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Abstract

Most asset returns are uncertain, not merely risky: investors do not know the
probabilities of different future returns. A large body of evidence suggests that investors
are averse to uncertainty, as well as to risk. A separate, but similarly substantial,
set of facts indicates that investors try to learn from the past. This paper analyzes
the dynamic portfolio and consumption choices of an uncertainty-averse (as well as
risk-averse) investor who tries to learn from historical data. Because an adequate
general theory of uncertainty-averse dynamic choice does not exist, I build one up
from axioms on preferences. I pay special attention to the existence and consistency of
conditional preferences. My theory generalizes the major dynamic uncertainty-aversion
models in the asset pricing literature, and reveals their underlying similarities. Working
directly with preferences, I give natural conditions leading to learning. I then present
analytical solutions to the continuous-time portfolio and consumption problems of two
uncertainty-averse investors: one who dogmatically expects the worst, and another
who has a preference for learning.

∗I am indebted to John Campbell and Gary Chamberlain for guidance and encouragement. I am also
grateful for the insights of Brian Hall, Parag Pathak, Jeremy Stein, and James Stock, and for the helpful
comments of seminar participants at Harvard University and MIT.
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1 Introduction

Most asset returns are uncertain, not merely risky: investors do not know the probabilities

of different future returns. An aversion to uncertainty, or a preference for bets with known

odds, has been used in recent studies, including Anderson, Hansen, and Sargent (2000), Chen

and Epstein (2002), and Maenhout (2001), to explain the equity premium puzzle. However,

as Maenhout (2001) notes, these explanations often rely on investors ignoring data and

dogmatically expecting the worst. Whether uncertainty aversion remains a plausible expla-

nation for the equity premium puzzle when learning is accounted for is an open question.

Further, a debate is ongoing between the recursive multiple-priors school on one side and the

robust control school on the other about how best to model uncertainty aversion. Models of

learning in portfolio choice have also received significant attention recently from authors in-

cluding Barberis (2000), Brennan (1998), Brennan and Xia (2001), Kandel and Stambaugh

(1996), and Xia (2001). However, these papers do not account for uncertainty aversion. It is

not clear that their results will continue to hold when uncertainty aversion is incorporated,

since uncertainty aversion leads to behavior compatible with “extreme” priors, as shown

below.

This paper takes the first steps toward resolving these issues: first, I give a simple example

showing that the differences between the recursive multiple-priors and robust control schools

are much smaller than they have been perceived to be by showing that the uncertainty-

aversion models of the two schools have the same basic structure. I also show that the

differences between the recursive multiple-priors approach and a modification of the robust

control approach (a discrete-time version of the Maenhout (2001) modification) are smaller

still. Next, I build up a theory of model-based multiple-priors as an alternative to both

the recursive multiple-priors and robust control approaches, starting from axioms on prefer-

ences. I show that the model-based multiple-priors approach can incorporate learning and
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uncertainty aversion; this theoretical development further elucidates the basic similarities

between the recursive multiple-priors and robust control schools. Finally, I consider, and

solve in closed form, the canonical intertemporal consumption and portfolio choice problem

of a power-utility investor under two different sorts of uncertainty aversion. Under the first

sort of uncertainty aversion, learning never occurs: the investor dogmatically expects the

worst. The portfolio and consumption decisions of this investor are structurally identical

to those of the investors studied by Chen and Epstein (2002) and Maenhout (2001), which

shows that the investors studied by these researchers are, behaviorally, also dogmatic. The

second sort of uncertainty aversion, however, yields much more interesting and realistic pref-

erences: under this sort of uncertainty aversion, the investor has a preference for learning,

and attempts to use historical data in order to learn how to invest more effectively.

My consideration of uncertainty aversion is not motivated solely by the fact that un-

certainty aversion is a plausible explanation for many financial phenomena: uncertainty

aversion is also strongly supported in the experimental data. The most famous experimental

demonstration of uncertainty aversion is the Ellsberg Paradox (Ellsberg (1961)): Consider

two urns, each containing 100 balls. Each ball is either red or black. The first (“known”)

urn contains 50 red balls (and thus 50 black balls). The second (“ambiguous”) urn contains

an unknown number of red balls. One ball is drawn at random from each urn, and four bets

based on the results of these draws are to be ranked; winning a bet results in a 100 dollar

cash prize. The first bet is won if the ball drawn from the known urn is red; the second bet

is won if the ball drawn from the known urn is black; the third bet is won if the ball drawn

from the ambiguous urn is red; the fourth bet is won if the ball drawn from the ambiguous

urn is black. Many decision makers are indifferent between the first and second bets and

between the third and fourth bets, but strictly prefer either the first or second bet to either

the third or fourth bet. Since no distribution on the number of red balls in the ambiguous

urn can support these preferences through expected utility, this ranking of gambles violates
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the axioms of subjective expected utility theory.

An alternative experiment, with less built-in symmetry, could be performed using an

ordinary tack. The idea of flipping tacks comes from Chapter 11 of Kreps (1988). The

outcome in which the tack balances on its point and an edge of its head could be termed

“tails” and the outcome in which it lands with its point up, flat on its head could be termed

“heads.” One could imagine asking a decision maker what she expects the probability of

heads to be; call this expectation p. One could then introduce a (continuous) roulette wheel

that pays off one dollar if the pointer on the wheel lands in an interval whose length is a

fraction p of the circumference. If p > 1
2

one could ask, “Would you rather bet a dollar

that the outcome of a tack flip is heads, or would you rather gamble using the roulette

wheel?” If p ≤ 1
2
, one could ask the same question, substituting “tails” for “heads.” If the

decision maker prefers to gamble using the roulette wheel, which has known odds, then she

is uncertainty averse. This is not nearly as clean as the Ellsberg experiment, but may be

more related to real-world decisions, in that there is no explicit symmetry in the problem.

In a seminal response to the Ellsberg Paradox, Gilboa and Schmeidler (1989) provided

an axiomatic foundation to support uncertainty aversion in static choice. They weakened

the independence axiom and showed that, under this weakening, preferences could be repre-

sented by the minimum expected utility over a set of (prior) distributions. For example, an

agent with Gilboa-Schmeidler preferences would exhibit Ellsberg-type behavior if the set of

distributions on the number of red balls in the unknown urn included a distribution under

which black balls are more numerous and one under which red balls are more numerous.

The optimal choice under these assumptions is that which maximizes (over possible choices)

the minimum (over the set of distributions) expected utility, leading to the label “maxmin

expected utility.”

In extending the pioneering atemporal work of Gilboa and Schmeidler (1989) to a dynamic

setting, however, there has been little consensus. A number of important recent studies, in-
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cluding Chamberlain (2000), Chamberlain (2001), Chen and Epstein (2002), Epstein and

Schneider (2001), Epstein and Schneider (2002), Epstein and Wang (1994), Hansen, Sargent,

and Tallarini (1999), Hansen and Sargent (2001), Hansen, Sargent, Turmuhambetova, and

Williams (2001), Siniscalchi (2001), and Wang (1999) have attacked the problem of dynamic

choice under uncertainty (in addition to risk). In the literature, a debate is in progress over

which method is to be preferred: the recursive multiple-priors method (Chen and Epstein

(2002), Epstein and Schneider (2001), Epstein and Schneider (2002), and Epstein and Wang

(1994)) or the robust control method (Anderson, Hansen, and Sargent (2000), Hansen and

Sargent (1995), Hansen, Sargent, and Tallarini (1999), Hansen and Sargent (2001), Hansen,

Sargent, Turmuhambetova, and Williams (2001) and, with an important variation, Maen-

hout (2001)). Although Chamberlain’s work has been more econometrically focused, he is

evidently aware of the portfolio-choice implications of his research, and his approach is a

third angle of attack on the problem. Of these three approaches, model-based multiple-

priors is closest to Chamberlain’s, although he does not provide axiomatic justification for

his specific method or study the investment implications of his approach.

The recursive multiple-priors approach began nonaxiomatically in discrete time with the

work of Epstein and Wang (1994). In Chen and Epstein (2002) the approach was brought

into a continuous-time framework, the portfolio choice problem was considered generally and

solved analytically in some cases, and the separate effects of “ambiguity” (uncertainty) and

risk were shown in equilibrium. The recursive multiple-priors approach was given axiomatic

foundations in Epstein and Schneider (2001), and an attempt was made by Epstein and

Schneider (2002) to incorporate learning. Despite the obvious importance of this strand of

the literature, I will argue that Epstein and Schneider (2002) do not present a satisfactory

model of learning under uncertainty.

Hansen and Sargent (1995) first used the robust control approach for economic model-

ing, although a large literature on robust control in engineering and optimization theory

5



predates their work. The development of the model continued with the discrete-time study

of Hansen, Sargent, and Tallarini (1999), and was then brought into a continuous-time set-

ting by Anderson, Hansen, and Sargent (2000). The work of Hansen and Sargent (2001)

and Hansen, Sargent, Turmuhambetova, and Williams (2001) responded to criticisms of the

robust control approach made in some studies using the recursive multiple-priors approach

(notably Epstein and Schneider (2001)). Finally, Maenhout (2001) modified the robust con-

trol “multiplier preferences” to obtain analytical solutions to a number of portfolio choice

problems.

The debate between the recursive multiple-priors school and the robust control school has

focused on the “constraint preferences” generated by robust control. However, in applica-

tions the robust control school typically uses the “multiplier preferences” generated by robust

control, which are acknowledged by both schools to differ from the constraint preferences

(though they are observationally equivalent to the constraint preferences in any single prob-

lem; see Epstein and Schneider (2001) and Hansen, Sargent, Turmuhambetova, and Williams

(2001)). I show that the set of priors generating the multiplier preferences is rectangular, so

that the sets of priors being used in the recursive multiple-priors approach and in the robust

control multiplier approach (implicitly, in the case of the robust control multiplier approach)

have the same structure. By the results of Epstein and Schneider (2001) (which are them-

selves implied by my results), this implies that the multiplier preferences generated by robust

control are dynamically consistent in the very narrow sense used by Epstein and Schneider

(2001). Furthermore, I show that the set of priors implicit in a modification of the robust

control multiplier method (a discrete-time version of the Maenhout (2001) modification) is

even more closely linked to the set of priors used in recursive multiple-priors.

In the course of developing a theory sufficiently general to accommodate learning and

uncertainty aversion, I am forced to axiomatize consistent conditional preferences in general.

My characterization of necessary and sufficient conditions for the existence of sets of consis-
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tent conditional preferences will allow me to get at the roots of each of the major methods in

the literature: Chamberlain’s, the recursive multiple-prior school’s, and the robust control

school’s.

The continuing debate regarding how to extend atemporal maxmin expected utility to

intertemporal situations is essentially a debate about the structure of the set of prior distri-

butions with which expected utility is evaluated. This paper shows the implications of the

existence of consistent conditional preferences for the set of distributions used to represent

utility. In this connection, a novel restricted independence axiom is introduced, and a class

of distributions, termed prismatic, is characterized. The set of prismatic distributions is a

strict superset of the set of rectangular distributions introduced by Epstein and Schneider

(2001) (see below), and allows conditioning of a more general sort.

It is also shown that one cannot maintain uncertainty aversion in the face of too much

consistent conditioning: if a sufficiently rich set of consistent conditional preferences exist,

then the independence axiom must hold and the set of distributions must be a singleton.

This is crucial in evaluating the usefulness of models that assume a certain set of consistent

conditional preferences (such as those of Epstein and Schneider (2001)). If the consistent

conditional preferences assumed are not those of interest to the researcher, it may be nec-

essary to abandon them in order to maintain uncertainty aversion and have the consistent

conditional preferences of interest.

Finally, I consider the consumption and portfolio choice problem of an investor who is

averse to uncertainty, but believes there is something to be learned from the past. The

investor has power utility over a stream of intermediate consumption. I solve this problem

in closed form. Combining learning with uncertainty aversion in this way is of particu-

lar interest in dynamic portfolio choice problems, which have attracted much research on

learning and uncertainty aversion separately. Anderson, Hansen, and Sargent (2000), Chen

and Epstein (2002), Dow and Werlang (1992), Epstein and Schneider (2002), Epstein and
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Wang (1994), Maenhout (2001), Liu, Pan, and Wang (2002), Pathak (2002), Uppal and

Wang (2002), and Wang (2002) apply uncertainty-averse decision theories to study portfolio

choice and some of its implications, while Barberis (2000), Brennan (1998), Brennan and Xia

(2001), Kandel and Stambaugh (1996), and Xia (2001) (to mention just a few of the many re-

searchers working productively in this area) examine portfolio choice with Bayesian learning.

Only Epstein and Schneider (2002) and Miao (2001) attempt to include both learning and

uncertainty aversion. Epstein and Schneider (2002) freely admit that their method is ad hoc

and not founded upon any coherent set of principles. Miao (2001) attempts, again without

the benefit of any coherent set of principles, to layer the κ-ignorance specification of Chen

and Epstein (2002) on top of a standard (single-prior) model of Bayesian portfolio choice in

continuous time. This implies that in Miao (2001), any learning which takes place is learning

not about an uncertain variable, but about a variable the investor regards as merely risky

(since there is a single prior in the underlying Bayesian model). Further, both Epstein and

Schneider (2002) and Miao (2001) make use of the recursive multiple-priors method; it will

be shown below that this method implies a very severe sort of nonstationarity, which may

be unattractive in a model of learning.

The remainder of the paper proceeds as follows. Section 2 shows the similarities be-

tween the recursive multiple-priors approach and the robust control approach (as well as

the Maenhout (2001) modification), and how they differ from model-based multiple-priors,

in a two-period model with a risky (and uncertain) asset with only two possible returns.

This binomial model is obviously oversimplified, and is presented only in order to clarify the

basics of the three approaches; I present more realistic models later in the paper. In Sec-

tion 3, I set forth the most general domain of preferences, that is, the set of bets or gambles

over which the decision maker is to choose. Section 4 presents the axioms that I will use

to formalize the decision maker’s preference structure. Section 5 delivers the basic results

concerning the existence of consistent conditional preferences, their link to the restricted in-
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dependence axiom, and the associated shape of the set of priors used by the decision maker.

It also provides an important negative result stating that a sufficiently rich set of consistent

conditional preferences implies the full independence axiom, and thus implies that there is

no uncertainty aversion. I view this result as cautionary, rather than discouraging. Sec-

tion 6 shows how my basic results are easily adapted to a dynamic domain which includes

consumption at various points in time. Section 7 puts my results in perspective by showing

that they can be used to classify and understand the major existing models of uncertainty-

averse decision-making. Section 8 solves two intertemporal portfolio and consumption choice

problems. Working in a continuous-time setting, I analyze first a benchmark model of an

investor who dogmatically expects the worst, which I show is related to the models of Chen

and Epstein (2002) and Maenhout (2001) in its implications, and then a model in which the

investor learns from historical data. Section 9 concludes. All proofs are placed in a separate

appendix.

2 A Simple Two-period Example

In this section, I use an extremely simple model to illustrate the basic differences between

the recursive multiple-priors approach, the robust control approach, and the model-based

multiple-priors approach. There are two periods: t = 0, 1. Investment decisions are made at

the beginning of each period, and the return for each period is realized at the end of that

period. This corresponds to the event tree depicted in Figure 1. Initial wealth is W0 > 0.

Utility is of the power form over final wealth:

U (W2) =

{

W
1−γ
2

1−γ
if γ 6= 1,

ln (W2) if γ = 1
, (1)

where W2 denotes wealth at the end of period 1 (or the beginning of period 2). In the

continuous-time models analyzed later in the paper, I consider intermediate consumption; I

could include intermediate consumption here, but I omit it for the sake of simplicity. There
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is one riskless asset, and the (gross) riskless rate is denoted Rf > 1. There is one risky, and

uncertain, asset; in each period, the gross return on this asset takes on one of two possible

values. I denote the higher of these two values by H and the lower by L, and denote the

(uncertain) gross return on the risky asset in period t by Rt. In order to avoid arbitrage, I

assume that H > Rf > L. At each of the two periods, the investor chooses how much to

invest in the risky (and uncertain) asset.

As a benchmark, I consider the standard approach to portfolio choice (as laid out by In-

gersoll (1987)) in this context. In the standard approach, the next step would be to assume

that there is some probability p ∈ (0, 1) such that

Pr (R0 = H, R1 = H) = p2 (2)

Pr (R0 = H, R1 = L) = p (1 − p) (3)

Pr (R0 = L, R1 = H) = (1 − p) p (4)

Pr (R0 = L, R1 = L) = (1 − p)2
. (5)

This assumption really has two pieces: first, the probability of each of the possible sequences

of returns is known, and second, the return at time 1 is generated independently of the

return at time 0, but from the identical distribution.

To solve the investor’s choice problem in the standard setting of the previous paragraph,

I will use dynamic programming. I denote by J (W, t) the indirect utility of wealth W at the

beginning of period t = 0, 1 (that is, J is the value function). Let ϕt denote the portfolio

weight placed on the risky asset at the beginning of period t = 0, 1. The investor’s problem

can then be expressed as:

J (W, 1) = max
ϕ

{

W 1−γ

1 − γ

[

p (ϕ (H − Rf ) + Rf)
1−γ

+ (1 − p) (ϕ (L − Rf ) + Rf )
1−γ

]}

(6)

J (W, 0) = max
ϕ

{

pJ (W (ϕ (H − Rf ) + Rf ) , 1)
+ (1 − p) J (W (ϕ (L − Rf ) + Rf) , 1)

}

. (7)

The solution to this problem is given by Ingersoll (1987) (page 125); using a superscript “o”
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to denote optimality,

for t = 0, 1, ϕo
t = Rf

(1 − p)−
1

γ (Rf − L)−
1

γ − p
− 1

γ (H − Rf)
− 1

γ

(1 − p)−
1

γ (Rf − L)1− 1

γ + p
− 1

γ (H − Rf )
1− 1

γ

. (8)

I raise the question, “From where does the investor obtain p?” The standard approach

outlined above is, I feel, neither normatively nor descriptively satisfying, and I thus drop

the key assumption embodied in equations (2) through (5). Indeed, I do not even make

the more general assumption that each possible pair of returns has a known probability

(which would relax the i.i.d. assumption above). The classical “subjective expected utility”

theories of choice under uncertainty, as pioneered by Savage, show that there are conditions

on the investor’s preferences that, if true, guarantee that the investor has a prior probability

distribution on the four possible pairs of returns. However, as initially pointed out by Ellsberg

(1961), these theories cannot accommodate aversion to uncertainty, as distinct from aversion

to risk. Aversion to uncertainty certainly seems descriptively significant, and I would argue

that it also has normative appeal. For this reason, I do not accept the subjective expected

utility approach: I seek an approach that incorporates uncertainty aversion.

Under the conditions on preferences given by Gilboa and Schmeidler (1989), the investor

has a set of (subjective) prior probability distributions on the four possible pairs of returns.

This set is closed and convex. The investor evaluates any potential portfolio choice by cal-

culating the minimum expected utility of that portfolio choice, where the minimum is taken

over the set of priors. The recursive multiple-priors approach, the robust control approach,

and the model-based multiple-priors approach all attempt to put some economically-founded

structure on this set of priors.

In the recursive multiple-priors approach, the set of priors is “rectangular”:

Pr (R0 = H) ∈
[

p, p
]

(9)

Pr (R1 = H|R0 = H) ∈
[

pH , pH
]

(10)

Pr (R1 = H|R0 = L) ∈
[

pL, pL
]

. (11)
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This set of priors is shown in Figure 2. One can recognize this as an extreme form of

nonstationarity: it is essentially stating that the investor views the uncertainties in the

return at time 0, the return at time 1 given a high return at time 0, and the return at

time 1 given a low return at time 0 as mutually unrelated. The “κ-ignorance” specification

of Chen and Epstein (2002) further specializes the above to sets in which p = pH = pL

and p = pH = pL, so that the three returns have the same ranges of uncertainty, but their

uncertainties remain unrelated.

In particular, the recursive multiple-priors approach is incompatible with the usual

Bayesian method of placing a prior on p in the standard i.i.d. model, and updating that

prior as information arrives. This incompatibility is somewhat unsettling; one might prefer

a generalization or relaxation of the Bayesian method over an incompatible alternative to it.

It is instructive to examine the dynamic programming problem of an investor whose

preferences satisfy the recursive multiple-priors conditions. I denote by J (W, t) the indirect

utility of wealth W at the beginning of period t = 0, 1. Then the investor solves:

J (W0 (ϕ0 (H − Rf ) + Rf ) , 1) (12)

= max
ϕ1

min
p∈[pH ,pH]

{

(W0(ϕ0(H−Rf)+Rf))
1−γ

1−γ
×

[

p (ϕ1 (H − Rf) + Rf )
1−γ + (1 − p) (ϕ1 (L − Rf ) + Rf )

1−γ
]

}

J (W0 (ϕ0 (L − Rf) + Rf ) , 1) (13)

= max
ϕ1

min
p∈[pL,pL]

{

(W0(ϕ0(L−Rf)+Rf))
1−γ

1−γ
×

[

p (ϕ1 (H − Rf ) + Rf)
1−γ + (1 − p) (ϕ1 (L − Rf ) + Rf)

1−γ
]

}

J (W0, 0) (14)

= max
ϕ0

min
p∈[p,p]

{pJ (W0 (ϕ0 (H − Rf ) + Rf ) , 1) + (1 − p) J (W0 (ϕ0 (L − Rf) + Rf ) , 1)} .

This shows in a more direct way the nonstationarity implicit in the recursive multiple-priors

approach. In each of the three subproblems above, the investor behaves as if there were a
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separate asset whose return uncertainty is described by an interval of probabilities. Crucially,

the theory behind the recursive multiple-priors approach does not give any guidance on how

the interval endpoints of the three intervals should be related to each other.

A specific set of derivative assets can reveal some counterintuitive behavior on the part of

a recursive multiple-priors investor: consider one derivative, A, on the risky asset that pays

off 1,000 dollars at the end of period 1 if the return sequence is (H, L) and otherwise pays

off one dollar at the end of period 1, and another derivative, B, that pays off 1,000 dollars at

the end of period 1 if the return sequence is (L, H) and otherwise pays off one dollar at the

end of period 1. A and B are essentially bets on the order of the high and the low return,

if one high and one low return are realized. One might expect that an investor would be

indifferent between holding a portfolio of only A and a holding a portfolio of only B. Indeed,

it would seem reasonable that the investor would be indifferent between A, B, and flipping

a fair coin, then holding a portfolio of only A if the coin came up heads, and only B if the

coin came up tails. However, if p > p, so that the investor has uncertainty aversion over the

time-0 return, then a recursive multiple-priors investor cannot be indifferent between A, B,

and randomizing over A and B with equal probabilities.

In the robust control approach, one first specifies a baseline model. In the current setting,

it is natural to suppose that the baseline model might be of the i.i.d. form specified in

equations (2) through (5). I do so, denoting by p the probability of a high return in the

baseline model (in which returns are i.i.d.). I shall discuss only the “multiplier preferences”

arising in robust control, not the “constraint preferences,” since the multiplier preferences

are the ones emphasized by the robust control school. To implement the robust control

multiplier approach, one uses dynamic programming. I fix a penalty parameter θ, and
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denote by J (W, t) the indirect utility of wealth W at the beginning of period t = 0, 1. Then

J (W, 1) = max
ϕ

min
g∈[0,1]











W 1−γ

1−γ

[

g (ϕ (H − Rf ) + Rf )
1−γ

+ (1 − g) (ϕ (L − Rf) + Rf )
1−γ

]

+θ
(

g ln
(

g

p

)

+ (1 − g) ln
(

1−g

1−p

))











(15)

J (W, 0) = max
ϕ

min
g∈[0,1]











gJ (W (ϕ (H − Rf) + Rf ) , 1)
+ (1 − g)J (W (ϕ (L − Rf ) + Rf ) , 1)

+θ
(

g ln
(

g

p

)

+ (1 − g) ln
(

1−g

1−p

))











. (16)

A key characteristic of the robust control multiplier method is that the multiplier θ remains

constant over both states of the world and time. Apply the minimax theorem to switch the

order of minimization and maximization above (see Ferguson (1967), page 85; the theorem’s

technical conditions are satisfied if one rules out portfolio choices that risk ruin):

J (W, 1) = min
g∈[0,1]

max
ϕ











W 1−γ

1−γ

[

g (ϕ (H − Rf ) + Rf )
1−γ

+ (1 − g) (ϕ (L − Rf) + Rf )
1−γ

]

+θ
(

g ln
(

g

p

)

+ (1 − g) ln
(

1−g

1−p

))











(17)

J (W, 0) = min
g∈[0,1]

max
ϕ











gJ (W (ϕ (H − Rf) + Rf ) , 1)
+ (1 − g)J (W (ϕ (L − Rf ) + Rf ) , 1)

+θ
(

g ln
(

g

p

)

+ (1 − g) ln
(

1−g

1−p

))











. (18)

I now observe that the Lagrange multiplier theorem, which Hansen, Sargent, Turmuham-

betova, and Williams (2001) use to motivate switching from the constraint approach to the

multiplier approach, may also be employed to link the multiplier approach to a different set

of constraints. From the above, I can apply the Lagrange multiplier theorem to each of the

three problems that the investor may face: how to invest at the beginning of time 0, how

to invest at the beginning of time 1 if the time-0 return was low, and how to invest at the

beginning of time 1 if the time-0 return was high. Doing so results in:

J (W0 (ϕ0 (H − Rf ) + Rf ) , 1) (19)

= min
g∈[0,1],g ln( g

p)+(1−g) ln( 1−g
1−p)≤η1(W H

1 )
max

ϕ1

{

(W0(ϕ0(H−Rf)+Rf))
1−γ

1−γ
×

[

g (ϕ1 (H − Rf) + Rf )
1−γ + (1 − g) (ϕ1 (L − Rf) + Rf)

1−γ
]

}

+θη1

(

W H
1

)
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J (W0 (ϕ0 (L − Rf ) + Rf) , 1) (20)

= min
g∈[0,1],g ln( g

p)+(1−g) ln( 1−g
1−p)≤η1(W L

1 )
max

ϕ1

{

(W0(ϕ0(L−Rf)+Rf))
1−γ

1−γ
×

[

g (ϕ1 (H − Rf) + Rf )
1−γ + (1 − g) (ϕ1 (L − Rf) + Rf)

1−γ
]

}

+θη1

(

W L
1

)

J (W0, 0) (21)

= min
g∈[0,1],g ln( g

p)+(1−g) ln( 1−g
1−p)≤η0(W0)

max
ϕ0

{gJ (W0 (ϕ0 (H − Rf) + Rf) , 1) + (1 − g)J (W0 (ϕ0 (L − Rf ) + Rf ) , 1)}

+θη0 (W0) .

These results follow from reasoning conceptually identical to that of Hansen, Sargent, Tur-

muhambetova, and Williams (2001), pages 10 to 12; note that the assumption required

by those authors is not necessary here, since it has been observed above that the mini-

max theorem holds for this problem. In the display above, I have used the abbreviations

W H
1 ≡ W0 (ϕ0 (H − Rf ) + Rf) and W L

1 ≡ W0 (ϕ0 (L − Rf) + Rf ). Observe that, in order to

break the multiplier problem down into constraint problems, I was forced to introduce differ-

ent constraints at each time and each level of wealth at the beginning of the period (so that

constraints in the current period may depend on portfolio choices in past periods, though

not, of course, on the portfolio choice in the current period). This is because the Lagrange

multiplier theorem states only that each multiplier problem produces the same result as some

constraint problem; it does not state that the constraints in each problem are the same, or

that the constraints do not depend on wealth at the beginning of each period. In fact, it

suggests that the constraints will not be the same, and will depend on the period and on

wealth at the beginning of each period, since the shadow value of relaxing the constraint will
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differ across the problems and across different beginning-of-period wealth levels: it is more

harmful to experience a reduction in investment opportunities in a low-wealth state of the

world than in a high-wealth state. One can see, however, that the only differences between

the constraint in period 1 after a high return in period 0 and the constraint in period 1 after

a low return in period 0 will arise because of differences in wealth at the beginning of period

1 between these two possibilities. This follows because the two problems are identical except

for their (potentially) different levels of beginning-of-period wealth.

