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1 Introduction

In a seminal paper, Kreps (1979) showed that a preference for flexibility implies that an agent

acts as if she possesses an endogenous state space. For example, if a menu from which the

agent will later consume, {a, b}, is strictly preferred to both the menu {a} and the menu {b},

Kreps demonstrates, under parsimonious assumptions on preference over choice sets, that

the agent has a utility representation that suggests an endogenous state space of possible

future tastes. Specifically, Kreps derives a representation for preference over subsets of a

finite space of prospects, X, with the following structure:

x � y ⇔
∑
s∈S

max
d∈x

U(s, d) >
∑
s∈S

max
d∈y

U(s, d)

x and y are menus (subsets of X), S is an index set derived endogenously, and for each

s ∈ S, U(s, d) is a real-valued function over X. The existence of the index set, S (i.e.,

the set of utility functions), is interpreted as an endogenous state space of tastes. This

space, unfortunately, is not unique and the formulation is not normative. In particular, the

theory does not rule out the possibility that the agent simply prefers choice sets with higher

cardinality regardless of their content, thus no connection is made to eventual choice from

menus or to future preference over the constituents of menus. Moreover, there are many

equivalent utility representations that specify different index sets. These, in general, take

the form:

U(x) = u
(
max
d∈x

U(1, d), max
d∈x

U(2, d), . . . max
d∈x

U(S, d)
)

where u is increasing in all its arguments (it can be viewed as an aggregator of future

utilities). Dekel, Lipman and Rustichini (2001) show that the state space can be essentially

pinned down by considering menus containing lotteries over X and insisting that an agent is

indifferent between a menu and its convex hull. The latter assumption leads to aggregated

U(s, d)’s (or ex-post utilities) that are expected utility functionals. Although alternative

representations exist, a state space of future expected utility tastes has a weakly smaller

cardinality than any other representation whenever U(x) is monotonically increasing in the

expected utility functionals.

Both Kreps (1979, 1992) and Dekel, Lipman and Rustichini (2001) describe a setting
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where choice is essentially static. The agent chooses among menus, uncertainty over her

subjective states is assumed to resolve and then the agent selects from the menu. However,

there is no explicit modeling of ex-post choice and no role for consistency between realized

tastes and tastes inferred from ex-ante preferences - the theories are essentially static.1 One

reason that an inter-temporal theory of unforeseen contingencies is viewed as ‘problematic’

is due to the interpretation of the rankings that appear in the representation (i.e., the

U(s, d)’s) as endogenous states: in an inter-temporal setting one would like to establish

that the rankings are ex-post justified, or at the very least to impose a connection between

the states and ex-post choice. Ideally, one would like to establish that the agent’s ex-post

ranking is actually one of the U(s, d)’s. A ‘simple’ way to achieve this is to explicitly impose

an axiom stating that the agent’s ex-post ranking is one of the utility functions that appears

in the ex-ante representation. This, however, is completely unsatisfactory: axioms must be

imposed directly on agents’ choice behavior and not on the mathematical representation of

their behavior. Aside from the tautological approach, it is not easy to conceive of a way to

directly tie the U(s, d)’s to realized ex-post rankings. The goal of this paper is to study and

address this problem.

To understand how we confront these issues, consider the top decision tree in Figure

1. Squares (circles) denote a decision (nature) node, the zi,j’s correspond to date i payoffs

in state j, while the xi,j’s to date i menus in state j. Assume that at date 0 the agent

agrees to commit to the lottery awarding z2,9 or z2,10 in the (future) choice node x1,2, but

refuses to commit to any one of the top two lotteries coming out of x1,1. One can represent

this situation with the bottom tree of Figure 1: the agent ‘eliminates’ future dominated

choice branches, and turns choice nodes in which flexiblity is valued into endogenous state

nodes (bold circle around x1,1). Branches coming out of the bold circle represent unforeseen

contingencies which may impact the agent’s tastes. Alternatively, the same branches can

be interpreted as the Pareto frontier of the set x1,1 generated by the possible tastes at date

1. Time consistency requires that the agent, at date 1, select something from the Pareto

1By contrast, a relationship between ex-ante and ex-post is important in Gul and Pessendorfer (2001). Their goal, however,

is to model self-control problems while we only focus on unforeseen contingencies and preference for flexibility. Consequently

their representation includes the negative weighting of some future tastes while ours is almost everywhere strictly positive.
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Figure 1: Turning a choice node into an endogenous-states node.
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frontier inferred by the date 0 preferences (i.e., she should not ex-post select something that

she was willing to give up ex-ante). Note two important observations:

1. The presence of endogenous states and their number depends on date 0 preferences and

not on the date 0 representation of preferences.

2. To achieve consistency with the inferred states, it is not necessary to explcitly specify

ex-post rankings. Instead, it is sufficient to demand that whatever the realized ex-post

ranking, it must be consistent with the Pareto frontier (i.e., branches coming out of the

converted node) inferred earlier.

Part of the novelty of our analysis consists of a generalization of the above intuition to

a representation-free definition of an endogenous state space. Our definition guarantees

uniqueness (though not always existence) and is homeomorphic to the endogenous state

space of Dekel, Lipman and Rustichini (2001) under fairly general conditions. Moreover,

by abstracting away from a representation, we avoid having to associate endogenous states

with ex-post rankings. Instead, states are directly associated with elements of ex-ante Pareto

frontiers - elements of a menu, up to indifference, to which the agent assigns ex-ante flexibility

value. Time consistency and a preference for flexibility is achieved by demanding that ex-

post choice must be from the ex-ante Pareto frontier. Thus we do not require realized ex-post

rankings to coincide with any one ranking appearing in the representation of ex-ante choice.

Our main arguments and contributions are as follows:

i) The assumptions we make weaken those of the standard recursive utility theory of

Kreps and Porteus (1978). We start by postulating that the agent’s realized date-t

ranking of temporal trees (such as the tree in Figure 1) is a completion of some partial

ordering, �P
t ; the sequence of partial orderings, indexed by the date, limits the set of

possible revealed rankings. Each of the partial orderings obeys a transitivity, continuity

and independence axiom, thus our point of departure from Kreps and Porteus (1978)

consists of, first and foremost, relaxing their completeness axiom. The independence

axiom implies that each �P
t is the intersection of a set of von Neumann-Morgenstern

(expected utility) preferences. We denote the associated set of date-t von Neumann-
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Morgenstern utility functions as Ψt. Revealed preference must be some function of

expected utility functions from Ψt, and the ex-ante Pareto frontier of a date t menu is

generated by the closed convex hull of Ψt.

ii) By imposing a time consistency condition that ties ex-post choice to the ex-ante Pareto

frontier, we show that each of the von Neumann-Morgenstern functions in Ψt exhibits

a preference for flexibility analogous to the ordinal EU form derived in Dekel, Lipman

and Rustichini (2001).2 Specifically, any element of Ψt positively aggregates the optimal

expected utilities from the closed convex hull of the set Ψt+1. This property is passed

down to revealed preferences.

iii) We demonstrate that the sequence of partial orderings, {�P
s }s>t, can be inferred from

revealed preferences at date t. This is a consequence of time consistency and ultimately

justifies the imposition of behavioral axioms on {�P
s }s>t.

iv) We formalize the notion of ‘transforming choice nodes into endogenous state nodes’ illus-

trated earlier and in Figure 1. Roughly, we define a topological endogenous state space

as the set of indifference classes that cannot be deleted from a menu with ‘maximal’

flexibility without causing welfare loss. In contrast with the literature on preference for

flexibility, such a state space derives from preference primitives and not the utility rep-

resentation used. More importantly, representation independence allows us to sensibly

refer to ‘topological uniqueness’. We provide conditions under which it is meaningful

to view the closed convex hull of Ψt as a topologically unique endogenous state space.

This refines the uniqueness results of Dekel, Lipman and Rustichini (2001).

The benefit or utility that a decision-maker may derive from having flexibility is the

subject of research for the social choice and welfare literature as well as that on unfore-

seen contingencies. Notable references not already mentioned include Bossert, Pattanaik

and Xu (1994), Pattanaik and Xu (1998), Puppe (1995, 1996), Nehring and Puppe (1996,

1999), Bossert (1997), Nehring (1999), Ozdenoren (2002) and Al-Najjar, Ozdenoren and

2As in Dekel, Lipman and Rustichini (2001), we also require that the agent is free to use mixing strategies when choosing

from a choice set.
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Casadesus-Masanell (2001).3 Puppe (1995), in particular, notes that preference for flexibil-

ity is intimately related to discontinuous and/or partial orderings over singleton choice sets.

If one wishes to derive a preference ordering over choice sets that exhibits a preference for

flexibility from a more primitive ordering on individual prospects, then the inducing ordering

must be either discontinuous or incomplete. If one wishes to retain continuity, the implica-

tion is that a normative theory of changing tastes must arise from primitives that partially

order the set of future prospects. This last point forms the basis of our theory.

Preference for flexibility, although implicitly appealing to inter-temporal considera-

tions, has been divorced from the literature on inter-temporal choice. In the latter, preference

for the timing of resolution of risk and uncertainty has been a much discussed subject in

recent economic and decision theoretic literature.4 To frame a context for our contribution,

we note that our axiomatization of preferences corresponds to recursive utility where the

agent exhibits preferences for the timing of resolution of both risk and choice. In particular,

when an agent possesses a preference for flexibility she may wish to ‘defer’ choice nodes.

Although an aversion to flexibility (i.e., strict preference for commitment) makes intuitive

sense in some contexts, such behavior is precluded from our theory because of our insistence

on dynamic consistency.5

Finally, we note that partial orderings play an important role in the social choice and

decision theory literature. For instance, Aumann (1962) and Bewley (1986, 1987) are seminal

references in considering partial orderings in decision theory and economics, while more

recent work relevant to our discussion includes Mitra and Ok (2000), Dubra and Ok (2000),

Ok (2000) and especially Baucells and Shapley (1998), Dubra, Maccheroni and Ok (2001)

and Sagi (2000). Other related references include Levi (1980) and Seidenfeld, Schervish and

Kadane (1995).

