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Abstract
We axiomatize preferences that admit a representation by a-maxmin expected
utility, that is a weighted sum of maxmin and maximax expected utilities. The weight
« in this representation is interpretable as the decision maker’s ambiguity attitude
index. The attitude can range from aversion when a = 1 (as in the Gilboa-Schmeidler
multiple priors model) to affinity when o = 0. The axiomatization captures a cognitive
procedure used by the decision maker to extend her preference from a subdomain where

expected utility prevails to a ranking of all acts.

1 INTRODUCTION

Multiple Priors Model

Subjective expected utility axiomatized by Savage [10] and by Anscombe and Aumann [1],
rules out situations like the Ellsberg Paradox where the decision maker is unwilling to assign
sharp probabilities to all relevant events. To accommodate such situations, Gilboa and
Schmeidler [6] generalize the expected utility paradigm. They propose the multiple priors
model where preference is represented by maxmin expected utility with a non-singleton
subjective set M of probability measures:

According to this representation, the decision maker can be interpreted, roughly, as having
a set M of possible “scenarios” and evaluating every uncertain prospect f via the least
favorable “scenario” from this set. An intuitive criticism of maxmin expected utility stems
from this interpretation that portrays the decision maker as excessively pessimistic.

A more appropriate target of criticism in the Gilboa—Schmeidler model is not the func-
tional form for utility that they obtain but rather one of their axioms (Ambiguity Aversion).
The axiom requires that if the decision maker is indifferent between two prospects, then she
weakly prefers “mixing” them and, thereby, smoothing payoffs across states of the world.
The following example describes a situation where Ambiguity Aversion is problematic.

*I am particularly grateful to Larry Epstein for his generous advice and numerous detailed comments. 1
have also benefitted from discussions with A. Sandroni, W. Thomson, M. Marinacci and participants of the
Theory Workshop at the University of Rochester. This version is preliminary and incomplete.

I The formal notation that we use in the introduction is defined later.



Motivating Example

Consider an Ellsberg urn containing balls of three possible colors R (red), G (green) and B

(blue). No information about the composition of the urn is available to the decision maker

— a situation of complete ignorance. A ball is drawn randomly from the urn and monetary

payoffs are paid contingent on the color of the ball. Assume that the decision maker is risk

neutral with respect to the monetary payoffs, or alternatively, that payoffs are in utils.
Symmetry suggests the ranking

20if R 0if R 0if R
0ifG| ~ [20if G| ~ | OiIfG
0if B 0if B 20if B
Ambiguity Aversion implies
1 0if R 1 0if R 20if R
— | 0ifG| +=|20if G| = | 0ifGG
20ifB| | 0if B 0if B

or equivalently,

{Oif R} C [QOif R}

10 if not| — | O if not| "
However, in the absence of any information about the composition of the urn, the decision
maker may view R and “not R” as similarly attractive events upon which to bet. Intuitively,
she may ignore the fact that “not R” contains two distinct states of nature because this fact is
uninformative. After all, the event R might also be expressed as a union of more elementary

states by introducing more aspects of the world to be described. Consequently, the decision
maker might contradict Ambiguity Aversion and have the strict preference

0if R y 20if R
10 if not 0 if not| "
Thus, Ambiguity Aversion though natural in many situations, is problematic in others.

New Utility Representation

Motivated by such criticism, we axiomatize a-maxmin expected utility that uses a subjective
set of priors M in a way different from the Gilboa—Schmeidler model. The utility of each
prospect is evaluated by a weighted average of the most and the least favorable “scenarios”

meM me

U(f) :amin/u(f(s))dm—i—(l—a) max/u(f(s))dm.

The unique weight « is independent of the evaluated act and is interpretable as the decision
maker’s ambiguity attitude index. The attitude can range from aversion when o =1 (as in
Gilboa and Schmeidler) to affinity when o = 0.



To characterize a-maxmin expected utility, we assume that the decision maker conforms
to expected utility on a suitable subdomain of risky (or unambiguous) acts but not on the
entire domain. Then we replace Ambiguity Aversion with an axiom that reflects partial
ignorance outside this subdomain. Roughly speaking, the Partial Ignorance axiom captures
a cognitive procedure used by the decision maker to extend her preference over risky acts to
a ranking of all acts. This axiom also implies additional structure for the set M beyond
the technical conditions in the Gilboa—Schmeidler model. Two examples are (i) M consists
of all extensions of a probability measure given on a class of unambiguous events; (i) M
consists of all “extensions” of conditional probabilities given on a class of unambiguous pairs
of events.

Related Literature

The a-maxmin expected utility functional form appears first in Hurwicz [8] in the context
of statistical decision problems where M is the statistician’s a prior: class of probability
distributions. Luce and Raiffa [9] discuss Hurwicz’s a-criterion for individual decision mak-
ing with the emphasis on complete ignorance when M is the universal set of probability
measures and

U(f) =aminu(f(s)) + (1 — a) maxu(f(s)).

seS SES

Arrow and Hurwicz [2] axiomatize existence of such a utility representation with « being a
function of the worst and best outcomes.

In independent research, Ghirardato, Maccheroni and Marinacci [5] axiomatize a-maxmin
expected utility with the set M restricted only by technical conditions as in Gilboa and
Schmeidler. Thus their model is more general than ours. There is also a difference in ap-
proaches. While the approach here begins with a subdomain of “risky acts,” Ghirardato et
al. begin with an “unambiguous subrelation.”

Zhang [13] models situations when probabilities of some events are precisely known to the
decision maker. Zhang proposes Approximation from Below axiom that reflects a pessimistic
approach to evaluating acts on the basis of the known probabilities. Approximation from
Below leads to a special case of Choquet expected utility. Adopting the Anscombe-Aumann
setup, we eliminate some of the limitations of Zhang’s approach as illustrated by his own
“counterexample” (see section 3.3 below).