One may now observe that the entropy constraint can be translated to an interval con-

straint, since the relative entropy function is convex in g and g is a scalar in each of the

three problems (and for any level of wealth at the beginning of the period in each of the

three problems). Either these do not bind, in which case one is left with the basic constraint

g ∈ [0, 1] or they do bind, in which case the interval is a strict subset of [0, 1]. In either case,

one obtains:

J (W0 (ϕ0 (H − Rf) + Rf) , 1) (22)

= min
g∈[a1(W H

1 ),b1(W H
1 )]

max
ϕ1

{

(W0(ϕ0(H−Rf)+Rf))
1−γ

1−γ
×

[

g (ϕ1 (H − Rf) + Rf )
1−γ + (1 − g) (ϕ1 (L − Rf) + Rf )

1−γ
]

}

+θη1

(

W H
1

)

J (W0 (ϕ0 (L − Rf) + Rf ) , 1) (23)

= min
g∈[a1(W L

1 ),b1(W L
1 )]

max
ϕ1

{

(W0(ϕ0(L−Rf)+Rf))
1−γ

1−γ
×

[

g (ϕ1 (H − Rf) + Rf )
1−γ + (1 − g) (ϕ1 (L − Rf ) + Rf)

1−γ
]

}

+θη1

(

W L
1

)

J (W0, 0) (24)

= min
g∈[a0(W0),b0(W0)]

max
ϕ0

{gJ (W0 (ϕ0 (H − Rf ) + Rf ) , 1) + (1 − g)J (W0 (ϕ0 (L − Rf ) + Rf) , 1)}

+θη0 (W0) .
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Note that the intervals are different at each time and for each level of wealth at the beginning

of the period they apply to.

I may now apply the minimax theorem (Ferguson (1967), page 85) to each of the three

subproblems faced by the investor. Note that the technical conditions of the theorem given

by Ferguson (1967) are satisfied as long as one rules out obviously suboptimal investment

decisions (one must exclude investment decisions which risk ruin). The result is:

J (W0 (ϕ0 (H − Rf) + Rf) , 1) (25)

= max
ϕ1

min
g∈[a1(W H

1 ),b1(W H
1 )]

{

(W0(ϕ0(H−Rf)+Rf))
1−γ

1−γ
×

[

g (ϕ1 (H − Rf) + Rf )
1−γ + (1 − g) (ϕ1 (L − Rf) + Rf )

1−γ
]

}

+θη1

(

W H
1

)

J (W0 (ϕ0 (L − Rf) + Rf ) , 1) (26)

= max
ϕ1

min
g∈[a1(W L

1 ),b1(W L
1 )]

{

(W0(ϕ0(L−Rf)+Rf))
1−γ

1−γ
×

[

g (ϕ1 (H − Rf) + Rf )
1−γ + (1 − g) (ϕ1 (L − Rf ) + Rf)

1−γ
]

}

+θη1

(

W L
1

)

J (W0, 0) (27)

= max
ϕ0

min
g∈[a0(W0),b0(W0)]

{gJ (W0 (ϕ0 (H − Rf ) + Rf ) , 1) + (1 − g)J (W0 (ϕ0 (L − Rf ) + Rf) , 1)}

+θη0 (W0) .

But comparing the above display to equations (12) through (14), one sees that this is

similar to the problem faced by a recursive multiple-priors investor, who has rectangular

priors; here, the set of priors is:

Pr (R0 = H) ∈ [a0 (W0) , b0 (W0)] (28)

Pr (R1 = H|R0 = H) ∈
[

a1

(

W H
1

)

, b1

(

W H
1

)]

(29)

Pr (R1 = H|R0 = L) ∈
[

a1

(

W L
1

)

, b1

(

W L
1

)]

. (30)
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The main difference in the results obtained by the recursive multiple-priors school and

the robust control school can, then, be traced to differences in how the (continuous-time

analogs of) the endpoints of the probability intervals are chosen. Indeed, the “κ-ignorance”

specification of Chen and Epstein (2002) sets all of the upper endpoints to the same value and

all of the lower endpoints to the same value, which will tend to generate results different from

those of the robust-control multiplier preferences, in which the endpoints will, in general,

vary over time, states of the world, and wealth levels.

The above analysis shows that if one includes wealth (along with the stock price) as

a state variable, then the set of priors implicit in the robust control multiplier approach

is, in fact, rectangular. Of course, the recursive multiple-priors sets of priors, which are

rectangular when only the stock price is considered as a state variable, remain rectangular

with this augmented set of state variables.

I now consider a discrete-time version of the modified multiplier robust control method

proposed in continuous time by Maenhout (2001). I temporarily turn attention to an ex-

tension of the current example which may have more than two periods (but still possesses

binary returns, power utility over terminal wealth, etc.), in order to demonstrate that the

discrete-time version of the Maenhout (2001) transformation I propose is not limited to two-

period problems. Solely for expositional ease, I assume that γ > 1 throughout this treatment

of the modified multiplier robust control method. Although it is not entirely obvious how

to translate the Maenhout (2001) transformation into discrete time, it turns out that the

appropriate translation is as follows: rather than a constant, state-independent multiplier θ

on relative entropy, consider the following state-dependent multiplier on the relative entropy

in period t + 1:

θ (1 − γ)J (Wt, t + 1) .

Note the offset in timing: the value function is evaluated at period t + 1, but at the wealth
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level of period t.

The modified robust control investor’s dynamic programming problem at period t is thus:

J (Wt, t)

= max
ϕ

min
g∈[0,1]

{

Eg [J (Wt+1, t + 1)]

+θ (1 − γ)J (Wt, t + 1)
(

g ln
(

g

p

)

+ (1 − g) ln
(

1−g

1−p

))

}

, (31)

where Eg [·] denotes the expectation with respect to the distribution under which Pr (Rt+1 = H) =

g.

First use a backward induction argument to show that

∀X > 0, ∀t ∈ {1, . . . , T} J (X, t) = f (t)
X1−γ

1 − γ
(32)

for some function f such that f (t) > 0. Since J (X, T ) = X1−γ

1−γ
, the assertion clearly holds

for t = T , with f (T ) = 1. Now, suppose the assertion holds for t = s + 1, . . . , T . I will show

that it holds for t = s. Return to the dynamic programming problem at time s:

J (Ws, s)

= max
ϕ

min
g∈[0,1]

{

Eg [J (Ws+1, s + 1)]

+θ (1 − γ)J (Ws, s + 1)
(

g ln
(

g

p

)

+ (1 − g) ln
(

1−g

1−p

))

}

(33)

= max
ϕ

min
g∈[0,1]







Eg

[

f (s + 1)
W

1−γ
s+1

1−γ

]

+θ (1 − γ) f (s + 1) W
1−γ
s

1−γ

(

g ln
(

g

p

)

+ (1 − g) ln
(

1−g

1−p

))







(34)

= f (s + 1)W 1−γ
s max

ϕ
min

g∈[0,1]











1
1−γ

Eg

[

(

Ws+1

Ws

)1−γ
]

+θ
(

g ln
(

g

p

)

+ (1 − g) ln
(

1−g

1−p

))











(35)

= f (s + 1)W 1−γ
s max

ϕ
min

g∈[0,1]

{

1
1−γ

Eg

[

(ϕ (Rs+1 − Rf ) + Rf )
1−γ
]

+θ
(

g ln
(

g

p

)

+ (1 − g) ln
(

1−g

1−p

))

}

(36)

= f (s)
W 1−γ

s

1 − γ
, (37)

where I define

f (s) = (1 − γ) f (s + 1)max
ϕ

min
g∈[0,1]

{

1
1−γ

Eg

[

(ϕ (Rs+1 − Rf) + Rf )
1−γ
]

+θ
(

g ln
(

g

p

)

+ (1 − g) ln
(

1−g

1−p

))

}

, (38)
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which is valid since Ws appears nowhere in the definition of f (s), and, in fact, nothing

in the definition of f (s) depends on anything except the period, s. Note that the second

equality in the display above follows from the inductive hypothesis regarding the structure of

J (X, s + 1). Finally, f (s) > 0 must be verified. By the inductive hypothesis, f (s + 1) > 0.

By assumption, γ > 1. Thus g = p results in the relative entropy term being zero, while the

expectation term is (due to the leading 1
1−γ

) negative. Regardless of ϕ, taking the minimum

over g ∈ [0, 1] can only result in a lower value, so the “maxmin” term is negative. However,

(1 − γ) < 0 for γ > 1, so the product of the two negative quantities is positive and f (s) > 0

(since f (s + 1) > 0).

Since this logic holds for any Ws > 0, I have shown that

∀X > 0, ∀t ∈ {1, . . . , T} J (X, t) = f (t)
X1−γ

1 − γ
(39)

with f (t) > 0 as desired, and I am now able to characterize the set of priors implicit in this

discrete-time version of the Maenhout (2001) modification of the multiplier robust control

method. Return once more to the dynamic programming problem faced by the investor at

some time t:

J (Wt, t)

= max
ϕ

min
g∈[0,1]

{

Eg [J (Wt+1, t + 1)]

+θ (1 − γ) J (Wt, t + 1)
(

g ln
(

g

p

)

+ (1 − g) ln
(

1−g

1−p

))

}

(40)

= f (t + 1)W
1−γ
t max

ϕ
min

g∈[0,1]

{

1
1−γ

Eg

[

(ϕ (Rt+1 − Rf) + Rf )
1−γ
]

+θ
(

g ln
(

g

p

)

+ (1 − g) ln
(

1−g

1−p

))

}

, (41)

by following exactly the same steps that we followed in our inductive demonstration above,

since we have shown that J (X, t + 1) has the necessary structure (at this stage it is no longer

an inductive hypothesis, but instead is a proven fact).

Exactly as in the case of the (unmodified) multiplier robust control method, applying the

minimax theorem and the Lagrange multiplier theorem, then the minimax theorem again
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transforms the multiplier “maxmin” problem above into a constrained “maxmin” form:

f (t + 1)W
1−γ
t

[

max
ϕ

min
g∈[a,b]

{

1

1 − γ
Eg

[

(ϕ (Rt+1 − Rf) + Rf )
1−γ
]

}

+ ηθ

]

. (42)

The crucial difference between this modified multiplier robust control method and the origi-

nal, unmodified multiplier robust control method is that in the modified version, the interval

endpoints a and b do not depend on the period or on wealth at the beginning of the period,

and neither does the η term. This lack of dependence can be traced to the fact that nothing

inside the modified multiplier maxmin problem depends on beginning-of-period wealth or

on the period itself (functions of beginning-of-period wealth and of the period multiply the

solution of the maxmin problem, but do not affect the optimized value or the optimizing

controls in the problem), whereas in the original version, beginning-of-period wealth and the

period appear inside the maxmin problem.

The fact that a and b are not dependent on the period, on beginning-of-period wealth, or

on the stock price implies that the same a and b are the implicit interval endpoints in each

period and for any wealth levels. This, in turn, implies not only that the sets of priors implicit

in the modified multiplier robust control method are rectangular, but that the implicit sets of

priors satisfy the even stronger κ-ignorance specification of Chen and Epstein (2002). Thus,

the modified multiplier robust control method discussed here, which is a natural discrete-time

analog of the continuous-time method of Maenhout (2001), is structurally identical to one of

the most narrowly-defined recursive multiple-priors methods, the κ-ignorance specification.

The link between the modified multiplier robust control method and the recursive multiple-

priors method therefore seems even tighter than the link between the original multiplier

robust control method and the recursive multiple-priors method.

In contrast to either the recursive multiple-priors approach or the robust control multi-

plier approach, which I have shown to be structurally equivalent (though their results may

differ due to differences in intervals), model-based multiple-priors relies on a novel structure.
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Consider first the classical model of equations (2) to (5). This model has only one unknown

parameter, p. I could follow the Savage approach by placing a (subjective) prior distribution

on p, but this would not account for uncertainty aversion.

Instead, model-based multiple-priors (relative to the classical model) is based on placing a

set of prior distributions on the parameter p. The investment chosen is the one that results

from maximizing (over portfolio weights) the minimum (over priors in the set) expected

utility. The name “model-based multiple-priors,” comes from the fact that the method

places multiple priors on the parameters of an economic model. Depending on how the

economic model is written, model-based multiple-priors may lead to learning; when multiple

priors are placed on p in the standard i.i.d. model as discussed above, learning will certainly

result if every prior in the set considered has full support. On the other hand, I might

have begun with an economic model that, in contrast to the classical model, provided for

a different probability of a high return at each node of the binomial tree. Then learning

would not have resulted (since each period and each state of the world would have involved

a new parameter); in fact, the set of priors would be rectangular. Thus, the model-based

multiple-priors method leads to sets of priors whose structure is more general than that of

rectangular priors, and this greater generality allows the model-based multiple-priors method

to accomodate learning.

3 The General Domain of Preferences

My domain is similar to that used by Gilboa and Schmeidler (1989), which in turn is based

on the setting of Anscombe and Aumann (1963). Let X be a non-empty set of consequences,

or prizes. In applications of the theory X will often be the set of possible consumption

bundles. Let Y be the set of probability distributions over X having finite supports, that is,

the set of simple probability distributions on X.

Let S be a non-empty set of states, let Σ be an algebra of subsets of S, and define
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L0 to be the set of all Σ-measurable finite step functions from S to Y . Note that L0 is

a set of mappings from states to simple probability distributions on consequences, rather

than mappings from states directly to consequences, and that each f ∈ L0 takes on only

a finite number of different values (since it is a finite step function). This is the same

L0 used by Gilboa and Schmeidler (1989). Let Lc denote the constant functions in L0.

Following Anscombe and Aumann (1963) we will term elements of L0 “horse lotteries” and

elements of Lc “roulette lotteries.” It is important to note that convex combinations in L0

are to be performed pointwise, so that ∀f, g ∈ L0, αf + (1 − α) g is the function from S to

Y whose value at s ∈ S is given by αf (s)+ (1 − α) g (s). In turn, convex combinations in Y

are performed as usual: if the probability mass function (not the density function, since all

distributions in Y have finite support) of y ∈ Y is py(x) and the probability mass function of

z ∈ Y is pz(x), then the probability mass function of αy+(1 − α) z is αpy(x)+(1 − α) pz(x).

4 Axioms

The decision maker ranks elements of L0 using a preference ordering, which I denote %. The

axioms below are placed on % and on the strict preference ordering, �, derived from it by:

∀f, g ∈ L0, f � g ⇔ f % g and not f - g. I will also refer to the indifference relationship,

∼, defined by: ∀f, g ∈ L0, f ∼ g ⇔ f % g and f - g.

4.1 The Restricted Independence Axiom

My key, novel axiom is the restricted independence axiom. It is stated relative to a subset

A ∈ Σ (recall that Σ is the algebra of subsets of S with respect to which the functions in L0

are measurable), and I thus refer to it as restricted independence relative to A, or R (A) for

compactness of notation.

Axiom 1 For all f, g ∈ L0, if f (s) = g (s) ∀s ∈ AC , and if h (s) is constant on A, then

∀α ∈ (0, 1) , f � g ⇔ αf + (1 − α)h � αg + (1 − α)h.
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Suppose two gambles give the same payoff for each state in some set of states. It seems,

normatively, that changing each of the gambles in the same way on that set of states (so

that they continue to agree on that set) should not reverse preferences between them. The

restricted independence axiom (relative to the set on which the two gambles differ) goes

slightly beyond this, by saying that preferences are still preserved if, in addition to being

changed on their set of agreement as described above, each gamble is also mixed with the

same roulette lottery (or gamble that does not depend on the state) on the set on which

they disagree. Still, this seems quite plausible normatively. The descriptive usefulness of

restricted independence is best judged from the examples given below.

I will typically be concerned with preferences that satisfy the restricted independence

axiom relative to a collection of sets. I shall state that preferences satisfy R (A) if A =

{A1, . . . , Ak}, and preferences satisfy R (Ai) for each i ∈ {1, . . . , k}.

In working with partitions of S, I will also have a use for the following axiom, which is

the “roulette lottery partition-independence” analog of the “state-independence” axiom used

to obtain an expected utility representation from an additively separable (“state-dependent

expected utility”) representation in the Anscombe and Aumann (1963) framework (see Kreps

(1988), page 109).

Axiom 2 Given roulette lotteries l, q ∈ Lc, a finite partition A = {A1, . . . , Ak} ⊂ Σ of

S, and h ∈ L0, define

(l; h)i =

{

l for s ∈ Ai,

h for s ∈ AC
i ,

(43)

and

(q; h)i =

{

q for s ∈ Ai,

h for s ∈ AC
i .

(44)

Then

∀i, j ∈ {1, . . . , k} , (l; h)i % (q; h)i ⇔ (l; h)j % (q; h)j .
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4.2 The Gilboa-Schmeidler Axioms

I group the axioms of Gilboa and Schmeidler (1989) together into the following axiom.

Axiom 3

Weak Order: % is complete and transitive.

Certainty Independence: ∀f, g ∈ L0, ∀l ∈ Lc, and ∀α ∈ (0, 1) ,

f � g ⇔ αf + (1 − α) l � αg + (1 − α) l.

Continuity: ∀f, g, h ∈ L0, f � g � h ⇒ ∃α, β ∈ (0, 1) such that

αf + (1 − α)h � g � βf + (1 − β) h.

Monotonicity: ∀f, g ∈ L0, f (s) % g (s) ∀s ∈ S ⇒ f % g.

Uncertainty Aversion: ∀f, g ∈ L0, f ∼ g ⇒ αf + (1 − α) g % g ∀α ∈ (0, 1) .

Non-degeneracy: ∃f, g ∈ L0 such that f � g.

The labels attached to each portion of the axiom are those used by Gilboa and Schmei-

dler (1989). Of these portions of the axiom, Weak Order, Continuity, Monotonicity, and

Non-degeneracy are completely standard in the axiomatic literature on choice under uncer-

tainty. The usual independence axiom is strictly stronger than (implies, and is not implied

by) the Certainty Independence and Uncertainty Aversion portions of the axiom above. De-

scriptively, it seems more plausible that Certainty Independence would hold than full-blown

independence: Decision makers may find it easier to work through the implications of mixing

with a roulette lottery, which yields the same thing in every state, than to see the implica-

tions of mixing with a general act. Normatively, Certainty Independence seems appealing,

but it seems much less clear that full independence is desirable.

These axioms are the standard “maxmin expected utility” axioms. They form the base

from which I build up a theory of consistent conditional preferences.
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4.3 The Consistent Conditioning Axiom

In developing a theory of conditional preferences, the notion of a null set will be useful.

Definition 1 A set B ∈ Σ is a null set if and only if f (s) = g (s) ∀s ∈ BC ⇒ f ∼ g.

The axiom below formalizes the notion that conditional preferences should be genuinely

conditional; that is, if two horse lotteries (elements of L0) have identical payoffs on some set

of states, then a preference relation conditional on the state being in that set ought to display

indifference between the two horse lotteries. This property is known as consequentialism,

and has been extensively investigated by Hammond (1988). There should also be some

minimal link between conditional and unconditional preference relations: if every conditional

preference relation in an exhaustive set displays a weak preference for one horse lottery

(element of L0) over another, then the unconditional preference relation ought to display

a weak preference for the first horse lottery, too. If, in addition, one of the conditional

preference relations, conditional on a set of states that is not null, displays a strict preference

for the first horse lottery, then the unconditional preference relation ought to display a

strict preference for the first horse lottery, too. This is a notion of consistency, and is

part of the axiom below. Finally, the following axiom allows conditional preferences to

display uncertainty aversion by assuming that each conditional preference relation satisfies

an appropriate modification of Axiom 3.

Axiom 4 Given a finite partition A = {A1, . . . , Ak} ⊂ Σ of S, % admits consistent condi-

tioning relative to A if and only if there exists a conditional preference ordering %i on L0
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for each Ai ∈ A, and these conditional preference orderings satisfy:

Consequentialism: ∀i ∈ {1, . . . , k} , f (s) = g (s) ∀s ∈ Ai ⇒ f ∼i g.

Consistency: f %i g ∀i ∈ {1, . . . , k} ⇒ f % g.

If, in addition, ∃Ai ∈ A such that f �i g

and Ai is not null, then f � g.

Multiple Priors: ∀i ∈ {1, . . . , k} , %i satisfies Axiom 3, but with Ai

substituted for S in the definition of monotonicity

and non-degeneracy holding only for Ai that are not null.

The concept of consistency is most familiar in the form of dynamic consistency, but consis-

tency seems to be a desirable property in any situation involving a set of conditional prefer-

ences relative to a partition. Below, I will examine consistency in the context of preferences

conditional on the value of a parameter (broadly defined so as to include high-dimensional

parameters, structural breaks, and the like). While I acknowledge that the descriptive merits

of consistency, and especially dynamic consistency, are not uncontroversial, I do feel that the

normative appeal of consistency is difficult to question.

Of course, the appeal of consistency as a property of conditional preferences does not

speak to the appeal of conditional preferences themselves, or, more precisely, to the appeal

of the “consequentialism” section of the axiom above. Normatively, the attraction of certain

sets of conditional (and consequentialist) preferences seems clear. For example, suppose one

is offered a choice among bets on a horse race. One’s preferences over bets are likely to be

quite different depending on whether or not one is told which horse finished first; in fact,

if one is told which horse finished first, one is likely not to care about what payoffs various

bets offer when that horse does not finish first. However, it is important to note that the

normative appeal of consequentialism can depend on what is being conditioned upon; for

cases in which consequentialism may be much less attractive, see Machina (1989). This issue
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is revisited in Section 7.

As with the restricted independence axiom, I will sometimes wish to strengthen the

consistent conditioning axiom by imposing an axiom linking conditional preferences over

roulette lotteries. This is intuitively quite sensible: it seems natural that preferences over

constant acts should not depend on the element of the partition the decision-maker finds

herself in.

Axiom 5 Given a finite partition A ⊂ Σ of S and roulette lotteries l, q ∈ Lc,

∀i, j ∈ {1, . . . , k} , l %i q ⇔ l %j q.

5 General Results

5.1 The Relation of Restricted Independence to Consistent Con-

ditional Preferences

Theorem 1 Assume Axiom 3, and consider a finite partition A = {A1, . . . , Ak} ⊂ Σ of

S. Then the restricted independence axiom holds relative to each Ai ∈ A if and only if

preferences admit consistent conditioning relative to A. That is, Axiom 1 holds if and only

if Axiom 4 holds (each being relative to A).

Like all other results in this paper, the proof of this theorem has been placed in a separate

appendix. This theorem allows one to precisely gauge the strength of the assumption that

a given set of consistent conditional preferences exists (with respect to some partition). It

links preferences over strategies, or contingent plans formed before information arrives and

is conditioned upon, to conditional preferences. It is of particular interest because it exposes

the relationship between the independence axiom, which has been the focus of the axiomatic

work on uncertainty aversion, and the existence of consistent conditional preferences.
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5.2 Prismatic Sets of Priors

Definition 2 A set P of priors will be said to be prismatic with respect to the finite par-

tition A if and only if there exist closed convex sets Ci , i ∈ {1 , . . . , k} of finitely additive

probability measures, where each measure Pi ∈ Ci has Pi (Ai) = 1, and a closed convex set of

finitely additive measures Q, where each Q ∈ Q has Q (Ai) > 0 ∀i ∈ {1, . . . , k}, such that

P =

{

P : ∀B ∈ Σ, P (B) =
∑k

i=1 Pi (B) Q (Ai)
for some Pi ∈ Ci , i ∈ {1 , . . . , k} and Q ∈ Q

}

.

The name “prismatic” was chosen because of what sets of priors on four points look like

when they satisfy the above condition. (A set of priors on three points that is prismatic

with respect to a partition into one set of two elements and one set of a single element is

a trapezoidal subset of the simplex on three points.) Suppose that a set of priors on four

points is prismatic with respect to a partition into one set of two points and two sets, each

of one point. Without loss of generality, suppose that the two singleton sets in the partition

correspond to points 1 and 4, while the set of two points contains points 2 and 3. Label the

probabilities [q1 q2p q2 (1 − p) q3], where the fact that the set of priors is prismatic with

respect to the given partition implies that p ∈
[

p, p
]

and [q1 q2 q3] ∈ Q for some convex

subset Q of the simplex on three points (so, because of the constraint that q1 + q2 + q3 = 1,

the set Q has dimension two). In three dimensions, plot q1 on the x-axis, q3 on the y-axis,

and p on the z-axis. The solid formed will be a generalization of a right prism, in which the

shapes of the parallel top and bottom “caps” (in this case, these are projections of the set

Q onto the xy plane) are convex, but need not be polyhedral.

Now suppose that the set of priors on four points is prismatic with respect to a partition

into two sets, each containing two elements (this might arise, for example, if the four points

are formed from a two-period dynamic model with a binomial branching in each period).

Without loss of generality, suppose that points 1 and 2 are in the first set, while points 3
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and 4 are in the second. Label the probabilities [qp1 q (1 − p1) (1 − q) p2 (1 − q) (1 − p2)],

where the fact that the set of priors is prismatic with respect to the given partition implies

that q ∈
[

q, q
]

, p1 ∈
[

p
1
, p1

]

, and p2 ∈
[

p
2
, p2

]

. In three dimensions, plot p1 on the x-axis,

p2 on the y-axis, and q on the z-axis. The solid formed will be a right prism; in fact, it will

be a box.

Since, for a set of priors on four points, being prismatic with respect to a partition into two

sets of two points is equivalent to being “rectangular” (Epstein and Schneider (2001)) in the

two-period dynamic model with binomial branching mentioned above, a set of “rectangular”

priors looks (as it should) like a box. This is an example of the way in which prismatic priors

generalize rectangular priors.

5.3 The Basic Representation Result

Theorem 2 Given a finite partition A = {A1, . . . , Ak} ⊂ Σ of S such that each Ai ∈ A is

non-null, the following conditions are equivalent:

(1) Axioms 1 and 2 (relative to the partition A) and Axiom 3.

(2) Axioms 4 and 5 (relative to the partition A) and Axiom 3.

(3) There exists a closed, convex set of finitely additive measures P that is prismatic with

respect to A and a mixture linear and nonconstant u : Y → R such that % is represented by

min
P∈P

{
∫

s∈S

u (f (s)) dP (s)

}

.

In this representation, P is unique and u is unique up to a positive affine transformation.

Moreover, there is a set of conditional preference relations %i, i ∈ {1, . . . , k} relative to A,

and for each i ∈ {1, . . . , k}, %i is represented by

min
Pi∈Ci

{∫

s∈Ai

u (f (s)) dPi (s)

}

.

In this representation, Ci = {Pi : ∀B ∈ Σ , Pi (B) = P (B |Ai) for some P ∈ P}, and is

thus a closed convex set of finitely additive measures, and is unique by the uniqueness of P.
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This theorem obtains the representation that will be useful in applying my theory. The

contribution I make here is specifying the shape of the set of distributions P. Again, one

sees a natural generalization of the situation explored by Epstein and Schneider (2001). The

key to the shape of the set of distributions is that any conditional may be selected from

the set Ci , regardless of how other conditionals or the marginals are chosen. Intuitively, it

is sensible that this “independence” in the selection of the distribution corresponds to the

restricted independence of Axiom 1.

