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Abstract

This paper studies consumption/saving problem under Knightian uncer-
tainty in a two period setting. The multiple-priors utility model is adopted.
The effects of income uncertainty and capital uncertainty on optimal savings
are analyzed by deriving closed form solutions.

1 Introduction

An agent’s choice between saving and immediate consumption depends crucially on

the future uncertainty. In the standard model, it is generally assumed that uncer-

tainty is identical to risk. That is, a single probability measure on the state of the

world is available to guide choice. For example, according to the rational expecta-

tions hypothesis, agents know precisely the objective probability law and their beliefs

are identical to this probability law. Alternatively, according to the Bayesian ap-

proach, an agent’s beliefs are represented by a subjective prior. By either approach,

the situation of uncertainty, where information is too imprecise to be summarized

adequately by probabilities, is ruled out. By contrast, Knight (1921) emphasizes the

distinction between risk and uncertainty and argues that uncertainty is more common

in decision-making.1 For experimental evidence, the Ellsberg Paradox suggests that
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1Henceforth, I refer to such uncertainty as Knightian uncertainty or ambiguity.
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people prefer to act on known rather than unknown probabilities.2 Ellsberg-type be-

havior contradicts the standard paradigm, i.e., the existence of any prior underlying

choices.

To incorporate Knightian uncertainty, I adopt the multiple-priors utility model

axiomatized by Gilboa and Schmeidler (1989) in a consumption/saving problem. To

make analysis transparent, I focus on a two-period setting. In this model, the agent’s

beliefs about future events are represented by a set of priors. The set of priors captures

both the degree of Knightian uncertainty and uncertainty aversion.3

The paper shows that optimal savings depend crucially on the source of uncer-

tainty. Under income uncertainty, accumulated savings provide a buffer against this

uncertainty. The agent can consume a certain amount out of savings when the future

labor income is low. Such uncertainty is prevalent for wage and salary earners. By

contrast, for self-employed persons, uncertainty is better described by coming from

capital gain or loss. Under this uncertainty, the more one saves, the more one stands

to lose. Giving up a unit of current consumption does not necessarily lead to a cer-

tain increase in future consumption. Because of these differences, those two types of

uncertainty result in very different impact on optimal consumption and saving.

Under income uncertainty, there is a separate component of precautionary savings

that cannot be attributed to risk. This component is a first order function of the

standard deviation of income and increases in uncertainty aversion or the degree of

Knightian uncertainty. Moreover, it can arise even for quadratic utility. This is in

sharp contrast to the standard model where precautionary saving is of second order

and cannot arise for quadratic utility (e.g., Kimball (1990)).

Under capital uncertainty, the effect of Knightian uncertainty on optimal savings

depends on two opposing income and substitution effects. Specifically, I consider the

class of CRRA utility functions commonly used in the consumption/saving litera-

ture.4 I show that if the intertemporal substitution parameter is bigger than one, an

2See Ellsberg (1961). One version of the story is as follows. A decision maker is a offerred a
bet on drawing a red ball from two urns. The first urn contains exactly 50 red and 50 black balls.
The second urn has 100 balls, either red or black, however the exact number of red or black balls is
unknown. A typical agent chooses from the first urn rather than the second.

3For a formal definition of uncertainty aversion, see Epstein (1999) and Epstein and Zhang (2001).
4As is well known, for CRRA utility, the risk aversion parameter is the inverse of the intertemporal

substitution parameter.
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uncertainty averse agent saves less than an expected utility maximizer. Further, the

agent saves less if he is more uncertainty averse or there is a higher degree of Knight-

ian uncertainty. By contrast, one obtains the opposite conclusion if the intertemporal

substitution parameter is less than one.

This paper is related to the vast literature on the consumption/saving problem.5

The distinction between income risk and capital risk is emphasized by Sandmo (1970).

He shows that increased riskiness of future income increases saving. He also shows that

the effect of increased riskiness of returns on savings depends on the intertemporal

substitution parameter in a way similar to that analyzed here (also see Levhari and

Srinivasan (1969)). However, there is an important difference. In all examples studied

below, I conduct comparative static analysis for the family of normal distributions

with identical variances. As a result, riskiness is effectively fixed and hence all my

comparative static results are driven exclusively by changing the degree of Knightian

uncertainty.