Although the agents in this paper generally have a ‘utility for flexibility’, the repre-

3Of these references, Nehring (1999) and Ozdenoren (2001) are the closest in spirit to our work. These also axiomatize static

representations for a preference for flexibility. Al-Najjar, Ozdenoren and Casadesus-Masanell (2001) relates the presence of a

preference for flexibility to the existence of ‘complexity’ in decision making.
4Such as in Kreps and Porteus (1978, 1979), Chew and Epstein (1989, 1991), Epstein and Zin (1989) Machina (1989), Grant,

Kajii and Polak (1998, 2000ab), and Skiadas (1997, 1998).
5For an axiomatic approach to aversion to flexibility, see Gul and Pesendorfer (2000, 2002ab). Their work is set in the

context of self-control problems as opposed to unforeseen contingencies.
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sentation of inter-temporal preference need not involve a positive linear weighting of future

tastes as in Kreps (1979) and Nehring (1999). In particular, the representation does not re-

quire a probabilistically sophisticated approach to the uncertainty surrounding future tastes.

This is a desirable feature, since it allows one to model Knightian uncertainty over future

tastes (i.e., referring to subjective states without reference to subjective probability). We

provide necessary and sufficient conditions for an additive representation as well as multi-

prior (or maxmin) representation.

The rest of the paper is organized as follows. Section 2 introduces the basic axioms

and concepts, and derives the main results on preference for flexibility. Section 3 presents

a definition of a subjective state space motivated by local properties of preferences, as op-

posed to the representation of those preferences; it also provides a uniqueness result for the

subjective state space and its associated topology. Before concluding, we present axioms for

additive and maxmin representations.

2 Theory

2.1 Formulation of the Choice Problem and Agents’ Preferences

We use the temporal-lottery framework of Kreps and Porteus (1978). Intuitively, an inter-

temporal decision problem is a temporal lottery (such as the one in Figure 1) where, following

a nature node, the agent receives an allotment for consumption (zt,j’s in Figure 1) plus a

choice set (xt+1,j - the boxes in Figure 1) of probability distributions (dt+1 - the circles in

Figure 1). To review the formalism of Kreps and Porteus (1978), consider an arbitrary finite

sequence of dates, t ∈ 1, . . . , T , where at each date an agent must choose a distribution

or lottery, dt, from a current choice set, xt. The lottery, dt, is a probability measure over

outcomes. Each outcome takes the form of a pair, (zt, xt+1), where zt ∈ Zt is a bundle of

goods in the compact metric space, Zt, representing the goods available for consumption

at date t. xt+1 is a future choice set containing distributions. Specifically, dt is an element

of Dt, the set of all probability measures over the Borel sets of Zt × Xt+1. In turn, Xt+1,

representing all possible t + 1 choice sets, is the set of all closed subsets in Dt+1 endowed
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with the Hausdorff metric.

Since ZT is metrizable and compact, and assuming XT+1 ≡ {∅}, DT is metrizable and

compact in the weak? topology (the topology of weak convergence in probability measures).

Kuratowski (1950 - cf. §42) proves that XT , the set of all closed subsets in DT , is also a

compact metric space. Thus ZT−1 × XT is compact, meaning that DT−1 is metrizable and

compact in the weak? topology. Clearly, this can be continued recursively to t = 0, when

the agent must choose a distribution, d0 from a closed subset, x0 of D0.

An agent faced with a dynamic choice problem must select a distribution, dt, from

xt ⊆ Dt consistent with some ordering over Dt. The choice behavior of the agent at date t

can thus be summarized by a preference relation, �t, over Dt. In the presence of unforeseen

contingencies it does not make sense to assume that the agent’s preference relation at each

date is known since her choice behavior can change when an unforeseen event occurs. In

contrast with Kreps and Porteus (1978), who assume that �t is complete, negatively transi-

tive, continuous and invariant under mixture (the von-Neumann and Morgenstern axioms),

we impose a weaker structure on the agent’s revealed preferences. Namely, we require that

revealed preferences, denoted as �∗,6 are consistent with some partial ordering and place

structure over that partial ordering:

Axiom 1. (Revealed Preferences)

The agent’s revealed preference at date t, denoted as �∗
t , is complete, transitive, continuous7,

and ∀ d, d ∈ Dt

d �P
t d

′ ⇒ d �∗
t d

′

where �P
t is a reflexive and transitive partial ordering over Dt.

If the partial ordering, �P
t , is known it places limitations on revealed ranking of lottery trees.

In the classic approach, the agent’s date-t ordering (i.e., �∗
t ) is only actually observable at

date t, but a time-consistency condition allows an observer to correctly infer future orderings

from current choice behavior. The same will be partially true in our approach: a time

consistency condition will allow an observer of revealed choice (i.e., �∗
t ) to correctly infer �P

t′

6The �∗
t ’s are actual ex-post preferences, in the language of Dekel, Lipman and Rustichini (2001).

7Continuity means that upper and lower contour sets of �∗
t are weak∗ closed.
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for t′ > t. Note that �P
t , in principle, can depend on a history. For notational simplicity,

however, we suppress such dependence.8

We also impose the following:

Axiom 2. (Continuity)

For any dt ∈ Dt, {d′t ∈ Dt | d′t �P
t dt} is weak∗ closed. Further, if dn → d and d′n → d′ are

weak∗ convergent sequences in Dt, with dn �P
t d

′
n for every n, then d �P

t d
′.

Axiom 3. (Independence)

For any dt, d
′
t, ct ∈ Dt and α ∈ (0, 1],

dt �P
t d

′
t ⇔ αdt + (1− α)ct �P

t αd
′
t + (1− α)ct

Axiom 2 is a technical condition on the ‘at-least-as-good-as’ and ‘no-better-than’ sets

of �P
t while Axiom 3 is the Independence axiom applied to the partial ordering defined

by �P
t . The interpretation of the Independence Axiom is standard: if dt is preferred to d′t

for any conceivable realization of revealed preference, then this remains true for identical

probabilistic mixtures of dt and d′t with some ‘noise’ variable (i.e., ct). We do not take a

strong stance on the normative value of this condition. However, as we demonstrate later, it

is generally essential if one wishes to interpret the resulting endogenous state space as one

containing ‘expected utility states’.

Theorem 1. Axioms 1-3 are necessary and sufficient for the following representation: for

every p, q ∈ Dt,

q �P
t p ⇐⇒ inf

Ut∈Ψt

(Eq[Ut]− Ep[Ut]) ≥ 0 (1)

where Ψt is a non-empty subset of C(Zt×Xt+1), the set of real-valued, continuous and bounded

functions on Zt ×Xt+1, and Eq[·] denotes an expectation taken over the distribution q. The

elements of Ψt are defined up to an affine (positive linear) transformation. Moreover, the

closed convex cone spanned by Ψt is unique.
8Only trivial but notationally burdensome, modifications must be made to the Axioms to account for path-dependence (this

was done in earlier versions of this paper).
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All proofs are relegated to Appendix 2. The Theorem is derived in Dubra, Maccheroni

and Ok (2001).9 The affine equivalence and boundedness of elements of Ψt allows us to

suppose without loss of generality that it is closed and that 0 ≤ Ut ≤ 1 for any Ut ∈ Ψt.

Note that with the normalization, the closed convex hull of Ψt is unique and compact (in

the sup topology).

Ψt is a utility function set. In words, �P
t is a Paretian ordering generated by the

utility functions in Ψt: �P
t ranks q and p if and only if all utility functions in Ψt agree on the

relative ranking of q and p. In turn, the agent’s revealed preference is consistent with the

Paretian ordering induced by the many ordinary von Neumann-Morgenstern utility functions

in Ψt. One can therefore interpret �∗
t as a ‘social planner’s ranking’.

It is both useful and intuitive to define several other relations, derived from �P
t :

Definition 1.

i) �NP
t is the complement of the inverse of �P

t (i.e., dt �NP
t d′t if and only if it is not the

case that d′t �P
t dt).

ii) �NP
t is the weak∗ closure of �NP

t .

iii) �P
t is the complement of the inverse of �NP

t (i.e., dt �P
t d

′
t if and only if it is not the

case that d′t �NP
t dt).

Applying Theorem 1 to the definitions and using the normalization of Ψt, it immedi-

ately follows that

q �NP
t p ⇐⇒ max

Ut∈Ψt

(Eq[Ut]− Ep[Ut]) > 0 (2a)

q �NP
t p ⇐⇒ max

Ut∈Ψt

(Eq[Ut]− Ep[Ut]) ≥ 0 (2b)

q �P
t p ⇐⇒ min

Ut∈Ψt

(Eq[Ut]− Ep[Ut]) > 0 (2c)

�NP
t (resp. �NP

t ) is a non-Paretian type of strict (resp. weak) preference where some, but

not necessarily all, of the utility functions agree on a strict (resp. weak) ranking.10 The

9The theorem was also independently derived in Sagi (2000) and (in a finite dimensional setting) in Baucells and Shapley

(2001).
10It is both intuitive and true that �NP

t contains �P
t .
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relation �P
t corresponds to strict Pareto dominance.11

To ensure that �P
t actually places non-trivial constraints on revealed preferences, we

require that the strict partial order, �P
t , is non-trivial (in particular, this implies that the

constant utility function is not in any of the utility function sets):

Axiom 4. (Non-triviality)

�P
t is non-empty for every t ∈ {0, ..., T}.

Recall that the set �P
t limits the potential choice behavior exhibited by revealed

preferences. It is therefore reasonable to expect that whatever �∗
t turns out to be, its

representation must be a function elements of Ψt.

Proposition 1. Assume Axioms 1-4 and let V ∗
t : Dt 7→ R be a continuous representation

for �∗
t . Then for any d ∈ Dt,

V ∗
t (d) ≡ v∗t

((
Ed[U ]

)
U∈Ψt

)
(3)

where v∗t : [0, 1]Ψt 7→ R is continuous and non-decreasing in its arguments, and if Ed[U ] >

Ed′ [U ] for every U ∈ Ψt then V ∗
t (d) > V ∗(d′).

