g; hi)i. Since we are thus free to choose
the hi, let

hi (s) =

{

f (s) for s ∈ Aj with j < i,

g (s) for s ∈ Aj with j ≥ i

for all i ∈ {1, . . . , k}. Then we have, for i ∈ {2, . . . , k}, (g; hi)i (s) = hi (s) =

31



(f ; hi−1)i−1 (s). This can be seen by considering the values of each of the above
expressions on each Aj ∈ A. Now, since (f ; hi)i % (g; hi)i for each i ∈ {1, . . . , k},
we can use the equality above to conclude that hi+1 = (f ; hi)i % (g; hi)i = hi for i ∈
{1, . . . , k − 1}, and thus that hi+1 % hi for i ∈ {1, . . . , k − 1}. Applying transitivity
repeatedly, this implies that hk % h1. By definition, h1 (s) = g (s) ∀s ∈ S. We also
have f (s) = (f ; hk)k (s) ∀s ∈ S, (f ; hk)k % (g; hk)k, and (g; hk)k (s) = hk (s) ∀s ∈
S. Combining these facts, we obtain f % hk. A final application of transitivity yields
f % g, and thus verifies the main part of the “consistency” portion of Axiom 3.

To confirm that the “if, in addition” part of the “consistency” condition holds,
observe that if, in addition to f %i g ∀i ∈ {1, . . . , k}, we also have f �j g for
some j such that Aj is not a null set, then one of the weak preference relations
in the chain of preference that we constructed above is actually a strict preference
relation, so that repeated applications of transitivity yield a strict, rather than a
weak, preference relation between f and g. Q.E.D.

Proof of Theorem 2: We will prove the theorem by demonstrating that (1)
⇔ (2) and then that (2) ⇔ (3)∗. We first show that conditions (1) and (2) are
equivalent. Assuming condition (1), apply Theorem 1 to obtain a full set of con-
ditional preference relations, %i, i ∈ {1, . . . , k}, for which Axiom 4 holds. It re-
mains to prove that Axiom 2, in the presence of Axiom 1, implies that Axiom 5
holds. However, this is immediate, since ∀f, g, h ∈ L0 and ∀i ∈ {1, . . . , k}, we have
(f ; h)i % (g; h)i ⇔ f %i g (by the definition of the conditional preference relations
constructed in the proof of Theorem 1). This proves that (1) ⇒ (2).

Now suppose that condition (2) holds. Apply Theorem 1 to prove that Axiom 1
holds. Then Axiom 2, combined with the consequentialism property of the condi-
tional preference relations, implies Axiom 5 directly. This shows that (2) ⇒ (1),
and combining this with the above yields (1) ⇔ (2).

We now prove that (2) ⇒ (3). Note that since each Ai ∈ A is non-null, each
conditional preference relation %i, i ∈ {1, . . . , k} is non-degenerate. This, in ad-
dition to the fact that Axiom 4 implies that each conditional preference relation
satisfies the other portions of Axiom 3, allows us to apply Theorem 1 of Gilboa and
Schmeidler (1989) to each conditional preference relation %i, i ∈ {1, . . . , k}. We
can conclude that, ∀i ∈ {1, . . . , k}, %i is represented by

min
Pi∈Ci

{
∫

s∈Ai

ui (f (s)) dPi (s)

}

,

where the closed convex set Ci of probability distributions is unique and ui is non-
constant, mixture linear, and unique up to a positive affine transformation.

We must verify that we may take ui = u w.l.o.g. This is implied directly by
Axiom 5: since all of the conditional preference relations agree on the roulette
lotteries Lc, and since any preference relation on Lc implies a u that is unique
up to a positive affine transformation, the ui differ by at most a positive affine

∗I am grateful to Larry Epstein and Martin Schneider for pointing out that a construction using
their main result in Epstein and Schneider (2003) could be used to prove that (2) ⇔ (3). I provide
a direct proof because it seems more revealing.
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transformation. Since any positive affine transformation of ui represents preferences
over Lc, we can let ui = u1 ∀i ∈ {2, . . . , k} w.l.o.g.

