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1. INTRODUCTION

1.1. Outline

A class of incomplete markets models, referred to as the Bewley-style model, has been extensively

studied [9, 11, 15, 24, 1, 2, 20, 25, 26]. These studies are motivated by the fact that the stan-

dard representative-agent model (or complete markets model) fails to explain many phenomena

observed in the data, e.g., the equity premium puzzle, the low risk-free rate puzzle, inequal-

ity, dispersion and skewness in wealth distribution, high concentration of stock ownership, large

volumes of trade, and the high volatility of individual consumption relative to aggregate con-

sumption. This suggests that models with heterogeneity and incomplete markets may be useful.

The Bewley-style model is the workhorse of this class of models.

The typical environment can be described as follows. There is a continuum of consumers who

make consumption and savings decisions subject to borrowing constraints and labor endowment

shocks. There is one asset (capital) and aggregate shocks are absent.1 Finally, a single com-

petitive firm hires workers and rents capital to produce output for consumption and saving. A

stationary (competitive) equilibrium is defined by a system of constant prices (interest rate and

wage) and allocations such that individuals optimize and markets clear.

This paper studies the existence and properties of stationary equilibria when (i) consumers

differ in preferences and endowment shocks (including both their distributions and realizations),

and (ii) endowment shocks follow Markov processes with a compact state space.

The key to the analysis is to reformulate the Bewley-style model along the lines of [22] and [21].

In particular, the dynamic economy is described in terms of a sequence of deterministic aggregate

distributions over consumers’ characteristics (individual asset holdings and the realization of

endowment shocks) across the population.2 The associated long-run invariant distribution is the

principal object of study. The main results of the paper are Theorems 4.5-4.7.

Theorem 4.5 establishes that a stationary equilibrium exists in which the interest rate is less

than the rate of time preference of the most patient consumer provided a constraint that restricts

the borrowing limit is satisfied. Moreover, in any stationary equilibrium, if this constraint on

the borrowing limit is satisfied, then the interest rate cannot exceed or equal the rate of time

preference of the most patient consumer. This contrasts sharply with the deterministic case where

the equilibrium interest rate is equal to the rate of time preference of the most patient consumer

(e.g., [6]). Thus, aggregate savings in the Bewley-style model exceed that in the deterministic

case. These extra savings are often called precautionary savings.

Theorem 4.6 characterizes the wealth distribution and the mass of consumers who are bor-

rowing constrained in any stationary equilibrium. It shows that the wealth distribution depends

1See [30] for a numerical analysis and [36] for a theoretical analysis of models with aggregate shocks.
2Similar formulation is adopted in models of anonymous games [33, 27, 7, 29, 18].
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crucially on differences in population, discount factors, borrowing constraints, risk aversion, and

shock distributions of different types of consumers. In particular, these differences can help to

explain skewness in wealth distribution. For instance, consider differences in discount factors

and population.3 Theorem 4.6 shows that (i) aggregate savings and aggregate wealth for the

more patient consumers are greater than for the less patient; (ii) the fraction of the borrowing

constrained consumers among the more patient consumers is smaller than that among the less

patient; (iii) only more patient consumers can hold very large assets. Therefore, if the mass of

more patient consumers is sufficiently small, then a small fraction of rich consumers can hold very

large assets and wealth, and a large fraction of poor consumers will be borrowing constrained.

Finally, Theorem 4.7 establishes the following comparative statics result: If the common

borrowing constraint for each consumer is tightened, or if almost every consumer’s discount

factor is increased, then there is a corresponding equilibrium such that the interest rate falls and

aggregate savings increase. This relation between the borrowing constraint and the interest rate

(aggregate savings) has been numerically demonstrated by a number of studies surveyed in [20].

However, it has not been established formally in the literature.

The analysis must surmount two major difficulties. First, since markets are incomplete, the

usual social planning approach cannot be applied. This leads me to analyze each individual

agent’s optimization problem using dynamic programming. Note that each individual’s deci-

sion depends on his own individual state (asset holdings and the realization of shock), and the

aggregate distribution over individual states in the population. The effect of the aggregate distri-

bution on an individual’s decision problem is transmitted through market prices – the interest

rate and the wage. If the aggregate distribution is random, then it makes each consumer’s de-

cision problem and analysis of the model complicated. In fact, a stationary equilibrium requires

that aggregate (economy-wide) variables be constant. In particular, the aggregate distribution

is nonrandom and it enters each consumer’s decision problem as a parameter.