The multiple priors utility model has been applied to finance in a number of

papers.6 None of them concerns the issues studied here. A related but different

approach based on robust control theory is proposed by Hansen and Sargent and

their coauthors (e.g., Anderson, Hansen and Sargent (2003) and Hansen and Sargent

(2000)). They emphasize ‘model uncertainty’, which is also motivated in part by

the Ellsberg Paradox. We refer readers to Epstein and Schneider (2002) for further

discussion on these two approaches. Hansen et al (1999) apply the robust control

approach to study the permanent income hypothesis and show that robustness can

induce precautionary savings for quadratic utility. However, they do not distinguish

between income uncertainty and capital uncertainty.

The paper proceeds as follows. Section 2 presents the model. The cases of income

uncertainty and capital uncertainty are analyzed separately. Section 3 concludes.

5See, for example, Phelps (1962), Leland (1968), Levhari and Srinivasan (1969), Sandmo (1970),
Zeldes (1989), Caballero (1990), and Carroll (1997).

6See Epstein and Wang (1994, 1995), Chen and Epstein (2001), Epstein and Miao (2003), Kogan
and Wang (2002), Cao et al (2002), Routledge and Zin (2003), and Miao and Wang (2003).
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2 The Model

Consider an agent’s consumption and saving problem in a two period setting. Time

zero is certain and uncertainty appears only in period 1. Fix a measurable state space

(Ω,F) and a reference probability measure P on this space. In period zero, the agent

has labor income y0 and has no financial wealth. He decides how much to consume

and how much to save. In period 1, the agent receives labor income y1 as well as

returns from saving. Denote the gross rate of return by R. Both y1 and R may be

random and defined on the probability space (Ω,F , P ).

It is clear that the agent faces the budget constraint:

c0 + s = y0, c1 = Rs + y1. (1)

where s denotes savings and ci denotes consumption in period i = 0, 1. This constraint

can be rewritten as

c1 = R (y0 − c0) + y1. (2)

The agent derives utility from consumption. The utility function is given by the

multiple-priors utility model axiomatized by Gilboa and Schmeidler (1989):

U (c0, c1) = u (c0) + β min
Q∈P

EQ [u (c1)] .

Here, β ∈ (0, 1) is a discount factor and u is a vNM index. The special feature of this

utility function is that the agent has a set of priors P over (Ω,F), instead of a single

prior in the standard expected utility model. Intuitively, the multi-valued nature

of P models Knightian uncertainty and the minimum delivers uncertainty aversion.

Assume that P contains P, and is compact in the weak convergence topology. When

P = {P}, one obtains the standard expected utility model.

Gilboa and Schmeidler’s (1989) axioms do not provide any structure on P . In

applications, a modeler usually has to impose some structure on P in order to ob-

tain sharper results. One tractable specification is based on the entropy criterion.

Formally, the set of priors is defined as

P (P, φ) =

{
Q ∈M (Ω) : EQ

[
log

(
dQ

dP

)]
≤ φ2

}
, φ > 0,
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where M (Ω) is the set of probability measures on Ω and dQ/dP denotes Radon-

Nikodym derivative. This specification borrows from robust control theory (e.g.,

Anderson et al (2003), Hansen and Sargent (2000)). One interpretation related to

statistics and econometrics is as follows. Interpret P as an approximating model.

The model may be misspecified in the sense that there may be a set of models

P (P, φ). Each alternative in P (P, φ) is evaluated according to the relative entropy

index EQ

[
log

(
dQ
dP

)]
. This index is an approximation to the empirical log-likelihood

ratio. The agent fears model misspecification and adopts robust decisions.

A special case studied by Kogan and Wang (2002) is as follows. Let P be the

measure corresponding to a normal distribution with mean µ and variance σ2. Let all

probability measures in P (P, φ) have normal distributions. Moreover, each measure

Q in P (P, φ) has a fixed variance σ2 and a mean µ− v for some v ∈ R. As shown in

Kogan and Wang (2002), P (P, φ) is isomorphic to the set

V (φ) =

{
v ∈ R :

1

2
v2σ−2 ≤ φ2

}
. (3)

The parameter φ > 0 models the degree of Knightian uncertainty. It can also be

interpreted as an uncertainty aversion parameter. This specification will be adopted

below.