Outline

The paper is organized as follows. First, we briefly describe the Anscombe-Aumann setup
and the Gilboa—Schmeidler multiple priors model. In sections 3.1 and 3.2 we describe the
cognitive procedure underlying the a-maxmin expected utility representation and formulate
our main result (Theorem 3.2). In sections 3.3 and 3.4 we illustrate the result with sev-
eral examples and characterize a special case of maxmin expected utility suggested by our
procedural approach (Theorem 3.3). Finally, we axiomatize a fully endogenous a-maxmin
expected utility representation (Theorem 3.4).



2 SETUP

Anscombe-Aumann’s setup is employed throughout. Given are a set of deterministic out-
comes X and a set of states of the world S = {s, ...} equipped with an algebra of events .
A(S,Y) denotes the set of finitely additive probability measures on the measurable space
(S,Y). The set A(S,Y) is endowed with the weak* topology, that is the weakest topology
such that for every bounded and Y-measurable function b : S — R, the integration [bdm
is a continuous mapping from A(S,X) into R.

Probability distributions on X having finite support are called lotteries; the set of lot-
teries is written as £ = {l,... }. Prospects are modelled as acts — Y-measurable functions
mapping S into £ and having finite range. ? The set of acts is written as H = {f, g, h,... };
the collection of constant acts is identified with L.

Convex combinations, also called miztures, are well-defined in H. The act 7f + (1 —7)g
is defined for f,g € H and 7 € [0, 1] by

[T+ 1 =7)gl(s) = 7f(s) + (1 = 7)g(s)

for every s € S.
The decision maker’s weak preference relation > over 7 is taken as primitive along with
X, S and X. The following axioms are borrowed from Gilboa and Schmeidler [6].

Axiom (Weak Order). = is complete and transitive.
Axiom (Non-Degeneracy). There exist f,g € H such that f > g.

Act f weakly dominates act g, written f 2 g, if f(s) = g(s) for all s € S.
Axiom (Monotonicity). For all f,g € H, if f = g, then f = g.

Monotonicity embodies a form of state independence for the decision maker’s preference
over lotteries.

Axiom (Mixture Continuity). For all f,g,h € H, the sets {T :7f+ (1 —7)g > h} and
{r:7f+ (1 —7)g < h} are closed in [0, 1].

Axiom (Certainty Independence). For all f,g € H, 1l € L and 7 € (0,1),
frgerf+(Q-1l=719+(1—1)L

Thereby the preference > is assumed unaffected by mixtures with constant acts but not
necessarily by mixtures with non-constant acts. Note that Certainty Independence is weaker
than the standard independence axiom.

2Such acts are usually called simple to emphasize the fact that they have finite range. In this terminology,
all acts that we consider are simple.



Axiom (Independence). For all f,g,h € H and T € (0,1),
frgerf+(Q—1)h=19+ (1—1)h.

We say that > is regular if > satisfies Weak Order, Non-Degeneracy, Monotonicity,
Mixture Continuity and Certainty Independence.

Gilboa and Schmeidler obtain a maxmin expected utility representation for regular pref-
erence by imposing an additional condition.

Axiom (Ambiguity Aversion). For all f,g € H and 7 € (0,1), if f ~ g, then 7f + (1 —
T)g = f.

Intuitively, good and bad outcomes of f and g cancel out at least partially in the mixture
7f + (1 — 7)g. Hence, the ambiguity averse decision maker is modelled as having the weak
preference 7f + (1 — 7)g > f whenever she is indifferent between f and g.

Gilboa—Schmeidler Theorem. > is reqular and satisfies Ambiguity Aversion if and only
iof = is represented by

U(f) = min /u(f(s))dm (2.1)

where u : L — R is a non-constant affine function and M C A(S,X) is non-empty, convex
and closed. Moreover, u is unique up to a positive linear transformation and M is unique.

If Certainty Independence is replaced by Independence, then M is singleton above and
representation (2.1) reduces to expected utility.
To ensure uniqueness in the utility representations to follow, we employ

Axiom (Non-Independence). = does not satisfy Independence.

3 REPRESENTATION RESULTS

If the decision maker does not have comprehensive knowledge about the uncertain envi-
ronment (for example, does not know the precise composition of the urn in Ellsberg-type
experiments), then she may be unwilling to assign probabilities to all events and accordingly,
to assign expected utility to all acts. However, she still assigns expected utility to some acts;
we call such acts risky. In our model the decision maker identifies and ranks risky acts as a
first step of her ranking the entire domain 7. We describe the second step later, after we
obtain an expected utility representation over risky acts.

3.1 Exogenous Risk

We take the subdomain R = {r,...} of risky acts as exogenously given (in section 3.5, we
define R endogenously). We interpret R as the domain where the decision maker assigns
expected utility before ranking the entire H. This informal interpretation and affinity of
expected utility motivate the following formal conditions that we impose on R:



(R1) LCR
(R2) if r,r € R and 7 € [0,1], then 77+ (1 — 7)1 € R
(R3) ifre R, r" € H, 7€ (0,1) and 7r + (1 — 7)r' € R, then ' € R.

In other words, the modelled decision maker assigns expected utility to lotteries; also, when
possible she assigns expected utility via affinity.

Denote by =% the preference relation over R. Given conditions R1-3, all the axioms
formulated on the entire H are meaningful on the subdomain R as well. The following
expected utility representation result holds for > .

Lemma 3.1. If R satisfies conditions R1-3, then the following two statements are equiva-
lent.

1. =g satisfies Weak Order, Non-Degeneracy, Monotonicity, Mixture Continuity and
Independence.

2. =g 1s represented by
Ur(r) = /u(r(s)) dm (3.1)
where m € A(S,X) and the utility index u : £ — R is non-constant and affine.

Moreover, u is unique up to a positive linear transformation and the probability measures m
that permit representation (3.1) form a non-empty, closed and convex set, written Mgz.

This lemma provides an axiomatic model of expected utility on the subdomain R. If R
satisfies R1-3 and if either of the equivalent statements of the lemma holds for >%, then
the pair (R, =x) is called a risk profile.

