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Abstract

The focus of our paper is on the implications of model uncertainty for the cross-

sectional properties of returns. We perform our analysis in a tractable single-period

mean-variance framework. We show that there is an uncertainty premium in equilib-

rium expected returns on financial assets and study how the premium varies across

the assets. In particular, the cross-sectional distribution of expected returns can be

formally described by a two-factor model, where expected returns are derived as com-

pensation for the asset’s marginal contribution to the equilibrium risk and uncertainty

of the market portfolio. Thus, the standard result that expected returns are related

only to systematic, and not diversifiable risk, carries over to economies with model

uncertainty as well. Our two-factor pricing model also illustrates that model uncer-

tainty in financial markets may be distinguished from risk, addressing some of the

observational equivalence issues raised in the literature.
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1 Introduction

The purpose of this paper is to study the implications of model uncertainty for the cross-

sectional properties of asset prices in a simple equilibrium setting.

The recent focus on model uncertainty in the literature is driven by the difficulty of

reconciling traditional asset pricing theories with the empirical data. Limited success of the

standard theories could be in part due to the commonly made assumption that economic

agents possess perfect knowledge of the data generating process. For instance, the classical

theories of Sharpe (1964), Lucas (1978), Breeden (1979) and Cox, Ingersoll and Ross (1985),

assume that, while the payoffs of financial assets are random, agents know the underlying

probability law exactly. In reality this is often not the case. Then the natural question

is: how are the prices of financial assets affected by investors’ lack of knowledge about the

probability law, or their uncertainty about what the true model is.

The importance of model uncertainty has long been recognized in finance. While the

literature appears under different names, such as parameter uncertainty, Knightian uncer-

tainty, the defining characteristic of that literature is the recognition of the fact that the

agents of the economy do not have a perfect knowledge of the probability law that governs

the realization of the states of the world. Various issues have been studied. Dow and Werlang

(1992) use the uncertainty averse preference model developed by Schmeidler (1989) to study

a single period portfolio choice problem. Maenhout (1999) examines a similar problem in a

continuous-time economy, but from the point of view of robust portfolio rules. Kandel and

Stambaugh (1996), Brennan (1998), Barberis (2000), and Xia (2001) show that parameter

uncertainty can affect significantly investors’ portfolio choice. Frost and Savarino (1986),

Gennotte (1986), Balduzzi and Liu (1999), Pastor (2000) and Uppal and Wang (2001) ex-

amine the implication of model uncertainty for portfolio choices when there are multiple

risky assets. Detemple (1986), Epstein and Wang (1994), Chen and Epstein (2001), Epstein

and Miao (2001), and Brennan and Xia (2001) study the implications for equilibrium asset

prices in the representative agent and heterogenous agent economies respectively. Routledge

and Zin (2002) examine the connection between model uncertainty and liquidity. There is

also a significant literature, for example Lewellen and Shanken (2001) and Brav and Heaton

(2002), on the effect of learning about an unknown parameter on the equilibrium asset prices.
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The focus of our paper is on the cross-sectional properties of returns. We perform our

analysis in a tractable single-period mean-variance framework. We show that there is an

uncertainty premium in equilibrium expected returns on financial assets and study how the

premium varies across the assets. We find that the cross-sectional distribution of expected

returns can be formally described by a two-factor model, where expected returns are derived

as compensation for the asset’s contribution to the equilibrium risk and uncertainty of the

portfolio held by the agent. Thus, the standard result that expected returns are related only

to systematic, and not diversifiable risk, carries over to economies with model uncertainty

as well.

In light of the large empirical literature on the cross-sectional characteristics of asset

returns, understanding the implications of model uncertainty and uncertainty aversion even

in such a simple setting is of significant value. While prior research on model uncertainty

has been concerned with its implications for the time-series of asset prices, by characterizing

the cross-section of returns we are able to address some of the observational equivalence

issues raised in the literature. That is, whether model uncertainty in financial markets can

be distinguished from risk, and whether uncertainty aversion of the representative agent can

be distinguished from risk aversion (Anderson, Hansen and Sargent, 1999).

In the rest of this introduction, we will describe briefly our approach to formalizing

model uncertainty and its relation to the the literature. The most common way of modelling

imperfect knowledge of the model and parameters is in the Bayesian framework (Kandel

and Stambaugh (1996), Lewellen and Shanken (2001), Barberis (2000) and Pástor (2000)).

The key feature of this approach is that if a parameter of the model is unknown, a prior

distribution of the parameter is introduced. The second approach, adopted by Dow and

Werlang (1992), Epstein and Wang (1994, 1995), Chen and Epstein (2001), Epstein and

Miao (2001), and the third approach, adopted by Anderson, Hansen and Sargent (1999),

Maenhout (1999), Uppal and Wang (2001), follow the view of Knight (1921) that model

uncertainty, or more precisely, the decision makers’ view of model uncertainty, cannot be

represented by a probability prior. There is a significant literature in psychology and ex-

perimental economics that documents the contrast between the Bayesian and Knightian

approaches. The evidence documented there is that, when faced with uncertainty about

the true probability law, people’s behavior tend to be inconsistent with the prediction of
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the Bayesian approach (Ellsberg (1963)). In fact, the behavior is inconsistent with any

probabilistically sophisticated preference (Machina and Schmeidler (1992)).