Second, in order to make aggregate distributions nonrandom, one must rely on some law of

large numbers for a continuum of random variables. Judd [28] points out that the sample path of

these random variables may be nonmeasurable and the usual law of large numbers cannot hold

even when there is no measurability problem. There are several approaches in the literature to

dealing with these problems [19, 47, 4, 44]. In this paper, I apply the construction of Feldman

and Gilles [19, Proposition 2] that dispenses with the cross sectional independence condition for

a continuum of random variables.4

3In a model with aggregate shocks, Krusell and Smith [30] show numerically that differences in discount factors
can match skewness.

4This approach is applied to models of strategic market games with i.i.d. shocks in [29].
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1.2. Related Literature

I now review briefly the related literature. In a model with no production, no borrowing, and

Markov shocks with a finite state space, Bewley [10, 11] proves the existence of stationary equi-

librium. A similar model in which borrowing is allowed is analyzed in [15] and [24]. Clarida [15]

assumes i.i.d. shocks. Huggett [24] considers Markov shocks, but relies on numerical methods.

For a production economy, Aiyagari [1] informally analyzes the existence and properties of sta-

tionary equilibrium for i.i.d. shocks and bounded utility functions. He then provides numerical

results for Markov shocks. Subsequently, Huggett [25] and Huggett and Ospina [26] analyze some

properties of stationary equilibria. However, they do not study the existence and comparative

statics.

The above cited papers often ignore the technical issues surrounding measurability and the

law of large numbers. Moreover, most of those papers focus on ex ante identical consumers. Then,

taking some law of large numbers for granted, the aggregate distribution over individual states

across consumers equals the individual distribution of any consumer’s states so that aggregate

asset holdings, consumption and wealth equal the corresponding individual expected values. This

greatly simplifies analysis because the steady-state value of any aggregate variable equals the

expected value of the corresponding individual variable with respect to its stationary distribution.

Recently, Barut [5] informally invokes the law of large numbers described in [44] and estab-

lishes the existence of stationary equilibrium. He assumes no borrowing, finitely many types

of consumers and bounded utility functions. Moreover, he does not analyze behavior of the

equilibrium interest rate and aggregate savings.

My analysis permits unbounded (time-additive expected) utility functions and Markov shocks.

This is motivated by (i) most widely-used utility functions such as power and logarithmic utility

are unbounded; and (ii) individual earnings data are best fitted by Markov processes (see, e.g.,

[1]). My proof of the existence of stationary equilibrium follows the idea in [10, 15, 1]. Specifically,

given the Feldman-Gilles construction, I focus on the individual consumption and savings problem

taking the interest rate and wage as given. I establish conditions such that there is an ergodic

measure over the joint process of asset holdings and shocks. Then I show that the invariant

aggregate distribution is given by the mean of the individual distribution taken with respect to the

Lebesgue measure over an index set of consumers. Thus, the cases of ex ante identical consumers,

finitely and countably many types of consumers, and uncountably many types of consumers can

all be dealt with. Finally, after establishing properties of aggregate capital supply, I construct

a stationary equilibrium by finding an interest rate such that the capital market clears. To my

knowledge, the existence theorem 4.5 has not been established formally in the literature under

the general assumptions made here.

Importantly, I use lattice theory [46, 23, 37] in order to provide more thorough characteri-

zations of stationary equilibria. This is achieved mainly via comparative statics analysis on the

optimal policy functions, and the ergodic set and ergodic distribution of the joint process of asset
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holdings and endowment shocks. Such an analysis also generalizes several results and insights

provided by the literature on one-person consumption and saving models in a partial equilibrium

framework [40, 41, 8, 31, 34, 32, 42, 14, 16, 13].

Finally, note that all my analysis extends to the case of a pure exchange economy where the

single asset is in zero net supply. In particular, an existence theorem similar to Theorem 4.5 can

be obtained.

The remainder of the paper is organized as follows. Section 2 sets up the model. Section 3

studies the one-person decision problem. Section 4 proves the existence of stationary equilibrium

and analyzes the properties of stationary equilibria. Proofs are relegated to appendices.

2. THE MODEL

Consider an economy with a large number of infinitely-lived consumers and a single firm. Time is

discrete and denoted by t = 0, 1, 2, .... Uncertainty is represented by a probability space (Ω,F , P )
on which all stochastic processes are defined.