Finally, the agent’s decision problem can be described as

max
c0,c1≥0

U (c0, c1) (4)

subject to the budget constraint (2).

2.1 Income Uncertainty

I first consider the case of income uncertainty. That is, period one income y1 is

random, but the return R is constant. In order to obtain closed form solutions, I

consider two utility specifications, exponential and quadratic vNM indexes, widely

adopted in the consumption/saving literature.

For the exponential vNM index (CARA utility), the solution is summarized in the

following proposition.
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Proposition 1 Under income uncertainty, if the vNM index is given by

u (c) = −1

θ
e−θc, θ > 0.

then the optimal saving demand is given by

s∗ =
1

1 + R
y0 +

1

θ(1 + R)
log (βR) + log

(
max
Q∈P

EQ

[
e−θy1

])
. (5)

Proof. Substitute the budget constraint (2) into the utility function, one obtains

U (c0, c1) = −1

θ
e−θc0 + β min

Q∈P
EQ

[
−1

θ
e−θc1

]

= −1

θ
e−θc0 + β min

Q∈P
EQ

[
−1

θ
e−θ(y1+R(y0−c0))

]

= −1

θ
e−θc0 − β

1

θ
e−θR(y0−c0) max

Q∈P
EQ

[
e−θy1

]

The first-order condition is given by

e−θc0 = Rβe−θR(y0−c0) max
Q∈P

EQ

[
e−θy1

]
.

From this equation one can solve for optimal consumption

c∗0 =
R

1 + R
y0 − 1

θ(1 + R)
log (βR)− 1

θ(1 + R)
log

(
max

Q
EQ

[
e−θy1

])
.

The optimal saving is derived from s∗ = y0 − c∗0.
One can rewrite (5) as

s∗ =
1

1 + R
y0 +

1

θ(1 + R)
log (βR) +

1

θ(1 + R)
log

(
EP

[
e−θy1

])

+

{
log

(
max
Q∈P

EQ

[
e−θy1

])− log
(
EP

[
e−θy1

])}
.

The first three terms on the right hand side constitute the optimal savings in the

standard model. The last term gives extra savings due to ambiguity. Moreover, this

term is bigger if the agent is more ambiguity averse in the sense that the set of priors

is larger.
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In order to obtain a sharper characterization, assume that y1 is normally dis-

tributed with mean µy and variance σ2
y. Then the reference measure P corresponds

to the normal distribution N
(
µy, σ

2
y

)
. Take the set of priors P to be all measures

corresponding to the set

V (φ) =

{
v ∈ R :

1

2
v2σ−2

y ≤ φ2

}
, (6)

as described previously. Since under any measure Q ∈ P , y1 is normally distributed

with some mean µy − v and variance σ2
y, where v ∈ V (φ) , one can show that

log

(
max
Q∈P

EQ

[
e−θy1

])
= log

(
max

v∈V(φ)
e−θ(µy−v)+ 1

2
θ2σ2

y

)
= −θ (µy − σφ) +

1

2
θ2σ2

y.

One can also derive

log
(
EP

[
e−θy1

])
= −θµy +

1

2
θ2σ2

y.

Thus, the optimal saving rule is given by

s∗ =
1

1 + R
(y0 − µy) +

1

θ(1 + R)
log (βR) +

1

1 + R

θσ2
y

2
+

1

1 + R
φσy.

The interpretation of the right hand side is transparent. The first term accounts for

savings in anticipation of possible future declines in labor income. This is consistent

with the permanent income hypothesis of Milton Friedman (1957). The second term

accounts for savings (dissavings) due to impatience when the discount rate is lower

than the interest rate or βR > 1 (βR < 1). The third term accounts for precautionary

savings due to riskiness of labor income. It is proportional to the variance σ2
y of labor

income and risk aversion parameter θ.

The special feature of my model is the presence of the last term. This term can be

interpreted as precautionary savings due to Knightian uncertainty. It is proportional

to the degree of Knightian uncertainty measured by the parameter φ. Moreover, this

component of precautionary savings is first order in the sense that it is proportional

to the standard deviation σy, instead of the variance σ2
y as in the standard model. In

terms of testable implications, the model implies that a large component of the ob-

served precautionary savings in the data may be attributed to Knightian uncertainty

rather than risk.
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In the standard model, the presence of precautionary savings are usually related

to the third derivative of the vNM index (e.g., Leland (1968)). I now present a model

with quadratic utility where precautionary savings can arise because of Knightian

uncertainty.