The second and third approaches differ in how uncertainty and uncertainty aversion are

modelled. Maenhout (1999), Uppal and Wang (2001), use the preference first introduced

by Anderson, Hansen and Sargent (1999) in their study of the implications of preference for

robustness for macroeconomic and general asset pricing issues.1 This class of preferences

has been extended in Uppal and Wang (2001), and axiomatized in a static setting in Wang

(2001). For this class of preferences, uncertainty is described by a set of priors and the

investor’s aversion to it is introduced through a penalty function. Dow and Werlang (1992),

Epstein and Wang (1994, 1995), Chen and Epstein (2001) and Epstein and Miao (2001) use

the multi-prior expected utility developed by Gilboa and Schmeidler (1989).2 Here both

uncertainty and uncertainty aversion are introduced through a set of priors. This paper is

based on the multi-prior expected utility preferences with a careful design of the set of priors

to distinguish between the uncertainty and uncertainty aversion aspects of the set.

The rest of the paper is organized as follows. Section 2 describes the model. Section 4

presents the main result of this paper, the asset pricing implications of model uncertainty.

Section 5 concludes.

2 The Model

In this section we formulate the individual choice problem under model uncertainty. We

define a new measure of uncertainty and study its properties. We show that such a measure

parallels in many respects the notion of variance as a measure of risk. In particular, as with

return variance, our measure of uncertainty allows for a meaningful concept of diversification.

1See Hansen and Sargent (2001) for more on this type of preferences.
2Dow and Werlang is based more directly on the Choquet expected utility developed by Schmeidler

(1989). However, for the case they studied, Choquet expected utility coincides with multi-prior expected
utility.
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2.1 The Setting

We assume a one-period representative agent economy. Consumption takes place only at

the end of the period. The agent is endowed with an initial wealth W0. Without loss of

generality, we assume W0 = 1.

The financial markets consist of N risky assets in perfectly elastic supply and one risk-free

asset in zero net supply. As indicated in the introduction, the investors do not have perfect

knowledge of the distribution of the returns of the N risky assets. More specifically, they

know that the returns R = (R1, . . . , RN)� follow a joint normal distribution with density

function

f(R) = (2π)−n/2|Ω|−1/2 exp

{
−1

2
(R − µ)�Ω−1(R − µ)

}

where

µ = E[R], Ω = E[(R − µ)(R − µ)�].

The risk of returns is summarized by the non-degenerate variance-covariance matrix Ω. We

assume that investors have precise knowledge of Ω. However, they do not know exactly

the mean return vector µ. This is motivated by the fact that it is much easier to obtain

accurate estimates of the variance and covariance of returns than their expected values, e.g.,

Merton (1992). The imperfect knowledge of the asset return distribution gives rise to model

uncertainty.

2.2 The Preferences

Each agent in the economy has a state-independent utility function u(W ). Due to lack of

perfect knowledge of the probability law of asset returns, however, the agent’s preference

is not represented by the standard expected utility, but instead by a multi-prior expected

utility

U(W,P(P )) = min
Q∈P(P )

{
EQ[u(W )]

}
, (1)

where EQ denotes the expectation under the probability measure Q, P(P ) is a set of proba-

bility measures that depends on the probability measure P , called the reference prior. This
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multi-prior structure of preferences exhibits uncertainty aversion. The set P(P ) captures

the degree of model uncertainty perceived by the agent. Higher degree of model uncertainty

is captured by a larger set P(P ). The general nature and the axiomatic foundation of these

preferences has been well studied in the literature (Gilboa and Schmeidler (1989)). What is

specific to this paper is the structure of P(P ), which we now describe.

A Single Source of Information

We begin with the basic case when the shape of the set P is derived from a single source of

information about the distribution of stock returns. Specifically, we define

P(P ) = {Q : E[ξ ln ξ] ≤ η},

where ξ is the density of Q with respect to P and η is a parameter to be described shortly.

Mathematically, the set P includes all probability measures that are close to the reference

measure P , where the distance is measured by the relative entropy index E[ξ ln ξ]. The idea of

defining the set P using the relative entropy index is not new and has been used in the robust

control literature (see Hansen, Sargent, Turmuhambetova and Williams (2002) for a formal

connection between the robust control and multiple prior expected utility formulations.

The above definition of P(P ) has an intuitive interpretation. Since the investor lacks a

perfect knowledge of the probability law of the returns, he may use econometric techniques

to estimate a particular model of asset returns. As a result, the investor would come up with

a model described by the probability measure P . However, he is not completely confident

that this is the true model, due to not having enough data in the specification analysis and

the parameter estimation, or due to simplifying assumptions made for tractability. On the

other hand, the econometric analysis does provide more information than just the probability

measure P . The true model can be narrowed down to a set P of probability measures. Each

element in P is a possible alternative to the reference prior P . Let Q be an element in P
and let its density be denoted by ξ, so that

dQ = ξdP. (2)

Knowing that the reference measure P is subject to misspecification and that the possible

alternative is Q, the problem is how to evaluate the alternative. For this purpose we use the
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relative entropy index, E[ξ ln ξ]. One interpretation of the index is that it is an approximation

to the empirical log-likelihood ratio.3 To elaborate, suppose that the data set available to

the investor has T observations. Then the empirical log-likelihood ratio of the two models is

1

T

T∑
t=1

ln ξ(Xt).

Now suppose that Xt, t = 1, . . . , T , takes finitely many values, x1, . . . , xk in the data series.