5.4 Restricted Independence and Full Independence

Definition 3 Suppose that |S| < ∞ and Σ = 2S. Then two partitions, A = {A1, . . . , Ak}

and B = {B1, . . . , Bn}, will be said to be interlaced if and only if:

(1) ∀i ∈ {1, . . . , k} , ∃j1, . . . , j|Ai| ∈ {1, . . . , n}

such that Bjk
∩ Ai = {xjk

} and |Bjk
| = 1 for at most one jk

(2) ∀j ∈ {1, . . . , n} , ∃i1, . . . , i|Bj | ∈ {1, . . . , k}

such that Aim ∩ Bj = {xim} and |Aim | = 1 for at most one im

(3) ∀ proper, nonempty I ⊂ {1, . . . , k} ,

∃Bj ∈ B such that Bj ∩ (∪i∈IAi) 6= φ and Bj ∩ (∪i∈IAi)
C 6= φ

(4) ∀ proper, nonempty J ⊂ {1, . . . , n} ,

∃Ai ∈ A such that Ai ∩ (∪j∈JBj) 6= φ and Ai ∩ (∪j∈JBj)
C 6= φ.

Being interlaced is a very strong condition; however, it is often satisfied for partitions of

interest. An example of special significance is that of repeated multinomial event trees, in

which each node has the same number of branches emanating from it. Form one partition by

separating sample paths into sets based on the node they pass through in the penultimate

period. Form another partition in which all sample paths with the same numbers of each type
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of transition (for example the highest transition, the middle transition, the lowest transition)

are grouped together (this is grouping based on what would be the sufficient statistic in an

i.i.d. multinomial problem). Then these two partitions are interlaced.

Theorem 3 Assume that Axioms 5 and 3 hold, that |S| < ∞, that Σ = 2S, and that every

nonempty F ⊂ S is non-null. Then the following two conditions are equivalent:

(1) There exist interlaced partitions A,B ⊂ Σ such that % satisfies Axiom 1 relative to

both A and B.

(2) % satisfies the full independence axiom over acts in L0.

This is an important negative result: uncertainty aversion cannot be maintained in the

face of a very rich set of consistent conditional preferences. Put another way, this theorem

states that enough restricted independence adds up to full independence.

6 A Dynamic Domain for Preferences

I consider a dynamic setting in which time is discrete and the horizon is finite: t ∈ {0, 1, . . . , T}.

To maintain continuity of notation, let the state space be denoted S as before (rather than

the notation Ω more typical in the stochastic-process literature, and used in, e.g., Epstein

and Schneider (2001)). The natural filtration (the filtration representing the revelation of

information about the state of the world over time) is {Ft}
T
t=0, where F0 is trivial (includes

only S and φ). For any t ∈ {0, 1, . . . , T}, I will be most concerned with the atoms of the

σ-algebra Ft. The atoms of a σ-algebra are the sets in that σ-algebra such that any other

set in the σ-algebra is the union of some collection (possibly empty) of atoms. The atoms

of Ft, taken together, thus make up the finest partition of S that can be formed using sets

in Ft. When Epstein and Schneider (2001) state, “We assume that for each finite t, Ft

corresponds to a finite partition,” (page 4) the finite partition they are referring to is, in

fact, the set of atoms of Ft. I make the same assumption: that there is a finite number of

atoms in each Ft for t ∈ {0, 1, . . . , T}. Any filtration {Ft}
T
t=0 satisfying this assumption has
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an event-tree representation, in which each atom of Ft is identified with a set of terminal

nodes that originate from some node at the time-t level of the tree. The branches from a

node at time t to nodes at time t + 1 can be thought of as connecting an atom in Ft to

the atoms in Ft+1 which partition it. Given such a finite filtration {Ft}
T

t=0, the distinction

between a σ-algebra and an algebra is vacuous, and the algebra Σ on S is related to that

filtration by Σ = FT .

The set X of consequences or prizes will be the set of (T + 1)-long sequences of con-

sumption bundles, (c0, c1, . . . , cT ), such that each ct ∈ C for some set C (which might, for

example, be the positive reals). It is now tempting to proceed with L0 equal, as usual, to

the set of all Σ (or FT ) measurable finite step functions from S, the set of states, into Y , the

set of simple probability distributions on X. This is problematic because, as noted by Ep-

stein and Schneider (2001), such a definition would fail to account for the order in which

information is revealed according to the filtration {Ft}
T

t=0, since L0 would then include, for

example, acts in which c0, consumption at time 0, was FT measurable but not F0 measurable

(in other words, constant, since F0 is trivial). This would mean that consumption at time

0 was dependent on some possible outcome not “known” (according to the filtration) until

some time in the future, making it difficult to use the filtration for its customary purpose:

to represent the information structure of the environment.

Instead, I restrict attention to the subset of {Ft}
T

t=0 adapted acts in L0. A horse lottery

f ∈ L0 will be called {Ft}
T
t=0 adapted if f : S → Y is such that f (s) = (f0 (s) , . . . , fT (s))

where for t ∈ {0, . . . , T}, ft (s) is a simple probability distribution on C for fixed s, and

is Ft measurable as a function of s. A roulette lottery l ∈ Lc, then, is a constant horse

lottery; thus, a roulette lottery is a (T + 1)-long sequence of independent simple probability

distributions (l0, . . . , lT ), where lt is a simple probability distribution on C whose realization

is ct.

These are exactly the set of adapted horse lotteries and the set of roulette lotteries
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that Epstein and Schneider (2001) work with. Following their notation, I term the set of

adapted horse lotteries H.

In order to directly apply the results of Section 5, I must obtain some set of consequences,

denoted XU , paired with the set of simple probability distributions on it, which I label Y U ,

such that the set of Σ-measurable finite step functions f : S → Y U is equivalent, from

a preference perspective, to H. I do so by showing that under Axiom 3, preferences over

roulette lotteries are representable by a von Neumann-Morgenstern utility function, which

is, moreover, additively time-separable. The vN-M utility function is also, as usual, unique

up to a positive affine transformation. Then I take XU ⊂ R to be the set of all vN-M utility

values arising from consumption lotteries. Preferences over adapted acts naturally induce a

preference relation on f : S → Y U , which then satisfies Axiom 3.

Proposition 1 Suppose that %, defined on H, satisfies Axiom 3. Then, on the subset of H

composed of roulette lotteries, % is represented by a mixture linear function v (·), which is

unique up to a positive affine transformation. Moreover, v is additively time-separable.

Now I will use Proposition 1 to show that the results obtained in Section 5 continue to

hold when preferences are defined on the dynamic domain of the current section.

Theorem 4 Theorems 1, 2, and 3 continue to hold when % is defined on the dynamic

domain of this section. Moreover, the function u in Theorem 2 is additively time-separable.

7 Understanding Uncertainty Aversion Frameworks

Using the dynamic framework I have now developed, I will be able to classify and analyze the

approaches to uncertainty aversion that have been used in the asset pricing literature. The

recursive multiple-priors approach and the robust control multiplier approach both admit

consistent conditional preferences, so they both lead to prismatic (and, in fact, rectangular)

sets of priors. Likewise, model-based multiple-priors admits consistent conditional prefer-
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ences, though relative to a different partition, and thus leads to prismatic priors (again,

relative to a different partition). However, as the negative result of Theorem 3 makes clear,

assuming one set of consistent conditional preferences, while enforcing uncertainty aversion,

may well rule out the possibility that some other set of conditional preferences is consistent.

To more effectively see the differences between the three approaches that I will consider,

note that, for any Σ-measurable Euclidean-valued finite-ranged function χ (s), the level sets

of χ deliver a finite partition of S into Σ-measurable sets. I shall call this partition Aχ.

In my method, as in the work of Chamberlain (2000), the state of the world consists of

both the parameters of an economic model and a vector of data: s = (θ, z), where s is the

state of the world, θ is a vector of model parameters, and z is a vector of data. The relevant

function χ is a function mapping the state of the world, s, to the parameter, θ. (Because

the set of states of the world is the Cartesian product of the parameter space and the space

of possible data, the function χ is particularly simple: it is a projection.) While the formal

axiomatic development above treats finite partitions, it might be taken as motivation for the

use of the model-based multiple-priors approach when the parameter space is a subset of

finite-dimensional Euclidean space, or even when the parameter space is infinite-dimensional

(so that the problem is of the type typically referred to as “nonparametric” or the type

usually termed “semiparametric”). In any event, the model-based multiple-priors approach

can certainly be implemented in such settings, though working in a nonparametric framework

may incur a significant computational cost.

The partition generated by the level sets of the projection χ is model-based: states of

the world are partitioned according to the values of an economic model’s parameters. If

one assumes Axiom 1, the restricted independence axiom, and Axiom 2 with respect to this

partition, and also assumes Axiom 3, then Theorem 2 implies that there is a maxmin expected

utility representation for preferences, and that the set of distributions on the state of the

world is prismatic with respect to the partition generated by the level sets of χ. (In place of
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Axioms 1 and 2, one could assume Axioms 4 and 5 with respect to the partition.) Because

χ projects the set of states of the world onto the parameter space, the prismatic structure

of the set of distributions on the state of the world is, in fact, a “multiple-priors multiple-

likelihoods” structure: there is a set of distributions on the parameters of the economic

model and, given any value of the parameters of the model, there is a set of distributions on

the vector of data.

To obtain a model-based multiple-priors representation, the set of likelihoods (distribu-

tions of the data given the model parameters) must be reduced to a single likelihood. This

can be done in one of two ways: a stronger version of Axiom 1 may be assumed in which the

mixing horse lottery h can be arbitrary, or, equivalently, Axiom 4 may be strengthened by

assuming that each conditional preference ordering satisfies not only certainty independence,

but the full independence axiom. Either one of these (equivalent) strengthened assumptions

will deliver many priors (distributions on the parameters of the economic model) but only

one likelihood (the distribution of the data given the parameters of the economic model).

It is important to note that there are consistent conditional preferences, conditional on the

parameters of an economic model, in model-based multiple-priors.

Some of the recent work of Epstein and Schneider (Epstein and Schneider (2001) and Ep-

stein and Schneider (2002)), on the other hand, uses several functions χit. Indeed, in any

event tree, the Epstein and Schneider (2001) assumptions state that consistent conditional

preferences exist conditional on any node in the tree. Thus, there is one χit function for

each node in the tree, and that function takes on as many values as there are branches from

the node, plus one. Each χit function is constant on the complement of the set of succes-

sors to its designated node. This setup evidently leads to dynamic consistency, since then

a (very) full set of consistent conditional preferences exists. One could prove the Epstein-

Schneider theorem by recursively applying Theorem 2. In fact, the condition on the set of

distributions that they term “rectangularity” is a special case of the prismatic condition.
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The intuition behind rectangularity can be captured in a simple example. Suppose that the

Ellsberg example were extended to include two draws, in sequence and with replacement,

from the unknown urn. Rectangularity would imply that the decision-maker’s preferences

correspond to a situation in which the first draw is taken from one unknown urn, and, if

the ball drawn is black, the second draw is taken from a second, separate unknown urn; if

the first ball is red, the second draw is taken from a third, again distinct, unknown urn.

Thus, rectangularity implies a very strong form of nonstationarity even when the physi-

cal realities of the situation are homogeneous over time. Although Epstein and Schneider

(2001) contend that rectangularity is compatible with learning and that their method leads

to distribution-by-distribution updating via Bayes rule, the extreme nonstationarity implied

by rectangularity means that Bayesian updating of a rectangular set of distributions bears

little resemblance to, say, Bayesian updating of a set of posterior distributions on a model

parameter. Indeed, the recursive multiple-priors approach is incompatible with model-based

multiple-priors (where the model is i.i.d.) on simple multinomial repeated event trees, as an

application of Theorem 3 shows. The two may coexist, but only if there is no uncertainty

aversion.

The structural link between robust control multiplier preferences and recursive multiple-

priors preferences has been discussed in Section 2; because of this connection, and because

recursive multiple-priors has already been discussed, a separate discussion of the robust

control multiplier method is not included here.

A crucial point here is that the nonexistence of a set of consistent conditional preferences

(for example, conditioned on the nodes at some level of an event tree) does not imply dy-

namic inconsistency or a need for “committed updating.” Rather, a single (least favorable)

prior will be selected, and that prior will be updated in the usual, Bayesian way. The use

of an economic model in my method, for instance, does not indicate that dynamic inconsis-

tency arises. Far from it: the decision maker selects a prior on the model parameters and
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updates it using Bayes rule. In my method, it is only at the beginning of the observation

and decision process that many priors are considered. Once the least favorable among them

has been isolated, it is used. A natural question would be: “What if the decision maker were

confronted with a choice between gambles at some later date, after the selection of the least

favorable prior?” The decision maker would then step back to time zero and rank the gambles

at that point, using the full set of priors. There is absolutely nothing inconsistent about this

behavior; rather, it is not what one ordinarily thinks of as conditional choice behavior, since

the decision maker takes into account counterfactuals when weighing alternatives (there is a

large literature on why we might want to take counterfactuals into account; Machina (1989)

is a good review of the earlier portion of this literature, and argues strongly against conse-

quentialism from both a normative perspective and a descriptive perspective). Thus, it is not

so much the consistency part of Axiom 4 that is of concern, but the consequentialism part

of the axiom. This makes very good sense; it is generally accepted that consequentialism is

fundamentally linked to the independence axiom, and Theorem 1 makes the link very explicit

in the current setting. If one does not wish to impose the restricted independence axiom on

preferences at date zero, one must refrain from assuming the existence of consequentialist,

consistent conditional preferences.

Given the impossibility of “having it all” in terms of conditional preferences and uncer-

tainty aversion, what approach is most attractive? I believe that model-based multiple-priors

is most promising. This is due to the fact that it can naturally induce learning, which is

certainly one of the key features of dynamic decision making. As Epstein and Schneider

(2002) have shown, it is possible to generate something that looks somewhat like learning

within a recursive multiple-priors framework, but they freely admit that it is completely ad

hoc. The sort of learning they prescribe is the kind that would occur if a decision maker

re-minimized over the set of priors in model-based multiple-priors each period, but was aware

that this would occur and planned for it. This is not what one typically thinks of as learn-
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ing. As a consequence, such intuitive characteristics as exchangeability are incompatible

with the Epstein and Schneider (2002) method.

8 The Investor’s Consumption and Portfolio Choice

Problem

I consider an investor who faces an intertemporal choice problem: at each point in time,

the investor chooses what fraction of wealth to consume, and decides on how to allocate

the remaining wealth between a risky asset and a riskless asset. I depart from the discrete-

time framework of Section 6, and follow the seminal work of Merton (1969) by setting the

problem in continuous time. Although discrete-time, discrete-state settings allow for axioms

that are clearer and less cluttered by technical requirements, solving the investor’s problem

in continuous time shows the generality of the concepts developed above. A continuous-time

model also permits me to compare my results with those of Anderson, Hansen, and Sargent

(2000), Chen and Epstein (2002), and Maenhout (2001), all of whom set their models of

uncertainty aversion in continuous time, and to contrast my findings with those of Brennan

(1998), Brennan and Xia (2001), Cvitanic̀, Lazrak, Martellini, and Zapatero (2002), and Xia

(2001), all of whom set their models of Bayesian learning in continuous time.

The conditional preferences I am most interested in are those based on some key pa-

rameter, such as the expected return in the specific model considered below. The idea is

similar to that explored in an econometric setting by Chamberlain (2000): if the investor

knew what the expected return was, all of the uncertainty (though not necessarily all of the

risk) would be resolved. In a model such as this, a low-dimensional parameter captures all of

the uncertainty, though not necessarily all of the risk, perceived by the investor. However, it

is worth noting that the complexity of the model considered below is not constrained by the

model-based multiple-priors approach, which could deal with a model that allowed endoge-

nous structural breaks and other nonstationarities, or even a model in which the parameter
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was infinite-dimensional (so that the setting was “nonparametric”). The model treated in

this section was chosen for its simplicity, and because it demonstrates how model-based

multiple-priors can accomodate learning of a familiar and intuitive sort.

As I have explored at length above, consistent conditional preferences based on condi-

tioning upon the parameters of an economic model are not, in general, compatible with

the recursive multiple-priors approach of Chen and Epstein (2002), Epstein and Schneider

(2001), and Epstein and Schneider (2002). Because I impose the requirement that the con-

ditional preferences (given the value of the expected return) satisfy not only Axioms 4 and 5

but also full independence (capturing the notion that the uncertainty in the expected return

is the only uncertainty perceived by the investor), these preferences are also incompatible

with those of a robust-control investor.

Despite these differences, I will show that model-based multiple-priors can, for certain

types of sets of priors, deliver the same portfolio and consumption rules that Chen and Ep-

stein (2002) and Maenhout (2001) derive under the much less transparent recursive multiple-

priors and modified robust-control methods. Moreover, I will show that the model-based

multiple-priors approach is more general: under different types of sets of priors, a model-

based multiple-priors investor learns from the past.

The investor has power utility over consumption at each moment in time. The coefficient

of relative risk aversion is assumed to be greater than one (though the log case is the natural

limit as γ → 1 for both of the models):

γ > 1.

The (uncertainty-averse) investor allocates wealth between a riskless asset, which follows the

process

dBt = rBtdt, (45)
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and a risky (and indeed, uncertain) asset, which follows a geometric Brownian motion,

dSt = µStdt + σStdwt. (46)

The investor is uncertain about the value of the expected return parameter µ. In a Bayesian

(subjective expected utility theory) model, the investor would place a prior on µ. Here,

however, the investor has a (closed, convex) set of prior distributions on the expected return.

Preferences over consumption processes (and thus over consumption and portfolio choices)

are represented by the minimum (over the set of priors on µ) of the expected utility (where

expectations are taken over µ, using some prior in the set, and over the process {St}t∈[0,T ],

using the geometric Brownian motion “likelihood”) of the consumption process.

Let the closed, convex set of prior distributions on µ be denoted Π, so that:

µ ∼ π ∈ Π. (47)

Also, let

F (W0) (48)

=
{

{ct}
T

t=0 , {ϕt}
T

t=0 : dWt = (ϕt (µ − r) + r)Wtdt + ϕtσWtdwt − ctdt and WT ≥ 0
}

,

where ϕt is the weight on the risky asset in the investor’s portfolio at the moment t, so that

F (W0) is the set of feasible consumption and portfolio choices given an initial wealth of W0.

Then the investor’s problem is:

max
ct,ϕt∈F (W0)

{

min
π∈Π

{

Eπ

[

ES

[
∫ T

t=0

e−ρt c
1−γ
t

1 − γ
dt

∣

∣

∣

∣

µ

]]}}

, (49)

where the operator “Eπ [·]” denotes expectation over different values of µ using the prior π,

and the operator “ES [ ·|µ]” denotes expectation over possible stock price paths using the

measure generated by the geometric Brownian motion with mean return µ.

In this form, the problem is not tractable. However, one may follow the logic of Cham-

berlain (2000) and Chamberlain (2001) in applying the minimax theorem ( Ferguson (1967),
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page 85) to conclude that

max
ct,ϕt∈F (W0)

{

min
π∈Π

{

Eπ

[

ES

[
∫ T

t=0

e−ρt c
1−γ
t

1 − γ
dt

∣

∣

∣

∣

µ

]]}}

(50)

= min
π∈Π

{

max
ct,ϕt∈F (W0)

{

Eπ

[

ES

[
∫ T

t=0

e−ρt c
1−γ
t

1 − γ
dt

∣

∣

∣

∣

µ

]]}}

. (51)

Note that the technical requirements of the theorem presented by Ferguson (1967) are sat-

isfied in this case if one rules out obviously suboptimal behavior (such as investments which

risk ruin). On the second line above, the problem within the minimization (over π ∈ Π) is a

standard one: it is a Bayesian problem of consumption and portfolio choice under the prior

π ∈ Π. Equivalently, it is a problem of the sort that a subjective expected utility maximizer

might encounter in this setting.

At this stage, I will need to put more structure on the set of prior distributions on µ in

order to proceed. I will first consider a case in which the investor will not learn from the

past; although this is evidently not my ultimate goal, it is both a useful benchmark and a

link to the results of Chen and Epstein (2002) and Maenhout (2001).

8.1 A Benchmark Model

Consider some interval
[

λ, λ
]

of possible expected returns. Let

Π ≡
{

π : π
([

λ, λ
])

= 1
}

. (52)

Note, in particular, that Π includes all of the Dirac delta functions on the interval
[

λ, λ
]

.

In order to solve the maxmin expected utility problem I have laid out, it will be helpful

to consider first the (much simpler) problem

max
ct,ϕt∈F (W0)

{

Eπ

[

ES

[∫ T

t=0

e−ρt c
1−γ
t

1 − γ
dt

∣

∣

∣

∣

µ

]]}

, (53)

where π is a delta function at some λ ∈
[

λ, λ
]

. But this is simply the usual model of

continuous-time portfolio choice with a constant investment opportunity set; it was first
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solved by Merton (1969). I reproduce the solution for convenience. Let X = λ−r
σ

(the

Sharpe ratio associated with the expected return λ).

Proposition 2 Let

a ≡
1

γ

{

ρ − (1 − γ)

[

X2

2γ
+ r

]}

. (54)

The solution to the problem (53) is:

co
t

W o
t

=
a

1 − ea(t−T )
(55)

ϕo
t =

X

γσ
. (56)

The indirect utility function is

J (W, t) =
W 1−γ

1 − γ
e−ρt

(

1 − ea(t−T )

a

)γ

. (57)

I now show that an uncertainty-averse investor whose set of priors is Π will behave as

though investment opportunities were the worst possible constant investment opportunities

in the set, and will not attempt to learn from the data.

Theorem 5 An uncertainty-averse investor with the set of priors Π will optimally invest

and consume as if X = XLF , where XLF =
arg min

λ∈[λ,λ]

{

(λ−r
σ )

2
}

−r

σ
.

This theorem has several interesting consequences. The most obvious, perhaps, is that

the uncertainty-averse investor does not attempt to learn from the data; the interpretation

of this result is that the investor is so fully convinced that investment opportunities are

very poor that no amount of data could alter her beliefs. Another important consequence

is that this result is virtually identical to that obtained by Chen and Epstein (2002) under

a very different set of priors (a rectangular set which they describe as representing “κ-

ignorance”). Further, it is of the same sort (though not precisely identical) to the result

obtained by Maenhout (2001) under his modification of the robust control method.
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It is of interest to note that one can obtain the same results using the model-based

multiple-priors approach that have been derived in the past only by using much more elab-

orate methods. However, the next subsection shows that the model-based multiple-priors

approach has another, more important advantage over existing methods: an investor who

uses the model-based multiple-priors approach can have a preference for learning.

8.2 A Model of Robust Learning

I now consider an investor who rules out dogmatic behavior: such an investor is never

willing to act as if investment opportunities were completely known. It seems likely that

this assumption is a better description of reality than the assumption that investors act as

though they are completely certain of poor investment opportunities.

To represent the preferences of a non-dogmatic investor, each prior in the set of priors

used by the investor must have non-singleton support. It seems natural to go to the opposite

end of the spectrum, and assume that each prior in the set has full support. Although

sets of normal distributions are quite special, sets of mixtures of normal distributions can

approximate many distributions quite well. Brennan and Xia (2001) make use of mixture-

of-normals priors for just this reason. Indeed, sets of mixtures of normal distributions can

include multi-modal and skewed distributions. I thus fix an interval
[

λ, λ
]

and set

Π ≡ conv
{

N
(

λ, ν2
)

: λ ∈
[

λ, λ
]}

, (58)

where the notation “conv” should be read as “the closed convex hull of.” By definition, then,

Π is closed and convex, as it should be. As mentioned above, Π contains a diverse collection

of probability measures, including skewed and multi-modal distributions. The assumption

that Π takes the form above is, then, not very restrictive. The one notable constraint I have

placed on Π is that there is no mixing over the scale parameter ν. This restriction is relaxed

in the following two subsections.
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In order to solve the maxmin expected utility problem I have laid out, it will be helpful

to consider first the (much simpler) problem

max
ct,ϕt∈F (W0)

{

Eπ

[

ES

[
∫ T

t=0

e−ρt c
1−γ
t

1 − γ
dt

∣

∣

∣

∣

µ

]]}

, (59)

where π is a normal distribution with mean λ and variance ν2:

π = N
(

λ, ν2
)

. (60)

This Bayesian problem, and variants of it, have been extensively investigated. Detemple

(1986), Dothan and Feldman (1986), and Gennotte (1986) demonstrated that the so-called

separation principle holds in this problem (the investor can solve the problem by consid-

ering the estimation problem and the portfolio choice problem separately). Later, Lakner

(1995), Lakner (1998), Karatzas and Zhao (2001), and Zohar (2001) attacked the problem,

but no analytical solution was discovered for an investor with power utility. Rogers (2001)

presented (without proof) the first analytical solution of a problem of this sort under power

utility, but with utility over terminal wealth. Subsequently, Cvitanic̀, Lazrak, Martellini,

and Zapatero (2002) gave, with proof, a generalization of the solution of Rogers (2001) to

the case of multiple assets, but still only under power utility over terminal wealth. Rogers

(2001) also contains a partial treatment, again without proof, of the Bayesian problem of an

investor with power utility over intermediate consumption, but gives only time-zero optimal

wealth for this problem. Optimal wealth at times t > 0, the indirect utility of wealth func-

tion, the optimal consumption-wealth ratio, and the optimal allocation to the risky asset are

not provided by Rogers (2001).

I will now define the posterior expected Sharpe ratio at time t,

Xt ≡
τ 2t

1 + τ 2t

(

1

σ

(

ln (St) − ln (S0)

t
−

(

r −
1

2
σ2

))

+
m

τ 2t

)

, (61)

where the parameters are defined by τ 2 = ν2

σ2 and m = λ−r
σ

. This definition takes the

average log return, applies the usual concavity correction term in σ, strips the riskless rate
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out of the average log return, and scales by the standard deviation, giving a measure of

the sample mean Sharpe ratio. The definition then takes a weighted average of this sample

mean Sharpe ratio and the prior expected Sharpe ratio, m, in order to obtain the posterior

expected Sharpe ratio.

Chapter 5 of Campbell and Viceira (2002) shows that the investor’s problem as I have

laid it out above is a single-state-variable model of stochastic investment opportunities. The

state variable is the posterior expected Sharpe ratio, as defined above. Since innovations

to the posterior expected Sharpe ratio are perfectly positively correlated with instantaneous

returns, one expects that investors will have a negative hedging demand, and that hedging

demand will grow as the investment horizon lengthens.

Although the general structure of such problems has been understood, I go beyond previ-

ous work on parameter uncertainty by giving the solution to the investor’s problem in closed

form.

Proposition 3 Define

δ (t) ≡
τ 2

1 + τ 2t
(62)

A (s − t, δ (t)) ≡





(

1 − 1
γ

)

(s − t)

1 +
(

1 − 1
γ

)

δ (t) (s − t)



 (63)

B (s − t, δ (t)) ≡ e
− 1

γ
ρ(s−t)

e
−(1− 1

γ )r(s−t) (1 + δ (t) (s − t))
1

2(1− 1

γ )

(

1 +
(

1 − 1
γ

)

δ (t) (s − t)
)

1

2

. (64)

Then the solution to the problem (59) is

co
t

W o
t

=
1

∫ T

t
B (s − t, δ (t)) exp

{

− 1
2γ

A (s − t, δ (t))X
2

t

}

ds
(65)

ϕo
t =

X t

γσ
× (66)



1 − δ (t)

∫ T

t
B (s − t, δ (t)) exp

{

− 1
2γ

A (s − t, δ (t))X
2

t

}

A (s − t, δ (t)) ds

∫ T

t
B (s − t, δ (t)) exp

{

− 1
2γ

A (s − t, δ (t)) X
2

t

}

ds



 .
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The indirect utility function is

J
(

W, X t, t
)

=
W 1−γ

1 − γ
e−ρt

(
∫ T

t

B (s − t, δ (t)) exp

{

−
1

2γ
A (s − t, δ (t))X

2

t

}

ds

)γ

.(67)

In particular, the expected utility at time t = 0 as a function of initial wealth and the

parameter values is:

J (W, m, 0) =
W 1−γ

1 − γ

(
∫ T

0

B
(

s, τ 2
)

exp

{

−
1

2γ
A
(

s, τ 2
)

m2

}

ds

)γ

. (68)

Hedging demand is negative (as long as X is positive), as expected for a state variable

whose shocks are perfectly positively correlated with those of the risky asset. These results

are consistent with the numerical results of Brennan (1998) in a model with utility over

terminal wealth and with the results of Merton (1971) in a model with exponential utility

and an infinite horizon.