It merits emphasis that the probability measure that supports expected utility for the
risk profile (R, >x) is not necessarily unique. For example, if R = £ and >, conforms to
expected utility, then any probability measure m € A(S,Y) permits representation (3.1),
and Mz = A(S,X). Of course, if R = H, then the measure in representation (3.1) is unique
and Lemma 3.1 reduces to the Anscombe—Aumann Theorem.

3.2 Partial Ignorance Axiom

Suppose that after obtaining the risk profile (R, >z), the decision maker ertends =z to
preference > on H (that is, > is required to coincide with =z on R). In this two-step
cognitive procedure, the risk profile (R, >z) serves as a formal description of the decision
maker’s a priori knowledge about the uncertain environment and of her risk attitude.

Suppose further that > is regular. Recall that regularity includes axioms of Monotonicity
and Certainty Independence. We now describe how the decision maker might go about using
these axioms and the risk profile (R, >=x) to arrive at the regular ranking > on the domain
H of all acts.



The lottery space L provides a natural scale to evaluate an arbitrary act f. Using
Monotonicity, the decision maker can conclude that f is strictly better than a lottery [,
if f =2 r, =g I, for some risky act r,.> Conversely, she can conclude that f is strictly
worse than [* if f < r* <g [* for some 7* € R. Combining Monotonicity and Certainty
Independence, the decision maker can arrive at more complex conclusions. We will say that
the risk profile (R, >x)

(A) locates a lottery I* above the act f if
Tf+A =7 =r" <g7l"+(1—7)l
for some 7 € (0,1],1 € £ and 7* € R;

(B) locates a lottery I, below the act f if
f+(Q—=—7)2Z2r. g7l +(1—71)I
for some 7 € (0,1],1 € £ and 7, € R.

There are no other situations when a strict preference between an act and a lottery is implied
by the risk profile (R, =), Monotonicity and Certainty Independence.

The “locating” observations may coincide for some acts f and g. We will say that the
risk profile (R, =) is uninformative for the comparison of f and g if for all [,,1* € L,

(R, =) locates I* above f < (R,»>gr) locates [* above g
(R,>r) locates I, below f < (R,>g) locates [, below g.

The following axiom characterizes the comparison of acts when (R, >x) is uninformative.

Axiom (Partial Ignorance outside (R, >r)). If the risk profile (R, =x) is uninformative
for the comparison of f and g, then f ~ g.

The axiom portrays the decision maker as conditioning her global preference on her ranking
of the subdomain R where she assigns expected utility. Arriving at >, she focuses exclusively
on the implications of Monotonicity, Certainty Independence and the risk profile (R, =z). If
there are no implications for the comparison of f and g, then she is indifferent between the
two. Such a procedure underlies a representation by a-maxmin expected utility as described
in our main result.

Theorem 3.2. Given a binary relation = and a risk profile (R,=x), the following two
statements are equivalent.

1. = is reqular and satisfies Partial Ignorance outside (R, > x).

3As L C R, the weak dominance relation > is well-defined given >r.



2. > 18 represented by

U(f) =« min /u(f(s))dm+(1 — ) max /u(f(s))dm (3.2)

meMp meMp
where u and My are delivered by Lemma 35.1.

Moreover, given Non-Independence, o is unique.

The theorem shows that Partial Ignorance outside (R,>x) leads to a-maxmin expected
utility representation 3.2 for regular preference >. In this representation, both the set of
measures Mz and the utility index u are determined by the exogenously given (R, >=x).
The set Mg consists of all probability measures that support expected utility for (R, >z)
(Lemma 3.1 asserts that Mz is non-empty, convex and closed). The affine utility index u
represents preference over £ C R.

3.3 Applications

Next we illustrate a-maxmin expected utility representation (3.2) via specializations of the
risk profile (R, =z).

Complete Ignorance

Let R = L. If > is regular, then (£, =) is a risk profile and M, = A(S,X). Theorem 3.2
asserts that > satisfies Partial Ignorance outside (£, > ) if and only if > can be represented
by Hurwicz’s a-maxmin utility

U(f) = aminu(f(s)) + (1 — a) maxu(f(s)),
ses seS
where a € [0, 1] and the utility index u is non-constant and affine.

The decision maker whose preference satisfies Partial Ignorance outside (£, >,) can be
interpreted as being completely ignorant about the uncertain environment, hence, assigning
expected utility only to constant acts. In the resulting a-maxmin expected utility represen-
tation, complete ignorance is reflected by the use of the universal set A(S, X) of “probabilistic
scenarios.”

Sharp Probabilities on a Subalgebra

Let ¥y C ¥ be a subalgebra endowed with a probability measure mg : £y — [0, 1] describing
all probabilities that are precisely known to the decision maker. Let R C H be the set of
Yo-measurable acts. It is intuitive that the decision maker assigns expected utility on R,
this expected utility being Uz (r) = [ u(r(s)) dmyg, with non-constant and affine utility index
u: L — R Then (R, >z) is a risk profile and by construction,

Mz =E(my) ={m € A(S,Y) : m(E) = mo(E) for all E € ¥y}.



B

Figure 1: Mg is determined by the known probability m(R) = 1/2

In other words, My consists of all probability measures that extend mg from ¥, to 2.
Theorem 3.2 asserts that, given Xy, mg and u, the following two statements are equivalent
for the corresponding (R, >%) and & (my).

1. »g is represented by Ug, > is regular and satisfies Partial Ignorance outside (R, > ).

2. » is represented by

U(f) =a min /u(f(s))dm+(1—a) max /u(f(s))dm

me&(mo) me&(mo)
for some « € [0, 1].

For example, consider an Ellsberg urn with three possible colors R, G and B. Suppose
that the decision maker is told only that the total number of balls in the urn is 100 and that
50 of them are red. Then % = {S,0, {R},{G, B}} and mo({R}) = m¢({G,B}) = 5. The
set £(my) of probability measures that extend my is illustrated by Figure 1.