Then

1

T

T∑
t=1

ln ξ(Xt) =
1

T

k∑
i=1

∑
Xt=xi

ln ξ(Xt) =

k∑
i=1

Ti

T
ln ξ(xi),

where Ti is the number of t such that Xt = xi. By the law of large numbers, under the alter-

native model Q, Ti/T converges to Q(x) = ξ(x)P (x) and hence 1
T

∑T
t=1 ln ξ(Xt) converges

to E[ξ ln ξ]. Thus, if Q is the true probability law, E[ξ ln ξ] is a good approximation to the

empirical log-likelihood when T is large. According to the traditional likelihood ratio theory,

if the above sum is large, then the two alternatives, Q and P , can be clearly distinguished.4

Therefore, the set of possible alternative models is given by

P(P ) = {Q : E[ξ ln ξ] ≤ η}

where η is the parameter describing how much uncertainty there is about the reference

probability P . For example, η could be chosen to define a rejection region for a test of the

reference model P with a 95% confidence level. The choice of η depends on the investor’s

aversion to uncertainty. Larger values of η allow for a larger set of alternative models. Thus,

more uncertainty averse agents are willing to entertain alternative models that are relatively

far from the reference model P , as measured by their relative entropy. An investor more

averse to uncertainty would require a higher confidence level.

For analytical tractability, we assume that stock returns are jointly normally distributed

under the alternative models. Furthermore, we assume that the variance-covariance matrix

3See Anderson, Hansen and Sargent (1999) and Hansen and Sargent (2000) for other interpretations of
the index.

4It is worth emphasizing that large 1
T

∑T
t=1 ξ(Xt) ln ξ(Xt) should not be interpreted as evidence for

rejecting the reference model P , as in the usual likelihood test: as explained above, the very fact that P is
the reference prior implies that the investor has already gone through the preliminary analysis and picked
P . The issue at this stage is only to find an index that summarizes the information available.
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of the returns is the same under all measures in P, reflecting the fact that the investor knows

the variance-covariance matrix Ω precisely. Let Q be a measure in P with the density (with

respect to P ) given by

(2π)−n/2|Ω|−1/2 exp

{
−1

2
(R − µ̂)�Ω−1(R − µ̂)

}
,

which can be written as

(2π)−n/2|Ω|−1/2 exp

{
−1

2
(R − µ)�Ω−1(R − µ)

}

× exp

{
−1

2
(µ − µ̂)�Ω−1(µ − µ̂) − (µ − µ̂)�Ω−1(R − µ)

}
.

Thus, the likelihood ratio of Q over P is given by

ξ(R) = exp

{
1

2
(µ − µ̂)�Ω−1(µ − µ̂) − (µ − µ̂)�Ω−1(R − µ̂)

}
. (3)

Given this particular structure of the set P(P ), we can introduce v = µ− µ̂ and re-write the

representative investor’s objective as

min
v∈V

E [ξu(W )] , (4)

where ξ is now given by

ξ(R) = exp

{
1

2
v�Ω−1v − v�Ω−1(R − µ + v)

}
(5)

and the set V corresponds to P:

V =

{
v : E[ξ ln ξ] =

1

2
v�Ω−1v ≤ η

}
.

Multiple Sources of Information

In general, the investor’s knowledge about the distribution of asset returns may come from

different sources and it is often about a subset of the assets, as opposed to the joint dis-

tribution of all assets as in the previous subsection. To accommodate this, let Jk, k = 1,
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. . . , K, be subsets of {1, . . . , N}, each set Jk having Nk elements, Jk = {j1, . . . , jNk
}, so

that the information is about the distribution of RJk
= (Rj1, . . . , RjNk

). Sets Jk are not

necessarily disjoint. We assume that ∪kJk = {1, . . . , N}, so that the investor has at least

some information about each asset. We assume that the reference probability distributions

implied by the various sources of information for the corresponding subsets of assets coincide

with the marginal distributions of the reference model P . Consider the density function of

the distribution of RJk
,

(2π)−1|ΩJk
|−1/2 exp

{
−1

2
(RJk

− µ̂Jk
)�Ω−1

Jk
(RJk

− µ̂Jk
)

}
,

where µ̂Jk
= (µ̂j1, . . . , µ̂jNk

), and ΩJk
is the variance-covariance matrix of RJk

, which is a

sub-matrix of Ω. This density function can be written as

exp

{
−1

2
(µJk

− µ̂Jk
)�Ω−1

Jk
(µJk

− µ̂Jk
) − (µJk

− µ̂Jk
)�Ω−1

Jk
(RJk

− µJk
)

}

×(2π)−1|ΩJk
|−1/2 exp

{
−1

2
(RJk

− µJk
)�Ω−1

Jk
(RJk

− µJk
)

}
.

Thus, the likelihood ratio of the marginal distribution QJk
over PJk

is

ξJk
= exp

{
1

2
(µJk

− µ̂Jk
)�Ω−1

Jk
(µJk

− µ̂Jk
) − (µJk

− µ̂Jk
)�Ω−1

Jk
(RJk

− µ̂Jk
)

}
.

To relate to the probability measure Q, suppose its density function is

(2π)−n/2|Ω|−1/2 exp

{
−1

2
(R − µ̂)�Ω−1(R − µ̂)

}
.