Horizon effects are evidently present as well: holding fixed the posterior expected Sharpe

ratio, at longer horizons hedging demand has a larger impact in decreasing the magnitude

of demand for the risky asset. This is in contrast to the sort of horizon effect that has been

observed by researchers who study the dividend yield’s influence on investment opportunities

and portfolio choice: Barberis (2000), Wachter (2002), and Xia (2001) all find that the alloca-

tion to the stock market increases with the investment horizon in these models. As Wachter

(2002) shows, this is due to the very negative contemporaneous correlation between stock

market returns and innovations to the dividend yield. In contrast, in a learning model such

as the one I consider here, stock market returns and innovations to the state variable (here,

the posterior expected Sharpe ratio) are perfectly positively correlated.

Wachter (2002) pointed out, in a different context, that hedging demand had a weighted-

average form. The same is true in this setting, and hedging demand can thus be interpreted

as the duration of the investor’s consumption stream with respect to the state variable (in

this case, the posterior expected Sharpe ratio X t). This interpretation of the investor’s
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hedging demand exploits the analogy between wealth and a bond: wealth can be thought of

as a bond which pays a consumption coupon.

To my knowledge, mine is the first complete analytical solution of the problem of a

Bayesian, constant relative risk aversion investor with intermediate consumption who faces

parameter uncertainty. (A different, and complementary, problem of “steady-state” learn-

ing about time-varying investment opportunities has been solved analytically by Rodriguez

(2002).) As noted above, however, Rogers (2001) and Cvitanic̀, Lazrak, Martellini, and Za-

patero (2002) have analytical solutions of the problem of a Bayesian, constant relative risk

aversion investor with utility over terminal wealth who faces parameter uncertainty; Rogers

(2001) does not include a proof, while Cvitanic̀, Lazrak, Martellini, and Zapatero (2002) do

provide a proof of their solution’s optimality. Further, Rogers (2001) contains a partial treat-

ment, again without proof, of the intermediate consumption case (only the optimal time-zero

wealth is given; the optimal wealth at times t > 0, the optimal consumption-wealth ratio,

the optimal portfolio weight on the risky asset, and the indirect utility of wealth are not

provided).

As an aside, it is evident upon inspection that (due to the exponentially decaying terms

in the function B and the fact that γ > 1) the limit as T → ∞ of the expected utility exists

and is strictly negative. Thus, an infinite horizon presents no special problems: the infinite-

horizon solution can be obtained from the above simply by taking the limit as T → ∞.

Now, in order to solve a maxmin expected utility investor’s problem, I must find the

least favorable prior in the set Π. This can be accomplished with the aid of the martingale

method (Cox and Huang (1989) and Cox and Huang (1991)), as the theorem below shows.

Theorem 6 An uncertainty-averse investor whose set of priors is Π optimally invests as

though the prior distribution were the normal distribution with mean arg min
λ∈[λ,λ]

{

(

λ−r
σ

)2
}

.

Thus, the solution given in Proposition 3 above applies to the optimal consumption and

portfolio choice under maxmin expected utility, with the minimizing parameter substituted
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into the given formulae.

8.3 Richer Sets of Prior Distributions

As mentioned in the previous subsection, we may be interested in richer sets of prior distri-

butions than the set Π specified above. In particular, each of the normal distributions from

which Π is built up (by taking the closed convex hull) has the same variance. Although this

implies that Π includes bimodal distributions and skewed distributions, it does not imply

that Π includes heavy-tailed distributions. To include heavy-tailed distributions, the set of

priors must permit the building-block normal distributions to differ in variance as well as

differing in mean. To this end, I fix intervals
[

λ, λ
]

and [ν2, ν2] and define:

Γ ≡ conv
{

N
(

λ, ν2
)

: λ ∈
[

λ, λ
]

, ν2 ∈
[

ν2, ν2
]}

. (69)

Finding the least-favorable prior over the set Γ is generally more challenging than finding

the least-favorable prior over the set Π. In order to obtain analytical answers, I consider the

more tractable problem of an investor who has utility over terminal wealth, rather than over

intermediate consumption.

Define

G (W0) (70)

=
{

{ϕt}
T

t=0 : dWt = (ϕt (µ − r) + r)Wt + ϕtσWtdwt and WT ≥ 0
}

,

where ϕt is the weight on the risky asset in the investor’s portfolio at the moment t, so that

G (W0) is the set of feasible portfolio choices given an initial wealth of W0. Then the problem

of an uncertainty-averse investor with utility over terminal wealth is

max
ϕt∈G(W0)

{

min
π∈Γ

{

Eπ

[

ES

[

W
1−γ
T

1 − γ

∣

∣

∣

∣

µ

]]}}

, (71)

and the analysis proceeds very similarly to that in Subsections 8.2 and 8.3.

49



As was the case for intermediate consumption, it is first convenient to get the solution

for a single-prior Bayesian investor. Let the investor have a normal prior distribution with

mean λ and variance ν2. Then the investor’s problem is

max
ϕt∈G(W0)

{

Eπ

[

ES

[

W
1−γ
T

1 − γ

∣

∣

∣

∣

µ

]]}

. (72)

This problem has been solved, without proof, by Rogers (2001), and solved with proof

by Cvitanic̀, Lazrak, Martellini, and Zapatero (2002). I reproduce their solution here for

convenience, though I rewrite the solution in a way that I believe to be more conducive to

interpretation, since it disentangles hedging demand and myopic demand.

Proposition 4 The solution to the problem (72) is:

ϕo
t =

Xt

γσ

(

1 −

γ−1
γ

δ (t) (T − t)

1 + γ−1
γ

δ (t) (T − t)

)

. (73)

The indirect utility of wealth is

J
(

W, X t, t
)

=
W 1−γ

1 − γ

(1 + δ (t) (T − t))
γ−1

2

(

1 + γ−1
γ

δ (t) (T − t)
)

γ
2

(74)

× exp

{

−
X

2

t

2

γ−1
γ

(T − t)

1 + γ−1
γ

δ (t) (T − t)
− r (γ − 1) (T − t)

}

.

This solution is quite intuitive; the expression for ϕo
t shows that hedging demand is

best interpreted here, as in the intermediate consumption problem, as relative (that is, as a

fraction of myopic demand). Since the relative hedging demand is of the form y

1+y
, where

y = γ−1
γ

δ (t) (T − t), it is increasing in the quantity γ−1
γ

δ (t) (T − t). This means that relative

hedging demand increases in risk aversion (being zero, of course, for logarithmic utility), in

posterior variance (and hence in prior variance), and in the remaining investment horizon

T − t.

The absence of integrals over time makes this problem more tractable than the interme-

diate consumption problem. This tractability delivers the following theorem regarding the
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least favorable prior and the maxmin expected utility investment rule when the set of priors

is Γ, that is, when the normal distributions from which the set of priors is built up differ

both in mean and in variance.

Theorem 7 Define

λLF ≡ arg min
λ∈[λ,λ]

{

(

λ − r

σ

)2
}

(75)

mLF ≡
λLF − r

σ
(76)

τ 2, ∗ ≡
1

2







(

mLF
)2

−
1

γ−1
γ

T
+

√

√

√

√

(

(mLF )2 −
1

γ−1
γ

T

)2

+
4

T
(mLF )2






. (77)

An uncertainty-averse investor whose set of priors is Γ and who has power utility over

terminal wealth optimally invests as though the prior distribution were the normal distribution

with mean λLF and variance

ν2, LF ≡ max
{

ν2, min
{

ν2, σ2τ 2, ∗
}}

. (78)

Thus, the solution given in Proposition 4 above applies to the optimal portfolio choice under

maxmin expected utility, with the minimizing parameter substituted into the given formulae.

In particular, Theorem 7 shows that the least favorable prior is not necessarily “extreme”

with respect to prior variance. In other words, the least-favorable prior variance is not always

ν2 or always ν2. Indeed, letting τ 2, LF = ν2, LF

σ2 , we have the following proposition.

Proposition 5

τ 2, LF ∈

[

γ − 1

γ

(

mLF
)2

,
(

mLF
)2
]

, (79)

so ν2 ≤ γ−1
γ

σ2
(

mLF
)2

and ν2 ≥ σ2
(

mLF
)2

are sufficient (though not necessary) for ν2 <

ν2, LF < ν2, that is, an interior solution for the variance of the least favorable prior.
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Furthermore, σ2τ 2, ∗ satisfies

lim
T→∞

{

σ2τ 2, ∗
}

= σ2
(

mLF
)2

(80)

lim
T→0

{

σ2τ 2, ∗
}

=
γ − 1

γ
σ2
(

mLF
)2

(81)

lim
γ→∞

{

σ2τ 2, ∗
}

= σ2
(

mLF
)2

. (82)

Finally,

mLF = 0 ⇒ σ2τ 2, ∗ = 0. (83)

Qualitatively, this proposition shows that a large enough interval for ν2, coupled with a

nonzero mLF , always leads to an interior solution for the least-favorable prior variance. The

intuition behind this result is that there are two forces influencing the least-favorable prior

variance, and they work in opposite directions. Typically, neither completely outweighs the

other, and an interior solution exists. The first force is risk aversion: the investor dislikes

higher prior variances, since they imply that investment opportunities are less certain. This

very intuitive force tends to make the least-favorable prior variance higher. The second force

is less obvious, but crucially important: because the investor learns, and engages in portfolio

rebalancing, a prior under which the probability of a high-absolute-value Sharpe ratio is

large may be quite favorable from the investor’s perspective. A prior with an extremely

large variance implies the belief that the expected return is either very positive or very

negative with extremely high probability. If it is true that the expected return is large in

absolute value, then the investor will eventually learn its sign and its magnitude, and will

then face an attractive investment opportunity set (note that if the expected return is large

and negative, the investor will simply short the risky asset). Thus, a sufficiently high prior

variance implies a belief, on the part of the investor, that attractive investment opportunities

will be available in the future after some learning has taken place. This force tends to make
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the least-favorable prior variance lower. It is interesting to note that this force would be

absent in a buy-and-hold problem; thus, one might expect that the least-favorable prior

variance in a buy-and-hold problem would always be at the upper boundary of its constraint

interval.

8.4 Explicit Results and Discussion

Although studying the above results can yield a great deal of insight, there is no substitute for

examining explicit quantitative results. In recognition of this, I provide Figures 3 through 6,

which depict the hedging demand, consumption-wealth ratio, and allocation to the risky

asset of an uncertainty-averse investor with a preference for learning. The variation in these

key quantities as the prior expected Sharpe ratio, m, and the investment horizon, T , are

changed is examined.

Throughout the figures, I fix the relative risk aversion γ = 5, the rate of time preference

ρ = 0.05, and the riskless rate r = 0.05.

A note on interpretation is in order. As Kandel and Stambaugh (1996) were the first to

recognize in finance, natural conjugate priors allow the interpretation of a prior in terms of

the years of data one would need to observe, starting from a diffuse prior, in order to arrive at

the given prior as a posterior. That is, with a natural conjugate prior, one can interpret prior

beliefs in terms of a fictitious “prior sample.” Since I have proven, in Theorem 6 above, that

the least-favorable prior is of the natural conjugate form in my problem, I take advantage

of this to use a prior variance, τ 2 = 0.05, that I interpret as the same level of confidence

that an investor who had started with a diffuse prior and then seen 20 years of data would

feel. The minimal prior expected Sharpe ratio can then be interpreted as the sample mean

Sharpe ratio that was observed over this pessimistic, fictitious 20-year “prior sample.”

The results in Figures 3 through 6 conform nicely to intuition. Figure 3 shows that

hedging demand is more important as the minimal prior expected Sharpe ratio grows in
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magnitude, and that hedging demand is more important as the investment horizon grows.

Figure 4 shows that the consumption wealth ratio increases in the magnitude of the minimal

prior expected Sharpe ratio and decreases with the investment horizon. Figure 5 demon-

strates that the allocation to the risky asset is increasing in the minimal prior expected

Sharpe ratio and is decreasing in the investment horizon. Figure 6 documents the same

qualitative relationships, but shifts the focus from the variation induced by the minimal

prior expected Sharpe ratio to the variation induced by the investment horizon.

In Figure 7, I show how an investor of the type described in Subsection 8.1 and an investor

of the sort described in Subsection 8.2 compare behaviorally. The data are monthly returns

(with distributions) on the CRSP value-weighted market portfolio from January 1926 to

December 2001. The results are exactly as expected: the dogmatic investor’s allocation to

the risky asset is constant, leading to a horizontal line in the figure, while the investor with

a preference for learning optimally allocates wealth to the risky asset in a way that responds

to the arrival of new information. I also show the myopic allocation to the risky asset, which

isolates the hedging demand of the investor with a preference for learning.

I now turn to the figures that pertain to the richer set of priors considered (with utility

over terminal wealth) in Subsection 8.3. Figure 8 illustrates the results of Proposition 5

regarding the effects of investment horizon and the least-favorable prior expected Sharpe

ratio on the (unconstrained) least-favorable prior variance of the Sharpe ratio. Figure 9

captures the effect of the least-favorable prior expected Sharpe ratio on hedging demand

for two different investment horizons under the unconstrained least-favorable prior variance

(which is permitted to vary with the least-favorable prior expected Sharpe ratio and with the

investment horizon), while Figures 10 and 11 show how the least-favorable prior expected

Sharpe ratio and the investment horizon, respectively, influence the investor’s hedging de-

mand under the unconstrained least-favorable prior variance (which, again, is permitted to

vary with the least-favorable prior expected Sharpe ratio and with the investment horizon
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in each figure).

9 Conclusion

In order to analyze the problem of learning under uncertainty aversion, I have built up a

theory of dynamic choice under uncertainty aversion from axiomatic foundations. This the-

ory has allowed me to write a general and well-justified model of learning under uncertainty

aversion. It has also paid dividends in other ways: it shows the essential similarities be-

tween the existing theories of decision-making under uncertainty aversion by pointing out

the common set of consistent conditional preferences the different theories imply.

I have examined, and solved in closed form, the canonical intertemporal consumption and

portfolio choice problem of a power-utility investor under two different sorts of uncertainty

aversion. The differences in uncertainty aversion are represented by differences in the sets of

priors used by the investor. Under the first set of priors, learning never occurs: the investor

dogmatically expects the worst. The portfolio and consumption decisions of this investor

are structurally identical to those of the investors studied by Chen and Epstein (2002)

and Maenhout (2001), which demonstrates that the investors studied by these researchers are,

behaviorally, also dogmatic. The second set of priors, however, yields much more interesting,

and realistic, preferences: under this second set of priors, the investor has a preference for

learning, and attempts to use historical data in order to learn how to invest more effectively.
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Figure 1: The Two-period Binomial Model

R0 = H

R0 = H, R1 = H

R0 = H, R1 = L

R0 = L

R0 = L, R1 = H

R0 = L, R1 = L

This figure depicts an event-tree representation of the two-period model with a binomial
risky asset, which is described in Section 2.
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Figure 2: The Recursive Multiple-Priors “Rectangular” Set of Priors in the Two-

period Binomial Model

R0 = H

p ∈
[

p, p
]

R0 = H, R1 = H
pH ∈

[

pH , pH
]

R0 = H, R1 = L

R0 = L

R0 = L, R1 = HpL ∈
[

pL, pL
]

R0 = L, R1 = L

Under the Epstein-Schneider axioms, the investor has a “rectangular” set of priors, which
we show in the figure above. The quantity p shown in the figure is the probability that the
time-0 return on the risky asset is H. Because of uncertainty aversion, this probability is
not fixed: the investor is only willing to specify that it is in some interval, which we denote
[

p, p
]

. Likewise, the probability pH is the probability that the time-1 return on the risky
asset is H, given that the time-0 return on the risky asset was H. As with the probability
p, the probability pH is only specified to be within some interval, which we denote

[

pH , pH
]

.

Finally, the probability pL is the probability that the time-1 return on the risky asset is H,
given that the time-0 return on the risky asset was L. It is also known only up to some
interval, denoted

[

pL, pL
]

in the figure above.
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Figure 3: The Hedging Demand of an Uncertainty-averse Investor with a Prefer-

ence for Learning
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Due to uncertainty aversion, the investor has a set of priors; the least-favorable prior expected
Sharpe ratio over that set is on the abscissa above. The investor has power utility over
consumption, with a rate of time preference of ρ = 0.05 and a constant relative risk aversion
of γ = 5. The riskless rate is r = 0.05. The volatility of the risky asset is 0.1902, the
maximum likelihood estimate of volatility, quoted at an annual frequency, from data on the
CRSP value-weighted market portfolio with distributions (January 1926 to December 2001,
monthly). The prior variance of the Sharpe ratio is τ 2 = 0.05, the level of confidence that an
investor who had started with a diffuse prior and observed 20 years of data would feel. The
investment horizon is T . See Subsection 8.2 for the formulae used to compute these results.
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Figure 4: The Consumption-Wealth Ratio of an Uncertainty-averse Investor with

a Preference for Learning
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Due to uncertainty aversion, the investor has a set of prior distributions; the least-favorable
prior expected Sharpe ratio over that set is on the abscissa above. The investor has power
utility over consumption, with a rate of time preference of ρ = 0.05 and a constant relative
risk aversion of γ = 5. The riskless rate is r = 0.05. The volatility of the risky asset is
0.1902, the maximum likelihood estimate of the volatility, quoted at an annual frequency,
from data on the CRSP value-weighted market portfolio with distributions (January 1926
to December 2001, monthly). The prior variance of the Sharpe ratio is τ 2 = 0.05, the level
of confidence that an investor who had started with a diffuse prior and observed 20 years of
data would feel. The investment horizon is T . See Subsection 8.2 for the formulae used to
compute these results.
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Figure 5: An Uncertainty-Averse, Learning Investor’s Allocation to the Risky

Asset, as a Function of the Least-favorable Prior Expected Sharpe Ratio
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Due to uncertainty aversion, the investor has a set of prior distributions; the least-favorable
prior expected Sharpe ratio over that set is on the abscissa above. The investor has power
utility over consumption, with a rate of time preference of ρ = 0.05 and a constant relative
risk aversion of γ = 5. The riskless rate is r = 0.05. The volatility of the risky asset is set
to 0.1902, the maximum likelihood estimate of the volatility, quoted at an annual frequency,
from data on the CRSP value-weighted market portfolio with distributions (January 1926
to December 2001, monthly). The prior variance of the Sharpe ratio is τ 2 = 0.05, the level
of confidence that an investor who had started with a diffuse prior and observed 20 years of
data would feel. The investment horizon is T . See Subsection 8.2 for the formulae used to
compute these results.
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Figure 6: An Uncertainty-Averse, Learning Investor’s Allocation to the Risky

Asset, as a Function of the Investment Horizon
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The investor has power utility over consumption, with a rate of time preference of ρ = 0.05
and a constant relative risk aversion of γ = 5. The riskless rate is r = 0.05. The volatility
of the risky asset is 0.1902, the maximum likelihood estimate of the volatility, quoted at an
annual frequency, from data on the CRSP value-weighted market portfolio with distributions
(January 1926 to December 2001, monthly). The prior variance of the Sharpe ratio is
τ 2 = 0.05, the level of confidence that an investor who had started with a diffuse prior and
observed 20 years of data would feel. Due to uncertainty aversion, the investor has a set of
prior distributions; the least-favorable prior expected Sharpe ratio over that set is m. See
Subsection 8.2 for the formulae used to compute these results.
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Figure 7: The Dynamic Asset Allocation of Uncertainty-Averse Investors with

and without a Preference for Learning
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This figure shows the optimal portfolio weight on the risky (and uncertain) asset of one
uncertainty-averse investor with a preference for learning and one uncertainty-averse investor
who dogmatically expects the worst; see Subsections 8.1 and 8.2, respectively, for details. The
uppermost, dotted line represents the myopic demand of the investor who has a preference
for learning. Each investor has power utility over intermediate consumption, with constant
relative risk aversion γ = 5. All rates are continuously compounded and quoted in annual
units. The rate of time preference is ρ = 0.05, and the riskless rate is r = 0.05. The volatility
of the risky asset is set to 0.1902 (the maximum likelihood estimate of volatility in my data;
see below). Each investor’s horizon is 100 years. Motivated by the results of Subsection 8.2, I
consider a least-favorable prior in which the prior variance of the Sharpe ratio (on December
31, 1925) is set at τ 2 = 0.05, (as though 20 years of data had been observed, beginning from
a diffuse prior) and the prior mean of the Sharpe ratio is set at m = 0.15 (slightly less that
half of the maximum-likelihood estimate of the Sharpe ratio in my data, which is 0.3437)
for the investor who has a preference for learning. For the dogmatic investor, Subsection 8.1
shows that we can assume that the least-favorable prior is a point mass on the lowest possible
prior Sharpe ratio, which we assume is m = 0.15 (for comparability to the learning case).
The risky asset is the value-weighted CRSP market portfolio, including distributions. The
data span the period from January 1926 to December 2001 at a monthly frequency, for a
total of 912 months of data.
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Figure 8: The Least-favorable Prior Variance for an Investor with Utility over

Terminal Wealth
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This figure shows the dependence of the least-favorable prior variance of the Sharpe ratio
(for an investor with power utility over terminal wealth) on the least-favorable prior expected
Sharpe ratio (denoted m in the figure) and on the investment horizon. The investor’s constant
relative risk aversion is γ = 5. See Subsection 8.3 for the formula used to create this graph.
Proposition 5 makes statements about the limits of the least-favorable prior variance of the
Sharpe ratio as T → 0 and as T → ∞; this figure conforms precisely to the statements
regarding the limit as T → 0, and shows the beginnings of convergence to the limit as
T → ∞.
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Figure 9: The Hedging Demand of an Investor with Utility over Terminal Wealth
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This figure shows the dependence of hedging demand, for an investor with utility over termi-
nal wealth, on the least-favorable prior expected Sharpe ratio and on the investment horizon
(T , in years). The investor’s constant relative risk aversion is γ = 5. The riskless rate is
r = 0.05. The volatility of the risky asset is 0.1902, the maximum likelihood estimate of the
volatility, quoted at an annual frequency, from data on the CRSP value-weighted market
portfolio with distributions (January 1926 to December 2001, monthly). See Subsection 8.3
for the formula used to create this graph. Note that, for each least-favorable prior expected
Sharpe ratio and each investment horizon, the least-favorable prior variance of the Sharpe
ratio is calculated and used in creating this figure.
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Figure 10: The Allocation to the Risky Asset of an Investor with Utility over

Terminal Wealth, as a Function of the Least-favorable Prior Expected Sharpe

Ratio
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This figure shows the dependence of the allocation to the risky asset, for an investor with
utility over terminal wealth, on the least-favorable prior expected Sharpe ratio and on the
investment horizon (T , in years). The investor’s constant relative risk aversion is γ = 5. The
riskless rate is r = 0.05. The volatility of the risky asset is 0.1902, the maximum likelihood
estimate of the volatility, quoted at an annual frequency, from data on the CRSP value-
weighted market portfolio with distributions (January 1926 to December 2001, monthly).
See Subsection 8.3 for the formula used to create this graph. Note that, for each least-
favorable prior expected Sharpe ratio and each investment horizon, the least-favorable prior
variance of the Sharpe ratio is calculated and used in creating this figure.
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Figure 11: The Allocation to the Risky Asset of an Investor with Utility over

Terminal Wealth, as a Function of the Investment Horizon
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This figure shows the dependence of the allocation to the risky asset, for an investor with
utility over terminal wealth, on the investment horizon and on the least-favorable prior
expected Sharpe ratio (denoted m in the figure). The investor’s constant relative risk aversion
is γ = 5. The riskless rate is r = 0.05. The volatility of the risky asset is 0.1902, the
maximum likelihood estimate of the volatility, quoted at an annual frequency, from data on
the CRSP value-weighted market portfolio with distributions (January 1926 to December
2001, monthly). See Subsection 8.3 for the formula used to create this graph. Note that,
for each least-favorable prior expected Sharpe ratio and each investment horizon, the least-
favorable prior variance of the Sharpe ratio is calculated and used in creating this figure.

71



Appendix to

Learning How to Invest when Returns are Uncertain

Thomas A. Knox
Harvard University

November 20, 2002∗

c©2002 by Thomas A. Knox

∗I am indebted to John Campbell and Gary Chamberlain for guidance and encouragement. I am also

grateful for the insights of Brian Hall, Parag Pathak, Jeremy Stein, and James Stock, and for the helpful

comments of seminar participants at Harvard University and MIT.

1



1 Introduction

This Appendix contains proofs of the propositions and theorems stated in the paper “Learn-

ing How to Invest when Returns are Uncertain.” To avoid confusion between equations

in the main text of the paper and equations in this Appendix, I number equations in this

Appendix (A1), (A2), etc. Throughout the proofs below, A = {A1, . . . , Ak} is a partition of

S, and we adopt the notation: given any Ai ∈ A, let (f ; g)i =

{

f for s ∈ Ai,

g for s ∈ AC
i .

.

2 Proofs

Lemma 1 Under Axiom 1 relative to A, and under Axiom 3, ∀f, g, h ∈ L0, ∀l ∈ Lc,

∀i ∈ {1, . . . , k}, and ∀α ∈ (0, 1),

(f ; h)i % (g; h)i ⇔ (αf + (1 − α) l; h)i % (αg + (1 − α) l; h)i .

Proof of Lemma 1: By definition, (f ; h)i and (g; h)i are identical on AC
i . Con-

sider m = (l; h)i, which by definition is constant on Ai. By Axiom 1 relative to

Ai, ∀α ∈ (0, 1) , (f ; h)i � (g; h)i ⇔ α (f ; h)i + (1 − α)m � α (g; h)i + (1 − α) m.

But ∀s ∈ S, we have that

(α (f ; h)i + (1 − α) m) (s)

= (αf + (1 − α) l; αh + (1 − α) h)i (s)

= (αf + (1 − α) l; h)i (s) .

Thus, by monotonicity, α (f ; h)i +(1 − α)m ∼ (αf + (1 − α) l; h)i. Since exactly

analogous reasoning can be applied to α (g; h)i + (1 − α)m, we also have that

α (g; h)i + (1 − α)m ∼ (αg + (1 − α) l; h)i. Then, by transitivity, we have that

∀α ∈ (0, 1) , f � g ⇔ (αf + (1 − α) l; h)i � (αg + (1 − α) l; h)i. 2
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Lemma 2 Under Axiom 1 relative to A, and under Axiom 3, ∀f, g, h, m ∈ L0, ∀i ∈

{1, . . . , k}, and ∀α ∈ (0, 1),

(f ; h)i � (g; h)i ⇔ (f ; αh + (1 − α)m)i � (g; αh + (1 − α) m)i .

Proof of Lemma 2: Let l ∈ Lc, so that l is a roulette lottery. We have that

∀α ∈ (0, 1),

(f ; h)i � (g; h)i

⇔ (αf + (1 − α) l; αh + (1 − α)m)i � (αg + (1 − α) l; αh + (1 − α) m)i

⇔ (f ; αh + (1 − α)m)i � (g; αh + (1 − α)m)i .

The first equivalence follows from applying Axiom 1 relative to Ai, where the

mixing lottery is (l; m)i (which is constant on Ai since l is a roulette lottery).

The second equivalence follows from Lemma 1 (which we apply with the act on

AC
i being αh + (1 − α)m). 2

Lemma 3 Under Axiom 1 relative to A, and under Axiom 3, ∀i ∈ {1, . . . , k},

∀f, g, h, m ∈ L0, (f ; h)i � (g; h)i ⇔ (f ; m)i � (g; m)i

Proof of Lemma 3: Suppose that the statement of the lemma does not hold.