According to Proposition 1 Ψt is a singleton if and only if �P
t =�∗

t ; in this case,

the Axioms reduce to those of Kreps and Porteus (1978) and �∗
t has an expected utility

representation. If Ψt contains more than one element, then �∗
t is not fully specified, but

Theorem 1 implies that the set of �∗
t ’s consistent with �P

t is non-empty (any expected utility

functional with von Neumann-Morgenstern index from Ψt does the job). It is important to

note that revealed (or ‘ex-post’) preference need not be linear in the Ut’s and thus the

space of revealed rankings consistent with �P
t is far larger than the set of linear functionals

generated by Ψt. we remark here that although one may be tempted to interpret any function

of the form given in Eqn. (3) as an ‘endogenous state’ for tastes, this interpretation will

generally not lead to a unique endogenous state space or the notion of endogenous states we

described in the Introduction. To model the realization of choice behavior, one must make

11Note that �P
t does not generally coincide with the asymmetric part of �P

t . �P
t , however, is contained in the asymmetric

part of �p
t .
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some assumptions about the nature of �∗
t .

12 Other than the assumptions made in Axioms

1-4 we refrain from imposing any more structure on �∗
t or how it is realized.13

Finally, we emphasize that, without imposing additional structure, the fact that Ψt

is non-singleton does not imply unforeseen contingencies in and of itself. An alternative

possibility is that �∗
t is known by the agent at all dates previous to t to be an expected

utility function, and �P
t has no useful information. Another possibility is that �∗

t is pre-

determined, but is not a von Neumann-Morgenstern utility function over Dt. In this latter

case, Ψt might be defined as the set of Gateaux derivatives of the functional representing �∗
t

- assuming it is sufficiently well behaved.14 Unforeseen contingencies can only be inferred

from the agent’s revealed choice behavior, and in particular, her concern with making sure

that she does not commit to an ex-post inferior contingent plan. Such concern is specified

by a time consistency requirement that we impose in the next subsection.

2.2 Time Consistency

At date t, the agent chooses a distribution, dt ∈ Dt, from a menu of distributions, xt ∈ Xt. If

dt ∈ xt is degenerate, then it will be henceforth identified with its outcome: a consumption-

menu pair, (zt, xt+1). Thus if at date t the degenerate distribution that awards (z, f) ∈

Zt×Xt+1 weakly ‘�P
t -dominates’ the degenerate distribution that awards (z′, g) ∈ Zt×Xt+1,

then we write,

(z, f) �P
t (z′, g)

If a choice set, xt, consists of only a single choice, say dt, then it is denoted xt = {dt}. For

any choice set, xt ∈ Xt, define the Pareto undominated subset:

xPt ≡ {d ∈ xt | d �NP
t d′,∀d′ ∈ xt} (4)

12See Rigotti and Shannon (2001) and Bewley (1986, 1987) for examples in which one can deduce much without committing

to a complete order.
13As we shall soon demonstrate, the fact that Ψt is not a singleton will lead to a well-defined endogenous state space filtration

of ‘tastes’. We are no more interested in making objective statements about the probabilistic evolution of these states than we

would be in a Savage setting (where the states are exogenously specified).
14For instance, if revealed preference at any date, t, can always be represented by Vt(d) = min

U∈Ψt

Ed[U ] for any d ∈ Dt, then

it is easy to check the validity of Axioms 1-3.
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If the utility functions in Ψt are viewed as a set of agents, then xPt can be interpreted as

the Pareto frontier of xt. A more material interpretation, however, is that xP contains all

distributions that cannot be ex-ante ruled out by the strict partial ordering, �P
t . Since, by

Axiom 1, revealed choice, �∗
t , is consistent with (i.e., is a completion of) �P

t , xP can also be

seen to contain all conceivable ex-post revealed choices.

Henceforth, we shall also assume, as do Dekel, Lipman and Rustichini (2001), that

the agent can add to any menu of distributions, x, probabilistic mixtures of elements of x. In

other words, by ‘tossing coins’ in selecting lotteries from x, the agent effectively convexifies

x and, therefore, does not distinguish between x and Hull(x) (Hull(x) denotes the closed

convex hull of x).

Axiom 5. (Convexification)

For any t, zt ∈ Zt and xt ∈ Xt+1,

(zt, xt) �P
t (zt,Hull(xt)) and (zt,Hull(xt)) �P

t (zt, xt)

Aside from analytical convenience, this relatively weak assumption, along with Axiom

1, implies that any one revealed choice action at date t + 1 will always be consistent with

the date t+ 1 maximization of some element of Hull(Ψt+1). In other words, if one and only

one choice is revealed at date t+1, one cannot empirically refute the position that the agent

chose by maximizing the expected utility of some utility function from Hull(Ψt+1).
15

Should the agent’s behavior prior to date t + 1 reflect beliefs that at date t + 1 she

will choose a distribution from the Pareto undominated set? Such a normative connection

between ex-post and ex-ante choice is established through the following:

Axiom 6. (Time Consistency)

For any t, z ∈ Zt, and sets f, g ∈ Xt+1, if for every d ∈ g there is some c(d) ∈ f such that

c(d) �P
t+1 d, and the relation is strict for some element of gP , then (z, f) �P

t (z, g).

Intuitively, the Axiom states that f is ex-ante preferred to g whenever under every
15This is, essentially, a type of ‘Second Welfare Theorem’: any Pareto optimal allocation can be achieved in a convex set

of alternatives by maximizing a ‘social welfare’ function that is affine in the agents’ utilities. Note that if many choices are

simultaneously elicited (e.g., by introspection or in an appropriate experimental setting), one can refute the hypothesis that

revealed choice is expected utility in the same way that one can refute the linearity of a social planner’s objective function.
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(ex-post) contingency each element in g is no better than some corresponding element in

f , and at least one element of the Pareto frontier of g (i.e., gP ) is strictly worse than some

element in f . From a normative point of view, this seems hardly questionable. However,

there is a sense in which Axiom 6 is too strong. We discuss this further in Section 2.4.

Continuity guarantees that Axiom 6 has a weak-preference counterpart:

Lemma 1. Assume Axioms 1-6. For any t, z ∈ Zt, and sets f, g ∈ Xt+1, if for every d ∈ g

there is some c(d) ∈ f such that c(d) �P
t+1 d, then (z, f) �P

t (z, g).

The following Theorem is the first major consequence of the time consistency condi-

tion:

Theorem 2. Given Axioms 1-5, Axiom 6 is equivalent to the following:

Fix any t, z ∈ Zt, and f, g ∈ Xt+1 where d̂ �P
t+1 q for some d̂ ∈ f and q ∈ Dt+1. If

max
d∈f

Ed[ψ] ≥ max
d∈g

Ed[ψ] for every ψ ∈ Hull(Ψt+1) and strict inequality holds for at least one

ψ, then (z, f) �P
t (z, g).

Remark 1. If there exists some ‘worst’ distribution that is strictly �P
t+1-dominated by every

other distribution, then the condition “where d̂ �P
t+1 q for some d̂ ∈ f and q ∈ Dt+1,”

automatically holds. Thus the latter condition is of consequence only when there is no way

to clearly determine what is a ‘worst possible outcome’.

Remark 2. Taking stock of the development thus far, Axioms 1-5 imply that any single

choice that the agent makes at date t + 1 is consistent with maximizing the expected utility

of some element of the set Hull(Ψt+1); Theorem 2, by way of Axiom 6, establishes that the

agent fully anticipates this in her date t (or ex-ante) preferences.

Remark 3. Using the assumed continuity of preferences from Axiom 2, it is easy to prove

that Theorem 2 has an analogue in the case of weak dominance. I.e., if max
d∈f

Ed[ψ] ≥

max
d∈g

Ed[ψ] for every ψ ∈ Hull(Ψt+1) then (z, f) �P
t (z, g).

Remark 4. Since Hull(Ψt+1) is closed and convex, if max
d∈f

Ed[Ut+1] > max
d∈g

Ed[Ut+1] for

some Ut+1 ∈ Hull(Ψt+1), then the same strict inequality holds for a measurable subset of

Hull(Ψt+1) (i.e., all utility functions in a neighborhood of Ut+1).

15



Remark 5. Finally, note that if the utility function set at date t + 1 contains only a sin-

gle element, then Axiom 6 is equivalent to the Temporal Consistency Axiom in Kreps and

Porteus (1978), and the theory reduces to their axiomatic formulation.

The next consequence of Axiom 6 is that every date t utility function very nearly

has the ordinal EU form discussed by Dekel, Lipman and Rustichini (2001); in other words,

holding the date t consumption bundle fixed, each of the utility functions in Ψt is (almost

everywhere) strictly increasing in each of the maximal utilities from Hull(Ψt+1) attainable

at date t+ 1. Formally, define the continuous mapping wt+1 : Hull(Ψt+1)×Xt+1 7→ R as

wt+1(ψ, x) ≡ max
d∈x

Ed[ψ] (5)

Roughly speaking, wt+1(·, x) denotes an infinite dimensional vector whose elements are in-

dexed by elements of Hull(Ψt+1). Fixing x ∈ Xt+1, it is clear that wt+1(·, x) is an ele-

ment of C(Hull(Ψt+1)), the space of bounded continuous real-valued functions defined over

Hull(Ψt+1). The space of such functions generated by all possible menus in Xt+1 is defined

via

Wt+1 ≡
{
wt+1(·, x) | ∀x ∈ Xt+1

}
Since Hull(Ψt+1) is compact in its sup topology,16 Wt+1 is a compact subspace of C(Hull(Ψt+1)).

Denote wt+1(·, x) ≥ wt+1(·, x′) whenever wt+1(ψ, x) ≥ wt+1(ψ, x
′) for every ψ ∈ Hull(Ψt+1);

and denote wt+1(·, x) > wt+1(·, x′) whenever wt+1(·, x) ≥ wt+1(·, x′) and there is some

ψ ∈ Hull(Ψt+1) for which the inequality is strict. The next theorem characterizes the func-

tional form of each of the elements of Ψt (i.e., the basis set of utility functions that, via

Proposition 1, characterizes the set of possible revealed preferences).