Let the vNM index be

u (c) = − (b− c)2 , b > c,

where b is a bliss point. The agent’s problem becomes

max
c0≥0

{
− (b− c0)

2 + β min
Q∈P

EQ

[− (b− c1)
2]

}

= max
c0≥0

{
− (b− c0)

2 + β min
Q∈P

EQ

[− (b− y1 −R (y0 − c0))
2]

}
.

I still assume that y1 is normally distributed with mean µy and variance σ2
y.

Proposition 2 Assume βR = 1 and

u (c) = − (b− c)2 , b > c.

Also assume the set of priors is described by (6). Then the optimal saving rule is given

by

s∗ =
1

1 + R
(y0 − µy) +

σyφ

1 + R
.

Proof. First, one can derive that

min
Q∈P

EQ

[− (b− y1 −R (y0 − c0))
2]

= min
Q∈P

EQ

[− (b−R (y0 − c0)− y1 + µy − v − µy + v)2]

= −σ2
y −max

v
(b−R (y0 − c0)− µy + v)2

= −σ2
y − (b−R (y0 − c0)− µy + σyφ)2 .

Thus, the first order condition is given by

(b− c0) = βR (b−R (y0 − c0)− µy + σyφ) .
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When βR = 1, the first-order condition can be simplified to yield optimal consumption

c∗0 =
R

1 + R

(
y0 +

µy

R

)
− σyφ

1 + R
.

The expression for optimal saving follows from s∗ = y0 − c∗0.
The presence of the second term is due to Knightian uncertainty, which vanishes

in the standard expected utility model (see Hall (1978)). Thus, different from the

standard model, under Knightian uncertainty precautionary savings can arise even

for quadratic utility.

2.2 Capital Uncertainty

In the previous section, uncertainty comes from the future labor income. I have shown

that Knightian uncertainty induces a separate component of precautionary savings.

I now consider the case where uncertainty comes from the return to saving, R.

For simplicity, assume that the agent does not receive any labor income in period

1. Then the agent has the budget constraint

c1 = R (y0 − c0) .

Let the vNM index be CRRA,

u (c) =
c1−α

1− α
,

where α > 0 is the coefficient of relative risk aversion or the inverse of the coefficient

of intertemporal substitution. Now the agent’s problem is given by

max
c0≥0

{
c1−α
0

1− α
+ β min

Q∈P
EQ

[
(R (y0 − c0))

1−α

1− α

]}
. (7)

Note that the last term depends crucially on the parameter α. The solution is given

in the following proposition

Proposition 3 Assume

u (c) =
c1−α

1− α
.
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Then the optimal saving rule is given by

s∗ =





1

1+(β minQ∈P EQ[R1−α])
−1/α y0, for α ∈ (0, 1) ,

1

1+(β maxQ∈P EQ[R1−α])
−1/α y0. for α > 1,

β
1+β

y0 for α = 1.

.

Proof. For α ∈ (0, 1) , the last term in (7) is given by

min
Q∈P

EQ

[
(R (y0 − c0))

1−α

1− α

]
=

(y0 − c0)
1−α

1− α
min
Q∈P

EQ

[
R1−α

]

Thus, the first order condition is

c−α
0 = β (y0 − c0)

−α min
Q∈P

EQ

[
R1−α

]

Simplifying yields optimal consumption.

c∗0 =
(β minQ∈P EQ [R1−α])

−1/α

1 + (β minQ∈P EQ [R1−α])−1/α
y0.

The optimal saving rule is

s∗ =
1

1 + (β minQ∈P EQ [R1−α])−1/α
y0.

When α > 1,

min
Q∈P

EQ

[
(R (y0 − c0))

1−α

1− α

]
=

(y0 − c0)
1−α

1− α
max
Q∈P

EQ

[
R1−α

]
.

Thus the first-order condition is

c−α
0 = β (y0 − c0)

−α max
Q∈P

EQ

[
R1−α

]
.