Then ∃f, g, h, m ∈ L0 such that (f ; h)i � (g; h)i but (f ; m)i - (g; m)i. Since

(f ; h)i � (g; h)i, Lemma 2 implies that
(

f ; 1
2
h + 1

2
m
)

i
�
(

g; 1
2
h + 1

2
m
)

i
. However,

since (f ; m)i - (g; m)i, Lemma 2 also implies that
(

f ; 1
2
h + 1

2
m
)

i
-
(

g; 1
2
h + 1

2
m
)

i
.

This is a contradiction, so the statement of the lemma must hold. 2
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Lemma 4 If |S| < ∞ and Σ = 2S, and if A and B are two interlaced partitions, then

given any s, w ∈ S, there is a sequence of finite length, (x1, . . . , xN) such that: 1) x1 = s

and xN = w and 2) ∀i ∈ {1, . . . , N − 1}, {xi, xi+1} ⊂ Bj for some j ∈ {1, . . . , n} or

{xi, xi+1} ⊂ Ah for some h ∈ {1, . . . , n}.

Proof of Lemma 4 Suppose not. Then there is some set M (s) of all the x ∈ S

such that a sequence of the sort described in the statement of the lemma exists

between s and x. This set is nonempty, since s itself obviously belongs to it. s is

in Ai ∈ A for some i ∈ {1, . . . , k} since A is a partition. Then Ai ⊂ M (s) must

hold, since we can connect s to any x ∈ Ai using a sequence of length two that

satisfies the stated requirements.

More generally, ∀h ∈ {1, . . . , k}, either Ah ∩ M (s) = φ or Ah ⊂ M (s). To see

this, observe that either Ah ∩ M (s) = φ, in which case the statement is true, or

Ah ∩ M (s) 6= φ. If Ah ∩ M (s) 6= φ, then there exists some sequence of finite

length and satisfying the stated requirement such that x1 = s and xN = y ∈ Ah.

But then any z ∈ Ah can be reached by a sequence of the desired sort simply

by appending it to the end of the sequence connecting s and y ∈ Ah. Thus,

Ah ⊂ M (s), as claimed.

Define an index set I = {h ∈ {1, . . . , k} : Ah ⊂ M (s)}. Then I is nonempty,

since i ∈ I as shown above. Also, I 6= {1, . . . , k}, since if equality held the Ae

such that w ∈ Ae (such an Ae exists because A is a partition) would be a subset

of M (s), implying that a sequence of the stated type exists between s and w and

contradicting the assumption.

Since we have shown that I is a nonempty and proper subset of {1, . . . , k}, we can

apply the intersection portion of the definition of interlaced partitions to obtain a

Bj such that Bj∩(∪h∈IAh) 6= φ and Bj∩(∪h∈IAh)
C 6= φ. Since (∪h∈IAh) ⊂ M (s),

4



we have that Bj ∩ M (s) 6= φ. Thus, Bj ⊂ M (s) (since either Bj ∩ M (s) = φ or

Bj ⊂ M (s); the argument proving this is identical to the one used above to prove

the analogous statement for the Ai). But Bj∩(∪h∈IAh)
C 6= φ. Since Bj ⊂ M (s),

this implies that M (s) ∩ (∪h∈IAh)
C 6= φ. But M (s) ∩ (∪h∈IAh)

C = φ by the

definition of I and by the separation, shown above, of the Ah in to Ah ⊂ M (s)

and Ah such that Ah ∩ M (s) = φ. Thus, we have a contradiction, and our

assumption that a sequence does not exist must have been mistaken. Therefore,

a sequence of the stated sort exists. 2

Lemma 5 If Y ∼ N (a, b2) and β > − 1
2b2

,

E
[

exp
{

−β (Y − α)2}] =
1

√

2βb2 + 1
exp

{

−β

2βb2 + 1
(a − α)2

}

. (A1)

Proof of Lemma 5:

This is an exercise in integration. Multiply the exponential whose expectation we

are taking by the normal density given in the statement of the lemma, complete

the square on Y inside the exponent, and use the fact that a normal density

integrates to one to finish the calculation.

2

Proof of Theorem 1: First we prove that Axiom 4 implies Axiom 1 (each being

relative to A). Suppose f, g ∈ L0 are such that f (s) = g (s) ∀s ∈ AC
i , and

that f � g. Then Ai cannot be a null set; if it were, then (since f and g are

identical on its complement) f ∼ g would have to hold by the definition of a null

set. Now, ∀j 6= i, f (s) = g (s) ∀s ∈ Aj, since the Aj, j 6= i, partition AC
i .

Thus, by the “consequentialism” portion of Axiom 4, f ∼j g ∀j 6= i. If we had

5



f -i g, then we would have f -l g ∀l ∈ {1, . . . , k} (since f ∼l g ⇒ f -l g by

definition), so by the “consistency” portion of Axiom 4 we would have f - g,

which does not hold. Thus, we must have f �i g. Now, given h such that h is

constant on Ai, we have by definition that ∃y ∈ Y such that h (s) = y ∀s ∈ Ai.

By the “consequentialism” portion of Axiom 4, and letting l ∈ Lc be such that

l (s) = y ∀s ∈ S, we have that l ∼i h, since l and h are equal (with value y)

at each element of S. Now, by the “multiple priors” portion of Axiom 4, and

the “certainty independence” portion of Axiom 2, ∀α ∈ (0, 1) , αf + (1 − α) l �i

αg + (1 − α) l. Since (αf + (1 − α) l) (s) = (αf + (1 − α)h) (s) ∀s ∈ Ai, the

“consequentialism” portion of Axiom 4 implies that αf + (1 − α) l ∼i αf +

(1 − α) h. Likewise, since (αg + (1 − α) l) (s) = (αg + (1 − α)h) (s) ∀s ∈ Ai,

the “consequentialism” portion of Axiom 4 implies that αg + (1 − α) l ∼i αg +

(1 − α) h. The transitivity of %i is implied by Axiom 4 and the “weak order”

portion of Axiom 2. By this transitivity, then,

αf + (1 − α) h ∼i αf + (1 − α) l

�i αg + (1 − α) l ∼i αg + (1 − α)h,

each step of which is proven above, implies that ∀α ∈ (0, 1) , αf + (1 − α)h �i

αg + (1 − α) h.

Now, since ∀j 6= i, f (s) = g (s) ∀s ∈ Aj as noted above, we have that ∀j 6=

i, ∀α ∈ (0, 1) , αf (s) + (1 − α)h (s) = αg (s) + (1 − α)h (s) ∀s ∈ Aj. Thus,

by the “consequentialism” portion of Axiom 4, ∀j 6= i, ∀α ∈ (0, 1) , αf +

(1 − α) h ∼j αg + (1 − α)h. Now, since Ai was shown to be non-null above, we

can invoke the “if, in addition” portion of the “consistency” part of Axiom 4 to

conclude that ∀α ∈ (0, 1) , αf + (1 − α)h � αg + (1 − α)h.

From the above, we have that ∀α ∈ (0, 1) , f � g ⇒ αf + (1 − α)h � αg +
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(1 − α) h. We must now prove the other part of the assertion made by Axiom 1.

We want to show the converse of what we have just proven: ∀α ∈ (0, 1) , αf +

(1 − α) h � αg + (1 − α)h ⇒ f � g.

Given α ∈ (0, 1), suppose that f, g, h are as described in the previous section of

the proof, and that αf + (1 − α)h � αg (1 − α)h. The steps to follow are quite

similar to those above, but we include them for the sake of completeness. Ai

cannot be a null set; if it were, then (since αf + (1 − α)h and αg + (1 − α)h

are identical on its complement) αf + (1 − α)h ∼ αg + (1 − α)h would have

to hold by the definition of a null set. Now, ∀j 6= i, (αf + (1 − α)h) (s) =

(αf + (1 − α)h) (s) ∀s ∈ Aj, since the Aj, j 6= i, partition AC
i . Thus, by the

“consequentialism” portion of Axiom 4, αf +(1 − α)h ∼j αg+(1 − α) h ∀j 6= i.

If we had αf +(1 − α)h -i αg+(1 − α)h, then we would have αf +(1 − α)h -l

αg + (1 − α)h ∀l ∈ {1, . . . , k} (since αf + (1 − α)h ∼l αg + (1 − α)h ⇒

αf + (1 − α)h -l αg + (1 − α)h by definition), so by the “consistency” portion

of Axiom 4 we would have αf +(1 − α)h - αg +(1 − α) h, which does not hold.

Thus, we must have αf + (1 − α) h �i αg + (1 − α)h. We have by definition

that ∃y ∈ Y such that h (s) = y ∀s ∈ Ai. Letting l ∈ Lc be such that l (s) =

y ∀s ∈ S, we have that (αf + (1 − α) l) (s) = (αf + (1 − α)h) (s) ∀s ∈ Ai.

Thus, the “consequentialism” portion of Axiom 4 implies that αf + (1 − α) l ∼i

αf + (1 − α) h. Likewise, (αg + (1 − α) l) (s) = (αg + (1 − α)h) (s) ∀s ∈ Ai.

Thus, the “consequentialism” portion of Axiom 4 implies that αg + (1 − α) l ∼i

αg + (1 − α)h. The transitivity of %i is implied by Axiom 4 and the “weak

order” portion of Axiom 2. By this transitivity and the above observations,

αf + (1 − α) l ∼i αf + (1 − α)h

�i αg + (1 − α)h ∼i αg + (1 − α) l
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implies that αf +(1 − α) l �i αg +(1 − α) l. By the “multiple priors” portion of

Axiom 4, and the “certainty independence” portion of Axiom 2, αf +(1 − α) l �i

αg + (1 − α) l ⇒ f �i g. We therefore have that f �i g.

Now, since ∀j 6= i, f (s) = g (s) ∀s ∈ Aj as noted above, we have that ∀j 6=

i, f ∼j g by the “consequentialism” portion of Axiom 4. Now, since Ai was

shown to be non-null above, we can invoke the “if, in addition” portion of the

“consistency” part of Axiom 4 to conclude that f � g.

The above reasoning proves that the restricted independence axiom holds relative

to Ai. However, the choice of i ∈ {1, . . . , k} was completely arbitrary. Thus, we

have proven that the restricted independence axiom holds relative to any Ai ∈ A.

But then, by definition, Axiom 1 holds relative to A.

We now need to prove that, in the presence of Axiom 3, Axiom 1 (relative to A)

implies Axiom 4 (also relative to A). Recall the following notation: given any

Ai ∈ A, let (f ; g)i =

{

f for s ∈ Ai,

g for s ∈ AC
i .

.

Given Ai ∈ A, define the conditional preference relation %i by:

f %i g ⇔ ∃h ∈ L0 such that (f ; h)i % (g; h)i .

Lemma 3 shows that this results in %i being well-defined, since ∀f, g, h, m ∈ L0,

(f ; h)i % (g; h)i ⇔ (f ; m)i % (g; m)i.

First we demonstrate that %i satisfies the “consequentialism” property of Ax-

iom 4. If f (s) = g (s)∀s ∈ Ai, then (f ; h)i (s) = (g; h)i (s)∀s ∈ S and ∀h ∈ L0.

Thus, (f ; h)i ∼ (g; h)i ∀h ∈ L0. This implies, by definition, that f ∼i g.

Now we verify that %i satisfies each of the portions of Axiom 3. These follow

because % satisfies Axiom 3 and by the definition of %i. First we show that %i is

a weak order (that is, that %i is complete and transitive). Suppose that f %i g
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and g %i h. Then ∃m ∈ L0 such that (f ; m)i % (g; m)i and ∃n ∈ L0 such that

(g; n)i % (h; n)i, by the definition of %i. By Lemma 3, (g; n)i % (h; n)i implies

(g; m)i % (h; m)i. Thus, by the transitivity of % (which is part of Axiom 3), we

have that (f ; m)i %i (h; m)i. But then, by the definition of %i, we have that

f %i h. This proves that %i is transitive. To see that it is complete, suppose

that it is not. Then ∃f, g ∈ L0 such that neither f %i g nor f -i g. Given any

m ∈ L0, we would have (by the definition of %i) that neither (f ; m)i % (g; m)i nor

(f ; m)i - (g; m)i. However, this contradicts the completeness of %, as implied

by Axiom 3, so %i must be complete.

Lemma 1 shows that %i satisfies the “certainty independence” portion of Ax-

iom 3.

We proceed to verify the “continuity” portion of Axiom 3 for %i. Suppose that

f �i g �i h. Then ∃m, n ∈ L0 such that (f ; m)i � (g; m)i and (g; n)i � (h; n)i.

By Lemma 3, (g; m)i � (h; m)i. Then we have (f ; m)i � (g; m)i � (h; m)i, and

since % satisfies Axiom 3 (and its “continuity” portion in particular), ∃α, β ∈

(0, 1) such that α (f ; m)i +(1 − α) (h; m)i � (g; m)i � β (f ; m)i +(1 − β) (h; m)i.

By the definition of %i, this implies that αf + (1 − α)h �i g �i βf + (1 − β)h,

verifying the continuity property.

We now show that %i satisfies the “monotonicity” portion of Axiom 3. Suppose

that f, g ∈ L0 are such that f (s) %i g (s) ∀s ∈ Ai. Then, for any h ∈ L0,

(f ; h)i (s) % (g; h)i (s) ∀s ∈ S. Thus, by the monotonicity of % (guaranteed by

Axiom 3), we have that (f ; h)i % (g; h)i. By the definition of %i, this implies

that f %i g, verifying the monotonicity property.

Consider the “uncertainty aversion” portion of Axiom 3. Suppose that f, g ∈ L0

satisfy f ∼i g. Then, by definition of %i, ∃h ∈ L0 such that (f ; h)i ∼ (g; h)i.
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Since % satisfies uncertainty aversion (by Axiom 3), this implies that α (f ; h)i +

(1 − α) (g; h)i % (g; h)i ∀α ∈ (0, 1). By the definition of %i, this, in turn, implies

that αf +(1 − α) g %i g ∀α ∈ (0, 1), confirming that %i satisfies the uncertainty

aversion property.

To complete our demonstration that %i satisfies an appropriately-modified Ax-

iom 3, we need only show that if Ai is not a null set of %, then it is “non-

degenerate”: ∃f, g ∈ L0 such that f �i g. By the definition of a null set,

Ai non-null implies that ∃ (f ; h)i , (g; h)i such that either (f ; h)i � (g; h)i or

(f ; h)i ≺ (g; h)i (otherwise, there would be indifference between any two acts

agreeing on AC
i ; that is, Ai would be null). By the definition of %i, this implies

that ∃f, g ∈ L0 such that f �i g or g �i f . Either possibility shows the desired

non-degeneracy.

Since Ai was selected completely arbitrarily in the above argument, our conclu-

sions hold ∀i ∈ {1, . . . , k}. Thus, the conditional preference orderings %i, i ∈

{1, . . . , k} satisfy the “consequentialism” and ”multiple priors” portions of Ax-

iom 4. It remains only to prove that they satisfy the “consistency” portion of

Axiom 4. To do so, suppose that f %i g ∀i ∈ {1, . . . , k}. Then by definition we

have that ∀i ∈ {1, . . . , k}, ∃hi ∈ L0 such that (f ; hi)i % (g; hi)i. In fact, Lemma 3

proves that this is equivalent to: ∀i ∈ {1, . . . , k} and ∀hi ∈ L0, (f ; hi)i % (g; hi)i.

Since we are thus free to choose the hi, let

hi (s) =

{

f (s) for s ∈ Aj with j < i,

g (s) for s ∈ Aj with j ≥ i

for all i ∈ {1, . . . , k}. Then we have, for i ∈ {2, . . . , k}, (g; hi)i (s) = hi (s) =

(f ; hi−1)i−1 (s). This can be seen by considering the values of each of the above

expressions on each Aj ∈ A. Now, since (f ; hi)i % (g; hi)i for each i ∈ {1, . . . , k},

we can use the equality above to conclude that hi+1 = (f ; hi)i % (g; hi)i = hi
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for i ∈ {1, . . . , k − 1}, and thus that hi+1 % hi for i ∈ {1, . . . , k − 1}. Apply-

ing transitivity repeatedly, this implies that hk % h1. By definition, h1 (s) =

g (s) ∀s ∈ S. We also have f (s) = (f ; hk)k (s) ∀s ∈ S, (f ; hk)k % (g; hk)k, and

(g; hk)k (s) = hk (s)∀s ∈ S. Combining these facts, we obtain f % hk. A final

application of transitivity yields f % g, and thus verifies the main part of the

“consistency” portion of Axiom 3.

To confirm that the “if, in addition” part of the “consistency” condition holds,

observe that if, in addition to f %i g ∀i ∈ {1, . . . , k}, we also have f �j g for

some j such that Aj is not a null set, then one of the weak preference relations in

the chain of preference that we constructed above is actually a strict preference

relation, so that repeated applications of transitivity yield a strict, rather than a

weak, preference relation between f and g.

2

Proof of Theorem 2:

We will prove the theorem by demonstrating that (1) ⇔ (2) and then that (2) ⇔

(3). We first show that conditions (1) and (2) are equivalent. Assuming condition

(1), apply Theorem 1 to obtain a full set of conditional preference relations,

%i, i ∈ {1, . . . , k}, for which Axiom 4 holds. It remains to prove that Axiom 2, in

the presence of Axiom 1, implies that Axiom 5 holds. However, this is immediate,

since ∀f, g, h ∈ L0 and ∀i ∈ {1, . . . , k}, we have (f ; h)i % (g; h)i ⇔ f %i g (by

the definition of the conditional preference relations constructed in the proof of

Theorem 1). This proves that (1) ⇒ (2).

Now suppose that condition (2) holds. Apply Theorem 1 to prove that Axiom 1

holds. Then Axiom 2, combined with the consequentialism property of the con-

ditional preference relations, implies Axiom 5 directly. This shows that (2) ⇒
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(1), and combining this with the above yields (1) ⇔ (2).

We now prove that (2) ⇒ (3). Note that since each Ai ∈ A is non-null, each

conditional preference relation %i, i ∈ {1, . . . , k} is non-degenerate. This, in

addition to the fact that Axiom 4 implies that each conditional preference relation

satisfies the other portions of Axiom 3, allows us to apply Theorem 1 of Gilboa

and Schmeidler (1989) to each conditional preference relation %i, i ∈ {1, . . . , k}.

We can conclude that, ∀i ∈ {1, . . . , k}, %i is represented by

min
Pi∈Ci

{
∫

s∈Ai

ui (f (s)) dPi (s)

}

,

where the closed convex set Ci of probability distributions is unique and ui is

nonconstant, mixture linear, and unique up to a positive affine transformation.

We must verify that we may take ui = u w.l.o.g. This is implied directly by

Axiom 5: since all of the conditional preference relations agree on the roulette

lotteries Lc, and since any preference relation on Lc implies a u that is unique up

to a positive affine transformation, the ui differ by at most a positive affine trans-

formation. Since any positive affine transformation of ui represents preferences

over Lc, we can let ui = u1 ∀i ∈ {2, . . . , k} w.l.o.g.

For any act f ∈ L0, the minimum in the representation is achieved (as is evident

from the construction of the set of distributions in Lemma 3.5 of Gilboa and

Schmeidler (1989)). Let P ∗
i (f) ∈ Ci be a probability distribution achieving the

minimum (if there is more than one such probability distribution, choose one

arbitrarily). Define li (f) ∈ Lc to be the roulette lottery such that (li (f)) (s) =
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∫

s∈Ai
f (s) d (P ∗

i (f)) (s). Then

min
Pi∈Ci

{
∫

s∈Ai

u (li (f)) dPi (s)

}

= u (li (f))

= u

(∫

s∈Ai

f (s) d (P ∗
i (f)) (s)

)

=

∫

s∈Ai

u (f (s)) d (P ∗
i (f)) (s)

= min
Pi∈Ci

{
∫

s∈Ai

u (f (s)) dPi (s)

}

,

where the first equality follows from the fact that li (f) is a roulette lottery (so

the choice of probability distribution from Ci does not affect the expectation

integral), the second equality is by the definition of li (f), the third equality is by

the mixture linearity of u, and the final equality is by the definition of P ∗
i (f).

By the representation result above, this implies that f ∼i li (f).

Now apply Theorem 1 of Gilboa and Schmeidler (1989) to the original preference

relation, %. This allows us to conclude that % is represented by

min
P∈P

{∫

s∈S

w (f (s)) dP (s)

}

,

where the closed convex set P of probability distributions is unique and w is

nonconstant, mixture linear, and unique up to a positive affine transformation.

We must verify that we may take w = u w.l.o.g. We will do so by showing that, for

any roulette lotteries l, q ∈ Lc, u (l) ≥ u (q) ⇔ w (l) ≥ w (q). This equivalent to

showing that, for any two roulette lotteries l, q ∈ Lc, u (l) ≥ u (q) ⇒ w (l) ≥ w (q)

and u (l) < u (q) ⇒ w (l) < w (q).

Given any two roulette lotteries l, q ∈ Lc, if u (l) ≥ u (q) then (by the represen-

tation result, and the fact that we have shown that we may take ui = u for all

i ∈ {1, . . . , k}) l %i q for all i ∈ {1, . . . , k}. The consistency portion of Axiom 4
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then implies that l % q, so w (l) ≥ w (q) since w represents the preference relation

% on the set of roulette lotteries Lc. Now suppose that, instead, u (l) < u (q);

then (by the representation result, and the fact that we have shown that we may

take ui = u for all i ∈ {1, . . . , k}) l ≺i q for all i ∈ {1, . . . , k}. The “if, in

addition,” part of the consistency portion of Axiom 4, along with the non-nullity

of each Ai, then implies that l ≺ q, so w (l) < w (q) since w represents the pref-

erence relation % on the set of roulette lotteries Lc. We have thus shown that u

and w represent the same preferences over Lc. Since any u, w representing the

same preferences over Lc differ by at most a positive affine transformation, and

since any positive affine transformation of u represents the same preferences over

Lc that u does, we can set w = u w.l.o.g.

Given any act f ∈ L0, recall the definition of li (f) given above. Define the

partitionwise-constant act g by: ∀i ∈ {1, . . . , k} , ∀s ∈ Ai, g (s) = li (f).

Then g is well-defined on all of S, since A is a partition of S. We then have

f ∼i g ∀i ∈ {1, . . . , k}, since f ∼i li (f) ∀i ∈ {1, . . . , k} as shown above

and li (f) ∼i g ∀i ∈ {1, . . . , k} by the consequentialism property of conditional

preferences. By the consistency property of preferences, this implies that f ∼ g.

Define the set of priors

P0 =

{

P : ∀B ∈ Σ, P (B) =
∑k

i=1 Pi (B|Ai) Q (Ai)
for some Pi ∈ Ci , i ∈ {1 , . . . , k} and Q ∈ P

}

.
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P0 is closed and convex because its components are.

min
P∈P

{
∫

s∈S

u (f (s)) dP (s)

}

= min
P∈P

{
∫

s∈S

u (g (s)) dP (s)

}

= min
P∈P

{

k
∑

i=1

u (li (f))P (Ai)

}

= min
P∈P

{

k
∑

i=1

min
Pi∈Ci

{
∫

s∈Ai

u (f (s)) dPi (s)

}

P (Ai)

}

= min
P∈P0

{
∫

s∈S

u (f (s)) dP (s)

}

,

where the first equality follows from the representation result for % and the fact

that f ∼ g, the second equality follows from the fact that g is constant (at li (f))

on each Ai ∈ A, the third equality follows from the results derived for li (f) on

Ai above, and the final equality follows from the definition of P0 .

Since the above equality holds ∀ f ∈ L0, we conclude that we can replace P with

P0 in the utility representation of %. Part of the representation result, however,

is that P is the only closed, convex set of probability distributions for which the

utility representation holds. Thus, we must have P = P0 , which is prismatic if

we can show that ∀i ∈ {1, . . . , k} and ∀P ∈ P, P (Ai) > 0 .

Suppose not; then ∃j ∈ {1, . . . , k} and P ∈ P such that P
(

A|

)

= ′. By the non-

degeneracy condition, there exist two roulette lotteries l, q ∈ Lc such that l �j q.

Since we can select any positive affine transformation of u in the representation

result, and since u (l) > u (q), we can w.l.o.g. choose u such that u (l) > 0 and

u (q) = 0. We do so. Obviously, q ∼i q for all i ∈ {1, . . . , k}. Consider the act
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f = (l; q)j. Using our selection of u to evaluate its utility, we have:

min
P∈P

{
∫

s∈S

u (f (s)) dP (s)

}

= min
P∈P

{

k
∑

i=1,i6=j

u (q)P (Ai) + u (l) P (Aj)

}

= min
P∈P

{u (l) P (Aj)}

= 0,

where the first equality follows from the construction of f = (l; q)j, the second

equality follows from the fact that we have (as explained above) set u (q) = 0

w.l.o.g., and the third equality follows from the facts that, by assumption, ∃P ∈

P such that P (Aj ) = 0 and that (again w.l.o.g., as explained above) we have

u (l) > 0. However, we also have that

min
P∈P

{
∫

s∈S

u (q (s)) dP (s)

}

= u (q)

= 0,

where the first equality holds because q ∈ Lc is a roulette lottery and the second

holds because u (q) = 0 by our selection (made w.l.o.g) of u. But, by the represen-

tation result, we have f ∼ q. This contradicts the “if, in addition” portion of the

consistency part of Axiom 4, which (along with the non-nullity of Aj) implies that

f � q. Our assumption that ∃j ∈ {1, . . . , k} and P ∈ P such that P (Aj ) = 0

must, then, have been false. As a consequence, ∀i ∈ {1, . . . , k} and ∀P ∈

P, P (Ai) > 0 must hold, and P is prismatic by definition.

We have now shown that (1) ⇔ (2) and that (2) ⇒ (3). It remains to show

that (3) ⇒ (2). Theorem 1 of Gilboa and Schmeidler (1989) shows that (3)

implies Axiom 3. Thus, we only need to verify that (3) implies Axioms 4 and 2
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relative to the partition A. Using the representation for conditional preferences

given by (3) and again applying Theorem 1 of Gilboa and Schmeidler (1989), we

can conclude that conditional preferences satisfy the slightly modified version of

Axiom 3 that Axiom 4 states they must. Also, since each Ci contains only Pi

such that Pi (Ai) = 1, the consequentialism property of conditional preferences

is clear. If f %i g ∀i ∈ {1, . . . , k}, then we have that

∀i ∈ {1, . . . , k} , min
Pi∈Ci

{
∫

s∈Ai

u (f (s)) dPi (s)

}

≥ min
Pi∈Ci

{
∫

s∈Ai

u (g (s)) dPi (s)

}

.

By the prismatic structure of P,

min
P∈P

{
∫

s∈S

u (f (s)) dP (s)

}

= min
P∈P

{

k
∑

i=1

min
Pi∈Ci

{
∫

s∈Ai

u (f (s)) dPi (s)

}

P (Ai)

}

≥ min
P∈P

{

k
∑

i=1

min
Pi∈Ci

{∫

s∈Ai

u (g (s)) dPi (s)

}

P (Ai)

}

= min
P∈P

{∫

s∈S

u (g (s)) dP (s)

}

,

so that f % g, confirming that the first portion of the consistency property

of conditional preferences holds. We must still show that the second, “if, in

addition,” portion of the consistency property of conditional preferences holds.

Since all Ai ∈ A are non-null, suppose that f %i g ∀i ∈ {1, . . . , k} and that

∃j ∈ {1, . . . , k} such that f �j g. Then

∀i ∈ {1, . . . , k} , min
Pi∈Ci

{
∫

s∈Ai

u (f (s)) dPi (s)

}

≥ min
Pi∈Ci

{
∫

s∈Ai

u (g (s)) dPi (s)

}

.

17



Also,

∃j ∈ {1, . . . , k} , such that

min
Pj∈Ci

{

∫

s∈Aj

u (f (s)) dPj (s)

}

> min
Pj∈Cj

{
∫

s∈Ai

u (g (s)) dPj (s)

}

.