Notation. For any subspace D in some d-dimensional Euclidean space Rd, denote by B(D) the
Borel σ-algebra of D, by P(D) the space of probability measures on B(D) endowed with the weak
convergence topology, by C(D) the set of real-valued continuous functions on D. Any product
topological space is endowed with the product topology. Finally, for any sets D and E in some
Euclidean space, B(D)⊗ B(E) denotes the product σ-algebra.

2.1. Consumers

There is a continuum of consumers distributed on the interval I = [0, 1] according to the Lebesgue

measure φ. Consumers may differ in preferences and endowment shock processes.

Information structure and endowments. Consumer i ∈ I is endowed with one unit of labor
at each date t and a deterministic asset level ai0 ∈ (0,∞) at the beginning of time 0. Labor
endowment is subject to random shocks represented by a stochastic process (sit)t≥0 where si0 is a
deterministic constant.

At the beginning of date t, consumer i observes his labor endowment shock sit. His information

is represented by a σ-algebra F it generated by past and current shocks {sin}tn=0. Assume that (sit)
satisfies:

Assumption 1. For φ-a.e. i:

(a) (sit) is a Markov process with the stationary transition function Q
i : S × B(S) → [0, 1] ,

where S ≡ [s, s] ⊂ R++.
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(b)Qi has a positive densityQi(s, ds0)/ds0 and satisfies that for all s1, s2 ∈ S, RS |Qi(s1, ds0)/ds0−
Qi(s2, ds0)/ds0|ds0 < κ|s1 − s2|, where κ > 0 is small enough as detailed in Remark 4.

(c) Qi is monotone in the sense of first-order stochastic dominance: For any bounded, in-

creasing and measurable function h : S→ R,
R
S h(s

0)Qi(s, ds0) is increasing in s.

Remark 1. Part (b), adapted from [17], imposes a smoothness condition on Qi or its density.

It is stronger than the Feller property which requires that
R
S h(s

0)Qi(·, ds0) be continuous if h
is a bounded and continuous function on S. It is important for monotonicity of the optimal
savings policy in the realization of shocks. Part (c) captures persistence in earnings. It is key

to establishing monotonicity of the value and policy functions in the realization of shocks. Note

that the continuous state space assumption is not essential. Most results to follow are still valid

for a countable state space.

Consumption Space. There is a single good. A consumption plan ci ≡ (cit)∞t=0 for consumer i is
a nonnegative real-valued process such that cit is F it -measurable. Denote by Ci the space of all
consumption plans for consumer i.

Budget and borrowing constraints. An asset accumulation plan (ait+1)t≥0 for consumer i is a
real-valued process such that ait+1 is F it -measurable.

In each period t, consumer i consumes cit and accumulates assets a
i
t+1 subject to the familiar

budget constraint:

cit + a
i
t+1 = (1 + rt)a

i
t + wts

i
t, a

i
0 given, (2.1)

where rt is the interest rate and wt is the wage. Each consumer i can borrow, but there is a

common lower bound on assets at ≤ 0 at each date t for all consumers.5 Thus the borrowing
constraint is given by:

ait+1 ≥ at. (2.2)

To ensure that debt is eventually repaid, at must be specified further. One specification

provided by Aiyagari [1] is:

at = max{−b,−
∞X
s=1

wt+ss/Rt,s}.

where b ≥ 0 and Rt,s = (1 + rt+1) · · · (1 + rt+s). Thus, the consumer’s indebtedness is limited
by the lesser of (i) an exogenously specified borrowing limit b, and (ii) the present value of his

lowest level of labor income,
P∞
s=1wt+ss/Rt,s.

5The analysis in the sequel extends to the case where different types of consumers face different borrowing
limits.
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If rt = r and wt = w are constants for all t, then the above specification becomes

at = a ≡ max{−b,−ws/r} if r > 0; at = −b if r ≤ 0. (2.3)

Figure 2.1 plots a as a function of r. Note that the analysis to follow permits other forms of

borrowing limits.

Finally, let A = [a,∞), and denote by Ai the set of all asset accumulation plans of consumer
i that satisfy the budget constraint (2.1) and the borrowing constraint (2.2). A consumption

plan c ∈ Ci corresponding to an asset accumulation plan a ∈ Ai is called (budget) feasible.