Sharp Probabilities: General Case

In some situations the family of events where probabilities are known is not an algebra
(Zhang [13]). Consider an Ellsberg urn with four possible colors R, G, B and W (white).
Suppose the decision maker is told only that the total number of balls in the urn is 100, and
that R+ B = G+ B = 30, that is the combined number of red and blue balls or alternatively,
of green and blue balls is 30. Then the domain where probabilities are known is

T ={S,0,{R, B}, {G, B}, {G.W},{R,W}}.

[ is not an algebra because, for instance, {R, B} N {G,B} ={B} ¢ T.

To accommodate such situations, let I' C ¥ be a non-empty family of events and let a
function mg : T' — [0, 1] describe all probabilities known to the decision maker. Suppose
that mg can be extended to a probability measure m, € A(S,X). Denote by B the set



lifse F
l'ifs¢ E
assigns expected utility to every b € B, Ug(b) = mo(E)u(l) + (1 — mo(E))u(l'), where u is
non-constant and affine. Let R be the minimal subdomain that satisfies conditions R1-3
and contains B. Note that » € R if and only if

of all binary acts b(s) = [ } for E € T'. It is intuitive that the decision maker

Tor + (1 = 70) (11by + - - - + Tpby) = 7b) + - - + T,

for some binary acts b;,; € B and weights 7;, 7/ € [0, 1] such that 74 > 0, Yoo, =1and

Z?Zl T = 1.* Hence, the decision maker can assign expected utility to every r € R as

k n
1
j=1 i=1
Then m, supports expected utility on (R, > ) and (R, =) is a risk profile. By construction,
Mz =E(,mg) ={m € A(S,X) : m(E) = mg(F) for all E € T'}.

In other words, Mg consists of all probability measures that extend mg from I' to X.
Theorem 3.2 asserts that, given I', mq and u, the following two statements are equivalent
for the corresponding (R, >=%) and (T, my).

1. > is represented by Ug, > is regular and satisfies Partial Ignorance outside (R, >=z).

2. » is represented by

U(f)=a min /u(f(s))dm+(1—a) max /u(f(s))dm

mée&(T,mo) mée&(T',mo)
for some « € [0, 1].

Zhang [13] provides an alternative model of preference based on known probabilities my.
More precisely, Zhang employs the Savage setup and axiomatizes Choquet expected utility
with the capacity being the inner measure induced on ¥ by the function mg. In the four-color
example, his model predicts the indifference between $0 paid for sure and a hundred-dollar
bet that pays $100 if s = W and $0 otherwise. The indifference is implied by the fact that
the inner measure of event {W} is zero. As Zhang points out, this indifference is problematic
because the decision maker knows that there are at least 40 white balls in the urn.

Our utility representation eliminates this limitation of Zhang’s approach. Consider a-
maxmin expected utility representation with

E(T,mg) ={m € A(S,%) : m(R, B) = m(B,G) = 0.3}.

Let u($0) = 0. Then the utility of a hundred-dollar bet on W lies between 0.4u($100) (when
a = 1) and 0.7u($100) (when o = 0) and is definitely larger than zero. This improvement
becomes possible in the Anscombe-Aumann setup. In this setup, the decision maker can
use affinity to assign expected utility to acts that are not necessarily I'-measurable, hence,
making more accurate comparisons on the entire domain H.

4The proof of this statement is simple and is omitted.
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Sharp Conditional Probabilities

The decision maker’s a priori knowledge about the uncertain environment may take a more
complex form. For example, some conditional probabilities may be known to her. To
illustrate, consider an Ellsberg urn with three possible colors R, G and B. Suppose that the
decision maker is told only that B = G. Then the probability of B conditional on {G, B} is
known to be 1. At the same time all probabilities except the trivial m(S) = 1 and m(0) = 0
are imprecisely known.

To accommodate such situations, let © C ¥ x ¥ be an arbitrary collection of pairs of
events and let a function p : © — [0, 1] describe all the conditional probabilities known
to the decision maker. Suppose that p : © — [0,1] agrees with a probability measure
m, € A(S,X), that is for all (E,C) € O,

m.(ENC) = pu(E,C) -m,(C).

lifse ENC
Denote by 7 the collection of all ternary acts t(s) = [ I'if s€ C'\ E |, where (E,C) € O
"if s¢C
and p(E,C)l+ (1 — u(E,C))I' =1". In other words, every ¢t yields " if s ¢ C' and [” on
average if s € C. Here, the average is based on the known conditional probability u(E, C).
It is intuitive that the decision maker assigns expected utility u(t) = u(l") to every t € T.
Let R be the minimal subdomain that satisfies conditions R1-3 and contains 7. Thenr € R
if and only if

Tor + (1 — 70)(Tity + - + Tutn) = Tt] + -+ + T4l
i,t; € B and weights 7;, 7 € [0,1] such that 7o > 0, Y., 7; = 1 and

Z?Zl 7; = 1. Therefore, the decision maker can assign expected utility over R as

for some ternary acts ¢

Ur(r) = %(Z HUR(E) = 32 nUR (1)

Then m, supports expected utility on (R, >z) and (R, =) is a risk profile. By construction
Mr=E0O,n)={me A(S,X) :m(ENC) = puE,C)m(C) for all (E,C) € O}.

In other words, £(©, i) consists of all probability measures that agree with conditional
probabilities p(-) on ©.

Theorem 3.2 asserts that, given ©, p and u, the following two statements are equivalent
for the corresponding (R, >%) and £(O, u).

1. > is represented by Ug, > is regular and satisfies Partial Ignorance outside (R, >=z).

2. » is represented by

U(f)=a min /u(f(s))dm—i—(l—a) max /u(f(s))dm

meE(O,u) meE(O,u)

for some a € [0, 1].

11



m:m(B)=1/2m(G,B)

G B

Figure 2: Mgz is determined by the probability of { B} conditional on {G, B}.