Now, P (Aj) > 0 ∀P ∈ P since P is prismatic. Thus, (recalling that P is closed,

so that the strict inequality is preserved even on its boundary)

min
P∈P

{
∫

s∈S

u (f (s)) dP (s)

}

= min
P∈P

{

k
∑

i=1

min
Pi∈Ci

{
∫

s∈Ai

u (f (s)) dPi (s)

}

P (Ai)

}

> min
P∈P

{

k
∑

i=1

min
Pi∈Ci

{
∫

s∈Ai

u (g (s)) dPi (s)

}

P (Ai)

}

= min
P∈P

{
∫

s∈S

u (g (s)) dP (s)

}

,

so f � g, showing that the “if, in addition” portion of the consistency property

holds.

Finally, we must show that Axiom 2 holds. This is a direct consequence of the fact

that the same function u appears in the representation of each %i, i ∈ {1, . . . , k}.

Since the probability measure is irrelevant to computing utility for a roulette

lottery (because a roulette lottery, by definition, does not depend on the state s),

we have that ∀l, q ∈ Lc and ∀i, j ∈ {1, . . . , k} , l %i q ⇔ u (l) ≥ u (q) ⇔ l %j q.

We have thus verified that Axiom 2 holds, and therefore that all of condition (2)

holds. Having shown that (2) ⇔ (3), we have completed the proof.

2

Proof of Theorem 3:

We first prove (2) ⇒ (1). Full independence obviously implies restricted indepen-

dence with respect to any F ⊂ S, and since |S| ≥ 3, we can construct a pair of
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interlaced partitions as follows. Label the elements of S so that S = {x1, . . . , xN}.

If N is odd, define

A = {{x1, x2} , {x3, x4} , . . . , {xN−2, xN−1} , {xN}}

and

B = {{x1} , {x2, x3} , {x4, x5} , . . . , {xN−1, xN}} .

If N is even, define

A = {{x1, x2} , {x3, x4} , . . . , {xN−1, xN}}

and

B = {{x1} , {x2, x3} , {x4, x5} , . . . , {xN−2, xN−1} , {xN}} .

In either case, A and B are easily seen to be interlaced, and restricted indepen-

dence holds with respect to each because full independence holds. Thus, (2) ⇒

(1) is proven.

To show that (1) ⇒ (2), first apply Theorem 2 to obtain the fact that % is

represented by a set of priors, P, that is prismatic with respect to both A and B.

We will use the fact that P is prismatic with respect to both A and B to show that

it must be a singleton, which will then imply full independence. Denote the set

of conditionals of P ∈ P conditioned on Ai, i ∈ {1, . . . , k} by Ci , i ∈ {1 , . . . , k},

and denote the set of conditionals of P ∈ P conditioned on Bj, j ∈ {1, . . . , n}

by Dj , j ∈ {1 , . . . , n}.

Our first step will be to show that Ci , i ∈ {1 , . . . , k} and Dj , j ∈ {1 , . . . , n}

are all singletons. Suppose not. Then there is some nonsingleton Ci or Dj ;

assume w.l.o.g. that it is some Ci . Since Ci is nonsingleton, Ai must have at

least two distinct elements and ∃P, Q ∈ Ci such that ∃x, y ∈ Ai with x 6= y and

P ({x}) 6= Q ({x}) , P ({y}) 6= Q ({y}). Then, since A and B are interlaced, we
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have that ∃Bj, Bh ∈ B such that Bj ∩ Ai = {x} and Bh ∩ Ai = {y}, and at least

one of Bj, Bh is nonsingleton. Assume w.l.o.g. that Bj is nonsingleton.

Consider f ∈ L0 such that u (f (s)) = 1 {s ∈ Ai}. Such an f can be constructed

due to the nondegeneracy condition; see Gilboa and Schmeidler (1989), page 151.

Let us characterize the set of probability distributions that achieve

min
P∈P

{
∫

s∈S

u (f (s)) dP (s)

}

.

We will denote this set PLF . Since P is prismatic with respect to A,

min
P∈P

{
∫

s∈S

u (f (s)) dP (s)

}

= min
P∈P

{P (Ai)} ,

which shows that the conditional distributions of s given Ah are irrelevant in

the minimization problem. Because P is prismatic with respect to A, this means

that if
∑k

h=1 Ph ( ·|Ah) P (Ah) ∈ PLF for some P ∈ P,P1 ∈ C1 , . . . ,Pk ∈ Ck , then

∑k
h=1 Qh ( ·|Ah) P (Ah) ∈ PLF for any Q1 ∈ C1 , . . . ,Qk ∈ Ck (note, however, that

the marginal probabilities of the Ah do matter; only the conditionals can be freely

selected).

In contrast, since u (f (x)) = 1 and u (f (y)) = 0 ∀y ∈ Bj such that y 6= x,

we have that ∀P, Q ∈ PLF ,P ({x}|Bj ) = Q ({x}|Bj ). Otherwise, PLF would

include P, Q such that, w.l.o.g., P ({x}|Bj) < Q ({x}|Bj). But, since P is pris-

matic with respect to B, we would then be free to alter Q by replacing Q ({x}|Bj)

by P ({x}|Bj) without changing Q in any other way. This would lower the Q-

expected utility of f , contradicting the fact that Q already minimized the ex-

pected utility of f . Thus, all distributions in PLF assign the same probability to

the occurrence of x conditional on Bj.

Now let us compute the conditional probability P ({x}|Bj) for an arbitrary P ∈
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PLF using the partition A:

P ({x}|Bj)

=
P ({x} ∩ Bj)

P (Bj)

=
P ({x})

P (Bj)

=
P ({x ∩ Ai})

P (Bj)

=
P ({x|Ai}) P (Ai)

P (Bj)

=
P ({x|Ai}) P (Ai)

∑k

h=1 P (Bj|Ah) P (Ah)

=
P ({x|Ai})P (Ai)

∑k

h=1,h6=i P (Bj|Ah) P (Ah) + P ({x}|Ai) P (Ai)
,

where the first equality is by the definition of conditional probability, the second

equality is due to the fact that {x} ∩ Bj = {x}, the third equality is due to the

fact that {x} ∩ Ai = {x}, the fourth equality is by the standard separation of

a joint probability into a conditional and a marginal, the fifth inequality is by

exhaustion and by the same standard decomposition of a joint probability into a

conditional and a marginal (this time performed for each term in the sum), and

the fifth equality separates the term concerned with Ai, and then recognizes that

P (Bj|Ai) = P ({x}|Ai) because Bj ∩ Ai = {x}.

Note that we can (and do) assume
∑k

h=1,h6=i P (Bj|Ah) P (Ah) > 0 w.l.o.g., as

we now show. Bj has at least two elements by construction. Thus, ∃z ∈ Bj such

that z 6= x, and ∃Ag ∈ A such that Ag ∩Bj = {z}. Furthermore, the assumption

that no event is null implies that P (Ag) > 0 ∀P ∈ P (as shown in the proof

of Theorem 2 above; otherwise, the “if, in addition” clause of the consistency

condition in Axiom 4 is violated). Another implication of non-nullity is that

∃Pg ∈ Cg such that Pg ({z}|Ag) > 0. If not, then {z} would evidently be null:

it would occur with probability zero for every P ∈ P. Since we are free to select
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any conditionals from the sets Ch , i ∈ {1 , . . . , k}, we can and do select Pg ∈ Cg

w.l.o.g. Note that Ag ∩ Bj = {z} implies Pg (Bj|Ag) = Pg ({z}|Ag) > 0. But

then P (Bj|Ag) P (Ag) > 0, and all the other terms are nonnegative, so the sum

is positive.

Now, we have

P ({x}|Bj)

=
P ({x|Ai})P (Ai)

∑k

h=1,h6=i P (Bj|Ah) P (Ah) + P ({x}|Ai)P (Ai)

6=
Q ({x|Ai})P (Ai)

∑k

h=1,h6=i P (Bj|Ah) P (Ah) + Q ({x}|Ai) P (Ai)

= P ({x}|Bj) ,

where the first equality is proven above, and the inequality is due to the facts

that, by our assumption, ∃P, Q ∈ Ci such that P ({x}) 6= Q ({x}) (the con-

ditioning is added explicitly above because P and Q are conditional distribu-

tions, by definition) and that, as we showed above, we can assume w.l.o.g. that

∑k

h=1,h6=i P (Bj|Ah)P (Ah) > 0. The last equality follows from the facts that, as

demonstrated above, we are free to alter the Ci -component of P ∈ PLF to any

Q ∈ Ci while remaining in PLF , as long as the marginals are unaffected and that,

again as demonstrated above, P ({x}|Bj) is constant over all of PLF .

But this is a contradiction, since it states that P ({x}|Bj) 6= P ({x}|Bj), so

it must be that our initial assumption was false. Therefore every Ci , i ∈

{1 , . . . , k} and every Dj , j ∈ {1 , . . . , n} is a singleton. Thus, we can speak

of the unique conditional probabilities P ({s}|Ah) and P ({s}|Be) for all s ∈

S, h ∈ {1, . . . , k}, and e ∈ {1, . . . , n}. If {s} ∩ Be 6= φ, then P ({s}|Be) > 0

(otherwise, {s} is a null event, which we have assumed is not true). Likewise, if

{s} ∩ Ah 6= φ, then P ({s}|Ah) > 0 by non-nullity. Recall that P (Ah) > 0 and
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P (Be) > 0 for all h ∈ {1, . . . , k}, e ∈ {1, . . . , n}, and P ∈ P. Combining the

positivity of conditionals and marginals, we have that P ({s}) > 0 for all s ∈ S

and for all P ∈ P.

We now complete the proof by showing that, in fact, P is a singleton. Suppose

not. Then ∃P, Q ∈ P such that P 6= Q. This implies that ∃P, Q ∈ P such

that, for some s, w ∈ S we have P ({s})
P ({w})

6= Q({s})
Q({w})

. (Otherwise, P = Q for every

P, Q ∈ P because every such P and Q would be finitely additive and would

assign the same probability to every singleton in a finite set.) Note that, by the

positivity shown in the preceding paragraph, the fractions considered are strictly

positive and finite.

Apply Lemma 4 to conclude that there exists a sequence (x1, . . . , xN), where

x1 = s, xN = w, and ∀i ∈ {1, . . . , N − 1}, either {xi, xi+1} ⊂ Ah for some

h ∈ {1, . . . , k} or {xi, xi+1} ⊂ Be for some e ∈ {1, . . . , n}. Suppose w.l.o.g. that

{xi, xi+1} ⊂ Ah for some h ∈ {1, . . . , k}. Then for any M ∈ P and for any

i ∈ {1, . . . , N − 1},

M ({xi})

M ({xi+1})
=

M ({xi}|Ah)M (Ah)

M ({xi+1}|Ah)M (Ah)

=
M ({xi}|Ah)

M ({xi+1}|Ah)
,

= ci ∈ (0,∞) ,

where the first equality follows from the usual conditional-marginal decomposi-

tion of the joint after the observations that {xi} ∩ Ah = {xi}, and likewise for

xi+1, so that M ({xi}) = M ({xi} ∩ Ah), and likewise for xi+1. Note again that

the fractions are well-defined due to the positivity of any M ∈ P on every single-

ton set. The second equality follows by cancelling the (positive, as shown above)

marginal, and the third equality, in which ci is a constant over all M ∈ P, follows

from the fact that M ( ·|Ah) ∈ Ch , which is a singleton as shown above, so that
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M ( ·|Ah) must be the same for any M ∈ P. Again, the ratio of the conditionals

is strictly positive and finite due to the positivity fact shown earlier in the proof.

Iterating the above step, we see that, for any M ∈ P,

M ({s}) = M ({x1})

= c1M ({x2})

= c1c2M ({x3})

...

=

(

N−1
∏

i=1

ci

)

M ({xN})

=

(

N−1
∏

i=1

ci

)

M ({w}) ,

where the first equality is by the definition of the sequence, the second equality

is by one application of the argument in the preceding paragraph, the third

equality is by another application, . . ., the penultimate equality is by one more

application, and the final equality is, again, by the definition of the sequence.

(More formally, an induction argument could be used to establish the equality

above.)

This shows that P ({s})
P ({w})

= Q({s})
Q({w})

. This contradicts the assumption that ∃P, Q ∈ P

such that P 6= Q, so that assumption must have been false. We have now

completed the proof by demonstrating that (1) ⇒ (2).

2

Proof of Proposition 1: Invoke Lemma 3.1 of Gilboa and Schmeidler (1989), or

Chapter 8 of Fishburn (1979) (which is cited by Gilboa and Schmeidler (1989))

to prove the representation result and the uniqueness of v up to a positive affine

transformation. In order to prove that v is additively time-separable, note that
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(by construction), only the set of time-t marginal distributions of consumption,

for each t ∈ {0, . . . , T}, matter in ranking lotteries. This is due to our restric-

tion of the domain of preferences; all of the roulette lotteries we consider have

each individual roulette lottery over consumption at time t being independent.

By Fishburn (1979), Theorem 11.1 (on page 149), the function v is additively

time-separable (note that the condition of the theorem is satisified a fortiori). 2

Proof of Theorem 4: First observe that Axiom 3 is assumed in each of The-

orems 1, 2, and 3. Thus we may apply Proposition 1 to conclude that there is

a von Neumann-Morgenstern utility function v that represents % in comparing

roulette lotteries. v evidently maps adapted acts to functions from S to Y U ,

since if f ∈ H, then v (f (s)) is in Y U = XU for every s ∈ S. If we can show

that v is an isomorphism on indifference classes of f ∈ H, then we can define a

new preference relation %V by ∀f, g ∈ H, f % g ⇔ v (f) %V v (g) and, since v

is an isomorphism on indifference classes, the new preference relation %V will be

well-defined. By the definition of Y U = XU (and the mixture linearity of v), we

can see that v is onto. To show that it is one-to-one as a mapping of indifference

classes, note that v (f) = v (g) ∀s ∈ S implies that f (s) ∼ g (s) ∀s ∈ S, since

v represents % on roulette lotteries (and the constant act with value f (s) is a

roulette lottery). By monotonicity, then, f ∼ g. This implies that v is one-to-one

as a mapping of indifference classes.

The identical reasoning may be applied to any conditional preference relation.

Further, any axiom satisfied by % is also satisfied by %V , due to the mixture lin-

earity of v. (We might call v a “mixture isomorphism,” since v (αf + (1 − α) g) =

αv (f) + (1 − α) v (g).)

It only remains to show that the function u of Theorem 2 is, in fact, v (at least,
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up to a positive affine transformation). But if this were not so, then u could

not represent % on roulette lotteries, which would contradict the representation

result of Theorem 2. Thus, u is at most a positive affine transformation of v.

Since v is additively time-separable, u must be as well. 2

Proof of Proposition 3: We shall follow the techniques of Cvitanic̀, Lazrak,

Martellini, and Zapatero (2002) and of Wachter (2002) in order to solve the

Bayesian problem of the proposition. First, note that the volatility of risky-asset

returns, σ, is presumed known (and even if not known, in continuous time it would

be learned immediately). Since the riskless rate is assumed to be constant, and

the prior on µ is Gaussian, we may equivalently assume a Gaussian prior on the

Sharpe ratio X = µ−r

σ
. If the prior on the Sharpe ratio has mean m and variance

τ 2, then m = λ−r
σ

and τ 2 = ν2

σ2 , in terms of the parameters of the original prior

on µ. It is considerably more convenient to deal with the Sharpe ratio, and we

shall do so throughout the remainder of the proof.

Define

w∗
t = wt + Xt, (A2)

so that w∗
t is the risk-neutral Brownian motion. It will be crucial for us, since it

generates the price filtration, which is all of the information the investor has. We

shall define Xs = τ2

1+τ2s

(

w∗
t −

1
τ2 m

)

, which is the usual Bayesian conditional mean

of the Sharpe ratio. Filtering theory provides a device using X s, the innovation

process, which we can use to greatly simplify the problem (Liptser and Shiryayev

(2001)). The innovation process is

wt = wt −

∫ t

0

(

Xs − X
)

ds (A3)

= w∗
t −

∫ t

0

Xs. (A4)
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The budget constraint is:

dWt = (rWt − ct) dt + ϕt (σXdt + σdwt) (A5)

= (rWt − ct) dt + ϕt

(

σX tdt + σdwt

)

, (A6)

so we can put everything in terms of the innovation process. Thus, like the

Bayesian investor, we can view the problem as a full-information problem with

a stochastic Sharpe ratio, Xs. As pointed out by Cvitanic̀, Lazrak, Martellini,

and Zapatero (2002), we can use any full-information method for solving the

investor’s problem just by replacing wt with wt and X by X t. We will denote

expectations taken under the innovation-process measure by “E [·].”

We will make use of the “martingale method” for solving consumption and port-

folio choice problems, due to Cox and Huang (1989) and Cox and Huang (1991).

To use the martingale method, we must first check Novikov’s condition (which

should hold with respect to the investor’s subjective expectation); Novikov’s con-

dition is easily seen to hold in the current problem, and we omit its verification.

Our treatment will closely parallel that of Cvitanic̀, Lazrak, Martellini, and Za-

patero (2002), though they do not consider intermediate consumption. Consider

the risk-neutral density process

Zt = exp

(

−

∫ t

0

Xsdws −
1

2

∫ t

0

X
2

sds

)

, (A7)

and the related state-price deflator

ξt = e−rtZt. (A8)

Note that the state-price deflator has the property that

Et

[

ξsSs

]

= ξtSt ∀s ≥ t. (A9)
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A routine application of the martingale-method machinery yields the optimal

consumption level (in terms of ξt):

co
t = l−

1
γ e−

1
γ

ρtξ
− 1

γ

t , (A10)

where l is a Lagrange multiplier whose value is chosen so that the budget con-

straint is exactly satisfied. The martingale method also gives us the optimal level

of wealth:

W o
t =

1

ξt

Et

[
∫ T

t

ξsc
o
sds

]

(A11)

= l−
1
γ

1

ξt

Et

[
∫ T

t

ξse
− 1

γ
ρsξ

− 1
γ

s ds

]

(A12)

= l−
1
γ

1

ξt

Et

[
∫ T

t

e−
1
γ

ρsξ
γ−1

γ

s ds

]

(A13)

= l−
1
γ

∫ T

t

e−
1
γ

ρs

{

1

ξt

Et

[

ξ
γ−1

γ

s

]}

ds, (A14)

where the first equality comes directly from applying the martingale method, the

second equality comes from substituting the solution for optimal consumption

into the expectation, the third equality aggregates all of the ξs terms inside the

expectation, and the fourth equality interchanges integration and expectation

(that is, it applies the Tonelli-Fubini theorem). Rewrite the above in terms of

Zt:

W o
t = l−

1
γ

∫ T

t

e−
1
γ

ρsert

{

1

Zt

Et

[

e−
γ−1

γ
rsZ

γ−1
γ

s

]}

ds (A15)

= l−
1
γ

∫ T

t

e−
1
γ
(ρ−r)ser(t−s)

{

1

Zt

Et

[

Z
γ−1

γ

s

]}

ds. (A16)

Let “E∗ [·]” represent the expectation with respect to the measure that makes

w∗ a martingale. Then Bayes’ rule implies that (see Cvitanic̀, Lazrak, Martellini,

and Zapatero (2002))

E∗
t [Y ] =

1

Zt

Et

[

Y Zs

]

(A17)
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for any random variable Y that is measurable with respect to the risky-asset

price filtration up to time s. Apply this fact to the above, setting Y = Z
− 1

γ

s .

This results in

W o
t = l−

1
γ

∫ T

t

e−
1
γ
(ρ−r)ser(t−s)E∗

t

[

Z
− 1

γ

s

]

ds (A18)

= l−
1
γ

∫ T

t

e−
1
γ
(ρ−r)ser(t−s)Z

− 1
γ

t E∗
t

[

(

Zs

Zt

)− 1
γ

]

ds (A19)

= l−
1
γ Z

− 1
γ

t

∫ T

t

e−
1
γ
(ρ−r)ser(t−s)E∗

t

[

(

Zs

Zt

)− 1
γ

]

ds. (A20)

We must now solve for the expectation in the integrand above.

To evaluate the expectation, we will first simplify the ratio Zs

Zt
. First, using the

fact that dw∗
u = Xudu + dwu, we have that

Zs

Zt

= exp

(

−

∫ s

t

Xudwu −
1

2

∫ s

t

X
2

udu

)

(A21)

= exp

(

−

∫ s

t

Xudw∗
u +

1

2

∫ s

t

X
2

udu

)

. (A22)

An application of Ito’s Lemma verifies that

∫ s

t

Xudw∗
u

=
τ 2

1 + τ 2s

(

1

2
w∗2

s +
m

τ 2
w∗

s

)

(A23)

−
τ 2

1 + τ 2t

(

1

2
w∗2

t +
m

τ 2
w∗

t

)

+

∫ s

t

[

(

τ 2

1 + τ 2u

)2(
1

2
w∗2

u +
m

τ 2
w∗

u

)

−
1

2

τ 2

1 + τ 2u

]

du.
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Also, we can expand (using the definition of Xu) to get that

1

2
X

2

u =
1

2

(

τ 2

1 + τ 2u
w∗

u +
1

1 + τ 2u
m

)2

(A24)

=
1

2

(

τ 2

1 + τ 2u

)2

w∗2
u (A25)

+

(

τ 2

1 + τ 2u

)2
m

τ 2
w∗

u

+
1

2

(

τ 2

1 + τ 2u

)2
(m

τ 2

)2

.

We can now substitute to find that

Zs

Zt

= exp

{

−

∫ s

t

Xudw∗
u +

1

2

∫ s

t

X
2

udu

}

(A26)

= exp







−
∫ s

t
Xudw∗

u + 1
2

(

m
τ2

)2 ∫ s

t

(

τ2

1+τ2u

)2

du+
∫ s

t

(

τ2

1+τ2u

)2
(

1
2
w∗2

u + m
τ2 w

∗
u

)

du







(A27)

= exp



































− τ2

1+τ2s

(

1
2
w∗2

s + m
τ2 w

∗
s

)

+ τ2

1+τ2t

(

1
2
w∗2

t + m
τ2 w

∗
t

)

−
∫ s

t

[

(

τ2

1+τ2u

)2
(

1
2
w∗2

u + m
τ2 w

∗
u

)

− 1
2

τ2

1+τ2u

]

du

+1
2

(

m
τ2

)2 ∫ s

t

(

τ2

1+τ2u

)2

du+
∫ s

t

(

τ2

1+τ2u

)2
(

1
2
w∗2

u + m
τ2 w

∗
u

)

du



































(A28)

= exp







− τ2

1+τ2s

(

1
2
w∗2

s + m
τ2 w

∗
s

)

+ τ2

1+τ2t

(

1
2
w∗2

t + m
τ2 w

∗
t

)

+1
2

∫ s

t
τ2

1+τ2u
du + 1

2

(

m
τ2

)2 ∫ s

t

(

τ2

1+τ2u

)2

du







(A29)

= exp











− τ2

1+τ2s

(

1
2
w∗2

s + m
τ2 w

∗
s

)

+ τ2

1+τ2t

(

1
2
w∗2

t + m
τ2 w

∗
t

)

+1
2
ln (1 + τ 2s) − 1

2
ln (1 + τ 2t)

+1
2

(

m
τ2

)2 τ2

1+τ2t
− 1

2

(

m
τ2

)2 τ2

1+τ2s











, (A30)

where the first equality was derived above, the second equality follows from sub-

stitution of our result on X
2

u, the third equality follows from substitution of our

result on
∫ s

t
Xudw∗

u, the fourth equality follows from simply cancelling the iden-

tical term being added and subtracted in the exponent, and the fifth equality

follows from integrating the final two terms in the exponent on the lefthand side

of the equality.
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Noticing that we have two perfect squares in the exponent, and that we are

exponentiating two logarithmic terms, we obtain

Zs

Zt

= exp

{

−1
2

τ2

1+τ2s

(

w∗
s + m

τ2

)2
+ 1

2
τ2

1+τ2t

(

w∗
t + m

τ2

)2

+1
2
ln (1 + τ 2s) − 1

2
ln (1 + τ 2t)

}

(A31)

=

√

1 + τ 2s

1 + τ 2t
exp

{

−1
2

τ2

1+τ2s

(

w∗
s + m

τ2

)2
+

1
2

τ2

1+τ2t

(

w∗
t + m

τ2

)2

}

, (A32)

where the first equality follows by grouping the terms in the previous display

into squares and the second equality shows the results of canceling the logarithm

with the exponentiation to get the leading square-root term.

Using the above simplification of Zs

Zt
, we see that

E∗
t

[

(

Zs

Zt

)− 1
γ

]

=

(

1 + τ 2s

1 + τ 2t

)− 1
2γ

exp

{

−
1

2γ

τ 2

1 + τ 2t

(

w∗
t +

m

τ 2

)2
}

(A33)

E∗
t

[

exp

{

1

2γ

τ 2

1 + τ 2s

(

w∗
s +

m

τ 2

)2
}]

.