Preferences. Consumer i’s preferences are represented by an expected utility function defined on

Ci :
U i(c) = E

" ∞X
t=0

(βi)tui(ct)

#
, (ct) ∈ Ci,

where βi is the discount factor satisfying 0 < βmin ≤ βi < 1, and ui : R+ → R is the felicity
function satisfying:

Assumption 2. For φ-a.e. i,

(a) ui is strictly increasing, strictly concave, twice continuously differentiable and satisfies

ui(0) = 0 and (ui)0(0) =∞;6

(b) 1 < γi = − limc→∞ log(ui)0(c)/ log(c) <∞;
(c) −(ui)00(c) ≥ η > 0 for any bounded set in R++.

Assumption 3. For φ-a.e. i, there is a θ > 0 such that

V ar

Ã ∞X
τ=0

(βi)τsit+τ

¯̄̄̄
¯F it

!
≥ θ, t ≥ 0.

Remark 2. (i) The assumption ui(0) = 0 is a convenient normalization. Its content is bound-

edness below. It is not crucial as illustrated by the examples in Section 3.1. The Inada condition

(ui)0(0) = ∞ ensures that optimal consumption is always positive. In this case, the borrowing

limit at must satisfy at+1 < (1 + rt)at + wtst, for all t, so that a positive consumption plan is

always feasible.

(ii) −γi is called the asymptotic exponent of (ui)0 [12, 41, 42]. Assumption 2 (b) implies that
if c > c0 and 0 ≤ ρ1 < γi < ρ2, then (c/c

0)ρ1 ≤ (ui)0(c0)/(ui)0(c) ≤ (c/c0)ρ2 for c0 large enough.
It also implies that u0(∞) = 0. If it is violated, then there may exist some positive φ−measure

6I write limc→0+(u
i)0(c) as (ui)0(0). Similar notation applies to any right or left derivative. When I say a

function is differentiable on a closed (or half closed) interval, I mean that this function is differentiable on its
interior and has a finite left or a right derivative.
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of consumers whose asset holdings go to infinity and no long-run distribution for assets would

exist. See [41] for an example of exponential utility that violates (b).

(iii) Part (c), adapted from [39], imposes a strong form of concavity on ui. Its role is to

establish monotonicity of the optimal asset accumulation policy in the realization of shocks.

Remark 3. Assumption 3 is adapted from [13] and will be used only to establish long-run

behavior of optimal asset holdings when βi(1 + r) = 1. It requires that the shock processes be

‘sufficiently stochastic’ in the sense that, for almost every consumer, the conditional variance of

discounted future endowment shocks is uniformly bounded away from zero.

Decision problem. Consumer i’s problem is given by:

sup
(cit,a

i
t+1)t≥0∈Ci×Ai

U i(ci). (2.4)

The value function V i(a, s) is defined by the above supremum when (ai0, s
i
0) = (a, s) ∈ A× S.

The plans (cit) and (a
i
t) are optimal if V

i(a, s) is achieved by (cit, a
i
t+1)t≥0 ∈ Ci ×Ai.

Allocation. An allocation ((cit, a
i
t+1)t≥0)i∈I is a collection of consumption and asset accumulation

plans (cit, a
i
t+1)t≥0, i ∈ I. An allocation ((cit, ait+1)t≥0)i∈I is admissible if both cit = ct(i,ω) and

ait+1 = at+1(i,ω) are B(I)⊗ Ft-measurable where Ft is the smallest σ-algebra containing F it for
all i ∈ I, Ft = ∨i∈IF it , t ≥ 0. This measurability requirement ensures certain integrals are well
defined (see [18] for further discussion if it is violated). Since both cit and a

i
t+1 are F it -measurable

for all fixed i ∈ I, they are also Ft-measurable. Thus, the essential content of admissibility is that
cit and a

i
t+1 must be B(I)-measurable for each fixed ω ∈ Ω. To ensure that admissible allocations

exist, I assume:

Assumption 4. For each t, st : I ×Ω→ S is B(I)⊗ Ft-measurable. Furthermore, as functions
of i, (a) β : I → (0, 1) is B(I)-measurable; (b) u(·, c) : I → R is B(I)-measurable for each c ∈ R+;
(c) Q(·, s, B) : I → [0, 1] is B(I)-measurable for each s ∈ S and B ∈ B(S).