Theorem 3. Assume Axioms 1-6 and fix Ut ∈ Ψt. Then for any z ∈ Zt and x ∈ Xt+1,

Ut(z, x) ≡ ut(z, wt+1(·, x)) (6)

where ut : Zt×Wt+1 7→ R is a continuous function and wt+1(·, x) ≥ wt+1(·, x′) ⇒ ut(z, wt+1(·, x)) ≥

ut(z, wt+1(·, x′)). Moreover, if there exists d ∈ x such that d �P
t+1 q for some q ∈ Dt+1 then

wt+1(·, x) > wt+1(·, x′) ⇒ ut(z, wt+1(·, x)) > ut(z, wt+1(·, x′)).
16Recall that elements of Ψt+1 are normalized so that their image set is [0, 1].
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Remark 6. Note that Axiom 4 implies that u is strictly increasing in wt+1(·, x) almost

everywhere. Also, as with Remark 1, if there exists some ‘worst’ distribution, q, that is

strictly P -dominated by every other distribution, then the representation is strictly increasing

everywhere.

Remark 7. Proposition 1 implies that �∗
t shares similar properties with respect to the

wt+1(·, x). In particular, Theorem 3 applies to the representation for �∗
t when it is restricted

to degenerate distributions (i.e., date-t lotteries that pay (z, x) for sure).

Remark 8. If Ψt+1 is a singleton then the representation resembles standard recursive utility

- see Kreps and Porteus (1978). To truly reduce to their theory, Ψs must be a singleton for

every s > t.

The properties of Ut outlined in Theorem 3 are essentially those possessed by the

utility functions defined in Kreps (1979) when agents have a preference for flexibility. Indeed,

Theorem 3 implies that Ut(z, x∪x′) ≥ Ut(z, x) for any x, x′ ∈ Xt+1; moreover, Ut(z, x∪x′) =

Ut(z, x) ⇒ Ut(z, x
′′ ∪ x ∪ x′) = Ut(z, x

′′ ∪ x). The result is even more closely related to

the Ordinal EU representation of Dekel, Lipman and Rustichini (2001) in which ‘ex-ante’

utility is an aggregate of maximal expected ‘ex-post’ utilities.17 The main differences are

as follows: first, in rationalizing their representation, Dekel, Lipman and Rustichini (2001)

informally appeal to the idea that ex-post ranking is expected utility. As Proposition 1

indicates, revealed ‘ex-post’ preference (i.e., �∗
t+1) need not be expected utility. Theorem 3,

on the other hand, says that aggregating ex-post expected utility functionals is sensible even

when ex-post choice is not expected utility. Our approach therefore provides the behavioral

rationale (in terms of axioms 3 and 6) for why it is that aggregating ex-post expected utility

is a normatively sensible representation for utility for flexibility whether or not actual ex-

post choice is expected utility. Another difference is that the normative nature of our axioms

explicitly prevents an aversion to flexibility: in the language of Dekel, Lipman and Rustichini

(2001) or Gul and Pesendorfer (2001), we only allow for positive ‘states’, meaning that the

17The Ordinal EU representation theorem in Dekel, Lipman and Rustichini (2001) contains a slight error. Our representation

also satisfies their ordinal EU axiom, but the statement of their representation theorem should be qualified, as is ours, to deal

with the case in which there is no ‘worst’ distribution.
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representation is increasing in the vector of optimal ex-post expected utility functionals.

Finally, the time consistency condition also imposes additional structure on the set of utility

functions that acts as a subjective state space in Dekel, Limpan and Rustichini (2001):

namely, the set must be closed and convex (i.e., Hull(Ψt+1)).

2.3 Observational Equivalence of the partial order and revealed preferences

Earlier we promised to demonstrate that the partial ordering, �P
t can be observed by the

agent’s choice behavior. As mentioned before, in the classic approach, the agent’s date-

t ordering (i.e., �∗
t ) is only actually observable at date t, but time-consistency allows an

observer to correctly infer future orderings from current choice behavior. The analogue in

our theory is that the time consistency condition allows an observer of �∗
t to correctly infer

�P
t′ for t′ > t. This is formally contained in the next result:

Theorem 4. Assume Axioms 1-6, fix z ∈ Zt and x, x′ ∈ Xt+1, and assume that there exists

c ∈ x ∪ x′ such that c �P
t+1 q for some q ∈ Dt+1. Then

(z, x ∪ x′) �∗
t (z, x′) ⇔ ∃d ∈ x such that d �NP

t+1 p
′ ∀p′ ∈ x′

I.e., the agent strictly prefers the union of two sets to a subset if and only if the

Pareto frontier of the union (i.e., the joint set of NP -undominated alternatives) is larger

than that of the subset. The Theorem answers the question: when will the agent be willing

to commit (i.e., agree to limit or reduce her choice set)? The answer, quite obviously, is only

whenever restricting her choice set does not reduce the choice set’s ‘Pareto frontier’. Note

that by letting x ≡ {d} and x′ ≡ {d′}, one can deduce �NP
t+1 from �∗

t almost everywhere.18

This is sufficient to completely characterize �P
t+1. An immediate corollary is:

Corollary to Theorem 4:

Assume Axioms 1-6, and fix any z ∈ Zt and d, d′ ∈ Dt such that d �P
t+1 q for some q ∈ Dt+1.

Then

(z, {d, d′}) ∼∗
t (z, {d}) and (z, {d, d′}) �∗

t (z, {d′}) ⇔ d �P
t+1 d

′ and d �NP
t+1 d

′

18Axiom 4 guarantess that the condition, ”...there exists c ∈ x∪ x′ such that c �P
t+1 q for some q ∈ Dt+1” is satisfied almost

everywhere.
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Thus knowledge of �∗
t imparts full knowledge of �P

t+1 (and thus Ψt+1). Note that, by

Theorem 3, this implies that Ψt+2 is also known, etc.; once �∗
t is fully characterized, so

are all the future partial orderings. This result places the partial ordering on the same

observational footing as revealed preferences, and consequently justifies our claim that the

axioms over �P
t are indeed ‘behavioral’.

Note that if Ψt+1 contains only one function, Eq. (6) in Theorem 3 reduces to the

time consistent recursive inter-temporal utility introduced by Kreps and Porteus (1978). In

this case, Theorem 4 is a simple consequence of their Temporal Consistency Axiom (since

�NP
t+1 is complete and transitive); thus there is no preference for flexibility or deferment

of choice. These observations motivate characterizing any agent facing a dynamic choice

problem satisfying Axioms 1-6, as having an Inter-temporal Flexibility Preference (IFP). A

formal definition is given by:

Definition 2. A sequence of revealed preference relations over Dt, {�∗
t}, is an Inter-

termporal Flexibility Preference (IFP) if and only if it induces a temporal sequence

of partial ordering, {�P
s }s>t that together with {�∗

s}s≥t obey Axioms 1-6.

2.4 Extreme Tastes

At first blush, Axiom 6 seems entirely unobjectionable. On closer inspection, however, it

does rule out behavior that might be deemed reasonable. For instance, assume that at date

t the agent’s preferences are such that a date t + 1 menu containing a Shakespeare drama

and an opera buffa is strictly preferred to a singleton menu containing either. Is it irrational

for an agent to claim that although she might find herself in the mood for one or the other

form of entertainment, the moods are mutually exclusive (i.e., under no circumstance she

will be indifferent (or close to indifferent) between the two choices at date t + 1)? In other

words, is it reasonable for the agent to assume that she doesn’t know her future tastes, but

does know that they will be extreme?

Axiom 6 rules out extreme tastes because the agent must give weight to all ‘convex

combinations’ of a set of basis tastes.19 This means that she should consider the possibility

19This is implied by the fact that every element of Hull(Ψt+1) has weight in the agent’s date t preferences
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of being indifferent (and close to indifferent) between the opera and the play. Recall that

strict preference between (z, f) and (z, g) is implied in Axiom 6 whenever any d′ ∈ g is (�P
t+1)

dominated by something in f and an element on the ‘Pareto frontier’ of g (i.e., d′ ∈ gP )

is strictly (�P
t+1) dominated. The reason that all convex combinations of the basis rankings

(say, the ranking that strictly prefers opera with that which strictly prefers the play) are

weighted ex-ante is that the ‘Pareto frontier’ (as defined in Eqn. (4)) is rich. To see this and

how it leads to a contradiction with extreme tastes, return to the example and suppose that

g contains the play, the opera and all probabilistic mixtures of the two; suppose, further,

that f is composed of three prospects: the play, the opera, and a gamble that awards the

play, the opera, or $10,000 with respective probabilities (.5− ε
2
, .5− ε

2
, ε), for some arbitrarily

small ε > 0. Finally, assume that (.5− ε
2
, .5− ε

2
, ε) strictly (i.e. �P

t+1) dominates (.5, .5, 0).20.

Note the following line of reasoning:

i) Theorem 1 implies that the distribution (.5, .5, 0) is not dominated by anything else in

g, therefore, by definition, (.5, .5, 0) is in gP .

ii) f is equivalent to its convex hull, by Axiom 5.

iii) Since g is contained in the convex hull of f , every element of g is weakly dominated by

an element of the convex hull of f .

iv) Since (.5− ε
2
, .5− ε

2
, ε) �P

t+1 (.5, .5, 0), Axiom 6 implies that the convex hull of f strictly

dominates g (an implication of (iii) and the fact that an element of the convex hull of

f strictly dominates an element of gP ).

v) f strictly dominates g since f is equivalent to its convex hull.