Then

(2π)−1|ΩJk
|−1/2 exp

{
−1

2
(RJk

− µ̂Jk
)�Ω−1

Jk
(RJk

− µ̂Jk
)

}

=

∫
(2π)−n/2|Ω|−1/2 exp

{
−1

2
(R − µ̂)�Ω−1(R − µ̂)

}
dRJk−,

where Jk− is the complement of the set Jk: Jk− = {1, . . . , N} \ Jk. Thus, ξJk
is the

likelihood ratio of the marginal distribution of Q over that of P .
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For notational convenience, let Ω̂−1
Jk

denote the N ×N -matrix whose element in the jmth

row and jnth column, for jm and jn in Jk, is equal to the element in the mth row and nth

column of the matrix Ω−1
Jk

; all other elements are zero. Then

(µJk
− µ̂Jk

)�Ω−1
Jk

(µJk
− µ̂Jk

) = (µ − µ̂)�Ω̂−1
Jk

(µ − µ̂) = v�Ω̂−1
Jk

v

In the case where there are multiple sources of information, the representative investor’s

preferences are described by

min
v∈V

E [ξu(W )] , (6)

where ξ is given by (5), and similarly to the single source information case,

V = {v : E[ξJk
ln ξJk

] =
1

2
v�Ω̂−1

Jk
v ≤ ηk, k = 1, . . . , K}. (7)

2.3 A Measure of Uncertainty

To understand how the investor trades off uncertainty and expected return, it is useful

to introduce a metric for uncertainty about the distribution of returns. This metric is

independent of the utility function u(W ) and is determined only by the set P. We show in

the next section that our measure of uncertainty shares many properties with the variance

as a standard measure of risk of returns.

Let x be a return on a portfolio θ, x = θ�R. It’s distribution is normal and its variance

is the same under P and all measures Q ∈ P. Define

�(x) = sup
Q∈P

EQ[x] − EP [x] (8)

to be the uncertainty of x. Equivalently,

�(θ) = sup
v

θ�v (9)

subject to

E[ξJk
ln ξJk

] =
1

2
v�Ω̂−1

Jk
v ≤ ηk, k = 1, . . . , K. (10)
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If ηk, k = 1, . . . , K, are interpreted as defining confidence sets for the marginal distribution

of assets in sets Jk, then [−�(θ),�(θ)] is the corresponding confidence interval for the

expected return on the portfolio θ.

The measure of uncertainty �(θ) is independent of the utility function u(W ). Thus,

our definition of uncertainty reflects the properties of the set P of candidate probability

measures, not the preferences of the decision maker.

We will denote a solution of (9) by v(θ). Note that the solution may not be unique in

general, with multiple values of v corresponding to the same value of the objective function.

The following lemma shows that when all portfolio weights are non-zero, which is the case

for the market portfolio in equilibrium, the solution of (9) is indeed unique.5

Proposition 1 For θ such that all of its components are non-zero, the solution of (9) is

unique. There exists nonnegative coefficients φk(θ) depending on θ such that

v(θ) = Ωu(θ)θ, (11)

where

Ωu(θ) =

(
K∑

k=1

φk(θ)Ω̂
−1
Jk

)−1

.

The coefficient φk(θ) is equal to zero if the kth constraint is not binding, but at least one of

the coefficients is strictly positive.

2.4 Diversification of Uncertainty

In this section we summarize some of the properties of our measure of uncertainty, drawing

a parallel with the variance as a measure of risk (return variance is the appropriate measure

of risk in our model, since asset returns are jointly normally distributed). The key result

5One of the typical features of the multi-prior expected utility model is that the solution of the maxmin
problem is often not unique. The analytical feature of our formulation of the set P(P ) is that, due to
Proposition 1, the minimizer for the equilibrium situation we are considering is always unique. The crucial
property of the set P(P ) that gives rise to this uniqueness is the strict convexity of the relative entropy
function, as can be seen in the proof of Proposition 1.
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of this section, stated in Proposition 2, is used in the following sections to derive the asset

pricing implications of model uncertainty.

The definition of portfolio uncertainty �(θ) given in (9) implies that it is a convex and

symmetric function of the portfolio composition, �(−θ) = �(θ), just as the variance of

portfolio returns. The function �(θ) is homogeneous of degree one, unlike the variance,

which is homogeneous of degree two. As an illustration, we plot the portfolio uncertainty

as a function of its composition in Figure 1. For comparison, we also plot the variance of

portfolio returns in Figure 2. As expected, the two functions look qualitatively similar.

As with the standard measure of risk, variance, one can draw a distinction between the

total uncertainty of an asset (or a portfolio) and its systematic uncertainty. The systematic

uncertainty of the asset i with respect to a portfolio θ is defined as its marginal contribution

to the total portfolio uncertainty, in analogy with the definition of systematic risk:

βu,i(θ) =
∂ ln�(θ)

∂θi
.

The following proposition shows that βu,i(θ) is well defined, as long as all components of the

portfolio θ are non-zero and characterizes the sensitivity of the portfolio uncertainty to its

composition.

Proposition 2 Assuming that all components of the portfolio weights vector θ are non-zero,

the sensitivity of the uncertainty of a portfolio to a change in its composition is given by

∂ ln�(θ)

∂θ
=

1

�(θ)
v(θ) =

Ωu(θ)θ

θ�Ωu(θ)θ
. (12)

This proposition implies in particular that systematic uncertainty of the market port-

folio is equal to its total uncertainty. Also, since v(θ) ∈ V, it is immediate that the total

uncertainty of an asset exceeds its systematic uncertainty, i.e.,

�(ei) = max
v∈V(φ)

e�i v ≥ βu,i(θ)�(θ) = e�i v(θ),

where ei = (0, . . . 0, 1, 0, . . . , 0)� with the ith component of the vector equal to 1.
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In the above, we have considered the sensitivity of portfolio uncertainty to a change in

the composition of the portfolio when the portfolio weights are non-zero. This corresponds

to the case when the portfolio already has a loading of all the assets. The other interesting

case is when an asset is not in the portfolio to begin with, but is to be added to the portfolio.