For any act f ∈ L0, the minimum in the representation is achieved (as is evident
from the construction of the set of distributions in Lemma 3.5 of Gilboa and Schmei-
dler (1989)). Let P ∗

i (f) ∈ Ci be a probability distribution achieving the minimum (if
there is more than one such probability distribution, choose one arbitrarily). Define
li (f) ∈ Lc to be the roulette lottery such that (li (f)) (s) =

∫

s∈Ai
f (s) d (P ∗

i (f)) (s).
Then

min
Pi∈Ci

{
∫

s∈Ai

u (li (f)) dPi (s)

}

= u (li (f))

= u

(∫

s∈Ai

f (s) d (P ∗
i (f)) (s)

)

=

∫

s∈Ai

u (f (s)) d (P ∗
i (f)) (s)

= min
Pi∈Ci

{
∫

s∈Ai

u (f (s)) dPi (s)

}

,

where the first equality follows from the fact that li (f) is a roulette lottery (so the
choice of probability distribution from Ci does not affect the expectation integral),
the second equality is by the definition of li (f), the third equality is by the mixture
linearity of u, and the final equality is by the definition of P ∗

i (f).
By the representation result above, this implies that f ∼i li (f).
Now apply Theorem 1 of Gilboa and Schmeidler (1989) to the original preference

relation, %. This allows us to conclude that % is represented by

min
P∈P

{
∫

s∈S

w (f (s)) dP (s)

}

,

where the closed convex set P of probability distributions is unique and w is non-
constant, mixture linear, and unique up to a positive affine transformation.

We must verify that we may take w = u w.l.o.g. We will do so by showing that,
for any roulette lotteries l, q ∈ Lc, u (l) ≥ u (q) ⇔ w (l) ≥ w (q). This equivalent to
showing that, for any two roulette lotteries l, q ∈ Lc, u (l) ≥ u (q) ⇒ w (l) ≥ w (q)
and u (l) < u (q) ⇒ w (l) < w (q).

Given any two roulette lotteries l, q ∈ Lc, if u (l) ≥ u (q) then (by the repre-
sentation result, and the fact that we have shown that we may take ui = u for all
i ∈ {1, . . . , k}) l %i q for all i ∈ {1, . . . , k}. The consistency portion of Axiom 4
then implies that l % q, so w (l) ≥ w (q) since w represents the preference relation
% on the set of roulette lotteries Lc. Now suppose that, instead, u (l) < u (q); then
(by the representation result, and the fact that we have shown that we may take
ui = u for all i ∈ {1, . . . , k}) l ≺i q for all i ∈ {1, . . . , k}. The “if, in addition,”
part of the consistency portion of Axiom 4, along with the non-nullity of each Ai,
then implies that l ≺ q, so w (l) < w (q) since w represents the preference relation
% on the set of roulette lotteries Lc. We have thus shown that u and w represent
the same preferences over Lc. Since any u, w representing the same preferences over
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Lc differ by at most a positive affine transformation, and since any positive affine
transformation of u represents the same preferences over Lc that u does, we can set
w = u w.l.o.g.

Given any act f ∈ L0, recall the definition of li (f) given above. Define the
partitionwise-constant act g by: ∀i ∈ {1, . . . , k} , ∀s ∈ Ai, g (s) = li (f). Then
g is well-defined on all of S, since A is a partition of S. We then have f ∼i

g ∀i ∈ {1, . . . , k}, since f ∼i li (f) ∀i ∈ {1, . . . , k} as shown above and li (f) ∼i

g ∀i ∈ {1, . . . , k} by the consequentialism property of conditional preferences. By
the consistency property of preferences, this implies that f ∼ g. Define the set of
priors

P0 =

{

P : ∀B ∈ Σ, P (B) =
∑k

i=1 Pi (B|Ai)Q (Ai)
for some Pi ∈ Ci , i ∈ {1 , . . . , k} and Q ∈ P

}

.

P0 is closed and convex because its components are.

min
P∈P

{
∫

s∈S

u (f (s)) dP (s)

}

= min
P∈P

{
∫

s∈S

u (g (s)) dP (s)

}

= min
P∈P

{

k
∑

i=1

u (li (f)) P (Ai)

}

= min
P∈P

{

k
∑

i=1

min
Pi∈Ci

{
∫

s∈Ai

u (f (s)) dPi (s)

}

P (Ai)

}

= min
P∈P0

{
∫

s∈S

u (f (s)) dP (s)

}

,

where the first equality follows from the representation result for % and the fact
that f ∼ g, the second equality follows from the fact that g is constant (at li (f))
on each Ai ∈ A, the third equality follows from the results derived for li (f) on Ai

above, and the final equality follows from the definition of P0 .
Since the above equality holds ∀ f ∈ L0, we conclude that we can replace P with

P0 in the utility representation of %. Part of the representation result, however, is
that P is the only closed, convex set of probability distributions for which the utility
representation holds. Thus, we must have P = P0 , which is prismatic if we can show
that ∀i ∈ {1, . . . , k} and ∀P ∈ P, P (Ai) > 0 .