2.2. The Firm

There is a single firm renting capital at (net) rate rt and hiring labor at wage wt at date t to

produce output Yt with technology F : R+ ×R+→ R+ :

Yt = F (Kt, Nt) + (1− δ)Kt,

where F is homogeneous of degree one, aggregate capital Kt is Ft−1-measurable, aggregate labor
Nt is Ft-measurable, and δ ∈ (0, 1) is the depreciation rate. Note that capital is transformed
from consumers’ accumulated assets.

Normalize Nt = 1 and assume the following:
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Assumption 5. F is strictly increasing, strictly concave, and continuously differentiable and

satisfies: F (0, 1) = 0, F12 > 0, limK→0 F1(K, 1) =∞, limK→∞ F1(K, 1) ≤ δ.

Remark 4. (i) Assumption 5 implies that there is a maximal sustainable stock of capital Kmax,

which is given by the unique solution to the equation F (K, 1) = δK.

(ii) I now give bounds on κ in Assumption 1 (c) in terms of primitives. In partial equilibrium

analysis in Section 3, I assume

0 < κ ≤ ηw

u0(ra+ ws)
, (2.5)

since r, w, and a are all fixed constants. However, in general equilibrium analysis in Section

4, I assume that ra + ws ≥ ε for some ε > 0 and r ∈ (−δ, 1/βmin − 1), where w = w(r) ≡
F2(F

−1
1 (r + δ), 1). Let K be the unique value such that F1(K, 1) = 1/βmin − 1 + δ and let

w ≡ F2(K, 1). Then I assume
0 < κ ≤ ηw

u0(ε)
. (2.6)

Finally, competitive profit maximization implies that for all t ≥ 0,

rt = F1(Kt, 1)− δ, (2.7)

wt = F2(Kt, 1). (2.8)

2.3. Stationary Competitive Equilibrium

If individual asset holdings and exogenous shocks at date t ≥ 0 are ait and s
i
t, respectively,

i ∈ I, then the aggregate distribution over asset accumulation and shocks across consumers,
λt ∈ P(A× S), is defined by:

λt(A×B) = φ(i ∈ I : (ait, sit) ∈ A×B), A×B ∈ B(A)× B(S). (2.9)

Thus, λt(A × B) is the measure of consumers whose asset holdings and shocks at date t lie in
the set A × B. Note that λt is a random measure since ait = ait(ω) and s

i
t = sit(ω) are random

variables.

The implication of this definition is that each aggregate variable at date t can be written as

a suitable integral with respect to the aggregate distribution λt, e.g.,Z
I
aitφ(di) =

Z
A×S

aλt(da, ds),

Z
I
sitφ(di) =

Z
A×S

sλt(da, ds)Z
I
citφ(di) =

Z
A×S

[(1 + r)a+ws]λt(da, ds)−
Z
A×S

aλt+1(da, ds).

Thus, if prices and aggregate variables are required to be constant, a sufficient condition is that

the aggregate distribution is a time invariant and nonrandom measure.

I now define the concept of stationary equilibrium.

9



Definition 2.1. A stationary (competitive) equilibrium (((ait+1, c
i
t)t≥0)i∈I , (r, w),λ) consists of

an admissible allocation ((ait+1, c
i
t)t≥0)i∈I , a system of prices (r, w) ∈ R2, and a measure λ ∈

P(A× S) such that: Given wt = w and rt = r for all t ≥ 0, then
(i) For φ-a.e. i, (ait+1, c

i
t)t≥0 solves problem (2.4).

(ii) The firm maximizes profits so that (2.7) and (2.8) are satisfied for Kt =
R
I a

i
tφ(di), t ≥ 0.

(iii) Markets clear, i.e., for all t ≥ 0, Z
I
sitφ(di) = 1, (2.10)Z

I
citφ(di) +Kt+1 = F (Kt, 1) + (1− δ)Kt. (2.11)

(iv) The aggregate distribution is invariant and nonrandom, i.e., λt(ω) = λ a.s., where λt is

given by (2.9), t ≥ 0.

I now sketch the key idea of the construction of an equilibrium detailed in later sections.

I first study the one-person decision problem in section 3 where the main result is that under

suitable conditions there is a unique invariant distribution λ∗i ∈ P(A× S) for φ-a.e. i.
Equilibrium requires that the aggregate distribution be a invariant and nonrandom measure.