In the three-color example, where the decision maker is told only that R = B, let
© = {({G}.{G,B})} and u({G},{G, B}) = 1. Figure 2 illustrates the set of measures that
agree with u(-) on ©.

3.4 Back to Maxmin Expected Utility

A version of the Partial Ignorance axiom describes a more conservative approach that the
decision maker might take to extend her preference from risky acts to the entire domain.
If taking this approach, she is unwilling to express a strict preference in a broader class of
situations than prescribed by Partial Ignorance.

We say that the risk profile (R, =) is semi-uninformative for the comparison of acts f
and g if for all [, € L,

(R, >r) locates I, below f < (R,>xr) locates [, below g.

Of course, if the risk profile (R, >%) is uninformative for the comparison of f and g, then
(R, >r) is also semi-uninformative for that comparison.

Axiom (Pessimism outside (R, >r)). If the risk profile (R, >=x) is semi-uninformative
for the comparison of f and g, then f ~ g.

The Pessimism axiom strengthens Partial Ignorance. The Pessimism axiom models a deci-
sion maker who focuses on “locating from below” observations and attaches no significance
to “locating from above.” The Pessimism axiom underlies a representation by a special case
of maxmin expected utility.

Theorem 3.3. Given a binary relation = and a risk profile (R,>x), the following two
statements are equivalent.

1. = is reqular and satisfies Pessimism outside (R, >x).

12



2. > 18 represented by

U(f) = min /u(f(s)) dm (3.3)

meMp

where u and My are delivered by Lemma 3.1.

Thus, if > is regular, then Pessimism outside (R, >x) strengthens Ambiguity Aversion.
The set Mg in the resulting maxmin expected utility representation is determined by the
risk profile (R, >%). Two examples are: i) M = &£(I',mq) consists of all extensions of
probabilities mg(-) given on a class I' C 3; (ii) M = £(O, u) consists of all “extensions” of
conditional probabilities y(-) given on a class © C ¥ x X.

3.5 Endogenized Risk

Theorem 3.2 takes the risk profile (R, >%) as given. The exogenous formulation is natural
in applications where (R, >x) is derived from objectively given information but not in
situations where the decision maker assigns expected utility subjectively. In this section we
show how the risk profile underlying a-maxmin expected utility representation (3.2) can be
obtained endogenously.

An act r € H is called endogenously risky if for all f,g € H and 7 € (0,1),

frg © 1f+Q-7m)r=19+1—1)r.

In other words, r is endogenously risky if the invariance required by the Independence Axiom
holds for mixtures with 7. For example, Certainty Independence requires that constant acts
be endogenously risky. Denote by R. the collection of all endogenously risky acts.

Theorem 3.4. If = is reqular, then (Re, =x,) is a risk profile and the following statements
are equivalent.

1. = satisfies Partial Ignorance outside (R, >r) for some risk profile (R, =x).
2. = satisfies Partial Ignorance outside (R, >x.).

3. > 1is represented by

U(f) = a min /u(f(s))dm+(1—a) max /u(f(s))dm (3.4)

mGMRe mEMRe
where u and My, are delivered by Lemma 3.1.

Moreover, R C R, whenever Partial Ignorance outside (R, >x) holds. Given Non-Indepen-
dence, the weight o in utility representation (3.2) is independent of the underlying risk profile

13



Theorem 3.4 shows that if there is at least one risk profile (R, > %) for which Partial Ignorance
holds (and generally, there may be many), then Partial Ignorance must hold also for the
endogenous risk profile (R., >r.). Moreover, the endogenous risk profile is the largest one
for which this axiom holds. In other words, according to the two-step cognitive procedure
described by Partial Ignorance, R, is the largest subdomain where the decision maker can
assign expected utility in the first step.

Theorem 3.4 also establishes that even though the modeler usually has freedom in choos-
ing the risk profile (R,>xz) to obtain an a-maxmin expected utility representation, the
weight « in the representation is independent of (R, >x). Therefore, o is uniquely deter-
mined by the preference > and can be interpreted as the decision maker’s ambiguity index.
However, this interpretation is based only on the a-maxmin expected utility that represents
>. Whether the index a has any direct behavioral implications is an open question.

4 CONCLUDING REMARKS

We axiomatize a new model of utility that uses a set of priors M and evaluates each act by a
mixture of the most and the least favorable elements in M. The a-maxmin expected utility
representation reflects a two-step cognitive procedure: the first step is ranking risky acts via
expected utility; the second step is described by the Partial Ignorance axiom. According
to Partial Ignorance, the decision maker focuses exclusively on the implications of Mono-
tonicity, Certainty Independence and her initial risk profile (R, >%) to arrive at her global
preference. The set of priors in the resulting a-maxmin expected utility representation is
tightly associated with the underlying risk profile. Two examples are: i) M = E(T',my)
consists of all extensions of probabilities mq(:) given on a class I' C ¥; (ii) M = £(O, p)
consists of all “extensions” of conditional probabilities y(-) given on a class © C ¥ x X. The
modeler may have freedom in choosing the risk profile (R, %) to interpret preference > via
Partial Ignorance. We show that the largest such (R, >z ) has a simple subjective definition.

Our model fails to accommodate some situations when information is given by inequali-
ties. Consider an Ellsberg urn with two possible colors R and G. Suppose that the decision
maker is told only that there are 100 balls in the urn and at least 60 of them are red. Unless
the decision maker is willing to assign sharp subjective probabilities, she can assign expected
utility only to lotteries. Partial Ignorance outside (L, >.) leads to the complete ignorance
a-maxmin representation. This representation ignores the fact that there are strictly more
red than green balls in the urn. Roughly, our model fails because the decision maker is not
ignorant outside the domain where she assigns expected utility.
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A APPENDIX: PROOFS

Extension Lemma

Denote by Bs; = {a,b,...} the linear space of ¥-measurable functions b : S — R having
finite range. For every E € 3, denote by Iy the indicator function

Ip(s) = [(1) EZ ; g] .