Suppose not; then ∃j ∈ {1, . . . , k} and P ∈ P such that P (Aj) = 0. By the non-
degeneracy condition, there exist two roulette lotteries l, q ∈ Lc such that l �j q.
Since we can select any positive affine transformation of u in the representation
result, and since u (l) > u (q), we can w.l.o.g. choose u such that u (l) > 0 and
u (q) = 0. We do so. Obviously, q ∼i q for all i ∈ {1, . . . , k}. Consider the act
f = (l; q)j. Using our selection of u to evaluate its utility, we have:

min
P∈P

{
∫

s∈S

u (f (s)) dP (s)

}

= min
P∈P

{

k
∑

i=1,i6=j

u (q) P (Ai) + u (l) P (Aj)

}
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= min
P∈P

{u (l) P (Aj)}
= 0,

where the first equality follows from the construction of f = (l; q)j, the second
equality follows from the fact that we have (as explained above) set u (q) = 0 w.l.o.g.,
and the third equality follows from the facts that, by assumption, ∃P ∈ P such that
P (Aj) = 0 and that (again w.l.o.g., as explained above) we have u (l) > 0. However,
we also have that

min
P∈P

{
∫

s∈S

u (q (s)) dP (s)

}

= u (q)

= 0,

where the first equality holds because q ∈ Lc is a roulette lottery and the second holds
because u (q) = 0 by our selection (made w.l.o.g) of u. But, by the representation
result, we have f ∼ q. This contradicts the “if, in addition” portion of the consis-
tency part of Axiom 4, which (along with the non-nullity of Aj) implies that f � q.
Our assumption that ∃j ∈ {1, . . . , k} and P ∈ P such that P (Aj ) = 0 must, then,
have been false. As a consequence, ∀i ∈ {1, . . . , k} and ∀P ∈ P, P (Ai) > 0 must
hold, and P is prismatic by definition.

We have now shown that (1) ⇔ (2) and that (2) ⇒ (3). It remains to show
that (3) ⇒ (2). Theorem 1 of Gilboa and Schmeidler (1989) shows that (3) implies
Axiom 3. Thus, we only need to verify that (3) implies Axioms 4 and 2 relative to
the partition A. Using the representation for conditional preferences given by (3)
and again applying Theorem 1 of Gilboa and Schmeidler (1989), we can conclude
that conditional preferences satisfy the slightly modified version of Axiom 3 that
Axiom 4 states they must. Also, since each Ci contains only Pi such that Pi (Ai) = 1,
the consequentialism property of conditional preferences is clear. If f %i g ∀i ∈
{1, . . . , k}, then we have that

∀i ∈ {1, . . . , k} , min
Pi∈Ci

{
∫

s∈Ai

u (f (s)) dPi (s)

}

≥ min
Pi∈Ci

{
∫

s∈Ai

u (g (s)) dPi (s)

}

.

By the prismatic structure of P,

min
P∈P

{
∫

s∈S

u (f (s)) dP (s)

}

= min
P∈P

{

k
∑

i=1

min
Pi∈Ci

{
∫

s∈Ai

u (f (s)) dPi (s)

}

P (Ai)

}

≥ min
P∈P

{

k
∑

i=1

min
Pi∈Ci

{
∫

s∈Ai

u (g (s)) dPi (s)

}

P (Ai)

}

= min
P∈P

{
∫

s∈S

u (g (s)) dP (s)

}

,
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so that f % g, confirming that the first portion of the consistency property of
conditional preferences holds. We must still show that the second, “if, in addi-
tion,” portion of the consistency property of conditional preferences holds. Since
all Ai ∈ A are non-null, suppose that f %i g ∀i ∈ {1, . . . , k} and that ∃j ∈
{1, . . . , k} such that f �j g. Then

∀i ∈ {1, . . . , k} , min
Pi∈Ci

{
∫

s∈Ai

u (f (s)) dPi (s)

}

≥ min
Pi∈Ci

{
∫

s∈Ai

u (g (s)) dPi (s)

}

.