Simplifying yields optimal consumption

c∗0 =
(β maxQ∈P EQ [R1−α])

−1/α

1 + (β maxQ∈P EQ [R1−α])−1/α
y0.
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The optimal saving is

s∗ =
1

1 + (β maxQ∈P EQ [R1−α])−1/α
y0.

Finally, the case of α = 1 follows immediately from the above calculation.

As in the standard model where the optimal saving rule is given by

s∗∗ =
1

1 + (βEP [R1−α])−1/α
y0,

the optimal saving rule under Knightian uncertainty is also linear in wealth. Moreover,

for a log utility agent it is independent of capital uncertainty. This is due to the

additivity of a log function of products:

log R (y0 − c0) = log R + log (y0 − c0) .

The following two corollaries follow immediately from Proposition 3.

Corollary 4 If α ∈ (0, 1) , then s∗ ≤ s∗∗. If α > 1, then s∗ ≥ s∗∗.

Corollary 5 Suppose P1 ⊂ P2. Let s∗1 and s∗2 be the optimal saving corresponding to

P1 and P2, respectively. Then s∗1 ≥ s∗2 if α ∈ (0, 1) ; and s∗1 ≤ s∗2 if α > 1.

These two corollaries imply that, in contrast to the case of income uncertainty,

uncertainty aversion does not necessarily lead to higher savings under capital uncer-

tainty. The parameter α is important for the comparison. Specifically, if α ∈ (0, 1) ,

an uncertainty averse agent saves less than an expected utility maximizer. Further,

the agent saves less if he is more uncertainty averse or there is a higher degree of

Knightian uncertainty. By contrast, if α > 1, an uncertainty averse agent saves more

than an expected utility maximizer. Moreover, the agent saves more if he is more

uncertainty averse or there is a higher degree of Knightian uncertainty.

The intuition is similar to that discussed in Sandmo (1970). An increase in the

degree of Knightian uncertainty makes the agent less inclined to expose his resources

to the possibility of loss; hence the negative substitution effect on saving. On the

other hand, higher uncertainty makes it necessary to save more in order to protect

oneself against low levels of future wealth. This results in the positive income effect
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on saving. The overall effect depends on the intertemporal substitution parameter

1/α.

The analysis is more transparent if one adopts the entropy-based specification of

the set of priors described before. Formally, let the reference measure for log (R) be

the normal distribution with mean µR and variance σ2
R. Also assume the set of priors

is isomorphic to the set

V (φ) =

{
v ∈ R :

1

2
v2σ−2

R ≤ φ2

}
. (8)

Now, for α ∈ (0, 1) , one can show that

min
Q∈P

EQ

[
R1−α

]
= min

Q∈P
EQ

[
e(1−α) log R

]

= min
v∈V(φ)

e(1−α)(µR−v)+ 1
2
(1−α)2σ2

R

= e(1−α)(µR−σRφ)+ 1
2
(1−α)2σ2

R

It follows from Proposition 3 that the optimal saving rule is

s∗ =
1

1 + e
1−α

α
σRφ

(
βe(1−α)µR+ 1

2
(1−α)2σ2

R

)−1/α
y0.

It is clear that the saving demand is decreasing with the parameter φ.

Similarly, for α > 1, one can show that

max
Q∈P

EQ

[
R1−α

]
= max

v∈V(φ)
e(1−α)(µR−v)+ 1

2
(1−α)2σ2

R = e(1−α)(µR−σRφ)+ 1
2
(1−α)2σ2

R .

It follows from Proposition 3 that the optimal saving rate is given by

s∗ =
1

1 + e−
α−1

α
σRφ

(
βe(1−α)µR+ 1

2
(1−α)2σ2

R

)−1/α
y0.

Thus, the saving demand is increasing with the parameter φ.

3 Conclusion

This paper analyzes consumption/saving decisions under Knightian uncertainty in a

two-period setting. It is shown that income uncertainty and capital uncertainty have
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different effects on optimal savings. The model can be easily generalized to a dynamic

setting. For example, one can adopt the recursive multiple-priors utility model studied

in Epstein and Wang (1994) and axiomatized by Epstein and Schneider (2002). A

closed form solution can still be derived for CARA and CRRA utility using similar

methods to Phelps (1969), Levhari and Srinivasan (1969) and Caballero (1990). It

can be shown that qualitative results do not change.
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