In particular, Ig(s) =1 for all s € S. For a,b € B, write a < b if a(s) < b(s) for all s € S.
A function V' is called monotonic if a < b implies V(a) < V (b) .

Function V' : By — R is linear, monotonic and satisfies V' (Ig) = 1 if and only if there
is a probability measure m € A(S,X) such that V(b) = [bdm for all b € By. Such m is
uniquely defined as m(E) = V(Ig) for all E € X.

Lemma. Let By be a linear subspace of Bs such that Is € By. Let Vo : By — R be a
monotonic linear function satisfying Vo(Is) = 1. Then the set of probability measures

My ={me A(S,X): /bg dm = Vy(bo) for all by € By}
s non-empty, convex and closed. Moreover, for all a € By,

min /adm: sup  Vo(bo)

meMo bo€Bo:b<a

max /adm: inf  Vo(by).

meMg bOEBo:boza
Proof. Fix a ¢ By. As V} is monotonic and Vy(Ig) = 1, for all by € By,

by < a = Vo(by) < max a(s)
sE

by = a = Vy(by) > miél a(s).
se
Therefore, the values V(a) = supy,epyp<q Vo(bo) and V(a) = infyepyp>q Volbo) are well-
defined and V (a) < V(a).
Denote by B, the linear space of functions {by + va : by € By, € R}. Fix an arbitrary
value v, € [V (a),V(a)] and define V, on B, as

Va(b(] + ’70’) = Vb(bﬂ) =+ YVa

for all by and . Such V, is linear. The following argument shows that V/, is also monotonic.
Suppose that by + ya 2 by + 7'a for some by, by € By and v,7" € R. There are three
possible cases:
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e v =7/, implying by = bj. Then V;(by) > Vi (by) and Vi(bo) + yva > Vo(by) + 7 va.

e v >+, implying a = ° % e By.
Then v, > V(a) > Vp (” ‘;’?) and Vo(bo) + yva > Vo(bg) + 7'va.

o v <9, implyingaﬁbi;b&GB.
Then v, < V(a) < Vp <b° (fy) and Vo (bo) + yv, > Vo(by) + v,

Thus, V,(by + va) > V,(by + +'a) and V, is monotonic on B,.

By Zorn’s Lemma, there exists a linear monotonic extension V' of Vj to a maximal linear
subspace in B;. We have shown that this maximal subspace cannot be a proper subset of B;.
Hence, V' is an extension to the entire By. As V(Ig) = Vy(Is) = 1, there exists m € A(S,X)
such that V(b) = [bdm for all b € B,. Therefore, M, is not empty. Convexity of M,
is obvious. Finally Mj is closed as an intersection of closed sets of probability measures:
My = ﬂboeBO{m S A S, E fbg dm = Vb(bo)}

To show equahtles (A.1), note that for any a € By, v, can be taken equal to V (a) and
V' taken to be an extension of V, so that V(a) = V(a). On the other hand, for all m € M,
and by € By such that by < a, [adm > [bydm = Vy(by). Thus, min,erq, [ adm > V(a).
The second equality is proven analogously. O

A.1 Proof of Lemma 3.1

The Anscombe—Aumann Theorem implies the necessity part in the lemma.

Suppose that R C H satisfies conditions R1-3 and that that »5 satisfies Weak Order,
Non-Degeneracy, Monotonicity, Mixture Continuity and Independence. Denote by u : £ —
R a non-constant, affine utility function representing > (by the von Neumann - Morgenstern
Theorem, such u exists and is unique up to a positive linear transformation). Without loss
of generality, u is fixed throughout so that its range contains the interval [—1,1]. Also, fix
a lottery Iy such that u(ly) = 0.

Denote by ez : R — L a function attaching a certainty equivalent er(r) ~ r to every
r € R (Weak Order, Monotonicity and Mixture Continuity are sufficient for existence of
certainty equivalents). Then >z is represented by

Ur(r) = u(er(r).)

Affinity of v and Independence imply affinity of Uz.
Denote by Bg the set of u—images of elements of R:

Br={beBs;: b=uormry, r, € R},
and by L(Bg) the linear hull of Bg in By:

L(BR):{bGBs5b:Z%bi, i=1...n, v, € R b € Br}.
i=1

16



The utility function Ug extends to a unique linear function Vz on L(Bg).

Lemma A.1. There exists a unique linear function Vg on L(Bg) such that Vg (uor) = Ug(r)
for all r € R. Moreover, Vg is monotonic and satisfies Vx(Is) = 1.
Proof. Fix b € L(Bgr) and fix corresponding v; € R, b, € Bg and r; € R such that
b=> " vbiand b =uor;foralli=1...n

Suppose that b = 0. Then Y " | v;b; 2 0 can be rewritten as

n n
Z%‘eri =z ZW{bi,

where ;" = max(v;,0) and v, = max(—~;,0). Choose v > 0 such that |yy;| < 1 for all i.
Then

n

Z (777 >Z (v b

i=1
Let ;" =y ri + (1 — ")l and r; = v, 7, + (1 — ;) for all 4. Let r* = Lrf i and
r~ = +r;. Condition R2 implies that r;",r; 7%, 7~ € R. Then u(r*(s)) > u(r=(s)) for all
s implying r* 2 r=, 7" =g r~ and Ug(r*) > Ur(r~). By affinity of Ug,

"1 "1
Z EV’Y;FUR(W) > Z 57% Ur(rs).
=1 =1

Note that v; = 7" — 7, for all i. Therefore, Y i Ugr(r;) > 0.
Define

= Z%UR(W), (A.2)

Such Vz is Well defined. To see this, suppose that b is represented as another linear combi-
nation b = 21 L 740, where b, = wor} for r; € R. Then

Z’%b _Z’% i = S

implies that 3.7, vUr (r;) — 32, AU (r}) > (<)0. Therefore,

Z%b = Z’y'b'.