Also,

∃j ∈ {1, . . . , k} , such that

min
Pj∈Ci

{

∫

s∈Aj

u (f (s)) dPj (s)

}

> min
Pj∈Cj

{
∫

s∈Ai

u (g (s)) dPj (s)

}

.

Now, P (Aj) > 0 ∀P ∈ P since P is prismatic. Thus, (recalling that P is closed, so
that the strict inequality is preserved even on its boundary)

min
P∈P

{
∫

s∈S

u (f (s)) dP (s)

}

= min
P∈P

{

k
∑

i=1

min
Pi∈Ci

{∫

s∈Ai

u (f (s)) dPi (s)

}

P (Ai)

}

> min
P∈P

{

k
∑

i=1

min
Pi∈Ci

{
∫

s∈Ai

u (g (s)) dPi (s)

}

P (Ai)

}

= min
P∈P

{
∫

s∈S

u (g (s)) dP (s)

}

,

so f � g, showing that the “if, in addition” portion of the consistency property
holds.

Finally, we must show that Axiom 2 holds. This is a direct consequence of the fact
that the same function u appears in the representation of each %i, i ∈ {1, . . . , k}.
Since the probability measure is irrelevant to computing utility for a roulette lottery
(because a roulette lottery, by definition, does not depend on the state s), we have
that ∀l, q ∈ Lc and ∀i, j ∈ {1, . . . , k} , l %i q ⇔ u (l) ≥ u (q) ⇔ l %j q. We
have thus verified that Axiom 2 holds, and therefore that all of condition (2) holds.
Having shown that (2) ⇔ (3), we have completed the proof. Q.E.D.

Proof of Proposition 1: Invoke Lemma 3.1 of Gilboa and Schmeidler (1989),
or Chapter 8 of Fishburn (1979) (which is cited by Gilboa and Schmeidler (1989))
to prove the representation result and the uniqueness of v up to a positive affine
transformation. In order to prove that v is additively time-separable, note that (by
construction), only the set of time-t marginal distributions of consumption, for each
t ∈ {0, . . . , T}, matter in ranking lotteries. This is due to our restriction of the
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domain of preferences; all of the roulette lotteries we consider have each individual
roulette lottery over consumption at time t being independent. By Fishburn (1979),
Theorem 11.1 (on page 149), the function v is additively time-separable (note that
the condition of the theorem is satisified a fortiori). Q.E.D.

Proof of Theorem 3: First observe that Axiom 3 is assumed in both of The-
orems 1 and 2. Thus we may apply Proposition 1 to conclude that there is a von
Neumann-Morgenstern utility function v that represents % in comparing roulette
lotteries. v evidently maps adapted acts to functions from S to Y U , since if f ∈ H,
then v (f (s)) is in Y U = XU for every s ∈ S. If we can show that v is an isomorphism
on indifference classes of f ∈ H, then we can define a new preference relation %V by
∀f, g ∈ H, f % g ⇔ v (f) %V v (g) and, since v is an isomorphism on indifference
classes, the new preference relation %V will be well-defined. By the definition of
Y U = XU (and the mixture linearity of v), we can see that v is onto. To show that
it is one-to-one as a mapping of indifference classes, note that v (f) = v (g) ∀s ∈ S

implies that f (s) ∼ g (s) ∀s ∈ S, since v represents % on roulette lotteries (and the
constant act with value f (s) is a roulette lottery). By monotonicity, then, f ∼ g.
This implies that v is one-to-one as a mapping of indifference classes.

The identical reasoning may be applied to any conditional preference relation.
Further, any axiom satisfied by % is also satisfied by %V , due to the mixture linearity
of v. (We might call v a “mixture isomorphism,” since v (αf + (1 − α) g) = αv (f)+
(1 − α) v (g).)

It only remains to show that the function u of Theorem 2 is, in fact, v (at least,
up to a positive affine transformation). But if this were not so, then u could not
represent % on roulette lotteries, which would contradict the representation result
of Theorem 2. Thus, u is at most a positive affine transformation of v. Since v is
additively time-separable, u must be as well. Q.E.D.