As the following proposition shows, this case is not as simple as the other case and the reason

is that �(θ) is in general no longer differentiable.

Proposition 3 Let θ be a portfolio with θj = 0. Let K = {k : j ∈ Jk}. If there exists a

solution v̄ of (9) such that for all k ∈ K,

1

2
v̄�Ω̂−1

Jk
v̄ =

1

2
v̄�

Jk
Ω−1

Jk
v̄Jk

< ηk, (13)

then �(θ) is not differentiable in θj at θj = 0. Otherwise �(θ) is differentiable in θj at

θj = 0 and ∂�(θ)/∂θj = v̄j, where v̄ is any solution of (9).

The intuition of this proposition can be illustrated by the following example. There are

two assets and two sources of information, one for each asset,

1

2
v2

j σ
2
j ≤ ηj , j = 1, 2.

Let θ = (θ1, θ2) be a portfolio where θ1 > 0 and θ2 = 0. In this case,

�(θ) =
√

2η1σ1θ1.

and the solutions of (8) are of the form, v̄ = (
√

2η1σ1, v̄2) where v̄2 is arbitrary as long as

it satisfies the constraint above. According to the proposition, the derivative ∂�(θ)/∂θ2 at

θ2 = 0 does not exists.

While this example is special, the insight revealed applies more generally. Notice that,

when θ2 = 0, the source of information about the second asset is irrelevant for the uncertainty

of the portfolio. In other words, the source of information is not reflected in the portfolio

uncertainty when θ2 = 0. The moment when θ2 becomes positive, this source of information

starts to contribute to the uncertainty of the portfolio. The rate at which it adds to the
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uncertainty of the portfolio is given by
√

2η2σ2. This rate is −√
2η2σ2 when θ2 becomes

negative. As a result, �(θ) is not differentiable in θ2. More generally, when the information

about a particular asset has not been fully reflected, which is what (13) characterizes, the

rates at which an asset contributes to the uncertainty of the portfolio differ, depending on

whether the asset is added in a long or short position, and non-differentiability arises. This

potential non-differentiability can play an important role in modelling of the bid-ask spread

of asset prices (see Routledge and Zin (2002)). In this paper such complications do not arise,

since we assume that all assets are in positive supply.

3 Portfolio Choice

In this section we re-formulate the agent’s portfolio choice problem in a form that is partic-

ularly convenient for deriving the asset pricing results below.

Under the preferences introduced above, the investor’s utility maximization problem is

sup
θ

min
v∈V

E [ξu(W )] , (14)

subject to (5), (7), and the wealth constraint

W = [θ�(R − r1) + 1 + r]

The following proposition shows that the solution of the minimization is given by the solution

v(θ) of (9).

Proposition 4 Problem (14) is equivalent to

max
θ

min
|y|≤�(θ)

{E [ξ(θ, y)u(W )]} , (15)

where

ξ(θ, y) = exp

{
− y2

2θ�Ωθ
− y(θ�R − θ�µ + y)

θ�Ωθ

}
.

is the density of the return on the portfolio θ with respect to the reference measure P . Fur-

thermore, if (θ, v) is the solution of (14) and θ is such that all of its components are non-zero,
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then

v = v(θ), (16)

where v(θ) is a solution of (9). Moreover, the optimal portfolio policy θ satisfies

E [u′(W −�(θ)) (R − r1 − v(θ))] = 0. (17)

Proposition 4 has an important implication. It shows that for a given portfolio compo-

sition θ, the agent would evaluate his/her expected utility under the measure indexed by

v, which is independent of the agent’s utility function U(W ) and can be determined as a

solution of (9). This greatly simplifies the analysis of equilibrium asset prices, since know-

ing the composition of the market portfolio is sufficient for computing the adjustment of

expected returns, v(θ), due to model uncertainty. Then, a restriction on expected returns

follows directly from (17).

Second, Proposition 4 shows how our measure of uncertainty �(θ) can be used to un-

derstand the agent’s portfolio choice. The objective (15) no longer involves the entire set of

probability measures P(P ), as does the original formulation (14). Instead, it uses a scalar

summary of model uncertainty, �(θ). Specifically, for each portfolio composition θ, the

agent reduces the expected return on the portfolio by �(θ) and then evaluates the expected

utility function in a standard manner.

4 The Asset Pricing Model

In this section we derive a pricing model, which relates the cross-sectional distribution of

expected returns on the N risky assets to their covariances with the market portfolio. These

securities are assumed to be available in perfectly elastic supply and their return distribution

is defined exogenously. The market portfolio, however, is endogenously determined, giving

rise to a non-trivial pricing model. Note that this formulation is isomorphic to an exchange

economy in which the supply of the risky assets is exogenously fixed, while their prices (and

returns) are determined endogenously.
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4.1 Risk Premium and Uncertainty Premium, CARA Utility

We first consider the case of the representative investor with a constant absolute risk aversion

(CARA) utility function,

u(W ) = −e−γW

We extend our results to the case of a general utility function below.