Noting that conditional on w∗
t , w∗

s is normally distributed with mean w∗
t and

variance (s − t), we can rewrite the above display as

E∗
t

[

(

Zs

Zt

)− 1
γ

]

=

(

1 + τ 2s

1 + τ 2t

)− 1
2γ

exp

{

−
1

2γ

τ 2

1 + τ 2t

(

w∗
t +

m

τ 2

)2
}

(A34)

E∗
t

[

exp

{

1

2γ

τ 2

1 + τ 2s

(

εs,t + w∗
t +

m

τ 2

)2
}]

,

where εs,t is distributed normally with mean zero and variance (s − t), conditional

on w∗
t . Computing the expectation in the above expression only requires inte-

grating with respect to a mean-zero (and variance (s − t)) normal distribution
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for εs,t. Define δ (u) ≡ τ2

1+τ2u
for all u ∈ [0, T ]. Performing the integral yields:

E∗
t

[

(

Zs

Zt

)− 1
γ

]

=

(

1 + τ 2s

1 + τ 2t

)− 1
2γ 1
√

1 − τ2

γ(1+τ2s)
(s − t)

(A35)

× exp

{[

−
τ 2

2γ (1 + τ 2t)
+

τ2

2γ(1+τ2s)

1 − τ2

γ(1+τ2s)
(s − t)

]

(

w∗
t +

m

τ 2

)2
}

=

(

δ (t)

δ (s)

)− 1
2γ 1
(

1 − 1
γ
δ (s) (s − t)

)
1
2

(A36)

× exp

{

−
1

2γ
δ (t)

(

w∗
t +

m

τ 2

)2
(

1 −

δ(s)
δ(t)

1 − 1
γ
δ (s) (s − t)

)}

= (1 + δ (t) (s − t))−
1
2γ

1
(

1 − 1
γ
δ (s) (s − t)

)
1
2

(A37)

× exp

{

−
1

2γ
δ (t)

(

w∗
t +

m

τ 2

)2
(

1 −

δ(s)
δ(t)

1 − 1
γ
δ (s) (s − t)

)}

=
(1 + δ (t) (s − t))

1
2(1− 1

γ )

[

(1 + δ (t) (s − t))
(

1 − 1
γ
δ (s) (s − t)

)] 1
2

(A38)

× exp

{

−
1

2γ
δ (t)

(

w∗
t +

m

τ 2

)2
(

1 −

δ(s)
δ(t)

1 − 1
γ
δ (s) (s − t)

)}

=
(1 + δ (t) (s − t))

1
2(1− 1

γ )

[

1 + δ (t) (s − t) − 1
γ
δ (s) (s − t) − 1

γ
δ (t) δ (s) (s − t)2

]
1
2

(A39)

× exp

{

−
1

2γ
δ (t)

(

w∗
t +

m

τ 2

)2
(

1 −

δ(s)
δ(t)

1 − 1
γ
δ (s) (s − t)

)}

=
(1 + δ (t) (s − t))

1
2(1− 1

γ )

[

1 + δ (t) (s − t) − 1
γ

(s − t) (δ (s) + δ (t) δ (s) (s − t))
]

1
2

(A40)

× exp

{

−
1

2γ
δ (t)

(

w∗
t +

m

τ 2

)2
(

1 −

δ(s)
δ(t)

1 − 1
γ
δ (s) (s − t)

)}
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=
(1 + δ (t) (s − t))

1
2(1− 1

γ )

[

1 + δ (t) (s − t) − 1
γ

(s − t) δ (t)
]

1
2

(A41)

× exp

{

−
1

2γ
δ (t)

(

w∗
t +

m

τ 2

)2
(

1 −

δ(s)
δ(t)

1 − 1
γ
δ (s) (s − t)

)}

=
(1 + δ (t) (s − t))

1
2(1− 1

γ )

(

1 +
(

1 − 1
γ

)

δ (t) (s − t)
)

1
2

(A42)

× exp

{

−
1

2γ
δ (t)

(

w∗
t +

m

τ 2

)2
(

1 −

δ(s)
δ(t)

1 − 1
γ
δ (s) (s − t)

)}

=
(1 + δ (t) (s − t))

1
2(1− 1

γ )

(

1 +
(

1 − 1
γ

)

δ (t) (s − t)
)

1
2

(A43)

× exp

{

−
1

2γ
δ (t)

(

w∗
t +

m

τ 2

)2 1 − 1
γ
δ (s) (s − t) − δ(s)

δ(t)

1 − 1
γ
δ (s) (s − t)

}

=
(1 + δ (t) (s − t))

1
2(1− 1

γ )

(

1 +
(

1 − 1
γ

)

δ (t) (s − t)
)

1
2

(A44)

× exp

{

−
1

2γ
δ (t)

(

w∗
t +

m

τ 2

)2 1 − 1
γ

τ2

1+τ2s
(s − t) − 1+τ2t

1+τ2s

1 − 1
γ

τ2

1+τ2s
(s − t)

}

=
(1 + δ (t) (s − t))

1
2(1− 1

γ )

(

1 +
(

1 − 1
γ

)

δ (t) (s − t)
)

1
2

(A45)

× exp

{

−
1

2γ
δ (t)

(

w∗
t +

m

τ 2

)2 1 + τ 2s − 1
γ
τ 2 (s − t) − (1 + τ 2t)

1 + τ 2s − 1
γ
τ 2 (s − t)

}

=
(1 + δ (t) (s − t))

1
2(1− 1

γ )

(

1 +
(

1 − 1
γ

)

δ (t) (s − t)
)

1
2

(A46)

× exp







−
1

2γ
δ (t)

(

w∗
t +

m

τ 2

)2

(

1 − 1
γ

)

τ 2 (s − t)

1 + τ 2s − 1
γ
τ 2 (s − t)






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=
(1 + δ (t) (s − t))

1
2(1− 1

γ )

(

1 +
(

1 − 1
γ

)

δ (t) (s − t)
)

1
2

(A47)

× exp







−
1

2γ
δ2 (t)

(
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m

τ 2

)2
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1 − 1
γ

)
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)

/τ 2

(
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γ
τ 2 (s − t)

)

/ (1 + τ 2t)







=
(1 + δ (t) (s − t))

1
2(1− 1

γ )

(

1 +
(

1 − 1
γ

)

δ (t) (s − t)
)

1
2

(A48)

× exp







−
1

2γ
δ2 (t)

(
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m
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)2

(

1 − 1
γ

)

(s − t)
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− 1
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





=
(1 + δ (t) (s − t))

1
2(1− 1

γ )

(

1 +
(

1 − 1
γ

)

δ (t) (s − t)
)

1
2

(A49)

× exp







−
1

2γ
δ2 (t)

(

w∗
t +

m

τ 2

)2

(

1 − 1
γ

)

(s − t)

1 + δ (t) (s − t) − 1
γ
δ (t) (s − t)







=
(1 + δ (t) (s − t))

1
2(1− 1

γ )

(

1 +
(

1 − 1
γ

)

δ (t) (s − t)
)

1
2

(A50)

× exp







−
1

2γ
δ2 (t)

(

w∗
t +

m

τ 2

)2

(

1 − 1
γ

)

(s − t)

1 +
(

1 − 1
γ

)

δ (t) (s − t)







=
(1 + δ (t) (s − t))

1
2(1− 1

γ )

(

1 +
(

1 − 1
γ

)

δ (t) (s − t)
)

1
2

(A51)

× exp







−
1

2γ





(

1 − 1
γ

)

(s − t)

1 +
(

1 − 1
γ

)

δ (t) (s − t)



X
2

t







.

There are seventeen equalities in the above derivation. The first is by computa-

tion of the integral. The second is by the definition of the function δ (·). The

third is by the elementary equality δ (t) = δ (s)+ δ (s) δ (t) (s − t), which is easily

checked from the definition of δ (·). The fourth is by multiplying and dividing

the leading fraction by 1+δ (t) (s − t). The fifth is by multiplying out the factors

in the denominator of the leading fraction. The sixth is by regrouping the terms
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in the denominator of the leading fraction. The seventh is, again, an application

of the elementary equality δ (t) = δ (s) + δ (s) δ (t) (s − t), this time in the de-

nominator of the leading fraction. The eighth is a simple regrouping of the terms

in the denominator of the leading fraction. The ninth puts both terms in the

difference within the exponent over a common denominator. The tenth follows

from the definition of the function δ (·). The eleventh multiplies both the numer-

ator and the denominator of the fraction within the exponent by (1 + τ 2s). The

twelfth cancels some of the resulting terms and regroups the rest. The thirteenth

multiplies and divides the term in the exponent by δ (t) = τ2

1+τ2t
. The fourteenth

applies, once again, the definition of δ (·). The fifteenth applies, once more, the

elementary equality δ (t) = δ (s) + δ (s) δ (t) (s − t). The sixteenth regroups the

resulting terms. Finally, the seventeenth follows from the definition of X
2

t .

Define

A (s − t, δ (t)) ≡





(

1 − 1
γ

)

(s − t)

1 +
(

1 − 1
γ

)

δ (t) (s − t)



 (A52)

B̃ (s − t, δ (t)) ≡
(1 + δ (t) (s − t))

1
2(1− 1

γ )

(

1 +
(

1 − 1
γ

)

δ (t) (s − t)
)

1
2

. (A53)

The above results imply that

E∗
t

[

(

Zs

Zt

)− 1
γ

]

= B̃ (s − t, δ (t)) exp

{

−
1

2γ
A (s − t, δ (t)) X

2

t

}

. (A54)
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The optimal value of wealth is then

W o
t

= l−
1
γ Z

− 1
γ

t

∫ T

t

e−
1
γ
(ρ−r)ser(t−s)E∗

t

[

(

Zs

Zt

)− 1
γ

]

ds (A55)

= l−
1
γ Z

− 1
γ

t

∫ T

t

e−
1
γ
(ρ−r)ser(t−s) (A56)

B̃ (s − t, δ (t)) exp

{

−
1

2γ
A (s − t, δ (t))X

2

t

}

ds

=

(

1

lZt

)
1
γ

e−
ρ
γ

te
r
γ

t

∫ T

t

e−
1
γ

ρ(s−t)e−(1− 1
γ )r(s−t) (A57)

B̃ (s − t, δ (t)) exp

{

−
1

2γ
A (s − t, δ (t))X

2

t

}

ds

= Y
1
γ

t e−
ρ
γ

t

∫ T

t

e−
1
γ

ρ(s−t)e−(1− 1
γ )r(s−t) (A58)

B̃ (s − t, δ (t)) exp

{

−
1

2γ
A (s − t, δ (t))X

2

t

}

ds

= Y
1
γ

t e−
ρ
γ

t

∫ T

t

B (s − t, δ (t)) exp

{

−
1

2γ
A (s − t, δ (t)) X

2

t

}

ds, (A59)

where the first equality is by the martingale method (as shown above), the second

equality is shown in the previous paragraph, the third equality follows from

multiplying and dividing the expression in the previous line by e−
ρ
γ

te
r
γ

t, the fourth

equality follows from defining Y t = 1
lξt

= 1
lZte−rt (the second equality being due

to the definition of ξt; see above), and the fifth equality follows from defining

B (s − t, δ (t)) ≡ e−
1
γ

ρ(s−t)e−(1− 1
γ )r(s−t)B̃ (s − t, δ (t)) . (A60)

If we let J
(

W, X t, t
)

represent the value function, or indirect utility function, for

this problem, Cox and Huang (1989) show how to relate the optimal wealth func-

tion, as a function of Y t, to J . In this setting, the relationship they demonstrate

becomes:

∂J

∂W
= (A61)

W−γe−ρt

(
∫ T

t

B (s − t, δ (t)) exp

{

−
1

2γ
A (s − t, δ (t)) X

2

t

}

ds

)γ

.
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By observing that limW→∞ J
(

W, Xt, t
)

= 0 (since it is clear that the indirect

utility of wealth is nonpositive because γ > 1, and even a suboptimal investment

strategy such as investing and consuming as though the risk premium were known

to be zero will deliver a zero indirect utility of wealth in the limit as W → ∞),

we can integrate the above display once with respect to W to obtain (since the

zero limit implies that the constant of integration must be zero):

J
(

W, X t, t
)

= (A62)

W 1−γ

1 − γ
e−ρt

(∫ T

t

B (s − t, δ (t)) exp

{

−
1

2γ
A (s − t, δ (t)) X

2

t

}

ds

)γ

.

We may then calculate the optimal portfolio weights and the optimal consumption-

wealth ratio from the indirect utility function, or we may calculate them directly

using the martingale method (see Wachter (2002)). They are

co
t

W o
t

=
1

∫ T

t
B (s − t, δ (t)) exp

{

− 1
2γ

A (s − t, δ (t)) X
2

t

}

ds
(A63)

ϕo
t =

Xt

γσ
× (A64)



1 − δ (t)

∫ T

t
B (s − t, δ (t)) exp

{

− 1
2γ

A (s − t, δ (t)) X
2

t

}

A (s − t, δ (t)) ds

∫ T

t
B (s − t, δ (t)) exp

{

− 1
2γ

A (s − t, δ (t))X
2

t

}

ds



 .

Since X t is the posterior mean of the Sharpe ratio, which (in our setting of non-

stochastic volatility and riskless rate) is identical to the Sharpe ratio constructed

using the posterior mean, this proves the proposition. 2

Proof of Theorem 5:

We apply the theorem found on page 90 of Ferguson (1967): given a candidate

least-favorable prior, we can check that the Bayes decision against it is maxmin

by examining the expected utility of that Bayes decision against other parameter

distributions. If the Bayes utility of the decision rule (against the candidate least-

favorable prior) is equal to its minimal expected utility over all other parameter
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values in the set, then the decision rule is maxmin and the prior is, in fact,

least-favorable.

Our candidate least-favorable prior is the point-mass prior which places proba-

bility one on X = XLF , as defined in the statement of the theorem. If we can

show that, under every X such that r + σX ∈
[

λ, λ
]

, the expected utility of the

decision that is Bayes against XLF is no higher than the expected utility of this

decision against the point-mass prior XLF , then we are done.

First note that the consumption rule, as a fraction of wealth, is certainly feasible;

obviously, the portfolio choice is feasible.

Let us calculate the expected utility, under a general X, of the decision that is

Bayes against XLF :

EX

[∫ T

0

e−ρt c1−γ
t

1 − γ
dt

]

=

∫ T

0

EX

[

e−ρt c1−γ
t

1 − γ

]

dtW 1−γ
0 EX

[

(

Wt

W0

)1−γ
]

dt (A65)

=

∫ T

0

e−ρt

1 − γ

(

aLF

1 − e−aLF (T−t)

)1−γ

(A66)

W 1−γ
0 exp

{

(1 − γ) t

(

r −
aLF

1 − e−aLF (T−t)
+ ϕo LF

t X −
1

2
γ
(

ϕo LF
t

)2
σ2

)}

dt,

where the first equality follows from applying the Tonelli-Fubini theorem, the

second equality follows from using the structure of optimal consumption in the

Bayes decision against XLF , and the third equality is obtained by taking the

expectation (since the portfolio weight on the risky asset is constant under the

Bayes decision against XLF , this amounts to taking the expectation of the expo-

nential of a Gaussian random variable).

If λ − r < 0, all possible X are negative, and XLF = λ−r
σ

; thus, the minimum of

the above expression occurs at X = XLF . If λ − r > 0, then all possible X are
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positive, and XLF = λ−r

σ
. Thus, the minimum of the above expression occurs at

X = XLF . Finally, if λ < 0 < λ, then XLF = 0 and the above expression does

not depend on X (since ϕo
t = 0 in this case). We have exhausted the possible

cases, and shown that the minimum expected utility, over all possible X, of the

Bayes decision against XLF is equal to the Bayes utility of the decision. This

completes the proof. 2

Proof of Theorem 6: We use the same theorem of Ferguson (1967) that we

employed in the proof of Theorem 5 above. The parameter here is the prior ex-

pected Sharpe ratio, which indexes the normal distributions that are the building

blocks of the set of priors. First, we must check that the Bayes decision against

the candidate least-favorable prior is, in fact, feasible under any other parameter

value (that is, under any other normal distribution in Π). Let “ELF [·]” denote

expectation under the candidate least-favorable prior, while “E∗ [·]” denotes ex-

pectation under the risk-neutral measure and “Ẽ [·]” denotes expectation under

some arbitrary normal distribution in Π. Then we can see immediately from the

martingale-method budget constraints that a consumption plan is feasible for the

candidate least-favorable prior if and only if it is feasible for any other prior:

ELF

[
∫ T

0

ctξ
LF

t dt

]

≤ W0 (A67)

⇔ E∗

[
∫ T

0

cte
−rtdt

]

≤ W0 (A68)

⇔ Ẽ

[
∫ T

0

ctξ̃tdt

]

≤ W0. (A69)

Now we must check that the same portfolio decision finances a given consumption

plan under the candidate least-favorable prior and under any other prior:

dWt = (rWt − ct) dt + ϕtWt

(

σX
LF

t dt + σdwLF
t

)

(A70)

⇔ dWt = (rWt − ct) dt + ϕtWt

(

σX̃ tdt + σdw̃t

)

, (A71)
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where the equivalence follows from the definition of the two different innovation

processes; see the proof of Proposition 3.

Finally, we must verify that the candidate maxmin decision rule delivers no less

utility for any other normal distribution in Π than it does for the candidate least-

favorable distribution (against which it is Bayes). We adopt all of the notation of

the proof of Proposition 3. We will show that the instantaneous expected utility

of consumption at every moment is minimized by the candidate least-favorable

distribution, if the candidate maxmin decision rule is used. This will prove the

desired result.

Ẽ

[

e−ρt c
o (1−γ)
t

1 − γ

]

= E∗

[

e−ρt c
o (1−γ)
t

1 − γ

1

Z̃t

]

(A72)

=
e−

1
γ

ρt

1 − γ
l

γ−1
γ e

γ−1
γ

rtE∗

[

Z
γ−1

γ

t

1

Z̃t

]

, (A73)

where Zt is Zt for the candidate least-favorable prior. Now, none of the quantities

to the left of the expectations operator in the last line above are affected by which

prior we use in evaluating the utility of the consumption and portfolio choice.

Thus, we focus on the expectation in the last line above. Since the quantity

multiplying it is negative (because γ > 1), we wish to show that the candidate

40



least-favorable prior maximizes this expectation.
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(A74)

=
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× exp

{

1 − γ

2τ 4
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× exp

{

1

2τ 2

(

γ − 1

γ

(

mLF
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− m̃2

)}

× exp

{
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2τ 4
δ (t)
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}

× exp
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1

2τ 4
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1 − 1
γ
δ (t) t

(
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γ
mLF − m̃

)2
}

,

where the first equality is from our manipulations of the Zt functions in the

proof of Proposition 3, the second equality follows from expanding squares and

collecting terms, the third equality completes the square on w∗
t , and the fourth

equality follows from applying Lemma 5 to the expectation in the line preceding

it.
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Taking the natural logarithm of the expression above leaves us with

c +
1

2τ 2

(

γ − 1

γ

(

mLF
)2

− m̃2

)

(A78)

+
1 − γ

2τ 4
δ (t)

(

mLF − m̃
)2

+
1

2τ 4

γδ (t)

1 − 1
γ
δ (t) t

(

γ − 1

γ
mLF − m̃

)2

,

where c is constant with respect to m̃. Take the derivative of this quadratic with

respect to m̃ to obtain:

−
1

τ 2
m̃ −

1 − γ

τ 4
δ (t)

(

mLF − m̃
)

−
1

τ 4

γδ (t)
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τ 4
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τ 4
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1 − 1
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) −
1
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

 m̃ (A79)

−





1 − γ

τ 4
δ (t) +

(γ − 1) δ (t)

τ 4
(

1 − 1
γ
δ (t)

)



mLF .

To be sure that the quadratic is concave (so that a point satisfying the first-order

condition is a maximum rather than a minimum), we show that the coefficient

on m̃ in the derivative above (which is twice the coefficient on m̃2 in the original
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quadratic) is negative:

1 − γ

τ 4
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τ 4
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γ
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γ
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− τ 2 1
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(A80)

=
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(
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γ
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(A81)

= −
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δ (t)
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δ (t) t

1 − 1
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(A82)

=
δ (t) t

τ 2

(

1
τ2 δ (t)
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(A83)
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1
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<
δ (t) t

τ 2

(

1

τ 2
δ (t) − 1 + δ (t) t

)

1

1 − 1
γ
δ (t) t

(A85)

=
δ (t) t

τ 2

((

1 +
1

τ 2

)

δ (t) − 1

)

1

1 − 1
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δ (t) t

(A86)

=
δ (t) t

τ 2
(1 − 1)

1

1 − 1
γ
δ (t) t

(A87)

= 0, (A88)

in which every equality is by elementary algebraic manipulation, and the inequal-

ity is by the fact that γ > 1, so that 1
γ
δ (t) < δ (t), and the facts that δ(t)t

τ2 > 0 and

1
1− 1

γ
δ(t)t

= 1

1− 1
γ

τ2t

1+τ2t

> 0. This proves that the original quadratic was concave, so

setting the derivative to zero identifies the global maximum of the quadratic.

Setting the derivative given above to zero, we find that the unconstrained maxi-

mal m̃, which we denote m̃∗, UNC , is given by

m̃∗, UNC =
b

a
mLF , (A89)

43



where

b =
1 − γ

τ 4
δ (t) +

(γ − 1) δ (t)

τ 4
(

1 − 1
γ
δ (t)

) (A90)

a =
1 − γ

τ 4
δ (t) +

γδ (t)

τ 4
(

1 − 1
γ
δ (t)

) −
1

τ 2
. (A91)

We have already shown that a < 0 above; we now show that b > 0:

1 − γ

τ 4
δ (t) +

(γ − 1) δ (t)

τ 4
(

1 − 1
γ
δ (t)

)

=
γ − 1

τ 4
δ (t)

(

1

1 − 1
γ
δ (t) t

− 1

)

(A92)

=
γ − 1

τ 4
δ (t)

(

1
γ
δ (t) t

1 − 1
γ
δ (t) t

)

(A93)

> 0, (A94)

in which both equalities follow from elementary algebra and the inequality is due

to the facts that γ > 1, δ (t) > 0, and δ (t) t = τ2t
1+τ2t

≤ 1, so that 1− 1
γ
δ (t) t > 0.

The above implies that the sign of m̃∗, UNC is the negative of the sign of mLF .

Now consider the three possible cases: if 0 ∈
[

λ − r, λ − r
]

then mLF = 0, and

the sign of m̃∗, UNC is the negative of zero, which is zero, so m̃∗, UNC = 0 is the

constrained maximizer as well as the unconstrained maximizer. If 0 < λ − r,

then mLF = m = λ−r

σ
is the smallest possible m, and is positive. Thus, m̃∗, UNC

is negative, and therefore outside (to the left of, on the real line) the constraint

interval. Since the objective function is a concave parabola (so that, on the real

line, it is monotonically decreasing to the right of its vertex), this implies that the

constrained maximizer m̃∗ = m, the smallest possible m, so m̃∗ = mLF . Finally,

suppose that 0 > λ − r. Then mLF = m = λ−r
σ

is the smallest possible m in

absolute value, and is negative. Thus, m̃∗, UNC is positive, and therefore outside

(to the right of, on the real line) the constraint interval. Since the objective
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function is a concave parabola (so that, on the real line, it is monotonically

increasing to the left of its vertex), this implies that the constrained maximizer

m̃∗ = m, the smallest possible m in absolute value, so that m̃∗ = mLF .

In each of the three possible cases, then, m̃∗ = mLF maximizes the objective

function and hence (due to the negative sign of expected utility, as noted above)

minimizes expected utility at the moment t. Since this holds ∀t ∈ [0, T ], the

expected utility of the candidate maxmin decision rule is minimized at the can-

didate least-favorable prior.

Thus, as argued above, the candidate least-favorable prior is, in fact, least-

favorable, and the candidate maxmin decision rule is, in fact, maxmin. 2

Proof of Theorem 7: We use the same theorem of Ferguson (1967) that we

employed in the proof of Theorem 5 above. The parameters here are the prior

expected Sharpe ratio and the prior variance of the Sharpe ratio, which index the

normal distributions that are the building blocks of the set of priors. First, we

must check that the Bayes decision against the candidate least-favorable prior is,

in fact, feasible under any other parameter value (that is, under any other normal

distribution in Γ). Let “ELF [·]” denote expectation under the candidate least-

favorable prior, while “E∗ [·]” denotes expectation under the risk-neutral measure

and “Ẽ [·]” denotes expectation under some arbitrary normal distribution in Γ.

Then we can see immediately from the martingale-method budget constraints

that a portfolio plan is feasible for the candidate least-favorable prior if and only

if it is feasible for any other prior:

ELF
[

WT ξ
LF

T

]

≤ W0 (A95)

⇔ E∗
[

WT e−rT
]

≤ W0 (A96)

⇔ Ẽ
[

WT ξ̃T dt
]

≤ W0. (A97)

45



Now we must check that the same portfolio decision finances a given terminal

wealth under the candidate least-favorable prior and under any other prior:

dWt = rWtdt + ϕtWt

(

σX
LF

t dt + σdwLF
t

)

(A98)

⇔ dWt = rWtdt + ϕtWt

(

σX̃ tdt + σdw̃t

)

, (A99)

where the equivalence follows from the definition of the two different innovation

processes; see the proof of Proposition 3.

Finally, we must verify that the candidate maxmin decision rule delivers no less

expected utility for any other normal distribution in Γ than it does for the can-

didate least-favorable distribution (against which it is Bayes). We adopt all of

the notation of the proof of Proposition 3. We begin by calculating the expected

utility obtained when the investor makes portfolio and consumption choices that

would be optimal under the candidate least-favorable distribution, but the actual

prior is not necessarily the candidate least-favorable prior.

Ẽ

[

W
o (1−γ)
T

1 − γ

]

= E∗

[

W
o (1−γ)
T

1 − γ

1

Z̃T
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(A100)

=
1

1 − γ
k

γ−1
γ e

γ−1
γ

rT E∗

[

Z
γ−1

γ

T

1

Z̃T

]

, (A101)

where ZT is ZT for the candidate least-favorable prior, and k is the Lagrange

multiplier delivered by the martingale method in the terminal-wealth investor’s

Bayesian problem when the prior is the candidate least-favorable prior. Now,

none of the quantities to the left of the expectations operator in the last line

above are affected by which prior we use in evaluating the utility of the portfolio

choice. Thus, we focus on the expectation in the last line above. Since the

quantity multiplying it is negative (because γ > 1), we wish to show that the
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candidate least-favorable prior maximizes this expectation.
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There are seven equalities in the display above. The first is from our manip-

ulations of the ZT functions in the proof of Proposition 3, the second equality

expands squares and collects terms, the third equality completes the square on

w∗
T , the fourth equality rearranges the terms separate from the squared w∗

T term

into a squared term of their own, the fifth equality removes from the expecta-

tion operator the terms not involving w∗
T , the sixth equality applies Lemma 5 to

the expectation in the line preceding it, and the seventh equality rearranges the

result.

We first show that, regardless of the value of τ̃ 2, the maximizing m̃ is m̃ = mLF .

To do so, we must show that it maximizes the quantity in the display above.
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Noting that m̃ appears only in the exponent above, take the natural logarithm

of the above expression to obtain
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,

and c is constant with respect to m̃. We first show that a < 0 (so that the

first-order condition is necessary and sufficient for a global maximum) as long as
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τ 2, LF > 0.

a = −
1

2τ̃ 2
−

1

2

δ̃ (T ) 1
τ̃4

−γ−1
γ

δLF (T ) + δ̃ (T )
× (A112)





γ − 1

γ
δLF (T ) −

δ̃ (T )

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T





= −
1

2τ̃ 2
−

1

2

δ̃ (T ) 1
τ̃4

−γ−1
γ

δLF (T ) + δ̃ (T )
× (A113)





γ−1
γ

δLF (T )
(

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T
)

− δ̃ (T )

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T





= −
1

2τ̃ 2
−

1

2

δ̃ (T ) 1
τ̃4

−γ−1
γ

δLF (T ) + δ̃ (T )
× (A114)





(

γ−1
γ

δLF (T ) − δ̃ (T )
)(

1 + γ−1
γ

δLF (T )T
)

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T





=
1

2τ̃ 2



−1 +
δ̃ (T ) 1

τ̃2

(

1 + γ−1
γ

δLF (T )T
)

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T



 (A115)

=
1

2τ̃ 2
(

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T
) × (A116)





δ̃ (T ) 1
τ̃2

(

1 + γ−1
γ

δLF (T )T
)

− 1

−
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T





=
1

2τ̃ 2
(

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T
) × (A117)

(

δ̃ (T )
(

T + 1
τ̃2

)

− 1

+γ−1
γ

δ̃ (T ) δLF (T ) T
τ̃2 −

γ−1
γ

δLF (T )T

)

=
1

2τ̃ 2
(

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T
) × (A118)

(

δ̃ (T )

(

T +
1

τ̃ 2

)

− 1 +
γ − 1

γ
δLF (T )T

(

δ̃ (T )
1

τ̃ 2
− 1

))

=
1

2τ̃ 2
(

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T
) × (A119)

(

δ̃ (T )

(

τ̃ 2T + 1

τ̃ 2

)

− 1 +
γ − 1

γ
δLF (T )T

(

1

1 + τ̃ 2T
− 1

))
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=
1

2τ̃ 2
(

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T
) × (A120)

(

1 − 1 +
γ − 1

γ
δLF (T )T

(

−τ̃ 2T

1 + τ̃ 2T

))

=
1

2τ̃ 2
(

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T
) × (A121)

(

γ − 1

γ
δLF (T ) T

(

−τ̃ 2T

1 + τ̃ 2T

))

=
1

2
(

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T
) × (A122)

(

γ − 1

γ
δLF (T ) T

(

−T

1 + τ̃ 2T

))

< 0, (A123)

where each equality is by elementary algebraic manipulation, and the inequality

follows from the facts that T > 0, 1+
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T > 0, γ−1
γ

δLF (T )T >

0 if τ 2, LF > 0, and −T
1+τ̃2T

< 0.

The display above also shows that a = 0 if τ 2, LF = 0.
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We now demonstrate that b < 0.

b =

γ−1
γ

δLF (T ) δ̃ (T )

−γ−1
γ

δLF (T ) + δ̃ (T )

1

τ 2, LF τ̃ 2
(A124)

−
1

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T
×

γ−1
γ

δLF (T ) δ̃ (T )
(

−γ−1
γ

δLF (T ) + δ̃ (T )
)

1

τ 2, LF τ̃ 2

=
1

τ 2, LF τ̃ 2

γ−1
γ

δLF (T ) δ̃ (T )

−γ−1
γ

δLF (T ) + δ̃ (T )
× (A125)



1 −
1

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T





=
1

τ 2, LF τ̃ 2

γ−1
γ

δLF (T ) δ̃ (T )

−γ−1
γ

δLF (T ) + δ̃ (T )
× (A126)





γ−1
γ

δLF (T ) − δ̃ (T )

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T





= −
1

τ 2, LF τ̃ 2





γ−1
γ

δLF (T ) δ̃ (T )T

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T



 (A127)

= −

γ−1
γ

1
1+τ2, LF T

1
1+τ̃2T

T

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T
(A128)

< 0, (A129)

where each equality is by elementary algebraic manipulation, and the inequal-

ity follows from the facts that 1
1+τ2, LF T

> 0, 1
1+τ̃2T

> 0, T > 0, and 1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T > 0.