Proof of Theorem 4: First, suppose that we are given a closed, convex set
P of distributions on [0, 1]. Let H : P → E (where E is a set of distributions on
{0, 1}∞) be defined such that H (Q), for any Q ∈ P and for any N < ∞ and for
any distinct i1, i2, . . . , iN ∈ N, satisfies

PrH(Q) (xi1 , xi2 , . . . , xiN ) ≡
∫ 1

0

p
∑N

j=1
xij (1 − p)N−

∑N
j=1

xij dQ (p) . (A.1)

We will show that H is continuous (under the topology of weak convergence), in-
vertible, and linear for convex combinations, and that H−1 is linear for convex
combinations. By demonstrating that H−1 is also continuous (under the topology
of weak convergence), we will complete the proof of both portions of the theorem:
the inverse image of a closed set under a continuous function is itself closed, and the
image of a convex set under a function that is linear under convex combinations is
itself convex.

First, we prove that H is continuous. We do so by showing that, if Qi ∈ P ∀i and
Qi ⇒ Q∗ (weak convergence), then H (Qi) ⇒ H (Q∗) (again, weak convergence).
Note that the space of all sequences of zeros and ones is countably infinite. Let
f (x| p) be the infinite binomial distribution with fixed probability p of xi = 1; that
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is, for any N < ∞ and for any distinct i1, i2, . . . , iN ∈ N,

f (xi1 , xi2, . . . , xiN | p) = p
∑N

j=1
xij (1 − p)N−

∑N
j=1

xij . (A.2)

For any bounded, continuous function g on {0, 1}∞ (where continuity is with respect
to the metric given in the text), we have

EH(Q) [g (X)] =
∑

y

g (y)H (Q) (y) (A.3)

=
∑

y

g (y)

∫ 1

0

f (y| p) dQ (p) (A.4)

=

∫ 1

0

∑

y

g (y) f (y| p) dQ (p) (A.5)

=

∫ 1

0

w (p; g) dQ (p) , (A.6)

where the first equality is by the definition of expectation (recalling that {0, 1}∞ is
countably infinite, so the expectation involves a sum), the second equality is by the
definition of H (Q) (and the definition of f), the third equality is by the linearity
of integration (allowing us to place g inside the integral over p) and then Fubini’s
theorem, and the fourth equality follows by defining

w (p; g) ≡
∑

y

g (y) f (y| p) (A.7)

= Ef [g (Y )| p] . (A.8)

We wish to show that g (·) bounded and uniformly continuous over {0, 1}∞ (under
the given metric) implies that w (·; g) is bounded and continuous over [0, 1]. It is
obvious that w is bounded if g is:

sup
p∈[0,1]

|w (p; g)| = sup
p∈[0,1]

∣

∣

∣

∣

∣

∑

y

g (y) f (y| p)

∣

∣

∣

∣

∣

(A.9)

≤ sup
p∈[0,1]

∣

∣

∣

∣

∣

sup
y∈{0,1}∞

|g (y)|
∣

∣

∣

∣

∣

(A.10)

= sup
y∈{0,1}∞

|g (y)| , (A.11)

where the inequality is clear from the interpretation of w as an expectation of g

under f (conditional on some p).
We now prove that g bounded and uniformly continuous implies w continuous.

Given any ε > 0, the uniform continuity of g guarantees that there exists some δ > 0
such that

∀x, y ∈ {0, 1}∞ ,

∞
∑

i=1

1

2i
|xi − yi| < δ =⇒ |g (x) − g (y)| <

ε

3
. (A.12)
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Choose M sufficiently large that
∑∞

i=1
1
2i < δ. Then

|w (p; g) − w (q; g)|

=

∣

∣

∣

∣

∣

∑

y

g (y) f (y| p) −
∑

y

g (y) f (y| q)
∣

∣

∣

∣

∣

(A.13)

=

∣

∣

∣

∣

∣

∣

∑

y [g (y) − g (y1, y2, . . . , yM , 0, 0, . . .)] f (y| p)

+
∑

y g (y1, y2, . . . , yM , 0, 0, . . .) [f (y| p) − f (y| q)]
+
∑

y [g (y1, y2, . . . , yM , 0, 0, . . .) − g (y)] f (y| q)

∣

∣

∣

∣

∣

∣

(A.14)

≤

∣

∣

∣

∑

y [g (y) − g (y1, y2, . . . , yM , 0, 0, . . .)] f (y| p)
∣

∣

∣

+
∣

∣

∣

∑

y g (y1, y2, . . . , yM , 0, 0, . . .) [f (y| p) − f (y| q)]
∣

∣

∣

+
∣

∣

∣

∑

y [g (y1, y2, . . . , yM , 0, 0, . . .) − g (y)] f (y| q)
∣

∣

∣

(A.15)

≡ T1 + T2 + T3, (A.16)

where the first equality is by definition, the second equality is by adding and sub-
tracting both g (y1, y2, . . . , yM , 0, 0, . . .) f (y| p) and g (y1, y2, . . . , yM , 0, 0, . . .) f (y| q),
the inequality is by the triangle inequality, and the last line defines the terms T1, T2,
and T3 as the first, second, and third terms in the previous expression.