However, if the agent has extreme tastes, she must be indifferent between f and g. To

see this consider that in her ‘ex-post’ decision, she will never select (.5, .5, 0) (or any other

mixture) from g, since she will either be in a mood for a comic opera or in a mood for a tragic

play (and never close to indifferent). Likewise, she will never select (.5 − ε
2
, .5 − ε

2
, ε) from

f . Thus it is not fair to claim that (.5, .5, 0) is part of her date t + 1 ‘Pareto frontier’, and

20This would be true, by Theorem 1, if $10,000 dominated the opera or play regardless of contingency - a rather mild

assumption, unless one lived in New York.
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even less fair to claim that f strictly dominates g because (.5 − ε
2
, .5 − ε

2
, ε) ∈ f dominates

(.5, .5, 0) ∈ g. The problem disappears if (.5, .5, 0) and other mixtures are removed from the

‘Pareto frontier’ of gP . That is precisely how Axiom 6 can be weakened to allow extreme

tastes.

When Dt contains a single ‘best’ element, consider the following alternative definition

for xP : for any choice set, xt ∈ Xt,

xPt ≡ {d ∈ xt | d �NP
t d∗, for some d∗ ∈ Dt s.t. d∗ �P

t d
′ ∀d′ ∈ xt} (4′)

d∗ in the definition is anything that is at least as good as the entire set, xt. The ‘Pareto

frontier’ is composed of all elements of xt that are not strictly dominated by every such d∗.

For instance, setting d∗ to be the date t + 1 degenerate lottery that awards both opera and

play, it’s easy to see that the opera and the play are (separately) in gP (since at date t + 1

one of the opera and play awarded by d∗ will be deemed worthless21). Note, however, that

for the same reason, this is not true for the mixture (.5, .5, 0) ∈ g: intuitively, anything

that �P
t+1-dominates both the opera and play will �P

t+1-dominate their mixture. Hence gP

contains only the opera and play. Under this definition of gP Axiom 6 implies that the agent

is indifferent between f and g.

It is straight forward to show that under the alternative definition for xPt all previous

results follow by replacing Hull(Ψt+1) with E(Ψt+1), where E(x) is the closure of the extremal

set of x. We leave the proof of this claim to the reader. Our point is that the time consistency

axiom itself has universal appeal, but the definition of xP on which it relies may be changed

according to the application at hand. Note that any reasonable alteration of the original

definition of xP corresponds to reducing its size. Thus the original definition characterizes

the broadest range of potential tastes in a ‘changing tastes’ interpretation.

2.5 Violations of the Independence Axiom

Although Axiom 3 has a normative flavor, it very much constrains the representation.

Clearly, the aggregate expected utility representation arises due to this axiom. We illus-

trate the limitations of our axiomatization by an example.
21We assume free the disposal of tickets but that they are not fungible.
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Suppose that payoffs are denominated in terms of wealth (i.e., the Zt’s correspond to

a closed interval in R) and the agent knows that at date T she will select among distributions

based on some mean-variance criteria. At earlier dates, she does not know precisely what that

criteria will be, but by observing her revealed preferences at date T − 1 it is possible to back

out (through the relationship in Theorem 4, for instance) that �P
T is generated by the family:{

U(dT ) = µ(dT ) − A
2
σ2(dT ) | A ∈ [1, 2]

}
, where µ(dT ) and σ2(dT ) denote, respectively, the

mean and variance of a distribution, dT . Consider three date T distributions: q, r, and s,

with µ(q) = q̄, σ2(q) > 0, µ(r) = q̄ − σ2(q), µ(s) < µ(r) and σ2(r) = σ2(s) = 0. According

to these assumptions, the agent’s revealed preferences indicate that q weakly dominates r,

which strictly dominates s. In other words, q �P
T r �P

T s. It is easy to show, however, that

a probabilistic mixture of q with s does not generally �P
T -dominate the same mixture of r

with s (in particular, for A = 2). Moreover, T − 1 revealed preference would reflect that, in

general, it is not the case that λq + (1 − λ)s �P
T λr + (1 − λ)s for λ < 1. This is a direct

violation of Axiom 3 and the agent’s preferences cannot be described within our framework.

Since the mean-variance preferences used above are locally smooth, one can approxi-

mate them with convex combinations of two expected utility functionals:{
U ξ(dT ) = EdT

[−A
2

(x− ξ)2 | ξ ∈ {µl +
1

2
, µh + 1}

}
where µl and µh are, respectively, the lowest and highest payoffs available. It is therefore

possible to construct a representation of the agent in the example that aggregates maximal

expected utility functions. This representation, however, will not be strictly increasing in all

of the optimized expected utilities (see Theorem 3) or even in any of the generating func-

tionals (even though when choosing wealth lotteries there generally is a ‘worst’ element).22

The reason that the independence axiom is violated is not because the agent’s revealed

preferences are sure to be non-expected utility - recall Proposition 1. The problem with

the example is that the Pareto frontier implied by revealed preferences is not equivalent

to the Pareto frontier generated by a single set of ex-post expected utility functionals. In

the case described it would be far more sensible to derive a representation that aggregates

22In other words, one could represent the agent’s behavior as in Eqn. (6), but the utility function set will vary with the choice

set, xt.

22



non-Expected Utility functionals.

3 Preference for Flexibility and a Subjective States Filtration

In an atemporal setting, Dekel, Lipman and Rustichini (2001) consider a representation for

preferences over menus of distributions of the form

u
(
max
d∈x

Ed[ψ
1],max

d∈x
Ed[ψ

2], . . . ,max
d∈x

Ed[ψ
α], . . .

)
where α is an index in a set, S, the ψα’s are bounded functions over a finite set of payoffs

and u is ‘strictly increasing’ in the ψα’s. Such a representation is said to be an ‘Ordinal

EU Representation’ and, by their Theorem 3, is equivalent to requiring that the preference

ordering satisfy several axioms: weak order, continuity, non-triviality, monotonicity and weak

independence. Of these, only the last two merit explanation. Monotonicity says that x′ ⊆ x

implies that x is at least as good as x′. Weak independence requires that if x is strictly

preferred to x′ and x′ ⊂ x, then λx+ (1− λ)x̄ is also strictly preferred to λx′ + (1− λ)x̄ for

any λ ∈ (0, 1]. Dekel, Lipman and Rustichini (2001) establish several additional results: (i)

if the index set, S, is finite, then any other representation that involves only expected utility

functionals must use the same set of utility functions (i.e., the set of expected utility functions

indexed by S is unique); (ii) any other representation that makes use of non-expected utility

functionals will have a strictly larger index set; (iii) if S is infinite, then there are many

equivalent representations using only expected utility functionals, but the closure of all such

index sets is unique23 (moreover, there is always a representations with a countable index

set); and finally, (iv) if S is infinite but countable, any equivalent representation using non-

expected utility functionals will have an infinite index set and thus a cardinality that is

weakly greater than that of S.

In the literature on unforeseen contingencies, the set S is viewed as a subjective state

space - the agent behaves as if she aggregates possible instances of future rankings, and

those instances are indexed by elements of S. This may be sensible in an atemporal setting

where ex-ante and ex-post choice are not formally related. Our own Theorem 3 implies

23Closure is defined with respect to a topology of the index set as described in Dekel, Lipman and Rustichini (2001).
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an ‘Ordinal EU Representation’, and it is easy to show that revealed preference at date

t satisfies weak order, continuity, non-triviality, monotonicity and weak independence. Is

Hull(Ψt) therefore an endogenous state space? Proposition 1 states that the set of possible

revealed rankings at date t is in general much larger than Hull(Ψt) - any non-decreasing

(and possibly non-linear) function whose arguments are the ψ’s in Ψt is a possible ranking.

Is each ‘possible’ revealed preference ranking a state? If so, then one encounters a serious

problem: ex-ante revealed preference only gives indication of how future Pareto frontiers

are generated (i.e., given a menu, they specify the set of maximands of Hull(Ψt)), but give

no additional information about how every conceivable ranking consistent with �P
t ought

to be weighted. In other words, it is not clear that associating future realized tastes with

endogenous states is appropriate. One remedy for this is to impose additional structure

on feasible �∗
t ’s. In particular, if one insists that revealed preference over Dt satisfies an

Independence Axiom, then �∗
t must be an element of Hull(Ψt). There are shortcomings

to this approach; for instance, it rules out ‘contingencies’ that induce non-expected utility

behavior. Moreover, as we argue shortly, there are more general circumstances under which

one is justified in viewing Hull(Ψt) as a subjective state space without committing the �∗
t ’s

to be expected utility functionals.

Aside from such basic questions about the meaning of subjective states, there are

additional technical concerns. Difficulties are encountered because the set of payoffs for lot-

teries in our theory is necessarily uncountably infinite (except, possibly, at date T ). In such a

setting, it is far from clear that the uniqueness result of Dekel, Lipman and Rustichini (2001)

holds. Because they assume a finite set of lottery payoffs, the set of possible expected utility

functions on their lottery space is a subset of a finite dimensional vector space. The dense

sets of such a space are generally quite different from those of an infinite dimensional Banach

space – i.e., the space we necessarily have to analyze in the inter-temporal setting. Finally,

we mention that we are not completely satisfied with the cardinal ‘minimality’ characteriza-

tion of Dekel, Lipman and Rustichini (2001) in another sense. For instance, if the state space

associated with expected utility functionals is homeomorphic to the unit box [0, 1]2, their

characterization does not guarantee the absence of a non-expected utility representation with
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the more parsimonious characterization homeomorphic to the unit interval [0, 1]. Note that

the two state spaces are cardinally equivalent, and thus the expected utility state space is

minimal according to Dekel, Lipman and Rustichini (2001). If it is possible to characterize a

subjective state space for preferences via a topology, as opposed to a cardinality, then such

a characterization would be deemed preferable (at least by us).

In this section we examine two questions: first we look for a natural definition of

a unique subjective state space that does not depend on the representation used. Second,

we find conditions under which Hull(Ψt+1) is homeomorphic to the subjective state space.