Let θm denote the composition of the market portfolio and define �m = �(θm). Also,

define a pricing kernel

ζ =
e−γW

E[e−γW ]

Then, according to Proposition 4, returns on the risky assets satisfy

E[ζR] = r1 + v(θm), (18)

and therefore the market return satisfies

E[ζRm] = r + �m. (19)

From these relations, we find that the expected return premia on the risky assets and on the

market portfolio are given by

µ − r1 = γcov(Rm, R) + v(θm) (20)

µm − r1 = γσ2
m︸︷︷︸

λ, risk premium

+ �m︸︷︷︸
λu, uncertainty premium

(21)

The first term in (21) may be viewed as the market risk premium, being proportional to the

variance of the market portfolio. The proportionality coefficient depends on the preferences

of the representative agent, i.e., the absolute risk aversion coefficient of the agent, γ. We will

denote the first term by λ. The second term, �m, has a natural interpretation of the market

uncertainty premium, and depends on the degree of uncertainty of the market portfolio. We

denote it by λu.
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4.2 Risk Premium and Uncertainty Premium, General Utility

We now generalize the results of the previous section to non-CARA utility functions. Again,

we start with the relation,

E[ζR] = r1 + v(θm), (22)

where

ζ =
U ′(W −�m)

E[U ′(W −�m)]

Thus, as in the case of the CARA utility function,

E[ζRm] = r + �m, (23)

By applying Stein’s Lemma to (22) and (23), we find that the expected return premia on

the individual stocks and on the market are given by

µ − r1 =
E[U ′′(W −�m)]

E[U ′(W −�m)]
cov(Rm, R) + v(θm) (24)

µm − r1 =
E[U ′′(W −�m)]

E[U ′(W −�m)]
σ2

m(θ) + �m (25)

The first term in (25) may be viewed as the market risk premium, being proportional

to the variance of the market portfolio. The proportionality coefficient depends on the

preferences of the representative agent. For a special case of the CARA utility function,

U(W ) = − exp(−γW ), it equals the absolute risk aversion coefficient of the agent, γ (see

equation (18)). In general, however, this term is affected by the agent’s uncertainty aversion

as well, since it depends on �m. The only exception is the case of constant absolute risk

aversion, when U ′′(W )/U ′(W ) is independent of the level of W . With this reservation in

mind, we will denote the entire first term by λ. The second term, �m, has a natural

interpretation of the market uncertainty premium. We will denote it by λu.
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4.3 Asset Pricing Model

According to (24), the expected excess return on an individual risky asset is determined by

two terms. The first term is standard, given by the product of the representative investor’s

risk aversion coefficient and the covariance of the individual asset return with the market

portfolio. The second term captures the effect of model uncertainty. Since v(θm) is a solution

of (9), it depends not just on the uncertainty about the returns on an individual asset, but

also on the nature of the information about the joint distribution of returns on all the assets.

Equations (24) and (21) imply a relation between expected excess returns on individual

assets, which we state as the following proposition.

Proposition 5 The equilibrium vector of expected excess returns is given by

µ − r1 = λβ + λuβu, (26)

where λ and λu are the market risk and uncertainty premia and β and βu are the risk and

uncertainty betas with respect to the market portfolio:

λ =
E[U ′′(W −�m)]

E[U ′(W −�m)]
σ2

m(θ),

λu = �m,

β =
∂ ln σ2(θm)

∂θm
=

1

σ2
m

Ωθm,

βu =
∂ ln�(θm)

∂θm
=

1

�m
Ωu(θm)θm.

In the proposition, β defines the vector of market risk betas of stocks, i.e., their betas

with respect to the market portfolio. As stated in the proposition, an equivalent definition

of the market risk beta is as sensitivity of the total risk of the market portfolio to a change

in its composition, i.e., β = ∂ lnσ2(θm)/∂θm. The definition of the market uncertainty betas

βu is analogous. According to Proposition 2, βu defines the sensitivity of the uncertainty of

the market portfolio to a change in its composition. We also find that, like risk, uncertainty

is partially “diversifiable” in a sense that for a particular asset only its contribution the total

market uncertainty is compensated in equilibrium by higher expected return.
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In equilibrium, the investor is compensated for bearing both risk and uncertainty. Thus,

two assets with the same beta with respect to the market risk may have different equilibrium

expected returns. This would set our model apart conceptually from the standard CAPM,

which would require the expected excess returns on all assets in our setting to be proportional

to their market beta.

4.4 A Single Source of Information

We first consider the simplest case when the representative investor uses a single source of

information about asset returns, solving the problem given by (4). In that case, Proposition

1 implies that the matrix Ωu is proportional to the variance-covariance matrix of returns. In

this case it is easy to show that

Ωu =

√
2η

σm
Ω,

and hence

µ − r1 =
E[U ′′(W − ∆m)]

E[U ′(W − ∆m)]
Ωθm +

√
2η

σm
Ωθm =

(
E[U ′′(W − ∆m)]

E[U ′(W − ∆m)]
+

√
2η

σm

)
σ2

mβ.

Since the utility-dependent coefficient

E[U ′′(W − ∆m)]

E[U ′(W − ∆m)]

is not observable, the cross-sectional distribution of expected asset returns in a world with

a single source of information will be observationally indistinguishable from that in a world

where there is no model uncertainty. In fact, it follows from the equation above that in an

economy with a single source of information the standard CAPM holds:

µ − r1 = β(µm − r).