Next, Vz is linear, monotonic, and VR(IS) = UR(Z) = 1, where [ € L is such that u(l) = 1.
Finally, definition of Vz implies that Vz is the unique possible linear function on L(Bg)
that extends Uxr from Bg. ]

Ranking > is represented by [wordm if and only if [uwordm = Ug(r) for allr € R
(because Ug is the only utility representation of »% that agrees with ). This is if and only
if [bdm = Vr(b) for all b € L(Bg) because [bdm is linear and, by Lemma A.1, Vx is the
unique linear extension of Uz to L(Bg). By the Extension Lemma, measures m that satisfy
[ bdm = Vg (b) for all b € L(Bg) form a non-empty, closed and convex set Mz C A(S,X).
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A.2 Proofs of Theorems 3.2 and 3.3
Let (R,>x) be a risk profile. Define functions U and U on H as

U(fy= sap  Vr(b)
beL(BRr):bSuof
U(f) = inf  Vgz(b).

beL(BR):b>uof

The Extension Lemma asserts that for all f € H,

U(H)= min [ (o) dm

meMxp

U(f) = max /(uof) dm.

meEMp

(A.3)

To prove a-maxmin expected utility representation (3.2), we show that > is represented

U(f) = alU(f) + (1 = )U(f).

Define functions [ : H — £ and [ : 1 — £ such that U(f) = u(l(f)) and U(f) = u(I(f)) for
all f € H. For example, I(f) and I(f) can be taken to be mixtures of the worst and best
lotteries [y, and l,qzin the range of f (obviously, u(lmin) < U(f) < U(f) < u(lmaz))-

The functions U and U satisfy the following properties.

Property 1. Forallr € R, U(r) = U(r) = Ug(r) because [uordm = Ug(r) for allm € Mxz.
In particular, for all [ € £, U(l) = U(1) = u(l).

Property 2. For all f,g € H and 7 € [0, 1],

For example, the first inequality follows from

min [(we )+ (0= uog) dn >
+ min /(uof)dm+(1—7) min /(uog)dm.

meMxg meMz
In particular, for all f € H, r € R and 7 € [0, 1],
TU(f)+ (1 —7)U(r) =7
tU(f)+(1-7)U(r)="7

Property 3. For all f,g € H, the functions U(7f + (1 — 7)g) and U(7f + (1 — 7)g) are
continuous in the weight 7 € [0,1].

U(rf+@—m)r)
U(tf+ (1 —1)r)

~—
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Property 4. U(f) = aU(f) + (1 — a)U(f) represents a regular preference.
The following technical lemma employs condition R3 that we impose on R.

Lemma A.2.

1. For every b € By there exist b’ € Bg and 7 € (0,1) such that 70+ (1 — 7)0' = 0.
2. For every b € L(Bg) there exists € € (0,1) such that eb € Bg.

Proof. Fix b € By together with r, € R such that b = wor,. Act r, can be written as
ry = [l;if s € E;]",, where {E;,...,E,} is a partition of the state space S. Let 1’ =
[Z Llj if s € EZ]?:l Then

J#t n—1

By condition R3, " € R. As the range u(L) is taken to contain the interval [—1, 1], there
exist [ € £ and v € (0,1) such that vu (37, 14,) + (1 — y)u(l) = 0. It follows that

i=1n
b+ (1 —7)b' =0, where 7 = T and ' = uo (751":71)7“’ + "S:J)l) belongs to Bg.

Next, fix b € L(Bg) and fix 7; € R and b; € Bg such that b =Y | v;b;. Without loss
of generality ~;’s can be assumed non-negative for all i: if 7; < 0, then the member v;b; can
be replaced by —v;2=7b., where b; € Bg and 7 € (0, 1) satisfy 7b; + (1 — 7)b, = 0. Choose
e > 0 small enough so that envy; < 1 for all i. Then eb = >""_, L(enyb;). Thus,

i=1ln

eb=wo (Z(sn%rbi +(1- sn%)lg))

=1

implying b € By. O

The following lemma characterizes “locating observations” in terms of U and U.
Lemma A.3.

1. (R,>x) locates L, below f if and only if u(l.) < U(f).

2. (R, =r) locates I* above f if and only if u(l*) > U(f).
Proof. Suppose that (R, >x) locates [, below f, that is

f+(A=7)2r. =g 7l + (1 —=71)l
for some 7 € (0,1], 1 € £ and r, € R. Ranking r, >% 7l + (1 — 7)l implies
Ur(ry) > Ug(tl, + (1 = 7)1)
Vr(wor,) > Vg(uo (7l + (1 — 7))

Vi (1((u or) — (1—7)(uo 1))> > u(l,).

T
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Then the weak dominance 7f + (1 — 7)r, implies
vo(rf+(1—7)) 2uor,

wo f > %((uor*) (1 —r)(uol)) =be L(Bx).
U(7) 2 Valh) = Vi (H((wor) = (1= D)o D)) > ult),

Conversely, suppose that u(l.) < U(f), that is u(l,) = Vr(u o l.) < Vg(b) for some
b € L(Bg) satisfying b < wo f. Choose 7 € (0,1) so that 7b € Bg and take 7., € R such
that 76 = uwor,,. Note that b < wo f implies 76 < wo (7 f+(1—7)lp) and 7 < 7f+(1—7)lp.
Therefore,

Vr(uo (1l + (1 — 7)ly) < V(1)
U’R(Tl* + (1 — T)lo) < UR(TTIJ)
T+ (1= 7)o =g 1oy S 7f + (1 = 7)lo.

Thus, (R, =x) locates [, below f.
The second statement of the lemma is proven analogously. O

The lemma implies that the risk profile (R, >x) is uninformative for the comparison
of acts f and if and only if both U(f) = U(g) and U(f) = U(g). In particular, if >
is represented by U(f) = aU(f) + (1 — a)U(f), then = is regular and satisfies Partial
Ignorance outside (R, =r).