In particular, we wish to strengthen the results of Dekel, Lipman and Rustichini (2001) by

giving conditions under which revealed preferences uniquely specify both a set of states and

a topology. 24

To begin, we seek a ‘natural’ definition for an endogenous state space. Consider the

date t + 1 menu, x ≡ {d1, d2, d3, d4} ∈ Xt+1. We ask the following question: what can be

deleted from x without ex-ante welfare loss? To illustrate, suppose that fixing the date t

consumption bundle at z ∈ Zt, it so happens that the following revealed preference relations

hold:

i) (z, {d1, d2}) �∗
t (z, x) and (z, {d1, d3}) �∗

t (z, x)

ii) (z, x) �∗
t (z, {d2, d3, d4}) and (z, x) �∗

t (z, {d1, d4}).

Thus d4 can always be deleted from x without ex-ante welfare loss, while deleting d1 will

always cause ex-ante welfare loss. By contrast, one can delete one and only one of d2 and d3

without incurring welfare loss, but cannot delete both. Theorem 4 and its corollary can be

used to demonstrate that d2 �P
t+1 d3 and d3 �P

t+1 d2, thus d2 and d3 are deemed equivalent

under every realized date-t+1 revealed ranking (see Proposition 1). It therefore makes sense

to identify d2 and d3 when discussing what can be deleted from x without ex-ante welfare loss.

In summary: the critical ‘elements’ of x consist of the the equivalence classes [d1] ≡ {d1} and

[d2] ≡ {d2, d3} – the agent would strictly prefer to avoid their deletion. This is illustrated

24Again, this is important when the state space is infinite. The topology of the subjective state space is also important from

a modeling point of view. In the Savage setting, where the filtration of states is exogenously given, one always specifies the

states of nature as well as a topology for characterizing and measuring events.
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⇒

d1

d2

d4

d1 ⇒ [d1]

d3∼ d2 ⇒ [d2]

d3

Figure 2: Turning a choice node into an endogenous-states node.

in Figure 2. We offer the following interpretation: each of the critical equivalence classes is

an ‘event’ in an endogenous state space. By preserving critical elements at date t, the agent

reserves the right to select from them (or a random mixture over them) in the next period.

Note that this notion of states does not rely on the form of the representation but only on

the underlying preferences. If the choice node (i.e., x) contains more elements, the number

of ‘events’ that can be discerned may increase. In the figure each event is represented by a

shaded ‘branch’ at the converted node: if x contained more equivalence classes that could

not be deleted without welfare loss, each shaded branch would be further decomposed into

a finer partition.

In generalizing the example, there are two formal difficulties:

i) For all intents and purposes, we are interested only in convex and closed choice sets of

distributions. Continuity implies that deleting a measure zero set of equivalence classes

will not result in welfare loss. We therefore have to refer to the removal of neighborhoods

around indifference classes.

ii) In the example, the number of ‘events’ depends on the menu. If the menu is deformed
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slightly, the number of ‘events’ may change. At the very least, the definition of a state

space should not vary within a neighborhood of a choice set. An appropriate definition

of a state space must correspond to the finest ‘event partition’ that can be generated

by slight deformations of x.

Note that the second point raises an issue that, to our knowledge, has not been discussed in

the literature. Just as risk preferences can be characterized locally (see Machina (1982)), one

can define an endogenous state as arising naturally from the local preference for flexibility of

the agent.

To begin a formal development of the ideas above, let d ∈ Dt+1 and define, as before,

[d] ≡ {d′ ∈ Dt+1 | d �P
t+1 d

′ & d′ �P
t+1 d}

The agent knows at date t that she will be indifferent between points in [d]; in other words,

[d] is an ex-ante equivalence class corresponding to the symmetric part of �P
t+1.

25 It follows

from Theorem 1 that

[d] =
(
d+ ker(Ψt+1)

)
∩Dt+1

where ker(Ψt+1) is the subspace of signed measures whose expectation with respect to every

element of Ψt+1 is zero. [d] is an element of the quotient space Dt+1/ ∼P
t+1 (where ∼P

t+1 is

the symmetric part of �P
t+1) that, by Theorem 1, is given by Dt+1/ker(Ψt+1).

26

Next, denoting the metric on Dt+1 as ρ, define the associated ε-neighborhood of a set

of distributions, x ∈ Xt+1, as Nρ
ε (x).

27

The following definition is meant to deal with the first of the two listed difficulties:

Definition 3. Fix x ∈ Xt+1 and z ∈ Zt. Define [d] ∈ Dt+1/ ∼P
t+1, where ∼P

t+1 is the

symmetric part of �P
t+1, to be an x-critical indifference class if and only if ∀ ε > 0,

25For example: suppose an agent knows herself to be a mean-variance optimizer but does not know her future risk aversion

coefficient. Each equivalence class would consist of all distributions with the same mean and variance.
26Dt+1/ker(Ψt+1) is a subset of the larger quotient space Mt+1/ker(Ψt+1), where M is the space of signed measures,

Mt+1 ≡ {λd − λ′d′ | λ, λ′ ∈ R+, d, d′ ∈ Dt+1}. Since ker(Ψt+1) is a closed linear subspace of Mt+1, Mt+1/ker(Ψt+1) is a

Banach space.
27Here, we make use of the existence of a metric on Dt+1 and its associated induced Hausdorff metric on Xt+1. Happily, our

assumptions thus far guarantee that a metric that coincides with the weak∗ topology does in fact exist. Recall that Dt+1 is a

set of probability measures over a compact metric space, thus it itself is compact. Holmes (1975, p. 100) supplies the desired

result. Note that this would not be true if Dt+1 was not compact.
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(z, x) �P
t (z, x \Nρ

ε ([d]) ).

Put simply, we identify ‘critical’ points of x up to indifference; an indifference surface

is deemed critical when deleting it plus any neighborhood that contains it leads to welfare

loss.

Let R(x) be defined as the set of all x-critical indifference classes. To deal with the

second listed difficulty, we define a state space at x as the unique (up to homeomorphism)

topological space coinciding with the largest set of critical equivalence classes near x:

Definition 4. Fix x ∈ Xt+1. S(x) is a Topological Endogenous State Space at x if

and only if there exists some δ > 0 such that for every 0 < ε < δ the following two conditions

hold

i) x′ ∈ {x′′ ∈ Xt+1 | ||x′′ − x|| < ε} ⇒ R(x′) is homeomorphic to a quotient of S(x)

ii) There exists some x′ ∈ {x′′ ∈ Xt+1 | ||x′′ − x|| < ε}, such that R(x′) is homeomorphic

to S(x).

The first condition requires that the set of ‘events’ (i.e., critical classes) generated

by any set near x corresponds to a partition of S(x). The second condition requires that

the finest partition that can be generated identifies S(x). Note that the homeomorphism re-

quirement guarantees topological uniqueness (which is the only sensible notion of uniqueness

for a state space). There are two distinct advantages to this definition over the ones found

in the literature (e.g., Kreps (1979, 1992), Nehring (1999), and Dekel, Lipman and Rusti-

chini (2001)): first, the space is directly related to primitives as opposed to a representation;

second, the definition specifies a state space along with a topology (the topology induced by

Dt+1/ker(Ψt+1)). The latter is especially important when the state space is infinite (which

is the case here).

We can now state the first main result of this section:

Theorem 5. Let the Banach space generated by the linear span of Ψt+1 (in its sup topology)

be denoted as Bt+1 and assume Axioms 1-6. Then a necessary condition for the topolog-

ical endogenous state space to be homeomorphic to Hull(Ψt+1) is that Bt+1 has a Fréchet

differentiable norm and its unit ball is weakly uniformly convex.
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Roughly speaking, the requirement on Ψt+1 is that it is not too rich. Examples of

candidate spaces include instances where Ψt+1 spans a Hilbert space; this is true, for instance,

when the generator set, Ψt+1, is finite. Ψt+1’s that are generally inadmissible include the set

of all increasing continuous functions, the set of all concave functions, and the intersection of

the latter two. Intuitively, if Ψt+1 is too rich, then no menu, x, can generate a set of critical

elements (event partition) that is fine enough to be identified with Hull(Ψt+1).

Theorem 5 indicates when it is not possible for Hull(Ψt+1) to be identified with an

endogenous state space. It does not, however, help with the more practical question of when

such an identification is valid. The next result supplies a partial answer:

Theorem 6. Assume Axioms 1-6 and suppose Bt+1 from Theorem 5 is a Hilbert Space.

Then a topological endogenous state space exists, is independent of x, and is homeomorphic

to Hull(Ψt+1).

Although the theorem only supplies sufficient conditions, we can only conjecture that they

are also necessary. The case where Ψt is finite dimensional is imortant. Clearly Bt is a finite

dimensional Euclidean vector space and thus a Hilbert space, but note that Hull(Ψt), and

thus the endogenous state space, is not finite. Moreover, If the space of outcomes is finite

(as it might be at the terminal date, t = T but cannot be at any other date), then Bt is

necessarily a finite dimensional Euclidean vector space (a subspace of the space generated

by all von Neumann-Morgenstern utility functions over the set of finite outcomes). In that

case, the setting is identical to that studied by Dekel, Lipman and Rustichini (2001). In

particular, Theorem 6 implies that the essentially unique subjective state space identified

by them for an Ordinal EU representation coincides with ours whenever theirs is closed and

convex.28 One can therefore view our definition of a subjective state space as a refinement

of theirs, motivated by explicit considerations of time-consistency for ‘ex-post’ choice.

Finally, note that Theorem 6 specifies a date t endogenous state space that is topo-

logically the same across all choice sets. In other words, ‘ex-post’ Pareto frontiers look the

same regardless of the choice node. This is a consequence of Axioms 3 and 6. Relaxing

28Even when it is not closed and convex, their space would be the same as ours assuming extreme tastes – see Section 2.4.
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these will, in general, lead to a theory where the topology of the endogenous state space

varies with the choice problem. Thus, although our definition of a topological state space

is local, our axioms ensure that the topology is fixed globally. We note that under extreme

tastes (Section 2.4) an endogenous state space will be a subset of Hull(Ψt+1) as long as Bt+1

satisfies the Theorem conditions.