Suppose that τ 2, LF = 0. The facts we have shown above regarding the signs of

a and b imply that a = 0 and b < 0 in this case, so the maximizing m̃ is the one

of largest absolute value which is of sign opposite that of mLF or, if all m in the

constraint set have the same sign, it is the m in the constraint set of smallest

absolute value. Thus, if the interval [m, m] (that is, the interval
[

λ−r

σ
, λ−r

σ

]

) does
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not include 0, then m̃ is the smallest (in absolute value) element of the interval,

but so is mLF (by definition), so m̃ = mLF . Now, if 0 ∈ [m, m], then mLF = 0 by

definition. Inspecting the quadratic that we seek to maximize, and noting that

a = 0 because we are considering the case τ 2, LF = 0, we see that any choice of m̃

delivers the same value of the objective function, which is the c of the quadratic

objective function. Thus, m̃ = mLF is a maximizer of the quadratic (this is

sufficient for our purposes; we need not show that it is the unique maximizer).

Intuitively, if τ 2, LF = 0 and mLF = 0 then the investor holds only the riskless

asset for the entire investment horizon (since the investor’s problem then reduces

to the original Merton problem with Sharpe ratio zero), so the actual expected

return on the risky asset has no impact on the investor’s expected utility.

Now suppose that τ 2, LF > 0. Then, as we demonstrated above, a < 0 and b < 0,

so that the unconstrained maximizer of the quadratic objective function (which

is − b
2a

mLF ) satisfies

sign
(

m̃∗, UNC
)

= −sign
(

mLF
)

. (A130)

Recall that a concave quadratic is monotone increasing for arguments less than its

maximizer, and monotone decreasing for arguments greater than its maximizer.

Now, if [m, m] does not include zero, then (by definition) mLF has the smallest

absolute value of any m ∈ [m, m]. But, since the unconstrained maximizer of the

quadratic has the opposite sign of that of mLF , the constrained maximizer of the

quadratic must be m̃ = mLF . If 0 ∈ [m, m], on the other hand, then mLF = 0

and the above shows that m̃ = mLF = 0.

The preceding logic shows that m̃ = mLF maximizes the quadratic objective

function, and thus minimizes expected utility, without regard to the value of τ̃ 2.
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Define

f
(

τ̃ 2, τ 2, LF
)

≡

(

1 + τ 2, LF T
)

γ−1
2γ

(

1 + γ−1
γ

τ2, LF T
1+τ2, LF T

(1 + τ̃ 2T )
)

1
2

(A131)

and

g
(

τ̃ 2, τ 2, LF
)

≡
γ − 1

γ

1

τ 2, LF
−

1

τ̃ 2
−

γ−1
γ

δLF (T ) δ̃ (T )

−γ−1
γ

δLF (T ) + δ̃ (T )
× (A132)

(

1

τ 2, LF
−

1

τ̃ 2

)2

+
1

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T
×

1

−γ−1
γ

δLF (T ) + δ̃ (T )

(

γ − 1

γ

1

τ 2, LF
δLF (T ) −

1

τ̃ 2
δ̃ (T )

)2

.

Then substituting m̃ = mLF into the above expression for E∗

[

Z
γ−1

γ

T
1

Z̃T

]

yields

E∗

[

Z
γ−1

γ

T

1

Z̃T

]

= f
(

τ̃ 2, τ 2, LF
)

exp

{

1

2

(

mLF
)2

g
(

τ̃ 2, τ 2, LF
)

}

. (A133)
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We now simplify the expressions for f and for g.

g
(

τ̃ 2, τ 2, LF
)

=
γ − 1

γ

1

τ 2, LF
−

1

τ̃ 2
−

γ−1
γ

δLF (T ) δ̃ (T ) 1

(τ2, LF )2

−γ−1
γ

δLF (T ) + δ̃ (T )
(A134)

+2

γ−1
γ

δLF (T ) δ̃ (T ) 1
τ2, LF τ̃2

−γ−1
γ

δLF (T ) + δ̃ (T )
−

γ−1
γ

δLF (T ) δ̃ (T ) 1
τ̃4

−γ−1
γ

δLF (T ) + δ̃ (T )

+
1

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T

1

−γ−1
γ

δLF (T ) + δ̃ (T )

(

γ−1
γ

)2
(

δLF (T )
)2

(τ 2, LF )2

−2
1

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T

1

−γ−1
γ

δLF (T ) + δ̃ (T )

γ−1
γ

δLF (T ) δ̃ (T )

τ 2, LF τ̃ 2

+
1

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T

1

−γ−1
γ

δLF (T ) + δ̃ (T )

δ̃2 (T )

τ̃ 4

=
γ − 1

γ

1

τ 2, LF
−

1

τ̃ 2
(A135)

−
1

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T

1

−γ−1
γ

δLF (T ) + δ̃ (T )











γ−1
γ

δLF (T ) 1

(τ2, LF )2

(

δ̃ (T )
(

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T
)

− γ−1
γ

δLF (T )
)

−2
γ−1

γ
δLF (T )δ̃(T )

τ2, LF τ̃2

(

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T − 1
)

+δ̃ (T ) 1
τ̃4

(

δLF (T )
(

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T
)

− δ̃ (T )
)











=
γ − 1

γ

1

τ 2, LF
−

1

τ̃ 2
(A136)

−
1

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T

1

−γ−1
γ

δLF (T ) + δ̃ (T )











γ−1
γ

δLF (T ) 1

(τ2, LF )2

((

−γ−1
γ

δLF (T ) + δ̃ (T )
)(

1 − δ̃ (T )T
))

+2
γ−1

γ
δLF (T )δ̃(T )

τ2, LF τ̃2

(

−γ−1
γ

δLF (T ) + δ̃ (T )
)

T

+δ̃ (T ) 1
τ̃4

((

−γ−1
γ

δLF (T ) + δ̃ (T )
)(

−1 − γ−1
γ

δLF (T )T
))










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=
γ − 1

γ

1

τ 2, LF
−

1

τ̃ 2
(A137)

−
1

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T











γ−1
γ

δLF (T ) 1

(τ2, LF )2

(

1 − δ̃ (T )T
)

+2
γ−1

γ
δLF (T )δ̃(T )

τ2, LF τ̃2 T

+δ̃ (T ) 1
τ̃4

(

−1 − γ−1
γ

δLF (T )T
)











=
γ − 1

γ

1

τ 2, LF
−

1

τ̃ 2
(A138)

−
1

1 +
(

γ−1
γ

δLF (T ) − δ̃ (T )
)

T






γ−1
γ

δLF (T ) 1

(τ2, LF )2
− γ−1

γ
δLF (T ) 1

(τ2, LF )2
δ̃ (T )T

+2
γ−1

γ
δLF (T )δ̃(T )

τ2, LF τ̃2 T

−δ̃ (T ) 1
τ̃4 − δ̃ (T ) 1

τ̃4
γ−1

γ
δLF (T ) T







=
γ − 1

γ

1

τ 2, LF
−

1

τ̃ 2
(A139)

−

γ−1
γ

1+τ̃2T
τ2, LF − γ−1

γ
τ̃2

τ2, LF T + 2γ−1
γ

T − 1+τ2, LF T
τ̃2 − γ−1

γ
τ2, LF

τ̃2 T

(1 + τ̃ 2T ) (1 + τ 2, LF T ) +
(

γ−1
γ

τ 2, LF (1 + τ̃ 2T ) − τ̃ 2 (1 + τ 2, LF T )
)

T

=
γ − 1

γ

1

τ 2, LF
−

1

τ̃ 2
(A140)

−

γ−1
γ

1+τ̃2T
τ2, LF − γ−1

γ
τ̃2

τ2, LF T + 2γ−1
γ

T − 1+τ2, LF T
τ̃2 − γ−1

γ
τ2, LF

τ̃2 T

1 + τ 2, LF T + γ−1
γ

(1 + τ̃ 2T ) τ 2, LFT

=
γ − 1

γ

1

τ 2, LF
−

1

τ̃ 2
(A141)

−

γ−1
γ

1
τ2, LF + 2γ−1

γ
T − 1

τ̃2 −
2γ−1

γ
τ2, LF

τ̃2 T

1 + τ 2, LF T + γ−1
γ

(1 + τ̃ 2T ) τ 2, LFT

=













γ−1
γ

1
τ2, LF − γ−1

γ
1

τ2, LF − 2γ−1
γ

T

+ 1
τ̃2 −

1
τ̃2 + γ−1

γ
T +

(

γ−1
γ

)2

(1 + τ̃ 2T )T

− τ2, LF

τ̃2 T − γ−1
γ

(1 + τ̃ 2) τ2, LF

τ̃2 T

+2γ−1
γ

τ2, LF

τ̃2 T













1 + τ 2, LF T + γ−1
γ

(1 + τ̃ 2T ) τ 2, LFT
(A142)

=









[

γ−1
γ

+
(

γ−1
γ

)2

− 2γ−1
γ

+ 2γ−1
γ

τ2, LF

τ̃2 − 2γ−1
γ

τ2, LF

τ̃2

]

T

+

[

(

γ−1
γ

)2

τ̃ 2 − γ−1
γ

τ 2, LF

]

T 2









1 + τ 2, LF T + γ−1
γ

(1 + τ̃ 2T ) τ 2, LFT
(A143)
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=

[

(

γ−1
γ

)2

− γ−1
γ

]

T + γ−1
γ

[

γ−1
γ

τ̃ 2 − τ 2, LF
]

T 2

1 + τ 2, LF T + γ−1
γ

(1 + τ̃ 2T ) τ 2, LF T
(A144)

=

[

(

γ−1
γ

)2

− γ−1
γ

]

T + γ−1
γ

[

γ−1
γ

τ̃ 2 − τ 2, LF
]

T 2

1 + τ 2, LF T + γ−1
γ

(1 + τ̃ 2T ) τ 2, LF T
(A145)

=
−γ−1

γ2 T
(

1 −
(

(γ − 1) τ̃ 2 − γτ 2, LF
)

T
)

1 + τ 2, LFT + γ−1
γ

(1 + τ̃ 2T ) τ 2, LF T
. (A146)

Turning to f , we have

f
(

τ̃ 2, τ 2, LF
)

=

(

1 + τ 2, LF T
)

γ−1
2γ

(

1 + γ−1
γ

τ2, LF T
1+τ2, LF T

(1 + τ̃ 2T )
)

1
2

(A147)

=

(

1 + τ 2, LFT
)

γ−1
2γ

(1+τ2, LF T+ γ−1
γ

(1+τ̃2T )τ2, LF T)
1
2

(1+τ2, LF T )
1
2

(A148)

=

(

1 + τ 2, LFT
)

2γ−1
2γ

(

1 + τ 2, LF T + γ−1
γ

(1 + τ̃ 2T ) τ 2, LFT
)

1
2

. (A149)
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We now compute the partial derivative with respect to τ̃ 2 of g.

∂

∂τ̃ 2
g
(

τ̃ 2, τ 2, LF
)

=





(

γ−1
γ

)2

T 2
(

1 + τ 2, LF T + γ−1
γ

(1 + τ̃ 2T ) τ 2, LF T
)

+ 1
γ

(

γ−1
γ

)2

τ 2, LF T 3
(

1 −
(

(γ − 1) τ̃ 2 − γτ 2, LF
)

T
)





(

1 + τ 2, LFT + γ−1
γ

(1 + τ̃ 2T ) τ 2, LF T
)2 (A150)

=

(

γ − 1

γ

)2

T 2

[
(

1 + τ 2, LFT + γ−1
γ

(1 + τ̃ 2T ) τ 2, LF T
)

+ 1
γ
τ 2, LF T

(

1 −
(

(γ − 1) τ̃ 2 − γτ 2, LF
)

T
)

]

(

1 + τ 2, LF T + γ−1
γ

(1 + τ̃ 2T ) τ 2, LF T
)2 (A151)

=

(

γ − 1

γ

)2

T 2







1 + τ 2, LFT + γ−1
γ

τ 2, LF T

+γ−1
γ

τ̃ 2τ 2, LF T 2 + 1
γ
τ 2, LF T

−γ−1
γ

τ 2, LF τ̃ 2T 2 +
(

τ 2, LF
)2

T 2







(

1 + τ 2, LF T + γ−1
γ

(1 + τ̃ 2T ) τ 2, LF T
)2 (A152)

=

(

γ − 1

γ

)2

T 2

[

1 + τ 2, LFT + τ 2, LF T +
(

τ 2, LF
)2

T 2
]

(

1 + τ 2, LF T + γ−1
γ

(1 + τ̃ 2T ) τ 2, LF T
)2 (A153)

=

(

γ − 1

γ

)2

T 2

(

1 + τ 2, LFT
)2

(

1 + τ 2, LF T + γ−1
γ

(1 + τ̃ 2T ) τ 2, LF T
)2 . (A154)

We will also require the partial derivative of f with respect to τ̃ 2.

∂

∂τ̃ 2
f
(

τ̃ 2, τ 2, LF
)

= −
1

2

(

1 + τ 2, LF T
)

2γ−1
2γ

(

1 + τ 2, LFT + γ−1
γ

(1 + τ̃ 2T ) τ 2, LF T
) 3

2

γ − 1

γ
τ 2, LF T 2. (A155)
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Now observe that

∂

∂τ̃ 2
E∗

[

Z
γ−1

γ

T

1

Z̃T

]

=
∂

∂τ̃ 2
f
(

τ̃ 2, τ 2, LF
)

exp

{

1

2

(

mLF
)2

g
(

τ̃ 2, τ 2, LF
)

}

(A156)

=

[

∂

∂τ̃ 2
f
(

τ̃ 2, τ 2, LF
)

+ f
(

τ̃ 2, τ 2, LF
) 1

2

(

mLF
)2 ∂

∂τ̃ 2
g
(

τ̃ 2, τ 2, LF
)

]

(A157)

exp

{

1

2

(

mLF
)2

g
(

τ̃ 2, τ 2, LF
)

}

=



















−1
2

(1+τ2, LF T)
2γ−1
2γ

(1+τ2, LF T+ γ−1
γ

(1+τ̃2T )τ2, LF T)
3
2

γ−1
γ

τ 2, LF T 2

+
(

mLF
)2
(

γ−1
γ

)2

T 2 (1+τ2, LF T)
2

(1+τ2, LF T+ γ−1
γ

(1+τ̃2T )τ2, LF T)
2

×
(1+τ2, LF T)

2γ−1
2γ

(1+τ2, LF T+ γ−1
γ

(1+τ̃2T )τ2, LF T)
1
2



















(A158)

exp

{

1

2

(

mLF
)2

g
(

τ̃ 2, τ 2, LF
)

}

=





−1
2

γ−1
γ

τ 2, LFT 2
(

1 + τ 2, LF T + γ−1
γ

(1 + τ̃ 2T ) τ 2, LF T
)

+
(

mLF
)2
(

γ−1
γ

)2

T 2
(

1 + τ 2, LF T
)2



 (A159)

(

1 + τ 2, LFT
)

2γ−1
2γ

(

1 + τ 2, LF T + γ−1
γ

(1 + τ̃ 2T ) τ 2, LFT
) 5

2

exp

{

1

2

(

mLF
)2

g
(

τ̃ 2, τ 2, LF
)

}

.

The equalities follow from substituting the forms derived above for f and for the

partials of f and g with respect to τ̃ 2 into the expression for the partial derivative,

and then performing elementary algebra. Noting that the quantity multiplying

the term in square brackets is always positive, we focus on the term in square

brackets.
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−
1

2

γ − 1

γ
τ 2, LF T 2

(

1 + τ 2, LF T +
γ − 1

γ

(

1 + τ̃ 2T
)

τ 2, LF T

)

+
(

mLF
)2
(

γ − 1

γ

)2

T 2
(

1 + τ 2, LF T
)2

= −
1

2

γ − 1

γ
τ 2, LF T 2





1 + τ 2, LF T
+γ−1

γ

(

1 + τ 2, LF T − τ 2, LF T + τ̃ 2T
)

×τ 2, LF T



 (A160)

+
(

mLF
)2
(

γ − 1

γ

)2

T 2
(

1 + τ 2, LF T
)2

=
1

2

(

γ − 1

γ

)2
(

τ 2, LF
)2

T 4
(

τ 2, LF − τ̃ 2
)

(A161)

−
1

2

γ − 1

γ
τ 2, LF T 2

(

1 + τ 2, LF T +
γ − 1

γ

(

1 + τ 2, LF T
)

τ 2, LFT

)

+
(

mLF
)2
(

γ − 1

γ

)2

T 2
(

1 + τ 2, LF T
)2

=
1

2

(

γ − 1

γ

)2
(

τ 2, LF
)2

T 4
(

τ 2, LF − τ̃ 2
)

(A162)

+
1

2

γ − 1

γ
T 2
(

1 + τ 2, LF T
)

{

−τ 2, LF
(

1 + γ−1
γ

τ 2, LF T
)

+
(

mLF
)2 γ−1

γ

(

1 + τ 2, LF T
)

}

.

The term in braces on the last line of the display above is a quadratic in τ 2, LF .

Let us analyze this quadratic. First, note that the coefficient on
(

τ 2, LF
)2

is

−γ−1
γ

T < 0, so the quadratic is concave in τ 2, LF . Rewrite the quadratic as

(

−
γ − 1

γ
T

)

(

τ 2, LF
)2

(A163)

+

(

(

mLF
)2 γ − 1

γ
T − 1

)

τ 2, LF

+

(

(

mLF
)2 γ − 1

γ

)

.
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The quadratic formula now yields the roots of this quadratic, which are

τ 2
1 = (A164)

1

2







(

mLF
)2

−
1

γ−1
γ

T
+

√

√

√

√

(

(mLF )2 −
1

γ−1
γ

T

)2

+ 4
(mLF )2

T







τ 2
2 = (A165)

1

2







(

mLF
)2

−
1

γ−1
γ

T
−

√

√

√

√

(

(mLF )2 −
1

γ−1
γ

T

)2

+ 4
(mLF )2

T






.

Since

(

(

mLF
)2

− 1
γ−1

γ
T

)2

<

(

(

mLF
)2

− 1
γ−1

γ
T

)2

+ 4
(mLF )

2

T
for all mLF 6= 0, the

second root, τ 2
2 , is negative for all mLF 6= 0. If mLF = 0, then τ 2

2 = − 1
γ−1

γ
T

< 0.

Thus, τ 2
2 < 0 for any value of mLF .

By definition, a variance is nonnegative. Thus, we may restrict attention to the

root τ 2
1 . Observe that τ 2

1 = τ 2, ∗ by the definition of τ 2, ∗ in the statement of

Theorem 7. We have shown that the other root of the quadratic, τ 2
2 , is negative,

and that the quadratic is concave; together, these facts imply that the quadratic

is positive for any nonnegative τ 2 < τ 2, ∗ and negative for any τ 2 > τ 2, ∗. Finally,

it is obvious (by the very definition of a root) that the quadratic is zero for

τ 2 = τ 2, ∗.

We consider three exhaustive and mutually exclusive cases. First, it may be

that τ 2, LF < τ 2, ∗. By the definition of τ 2, LF in Theorem 7, this implies that

τ 2, LF = ν2

σ2 < τ 2, ∗, so that τ 2, LF is a boundary solution that takes on the largest

value of τ 2 permitted by the interval
[

ν2

σ2 ,
ν2

σ2

]

. By the logic above, the quadratic in

braces in equation (A163) is positive in this case. Further, for any τ̃ 2 ∈
[

ν2

σ2 ,
ν2

σ2

]

,

we have τ 2, LF − τ̃ 2 = ν2

σ2 − τ̃ 2 ≥ ν2

σ2 − ν2

σ2 = 0. Thus, the partial derivative of

E∗

[

Z
γ−1

γ

T
1

Z̃T

]

with respect to τ̃ 2 is always positive in this case. E∗

[

Z
γ−1

γ

T
1

Z̃T

]

is

maximized, then, at the largest possible value of τ̃ 2, that is, at τ̃ 2 = ν2

σ2 = τ 2, LF .
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In the first of the three possible cases, we have shown that τ̃ 2 = τ 2, LF maximizes

the objective function.

Second, it may be that τ 2, LF > τ 2, ∗. By the definition of τ 2, LF in Theorem 7,

this implies that τ 2, LF = ν2

σ2 > τ 2, ∗ so that τ 2, LF is a boundary solution that

takes on the smallest value of τ 2 permitted by the interval
[

ν2

σ2 ,
ν2

σ2

]

. By the

logic above, the quadratic in braces in equation (A163) is negative in this case.

Further, for any τ̃ 2 ∈
[

ν2

σ2 ,
ν2

σ2

]

we have τ 2, LF − τ̃ 2 = ν2

σ2 − τ̃ 2 ≤ ν2

σ2 −
ν2

σ2 = 0. Thus,

the partial derivative of E∗

[

Z
γ−1

γ

T
1

Z̃T

]

with respect to τ̃ 2 is always negative in

this case. E∗

[

Z
γ−1

γ

T
1

Z̃T

]

is maximized, then, at the smallest possible value of τ̃ 2,

that is, at τ̃ 2 = ν2

σ2 = τ 2, LF . In the second of the three possible cases, we have

shown that τ̃ 2 = τ 2, LF maximizes the objective function.

Third (and finally), it may be that τ 2, LF = τ 2, ∗. Then, as shown above, the

quadratic in braces in equation (A163) is zero. Further, τ 2, LF − τ̃ 2 is (obviously)

zero for τ̃ 2 = τ 2, LF , positive for τ̃ 2 < τ 2, LF , and negative for τ̃ 2 > τ 2, LF . Thus,

the partial derivative of E∗

[

Z
γ−1

γ

T
1

Z̃T

]

with respect to τ̃ 2 is zero for τ̃ 2 = τ 2, LF ,

positive for τ̃ 2 < τ 2, LF , and negative for τ̃ 2 > τ 2, LF . E∗

[

Z
γ−1

γ

T
1

Z̃T

]

is maximized,

then, at τ̃ 2 = τ 2, LF . In the third and final of the three possible cases, we have

shown that τ̃ 2 = τ 2, LF maximizes the objective function.

We have now completed the proof that, if an investor with power utility over

terminal wealth behaves optimally with respect to a normal prior distribution

with mean λLF and variance ν2, LF , then the expected-utility-minimizing prior

in the set Γ given the investor’s portfolio choice rule is, in fact, the normal

distribution with mean λLF and variance ν2, LF . This implies that the normal

distribution with mean λLF and variance ν2, LF , which was our candidate least-

favorable prior distribution, is indeed the least-favorable prior distribution. 2
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Proof of Proposition 5: We begin by reproducing the definition of τ 2, ∗:

τ 2, ∗ = (A166)

1

2







(

mLF
)2

−
1

γ−1
γ

T
+

√

√

√

√

(

(mLF )2 −
1

γ−1
γ

T

)2

+ 4
(mLF )2

T






.

We wish to show that

τ 2, ∗ ∈

[

γ − 1

γ

(

mLF
)2

,
(

mLF
)2
]

. (A167)

In the proof of Theorem 7, it was shown that τ 2, ∗ is a positive root of the

quadratic

(

−
γ − 1

γ
T

)

(

τ 2
)2

+

(

(

mLF
)2 γ − 1

γ
T − 1

)

τ 2

+

(

(

mLF
)2 γ − 1

γ

)

=

(

−
γ − 1

γ
T

)

τ 2
(

τ 2 −
(

mLF
)2
)

+

(

(

mLF
)2 γ − 1

γ
− τ 2

)

. (A168)

If τ 2 < γ−1
γ

(

mLF
)2

, both of the terms to the right of the equality sign in the

equation above must be positive, so the whole quadratic must be positive, and

τ 2, ∗ ≥ γ−1
γ

(

mLF
)2

since τ 2, ∗ is a root of the quadratic. On the other hand, if

τ 2 >
(

mLF
)2

, both of the terms to the right of the equality sign in the equation

above must be negative, so the whole quadratic must be negative, and τ 2, ∗ ≤

(

mLF
)2

since τ 2, ∗ is a root of the quadratic.

Together, these inequalities restrict τ 2, ∗ to the desired interval. Now, by the def-

inition of τ 2, LF in terms of τ 2, ∗, we have that τ 2, LF ∈
[

γ−1
γ

(

mLF
)2

,
(

mLF
)2
]

∩
[

ν2

σ2 ,
ν2

σ2

]

⊂
[

γ−1
γ

(

mLF
)2

,
(

mLF
)2
]

, which proves the first assertion of the propo-

sition.
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We now evaluate the limits appearing in the statement of the proposition. First,

lim
T→∞

{

σ2τ 2, ∗
}

= σ2 1

2

(

(

mLF
)2

+

√

(

(mLF )2)2
)

(A169)

= σ2 1

2

(

2
(

mLF
)2
)

(A170)

= σ2
(

mLF
)2

. (A171)

Next,

lim
T→0

{

σ2τ 2, ∗
}

= σ2 lim
T→0


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































1

2











γ−1
γ

(

mLF
)2

T − 1

+





(

γ−1
γ

(

mLF
)2

T − 1
)2

+4
(

γ−1
γ

)2
(

mLF
)2

T





1
2











γ−1
γ

T
























































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(A172)

= σ2 1

2

limT→0



















γ−1
γ

(

mLF
)2

+1
2

2
(

γ−1
γ (mLF )

2
T−1

)

γ−1
γ (mLF )

2
+4( γ−1

γ )
2
(mLF )

2

√

( γ−1
γ

(mLF )2T−1)
2
+4( γ−1

γ )
2
(mLF )2T



















γ−1
γ

(A173)

= σ2 1

2

limT→0







γ−1
γ

(

mLF
)2

− γ−1
γ

(

mLF
)2

+2
(

γ−1
γ

)2
(

mLF
)2






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(A174)

= σ2 1

2







2
(

γ−1
γ

)2
(

mLF
)2

γ−1
γ






(A175)

= σ2

(

γ−1
γ

)2
(

mLF
)2

γ−1
γ

(A176)

= σ2γ − 1

γ

(

mLF
)2

, (A177)

where the second equality follows from L’Hopital’s rule and the fact that both
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the numerator and the denominator of the previous expression converge to zero

as T → 0.

The final limit result is

lim
γ→∞

{

σ2τ 2, ∗
}

= σ2 1

2





(

mLF
)2

−
1

T
+

√

(

(mLF )2 −
1

T

)2

+ 4
(mLF )2

T



 (A178)

= σ2 1
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− 1
T

+

(

(
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)4

− 2
(
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)2 1

T
+ 1

T 2 + 4
(mLF )

2

T

)
1
2


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
(A179)

= σ2 1

2
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)2

−
1

T
+

√

(mLF )4 + 2 (mLF )2 1

T
+

1

T 2

)

(A180)

= σ2 1

2
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(

mLF
)2

−
1

T
+

√

(

(mLF )2 +
1

T

)2


 (A181)

= σ2 1

2

(

(

mLF
)2

−
1

T
+
(

mLF
)2

+
1

T

)

(A182)

= σ2 1

2

(

2
(

mLF
)2
)

(A183)

= σ2
(

mLF
)2

. (A184)

It remains only to prove that mLF = 0 ⇒ σ2τ 2, ∗ = 0. If mLF = 0, then

τ 2, ∗ =
1

2






−

1
γ−1

γ
T

+

√

√

√

√

(

−
1

γ−1
γ

T

)2





(A185)

=
1

2

(

−
1

γ−1
γ

T
+

1
γ−1

γ
T

)

(A186)

= 0, (A187)

so the desired implication holds and the proof of the proposition is complete. 2
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