4.5 Two Sources of Information

The reason that in the case of a single source of information the uncertainty premium is

observationally indistinguishable from the risk premium is that the two are proportional to
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each other in the cross-section. When there is more than one source of information, this is

no longer the case and hence the observational equivalence no longer holds.

In this section we consider an important special case where in addition to the information

about the joint distribution of all N assets, the representative agent has an additional source

of information about the joint distribution of the first J assets. For instance, it may be that

the historical sample of returns on the first J assets is longer than the overall sample and

therefore there is less uncertainty about the expected returns on these assets.

In such case, the uncertainty of the market portfolio θm is given by

�m = sup
v

θ�mv, (27)

subject to

1

2
v�Ω−1v ≤ η (28)

1

2
v�Ω̂−1

J v ≤ ηJ (29)

Let φ and φJ denote the Lagrange multipliers on the constraints (28) and (29) respectively.

The first constraint is always binding and hence φ > 0. Assuming that ηJ is sufficiently

small, the second constraint is binding as well and φJ > 0. The matrix Ωu in Proposition 1

is given by

Ωu =
1

φ

(
Ω−1 +

φJ

φ
Ω̂−1

J

)−1

It is straightforward to verify that

Ωu =
1

φ

(
Ω − φJ

φ + φJ
ΩΩ̂−1

J Ω

)

Given the explicit form of the uncertainty matrix, the uncertainty beta βu in Proposition 5

is given by

βu =
1

�m

(
Ωθm − φJ

φ + φJ
ΩΩ̂−1

J Ωθm

)
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The first term, Ωθm is a vector of covariances of returns with the market portfolio and is

proportional to the vector of standard risk betas. The second term is proportional to the

vector of covariances of asset returns with the return on a particular portfolio, with weights

θp = (1�Ω̂−1
J Ωθm)−1Ω̂−1

J Ωθm. Such a portfolio has a simple intuitive interpretation. It’s

return is a linear projection of the market return on the space of the first J assets. Thus,

expected excess returns on the risky assets satisfy

µj−r = λ
1

σ2
m

cov(Rj , Rm)+λu
1

�m
cov(Rj , Rm)−λu

φJ(1�Ω̂−1
J Ωθm)

φ + φJ
cov(Rj , Rp), j = 1, . . . , N

where Rp denotes the return on portfolio θp.

Thus, in presence of an additional source of information about the first J risky assets,

the equilibrium vector of expected excess returns can be described by a two-factor model,

in which the first factor is the market portfolio and the second factor is a projection of the

market return on the subset of the first J assets. This implication of uncertainty aversion

is distinct from the pricing model implied by standard preferences. Since returns in our

model are normal, a standard model of preferences would imply the familiar CAPM relation,

regardless of the functional form of the utility function.

While the pricing relation above is distinct from that of any static model with standard

expected utility preferences, it appears observationally equivalent to a particular intertem-

poral capital asset pricing model (ICAPM, see Merton 1973, Section 15). In particular, a

similar two-factor pricing formula would be obtained in a frictionless dynamic continuous-

time economy with diffusion information structure in which the investment opportunity set

is driven by a single state variable, such that the portfolio Rp introduced above is the cor-

responding hedging portfolio (see Merton (1973)). One could therefore argue that model

uncertainty has implications distinct from traditional static models, but indistinguishable

from standard dynamic pricing models, such as Merton’s ICAPM. Such an argument has

an obvious limitation. While it is true that one could always create a dynamic economy

supporting a particular factor structure of returns, to argue that such a model explains the

empirical observations it is necessary to show that the factor portfolios provide a hedge

against changes in the investment opportunity set. As our analysis shows, in an economy

with model uncertainty the cross-section of expected returns may have a multi-factor struc-
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ture even when the returns are identically distributed over time (which is highlighted by

our static formulation). This establishes a conceptual distinction between an economy with

model uncertainty and a dynamic economy with standard expected-utility preferences. Thus,

to test the implications of model uncertainty empirically, it is crucial to take a stand on the

structure of model uncertainty in the economy. This could allow one to identify the nature of

the factor portfolios, which otherwise may appear unrelated to the state variables describing

changes in the investment opportunity set.

5 Conclusion

We have developed a single-period equilibrium model incorporating not only risk, but also

model uncertainty. We have introduced a notion of a measure of uncertainty and character-

ized an uncertainty premium in equilibrium expected returns on financial assets.

We have shown that the cross-sectional distribution of expected returns can be formally

described by a two-factor model, where expected returns are derived as compensation for

the asset’s contribution to the risk and uncertainty of the portfolio held by the agent in

equilibrium. Thus, the standard result that expected returns are related only to systematic,

and not diversifiable risk, carries over to economies with model uncertainty as well.

While prior research on model uncertainty has been concerned with its implications for

the time-series of asset prices, by characterizing the cross-section of returns we were able to

address some of the observational equivalence issues raised in the literature. In particular,

we demonstrated that the effect of model uncertainty in our framework is distinct from risk

aversion and cannot be captured by any specification of the risk aversion parameter.
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Appendix

Proof of Proposition 1

Suppose to the contrary that v̄ and v are two distinct solutions. Let v(a) = av̄ + (1 − a)v.