Remark 9. Consider the endogenous state space implied by preferences at date t−1 (i.e., Bt
in Theorem 6). For an example where Bt is infinite dimensional, assume that every Ut ∈ Ψt

has the form

Ut(z, x) = ft

(
z,

∫ (
max
d∈x

Ed[ψ]
)
dµz(ψ)

)
where ft : Zt × [0, 1] 7→ R is increasing in both arguments and µz is some regular Borel

probability measure on Hull(Ψt+1). Now assume that Zt ⊂ R, and that each of the ft’s can

be written as

ft(z, ω) ≡
∫
e−gz−νωFt(g, ν) dg dν

where Ft is square-integrable. Then the set of Ft’s spans a Hilbert space identifying Bt.

As a more particular example, consider functions of the form

ft(z, ω) = (1− β)
(
1− z−α1

)
+ β(1− ω−α0)

for αj’s positive real constants in some bounded interval and β ∈ (0, 1). It is straight forward

to demonstrate that each member of such a family is the integral (Laplace) transform of a

square integrable Ft. Thus the space spanned by any collection of such ft’s is a Hilbert space.

Remark 10. Suppose that the requirements of Theorem 6 are satisfied at every date t. In this

case, one can easily augment the standard filtration (i.e., lottery tree) with subjective states in

an obvious way; one simply converts each choice node at date t to a chance node containing

branches indexed by elements of Hull(Ψt). An event is a subset of Hull(Ψt) sharing the same

maximal elements from x, the menu at the choice node. Seen this way, the subjective states

resemble standard ‘Savage’ states.
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3.1 Maxmin and Additive Representations

Our next result concerns the existence of Maxmin and additive representations for utility

functions (i.e., elements of Ψt) that have the form in (6). To begin, we say that, given z ∈ Zt,

an ordering between x, x′ ∈ Xt+1 is mixture invariant at date t with respect to the menu

x′′ ∈ Xt+1, whenever

Ut(z, x) ≥ Ut(z, x
′) ⇔ Ut(z, λx+ (1− λ)x′′) ≥ Ut(z, λx

′ + (1− λ)x′′)

λx+ (1−λ)x′′ denotes a probabilistic mixture of elements of x with those of elements of x′′.

Next, we say that the preference ordering over menus associated with Ut is convex if and

only if Ut(z, x
′) ≥ Ut(z, x) and Ut(z, x

′′) ≥ Ut(z, x) imply Ut(z, λx
′ + (1 − λ)x′′) ≥ Ut(z, x)

for any λ ∈ [0, 1]. Finally, we say that, given z ∈ Zt, a menu, x′′, is weakly most desirable

whenever Ut(z, x
′′) ≥ Ut(z, x) for all x ∈ Xt+1.

Theorem 7. Fix t, z ∈ Zt and Ut ∈ Ψt and assume Axioms 1-6.

i) Assume there is a weakly most desirable menu, x̄. The ordering of every pair of menus,

x, x′ ∈ Xt+1 is has convex upper contour sets and is mixture invariant with respect to x̄

if and only if

Ut(z, x) = ft

(
z, min

µz∈Qz

∫ (
max
d∈x

Ed[ψ]
)
dµz(ψ)

)
where ft is increasing in both arguments and Qz is a closed and convex set of regular

Borel measures on Hull(Ψt+1).

ii) The ordering of every pair of menus, x, x′ ∈ Xt+1 is mixture invariant with respect to

any other menu in Xt+1 if and only if

Ut(z, x) = ft

(
z,

∫ (
max
d∈x

Ed[ψ]
)
dµz(ψ)

)
where ft is increasing in both arguments and µz is a unique positive probability measure

on Hull(Ψt+1).

The second part of the theorem is basically that derived by Dekel, Lipman and Rus-

tichini (2001). Note, also, that the set Qz in the first part of the theorem is not a set of
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probability measures but one of positive measures. Moreover, as noted in Maccheroni (2002),

this set need not be unique.

4 Concluding Remarks

There are also practical advantages to the type of preference representation we derive here.

Firstly, one can model seemingly ‘inconsistent’ choice without the pitfalls that such repre-

sentations often entail (arbitrage in prices deduced from a time-inconsistent representative

agent model, and the vulnerability to repeated manipulation that time-inconsistent agents

exhibit). Moreover, the normative structure we suggest can make clear the distinction be-

tween hyperbolic discounting and time-inconsistency: the difference lies in how the agent

treats commitment and flexibility. In particular, the framework easily lends itself to the

investigation of behavior that is traditionally associated with time-inconsistency (e.g., pro-

crastination). Another avenue to pursue is the existence of simple representations that easily

lend themselves to solving portfolio choice problems (such as the Epstein-Zin (1989) model).

Finally, an interesting question is that of aggregation: what happens to the endogenous state

space in equilibrium? Can endogenous states be ‘correlated’ across agents? If so, to what

degree can such states be priced or hedged?
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APPENDIX: Proofs

Proof of Theorem 1:

See Dubra, Maccheroni and Ok (2001) and Sagi (2000). The latter has equivalent but slightly

different axiomatization.

Proof of Proposition 1:

First note that for any d, d′ ∈ Dt, d �P
t d′ ⇒ d �∗

t d
′. Thus whenever Ed[U ] > Ed′ [U ] for

every U ∈ Ψt then d �P
t d′ and consequently, d �∗

t d
′ (or V ∗

t (d) > V ∗
t (d′). If V ∗

t depends

on something other than the set {Ed[U ]}U∈Ψt then there is some d and d′ in Dt such that

Ed[U ] = Ed′ [U ] for all U ∈ Ψt and yet Vt(d
′) > Vt(d). Axiom 4 implies the existence of

p, q ∈ Dt such that q �P
t p. Theorem 1 leads to: (1 − ε)d + εq �P

t (1 − ε)d′ + εq for every

ε ∈ (0, 1), but this is not consistent with both d′ �∗
t d and continuity of �∗

t . Thus V ∗
t

can only depend on the set {Ed[U ]}U∈Ψt . Finally, continuity of v∗t over [0, 1]Ψt follows from

continuity of V ∗
t and continuity of the projection of Dt into [0, 1]Ψt .

Proof of Lemma 1:

Fix t, z ∈ Zt, convex sets f, g ∈ Xt+1, and suppose that for every d ∈ g there is some

d′ ∈ f such that d′ �P
t+1 d. Axiom 4 implies that there must exist q, p ∈ Dt+1 such that

q �P
t+1 p. Construct the sequence of sets {fn} and {gn} where fn ≡ (1− 2−n)f + 2−nq (the

probabilistic mixture is taken element by element) and gn ≡ (1− 2−n)f + 2−np. Theorem 1

guarantees that for every d ∈ gn there is some d′ ∈ fn such that d′ �P
t+1 d. Thus, by Axiom

6, (z, fn) �P
t (z, gn). The continuity axiom then implies the desired result.

Proof of Theorem 2:

For necessity, assume that if d �P
t+1 q for some d ∈ f and q ∈ Dt+1, max

d∈f
Ed[ψt+1] ≥

max
d∈g

Ed[ψt+1] for every ψt+1 ∈ Hull(Ψt+1) and strict inequality holds for at least one ψt+1,

then (z, f) �P
t (z, g). Now, suppose that f and g are convex, and that for every d ∈ g

there is some d′ ∈ f such that d′ �P
t+1 d, and the relation is strict for some element of

gP . Since each element in g is weakly dominated by some element in f , Theorem 1 implies
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that max
d∈f

Ed[ψt+1] ≥ max
d∈g

Ed[ψt+1] for every ψt+1 ∈ Hull(Ψt+1). The existence of a strict

inequality for some utility function follows from the fact that g is convex, meaning that by

Theorem 1 gP contains the set of maximands of Hull(Ψt+1) over g. Again, by Theorem 1,

one of these maximands will be strictly dominated (with respect to all elements of Ψt+1) by

an element of f . By hypothesis, it follows that (z, f) �P
t (z, g)

To prove sufficiency, assume that Axiom 6 holds. Suppose that max
d∈f

Ed[ψt+1] ≥

max
d∈g

Ed[ψt+1] for every ψt+1 ∈ Hull(Ψt+1) with a strict inequality holding for at least one

ψt+1. Also, suppose that df �P
t+1 q for some df ∈ f and q ∈ Dt+1. Assume, for the time

being, that both f and g are convex. Consider d ∈ g such that d is not �P
t+1-dominated by

any d′ ∈ f . Define a cone at d via

Bd ≡ {µ ∈ Dt+1 | min
ψ∈Ψt+1

Eµ−d[ψ] ≥ 0 }

By Theorem 1, Bd ∩ f = ∅, otherwise d would be weakly dominated by some element of f .

Because both Bd and f are convex and closed29, they can be separated by a linear functional

that supports the cone Bd at d. The first Bishop-Phelps Theorem (see Holmes (1975) p.

166) implies that the separating functional is arbitrarily close to some ψ ∈ Hull(Ψt+1). For

such a ψ, max
d′∈f

Ed′ [ψ] < Ed[ψ]. This contradicts the hypothesis; thus, it cannot be that

Bd ∩ f = ∅. But then Theorem 1 implies that there is some d′ ∈ f such that d′ �P
t+1 d.

It remains to demonstrate strict dominance over some d ∈ gP . By hypothesis, there

is a utility function ψ∗t+1 ∈ Hull(Ψt+1) that is maximized at some d ∈ gP with Ed′ [ψ
∗
t+1] >

Ed[ψ
∗
t+1] for some d′ ∈ f . Now, Axiom 2 implies that there is some α > 0 such that

Ed′ [ψ
∗
t+1] > E(1−α)d′+αq[ψ

∗
t+1] > Ed[ψ

∗
t+1]. Note that (1−α)d′+αdf �P

t+1 (1−α)d′+αq �NP
t+1 d

and that (1−α)d′ +αdf ∈ f (since f is convex). Let g′ be defined as the set constructed by

taking the closure of the convex hull of g∪(1−α)d′+αq. Clearly max
d∈f

Ed[ψt+1] ≥ max
d∈g′

Ed[ψt+1]

for every ψt+1 ∈ Hull(Ψt+1) with a strict inequality holding for ψ∗t+1. Thus, by an argument

similar to the one in the previous paragraph, ∃d′′ ∈ f such that d′′ �P
t+1 d̂ for every d̂ ∈ g′.