Conversely, suppose that > is regular and satisfies Partial Ignorance outside (R, >x).
Let e : H — L attach a certainty equivalent e(f) ~ f to every f € H. Let U(f) = u(e(f))

for all f € H. Then U represents =, and for all f € H, [l € L and 7 € [0, 1],
Urf+ 1 —=1))=ule(rf+ (1 —=71))) =ulre(f)+ (1 —71)l) =7U(f) + (1 — 7)u(l).

For all f € H,
U(f) <U(f) <U(f).
To prove these bounding inequalities, suppose that U(f) < U(f). Then (R, >x) locates
e(f) below f, that is
Tf+ (1 —=7) 271> 1e(f)+ (1 —71)l

for some 7 € (0,1], I € £ and r, € R. Monotonicity and Certainty Independence imply
f > e(f) which contradicts f ~ e(f).
To complete the proof of Theorem 3.2, consider two cases. First, suppose that for all
f € H, U(F) = U(f). Then U(f) = U(f) = U(f) and U(f) = al(f) + (1 — a)T(f) for any
a € [0,1]. In this case, > satisfies Independence because U is affine. For all f, g € H and
7 € [0,1], inequalities (A.4) imply
TU(f)+ (1 =n)U(g) =7U(f) + (1 =n)U(g) <U(rf+ (1 = 7)g) <

TU(f) + (1 =7)U(g) = 7U(f) + (1 = 7)U(9),
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and U(7f+(1—7)g) =U(rf+(1—7)g) = 7U(f)+(1—7)U(g). Therefore, Non-Independence
rules out this case. B
Given Non-Independence, fix f € H such that U(f) < U(f). Define

_T()-UW)

U(f)—U(f)

Fix an arbitrary g € . Choose T € [0,1) so that 7U(f)+(1—7)U(g) = TU(f)+(1—7)U(g).
Such 7 is uniquely determined by = = g((%:%g?) Let h = 7f + (1 — 7)l(g) and ' =
7I(f) + (1 —7)g, where u(l(f)) = U(f) and u(I(f)) = U(f). Then (R, >=z) is uninformative

for the comparison of h and h' because
U(h) =7U(f) + (1 =7)U(g) = U(N)
U(h) =1U(f) + (1 —1)U(g) = 7U(f) + (1 —7)U(g) = U(K).

Partial Ignorance outside (R, >x) implies that h ~ h’ and consequently, U(h) = U(h'). It
follows that

TU(f) + (1 -7n)U

(9
Ulg) = T (U(f) = U(f) +
Ulg) = all

) =7U(f) + (1 =7)U(9)
Ulg) = (1 —a)(U(g) — Ulg)) + U(g)
(9)+ (1= a)U(g).

In the resulting a-maxmin expected utility representation, « is uniquely determined by the
equality U(f) = aU(f) + (1 — a)U(f).

The proof of Theorem 3.2 is complete.

When Pessimism outside (R, >z) holds, like in Theorem 3.3, Lemma A.3 implies that
f ~ g whenever U(f) ~ U(g). It follows that

fzgeelf) zelg) & Ule(f)) = Ulelg) < U(f) = Ulg)
that is U represents ».

A.3 Proof of Theorem 3.4

First, we prove that if > is regular, than (R., >=x_) is a risk profile. R, satisfies R1 because
Certainty Independence implies that £ C R.. Second, suppose that r € R, and ' € R..
Fix arbitrary 7,& € (0,1). Let =1— (1 —&)7 and v = 17(1575)7 = 11:((11:5)7. Both 3 and ~
belong to (0,1). Then

frgevf+Q-—9r'=yg+Q-7)r'e
BAf+A =)+ (1 =B)r=Brg+ A=)+ (1~ p)r <
3 1-p5  B=DBv, 3 1-p5  B=5B7,
Byf+(1 57)(1_MT+1 5" ) = Byg+ (1= B)(5 5t T r') <
£f+(1—£)(77“+(1—7)7")t£g+(1—€)(ﬂ"+(1—7)7")-
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It follows that R. satisfies R2.
Suppose that 77 + (1 — 7)r’ € R, where r € R,, ' € H and 7 € (0,1). Fix arbitrary
_ 1-7 _ (1-7)
Y € (0,1) Let /6 = m and § = 17—777 Then

frgeff+0=r+Q-1)") =+ 1=+ (1 -7)") =
BYf+ L=y )+ 1 =B)r=Bhg+L—y)r")+(1-pF)re
A=) =yg+ (1 =)

Thus, ' € R, and R, satisfies R3.

The preference >z inherits Weak Order, Mixture Continuity and Monotonicity from >,
and satisfies Independence by definition of endogenously risky acts.

Next, we prove that if Partial Ignorance outside (R, >%) holds, then R C R.. Utility
representation (3.2) and equation (A.5) imply for all f € H,r € R and 7 € (0, 1],

Urf+0-7)r)=al(rf+ 1 -7)r)+ (1 -)U(rf+(1—1)r) =
T(U(f) + (1 = )U(f)) + (1 =7)U(r) = 7U(f) + (1 = 7)U(7).
If Partial Ignorance holds for the smaller profile (R, >%), then it also holds for the larger
profile (R, =x.). The equivalence of all three statements in Theorem 3.4 follows.

Finally, we prove that given Non-Independence, « in representations (3.2) is independent
of (R,=x). Fix (R, >=x) such that Partial Ignorance outside (R, >%) holds and let « be
the unique ambiguity index in corresponding representation (3.2). Let «, be the unique
ambiguity index in representation (3.4) based on the endogenous risk profile (R., >%,). We
prove that o = a,: it will follow that « is independent of (R, =x).

Suppose first that o # 1. Then r € R, if and only if U(r) = U(r). Therefore [rdm
represents >~ if and only if it represents =%,. It follows that M, = Mz, and a = «..

Suppose that a = L. Fix arbitrary f € H and choose f' € H and 7 € (0,1) so that
uo (rf+ (1 —7)f) =0. Then a = 1 implies TU(f) + (1 — 7)U(f’) = 0. It follows that
. = 3 as well because otherwise TU(f) + (1 — 7)U(f") # 0 whenever U(f) < U(f).
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