The strict convexity of all the functions defining the choice set implies that for a ∈ (0, 1),

1

2
v(a)�Ω̂−1

Jk
v(a) ≤ ηk, k = 1, . . . , K.

Now let k, if exists, be such that

1

2
v(a)�Ω̂−1

Jk
v(a) = ηk

holds for a = 0, a = 1, and for some a ∈ (0, 1). Then it must be the case that v̄Jk
= vJk

.

Denote by A the set of such k. If

JA = ∪k∈AJk = {1, . . . , n},

then v̄ = v, a contradiction to assumption. So, JA �= {1, . . . , n}. Without loss of generality,

we assume that JA = {2, . . . , n}. Then for all v of the form v = (v1, v̄2, . . . , v̄n) with v1 ∈ R,

1

2
v�Ω̂−1

Jk
v = ηk, k ∈ A.

Note that v(a) is of the form (av̄1+(1−a)v1, v̄2, . . . , v̄n). Thus for v = (0.5v̄1+0.5v1, v̄2, . . . , v̄n),

1

2
v�Ω̂−1

Jk
v < ηk, k �∈ A.

Combining the two cases, k ∈ A and k �∈ A, together, by continuity, there is a ε > 0 such

that for all v = (v1, v̄2, . . . , v̄n) with v1 ∈ (0.5v̄1 + 0.5v2 − ε, 0.5v̄1 + 0.5v2 + ε),

1

2
v�Ω̂−1

Jk
v ≤ ηk, k = 1, . . . , K.

But, given the linearity of the objective function, this means v̄ and v cannot be the solution

of (9). This is a contradiction.

The second statement of the proposition is a straightforward application of the La-

grangian duality approach.
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Proof of Proposition 2

Since the constraint set P is convex and compact, �(θ) is a convex function. Optimality

conditions imply that v(θ) is a subgradient of the value function �(θ) at θ. The solution

v of is unique, according to lemma 1. Thus, the function �(θ) has a unique subgradient,

therefore it is in fact differentiable, and v is equal to the gradient of �(θ). This establishes

the statement of the lemma.

Proof of Proposition 3

Observe that ∂�(θ)/∂θj exists if and only if all solutions of (9) have the same jth component.

For the first claim of the lemma, assume without loss of generality that j = 1. If the condition

of the lemma is satisfied, there exists a ε > 0 such that for any |x| < ε, vx = v̄ + (x, 0, . . . , 0)

satisfies all constraints of (9). Since θ1 = 0, vx is also a solution of (9). The claim follows.

For the second part, let v̄ be a solution of (9). If it is the unique solution of (9), then

∂�(θ)/∂θj exists. Suppose v̄ and v are two distinct solutions of (9). Let v(a) = av̄+(1−a)v.

We claim that there exists a k ∈ K such that

1

2
v(a)�Jk

Ω−1
Jk

v(a)Jk
= ηk

holds for a = 0, a = 1 and some a ∈ (0, 1). Suppose the contrary. By strict convexity,

1

2
v(a)�Jk

Ω−1
Jk

v(a)Jk
< ηk, k ∈ K

for a ∈ (0, 1). Also the convexity of all the functions defining the choice set implies that for

a ∈ (0, 1),

1

2
v(a)�Ω̂−1

Jk
v(a) =

1

2
v(a)�Jk

Ω−1
Jk

v(a)Jk
≤ ηk, k = 1, . . . , K.

Since the objective function of (9) is linear, v(a) is a solution of (9) for all a ∈ (0, 1). But

this is a contradiction to assumption of the lemma. Thus the claim is shown. It then follows

from the claim that v̄Jk
= vJk

and hence v̄j = vj. Since v̄ and v are arbitrary, we have

v̄j = vj for all solutions of (9). The differentiability follows.
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Proof of Proposition 4

Since the distribution of W depends only on the distribution of θ�R, for each fixed θ,

E[ξu(W )] depends only on y = θ�v, and it is given by

E[ξu(W )] = E[ξ(θ, y)u(W )],

where

ξ(θ, y) = exp

{
− y2

2θ�Ωθ
− y(Rθ − θ�µ + y)

θ�Ωθ

}
.

Thus the original utility function can be written as

max
θ

min
|y|≤φ�(θ)

(E[ξ(θ, y)u(W )]) (A1)

which is (15). The characterization for v follows immediately.
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Figure 1: Portfolio uncertainty

The portfolio uncertainty measure, �(θ) is plotted as a function of the portfolio composition, (x1, x2). The
portfolio consists of three risky assets and the moments of their returns are given by

µ =


 0.06

0.08
0.12


 , Ω =


 0.090 0.045 0.036

0.045 0.090 0.009
0.036 0.009 0.090




The portfolio composition is parameterized by (x1, x2):

θ =
1√
3
e0 + x1e1 + x2e2, e0 =

1√
3


 1

1
1


 , e1 =

1√
2


 −1

0
1


 , e2 =

1√
6


 1

−2
1




so that the vectors e0, e1 and e2 form an orthonormal basis and 1�θ = 1, ∀(x1, x2). We assume that there
exist two sources of information, the second being about the first two assets: J1 = {1, 2, 3}, J = {1, 2}. The
feasible set V in (10) is given by

v�Ω−1v ≤ 0.0025, v�Ω̂−1
J2

v ≤ 0.005.
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Figure 2: Portfolio variance

The portfolio variance, σ2(θ) is plotted as a function of the portfolio composition, (x1, x2). The model
parameters are given in the caption to Figure 1.
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