Moreover, g′ P contains, by construction, (1 − α)d′ + αq which is strictly dominated by

(1− α)d′ + αdf ∈ f . Thus Axiom 6 implies that (z, f) �P
t (z, g′). Moreover, since Lemma 1

implies that (z, g′) �P
t (z, g), it follows that (z, f) �P

t (z, g).

29The fact that Bd is closed is demonstrated in an updated version of Dubra, Maccheroni and Ok (2001).
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Finally, if f and g are not convex, then the results can be derived for the closed

convex hulls of f and g. Axiom 5 then gives the desired ordering.

Proof of Theorem 3:

Fix Ut ∈ Ψt, z ∈ Zt, and x, x′ ∈ Xt+1. Consider the case where wt+1(·, x) = wt+1(·, x′).

Theorem 2 and a continuity argument as given in Lemma 1 imply that (z, x) �P
t (z, x′) and

(z, x′) �P
t (z, x). From Theorem 1 it must be that Ut(z, x) = Ut(z, x

′). This establishes that

Ut(z, x) ≡ ut(z, wt+1(·, x))

Continuity follows from the fact that both wt+1(·, x)) and Ut are continuous over Xt+1. The

rest of the properties follow directly from Lemma 1 and Theorem 2.

Proof of Theorem 4:

Fix z ∈ Zt and x, x′ ∈ Xt+1.

Suppose ∃d ∈ x such that d �NP
t+1 p

′ for all p′ ∈ x′. Clearly wt+1(·, x∪x′) > wt+1(·, x′);

thus by Theorem 3, (z, x∪x′) �P
t (z, x′). Axiom 1 therefore implies that (z, x∪x′) �∗

t (z, x).

Now, suppose that (z, x ∪ x′) �∗
t (z, x′). Theorem 1 and the definition of �NP

t imply

that (z, x ∪ x′) �NP
t (z, x′). Theorem 1 guarantees that for some Ut ∈ Ψt it is the case that

Ut(z, x ∪ x′) > Ut(z, x
′); so Theorem 3 gives that there exist ψ ∈ Hull(Ψt+1) and d ∈ x ∪ x′

such that Ed[ψ] > max
p′∈x′

Ep′ [ψ]. Note that it must be that d ∈ x. By Theorem 1 this

establishes that there exists d ∈ x such that d �NP
t+1 p

′ for every p′ ∈ x′.

Proof of Corollary to Theorem 4:

This is a direct consequence of Theorem 4 and the fact that d′ 6�NP
t+1 d ⇔ d �P

t+1 d
′.

Proof of Theorem 5:

The proof is trivial when Ψt+1 is a singleton; assume, therefore, that it is not. Let Mt+1 be

the linear space of signed regular Borel measures generated by λ(d− d′) for any d, d′ ∈ Dt+1

and λ ∈ R. Note that Mt+1 is a Banach space and that [Mt+1] ≡ Mt+1/ker(Ψt+1) is

homeomorphic to B∗t+1, the dual of Bt+1 (the Banach Space spanned by Ψt+1 – see Theorem
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16E in Holmes (1975)). Also, note that Dt+1/ker(Ψt+1) is homeomorphic to a convex and

compact subset of B∗t+1.
30

We seek to characterize the set R(x). Consider x ∈ Xt+1 and assume, without loss

of generality (due to Axiom 5) that x is convex. The continuity axiom (Axiom 2) and the

linearity of the projection of Dt+1 onto Dt+1/ker(Ψt+1) ensures that [x] ≡ {[d] | d ∈ x}

is closed and convex. Let E(x) be defined as the closure of the set of extremal points of

[x].31 Now, we claim that R(x) ⊆ E(x). To see this, note that
(
argmax

[d]∈[x]

Ed[ψ]
)
∩ E(x) 6= ∅

∀ψ ∈ Ψt+1 (any linear functional is maximized at some extremal point). Thus, thanks to

Theorem 2 one can always find a neighborhood of [d] 6∈ E(x) that is disjoint from E(x) and

can be deleted without utility loss.

Theorem 2 implies that deleting a neighborhood around an extremal point that sup-

ports an element of Hull(Ψt+1) will lead to utility loss. Thus R(x) contains elements of E(x)

that are support points of x via functionals from Hull(Ψt+1). Formally, R(x) is the closure

of all such support points. I.e., in general32

R(x) = Closure

({
[d] ∈ [x] : d = argmax

d′∈x
Ed′ [ψ], ψ ∈ Hull(Ψt+1)

})
∩ E(x) (A-1)

The objective is to demonstrate that R(x) is homeomorphic to a subset of Hull(Ψt+1) (this

is equivalent to requiring R(x) to be homeomorphic to a quotient of Hull(Ψt+1)). By Eqn.

(A-1), a necessary and sufficient condition for arbitrary [x] is that the set of extreme points

of [x] is homeomorphic to a subset of the unit ball of Bt+1. In turn, this is true if and only

if B∗t+1 (in its norm topology) is homeomorphic to Bt+1 (in its norm topology). Necessary

and sufficient conditions for the latter are that Bt+1 has a Fréchet differentiable norm and

its unit ball is weakly uniformly convex (see Cudia (1964) Theorem 4.18).

30Compactness follows from the fact that the range of elements of Ψt+1 over probability measures is [0, 1] - recall that the

elements of Ψt+1 are normalized to take values in [0, 1].
31The set of extremal elements is the set of points in [x] that cannot be generated as convex combinations of other points in

[x].
32Note that in general,

Closure

({
[d] ∈ [x] : d = argmax

d′∈x
Ed′ [ψ], ψ ∈ Hull(Ψt+1)

})
6⊆ E(x)

thus Eqn. (A-1) is not redundant.
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Proof of Theorem 6:

Continuing from the proof of Theorem 5, it suffices to demonstrate that in the neighborhood

of any x ∈ Xt+1, there is some x′ such that R(x′) is homeomorphic to Hull(Ψt+1). We begin

by showing that a linear function from Hull(Ψt+1) optimized over a sufficiently small ball in

B∗t+1 can be uniquely identified with a probability measure. Fix ψ ∈ Hull(Ψt+1) and consider

the optimization program:

max
µ∈B∗t+1

{
< µ, ψ >

}
||µ|| ≤ ε

Since µ and ψ are in the same space (Bt+1 ∼ B∗t+1), µ can be identified with some square-

integrable density function, ψµ and the problem reduces to a simple quadratic optimization

with solution ψµ(ε) = ε
ψ−

∫
ψ

||ψ−
∫
ψ|| (recall that µ has total measure of zero). Now, let η ≡

min
ψ∈Hull(Ψt+1)

||ψ−
∫
ψ||∫

ψ
; note that η > 0 since each ψ ∈ Hull(Ψt+1) is continuous and has range

of [0, 1]; next, let m be the Lebesgue measure of Zt+1 × Xt+2. Thus, for any 0 < ε < η
m

,

1
m

+ ψµ(ε) is everywhere greater than zero and its integral is 1, thereby uniquely defining a

density function for a probability measure over Zt+1×Xt+2. Denote this measure as c(ψ, ε).

Now fix some arbitrary x ∈ Xt+1 and set

y ≡
⋃

[d]∈[x]

{(1− δ)[d] + δ(µ+ [1])− [0] | ||µ|| ≤ ε, µ ∈ B∗t+1}

where [1] is the uniform probability measure, and let [x′] ≡ (y + [0]) ∩ Dt+1/ker(Ψt+1).

Clearly, by choosing δ sufficiently small, x′ can be made arbtrarily close to x. Note first that

y is a smooth and solid set (it is the union of smooth sets with non-empty interiors) thus its

extreme points are homeomorphic to the unit sphere in Bt+1 where the homeomorphism is

given by

H(ψ) = argmax
µ∈y

< µ, ψ >

Moreover, each ψ ∈ Hull(Ψt+1) is maximized on y at the surface of a ball about (1− δ)[d] +

δ[1]− [0], for some [d] ∈ [x]. By the argument in the previous paragraph, the maximand, and

thus the associated unique extreme point, is given by (1− δ)[d]+ δ[c(ψ, ε)]− [0] where c(ψ, ε)

is a probability measure for sufficiently small ε. In particular, this means that ψ is uniquely

maximized by (1−δ)[d]+δ[c(ψ, ε)] over [x′]. By Eqn. (A-1), this establishes an isomorphism

between R(x′) and Hull(Ψt+1)) through H(·). Clearly this is also a homeomorphism.
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Proof of Theorem 7:

Note that for any ψ ∈ Hull(Ψt+1),

max
d∈λx+(1−λ)x′′

Ed[ψ] = max
d∈x,d′′∈x′′

{λEd[ψ] + (1− λ)Ed′′ [ψ]} = λmax
d∈x

Ed[ψ] + (1− λ)max
d∈x′′

Ed[ψ]

Thus wt+1(·, λx+ (1− λ)x′′) = wt+1(·, x) + (1− λ)wt+1(·, x′′). The space of all such w(·, ·)’s,

namely Wt+1, is a mixture space and Ut induces a weak and continuous ranking on it. The

first result follows directly from Maccheroni (2002) who proves a maxmin representation in

terms of linear functional over a mixture space; the role of utility functions in his Theorem

is played by scaled positive measures over Hull(Ψt+1) in our case. The second part of the

theorem is standard (see Hestein and Milnor (1952)) and follows from the fact that the

ordering induced by Ut over the mixture space Wt+1 satisfies an independence axiom and

must therefore be a monotonic transformation of a linear functional on Wt+1. Note that

in both parts, only positive measures (i.e., linear functionals) with full support are allowed

so that the representation is increasing. Moreover, uniqueness of Qz is not guaranteed

(see Maccheroni (2002)) in the first part of the Theorem, whereas uniqueness up to affine

equivalence of the linear representation guarantees the uniqueness of the probability measure

in the second part.
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