We first analyze T1:

T1 ≤
∑

y

|g (y) − g (y1, y2, . . . , yM , 0, 0, . . .)| f (y| p) (A.17)

<
∑

y

ε

3
f (y| p) (A.18)

=
ε

3

∑

y

f (y| p) (A.19)

=
ε

3
, (A.20)

where the first inequality is by the triangle inequality and by the nonnegativity of
f , the second inequality is by the uniform continuity of g and the fact that, by the
construction of M , d (y, (y1, y2, . . . , yM , 0, 0, . . .)) < δ, the first equality is by the
linearity of summation, and the final equality is by the fact that f is a probability
distribution over {0, 1}∞.

Exactly the same logic shows that T3 < ε
3
. All that remains is to bound T2.

To do so, notice that the function g (y1, y2, . . . , yM , 0, 0, . . .) does not depend on any
coordinate of the sequence y beyond the M th. Thus, its expectation can be evaluated
using the restriction of f to the first M coordinates of y:

∑

y

g (y1, y2, . . . , yM , 0, 0, . . .) f (y| p)

=
1
∑

y1=0

1
∑

y2=0

· · ·
1
∑

yM=0

g (y1, y2, . . . , yM , 0, 0, . . .) f (y1, y2, . . . , yM | p) . (A.21)

But f (y1, y2, . . . , yM | p) = p
∑M

i=1
xi (1 − p)M−

∑M
i=1

yi is continuous in p for any fixed
vector (y1, y2, . . . , yM) of zeros and ones, and g is bounded, so the expression to the
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right of the equality in the display above is a finite linear combination of continuous
functions of p, and is thus a continuous function of p. But this means that, given
ε
3

> 0, there exists some δ2 > 0 such that T2 < ε
3
.

We have shown that for any bounded and uniformly continuous g, and for any
p ∈ [0, 1], given ε > 0, there exists δ2 > 0 such that |p − q| < δ2 implies that
|w (p; g) − w (q; g)| < ε

3
+ ε

3
+ ε

3
= ε. But this shows that g bounded and uniformly

continuous implies that w (·; g) is continuous.
We now return to the problem of demonstrating that H is continuous. By Billings-

ley (1999), Theorem 2.1, part (i), a sequence of distributions H (Qi) converges weakly
to H (Q∗) if and only if EH(Qi) [g (Y )] → EH(Q∗) [g (Y )] for every bounded, uniformly
continuous function g. Suppose that Qi ⇒ Q∗. Given any bounded, uniformly con-
tinuous g, we have by the definitions above that

∀i, EH(Qi) [g (Y )] = EQi
[w (P ; g)] (A.22)

EH(Q∗) [g (Y )] = EQ∗ [w (P ; g)] , (A.23)

where w (·; g) is bounded and continuous. Since Qi ⇒ Q∗, we have that

EQi
[w (P ; g)] → EQ∗ [w (P ; g)]

by the definition of weak convergence (see Billingsley (1999), page 7). But, by the
equalities above, this implies that EH(Qi) [g (Y )] → EH(Q∗) [g (Y )]. Since g was an
arbitrary bounded, uniformly continuous function, we have that H (Qi) ⇒ H (Q∗).
This shows that Qi ⇒ Q∗ implies that H (Qi) ⇒ H (Q∗), which proves that H is
continuous.

Next, we show that H is invertible. The classical de Finetti theorem, found on
pages 228 and 229 of Feller (1971), shows that H is surjective as a map of all distri-
butions on [0, 1] to all exchangeable distributions on the set of all infinite sequences
of zeros and ones: given any exchangeable distribution on the set of all infinite se-
quences of zeros and ones, we can find a distribution on [0, 1] that generates it in
the sense given above. It remains to show that H is injective. By the proof of de
Finetti’s theorem found on pages 228 and 229 of Feller (1971), any exchangeable
distribution on the space of infinite sequences of zeros and ones uniquely determines
a completely monotone sequence {ci}∞i=0 such that c0 = 1, and this completely mono-
tone sequence is the sequence of moments of the distribution on [0, 1] that generates
the exchangeable distribution in the sense used above. But any such completely
monotone moment sequence uniquely determines a probability distribution on [0, 1]
by Feller (1971), Theorem 1 on pages 225 to 227. Thus, an exchangeable distri-
bution on the set of all infinite sequences of zeros and ones uniquely determines
the distribution on [0, 1] that generates it in the sense used above. That is, H (Q)
uniquely determines Q. This implies that H is injective; since we also showed that
it is surjective, H is thus invertible. In fact, we have shown not only that H is
invertible as a function from P to E , but also that it is invertible as a function from
the set of all distributions on [0, 1] to the set of all exchangeable distributions on the
set of all infinite sequences of zeros and ones.

To see that H is linear under convex combinations, simply examine the definition
of H in (A.1). The linearity of integration in the integrating measure implies the
result. The same approach shows that H−1 is also linear under convex combinations.
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It remains to demonstrate that H−1 is continuous under the topology of weak
convergence. Since the set of all measures on [0, 1] is tight (for any ε > 0, [0, 1] itself
is a compact set such that any distribution on [0, 1] has Pr ([0, 1]) > 1 − ε; see the
definition of tightness on page 59 of Billingsley (1999)), the set of all measures on
[0, 1] is relatively (or sequentially) compact under the topology of weak convergence
by Prohorov’s theorem (see Billingsley (1999), Theorem 5.1).

Suppose that H−1 is not continuous. Then ∃ {Qn}∞n=1 ⊂ P and Q∗ ∈ P such
that H (Qn) ⇒ H (Q∗) (recalling that these probability measures are in the do-
main of H−1) but Qn ; Q∗. If this is so, then (by the definition of weak con-
vergence) there exists some continuous, bounded function m on [0, 1] such that
∫ 1

0
mdQn 9

∫ 1

0
mdQ∗. Since m is bounded, there is some a such that

∫ 1

0
mdQn ∈

[−a, a] ∀n. By the definition of nonconvergence, ∃ε > 0 such that ∀N , ∃n ≥ N such

that
∣

∣

∣

∫ 1

0
mdQn −

∫ 1

0
mdQ∗

∣

∣

∣
≥ ε. Consider the compact set A ≡ [−a,−ε] ∪ [ε, a].

The logic above shows that we can take an infinite subsequence
{

Qn(k)

}

of {Qn}
such that

∫ 1

0
mdQn(k) ∈ A ∀k. But, since A is compact, we can extract a further

subsubsequence
{

Qn(k,j)

}

of
{

Qn(k)

}

such that
∫ 1

0
mdQn(k,j) → c0 ∈ A; obviously,

c0 ∈ A implies that c0 6=
∫ 1

0
mdQ∗. Now, recall that we showed in the previ-

ous paragraph that the set of all measures on [0, 1] is sequentially compact under
the topology of weak convergence. Thus, we may extract a further subsubsubse-
quence

{

Qn(k,j,i)

}

such that Qn(k,j,i) ⇒ Q∗∗. But Q∗∗ 6= Q∗, since
∫ 1

0
mdQ∗∗ = c0

(by the construction of
{

Qn(k,j)

}

and the fact that
{

Qn(k,j,i)

}

is a subsequence of
{

Qn(k,j)

}

) and c0 6=
∫ 1

0
mdQ∗. By the continuity of H, H

(

Qn(k,j,i)

)

⇒ H (Q∗∗). But
H (Qn) ⇒ H (Q∗), so H

(

Qn(k,j,i)

)

⇒ H (Q∗) because a subsequence of a conver-
gent sequence must converge to the same limit as the parent sequence. Since H is
injective and Q∗ 6= Q∗∗ as shown above, H (Q∗) 6= H (Q∗∗). Thus, there exists a
bounded, continuous function r on {0, 1}∞ such that

∫

rdH (Q∗) 6=
∫

rdH (Q∗∗).
But then

∫

rdH
(

Qn(k,j,i)

)

→
∫

rdH (Q∗) and
∫

rdH
(

Qn(k,j,i)

)

→
∫

rdH (Q∗∗),
where

∫

rdH (Q∗) 6=
∫

rdH (Q∗∗), which is a contradiction since the limit of a se-
quence of real numbers, if it exists, is unique. Thus, H−1 must be continuous. Q.
E. D.
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