In section 4.1, I show how one can apply a ‘law of large numbers’ for a continuum of random

variables to fulfill this requirement. Then I show that the invariant aggregate distribution is

generated by:

λ
∗
(·) ≡

Z
I
λ∗i(·)φ(di). (2.12)

Finally, I show that aggregate demand and supply of capital are continuous functions of the

interest rate. Thus the equilibrium interest rate can be determined from the capital market

clearing condition and an equilibrium is constructed (see Figure 2.1).

3. THE ONE-PERSON DECISION PROBLEM

This section focuses on a single person’s decision problem in partial equilibrium so that the

agent index i is suppressed. Moreover, r and w are assumed to be constant, as they must be

in a stationary equilibrium. Some results in this section will be used in later sections. Some

generalize the extant literature and are of independent interest.

I first state further assumptions:

Assumption 6. ra+ws > 0.

Assumption 7. 1 + r > 0 and w > 0.
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Figure 2.1: Determination of an equilibrium interest rate r∗
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Assumption 6 says that even if the consumer’s wealth is at the lowest level (1 + r)a + ws

and his borrowing reaches the limit a, it is still feasible to have positive consumption. Because

r and w are endogenous in general equilibrium, the above assumptions must be consistent with

general equilibrium (see Theorems 4.5). In particular, Assumption 7 follows immediately from

(2.7)-(2.8). Finally, given (2.3), Assumption 6 implies that a = −b and b < ws/r if r > 0.

3.1. The Value Function and Policy Functions

I analyze a typical consumer’s decision problem (2.4) by dynamic programming. Recall that

A = [a,∞), S = [s, s] and that C(A × S) denotes the set of continuous functions defined on
A× S. Define an operator T : C(A× S)→ C(A× S) by the following problem for any function

v ∈ C(A× S) :7

Tv(a, s) = sup
a0∈Γ(a,s)

u((1 + r)a+ ws− a0) + β

Z
S
v(a0, s0)Q(s, ds0) (3.1)

where Γ(a, s) = [a, (1+r)a+ws]. The n-step operator Tn can be defined in the usual fashion. The

objective is to study the fixed point of the operator T and the corresponding optimal policies.

Theorem 3.1. Suppose that Assumptions 1 (a)-(b), 2 (a)-(b), 6, and 7 are satisfied. Then:

(i) There are two functions L : A× S→ R and M : A× S→ R such that the operator T has
a unique fixed point in V ≡ {v ∈ C(A× S) : L(a, s) ≤ v(a, s) ≤M(a, s), ∀(a, s) ∈ A× S} and it
is the value function of problem (2.4). Moreover, {Tnv} converges to V pointwise and uniformly
on any compact set in A× S for any v ∈ V.

(ii) There exists a unique continuous asset accumulation policy function g : A×S→ A solving
the fixed point problem V = TV . The optimal consumption policy function f : A × S→ R+ is
given by f(a, s) = (1+r)a+ws−g(a, s), and it is continuous. Furthermore, the n-period optimal
consumption and asset accumulation policies cn : A×S→ R+ and kn : A×S→ A corresponding
to Tnv, v ∈ V, converge respectively to f and g pointwise and uniformly on any compact subset
of A× S.

Since u is unbounded, standard dynamic programming techniques such as the Blackwell

Theorem and the Contraction Mapping Theorem cannot be applied. Thus I analyze (3.1) by

backward induction and establish convergence from truncated finite horizon problem to infinite

horizon problem (2.4) by exploiting monotonicity of sequences of finite horizon value and policy

functions.8

More specifically, in the appendix, I show that V (a, s) is bounded below and above by some

functions L(a, s) andM(a, s), respectively. Then I show that L(a, s) ≤ TnL(a, s) ≤ TnM(a, s) ≤
7In the sequel, I may write

R
S v(a

0, s0)Q(s, ds0) as E [v(a0, s0) | s] . Note that Γ(a, s) 6= ∅ by Assumption 6.
8The method of successive approximations is well known in the literature, e.g., [40, 41, 34, 42, 35, 7, 29]. There

is no general theory of dynamic programming for unbounded utility. My analysis is closest to [29] and [38].
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M(a, s). Further, {TnL} is an increasing sequence of functions and {TnM} is a decreasing se-
quence of functions. Finally, I establish that {TnL} and {TnM} converge pointwise to a common
function, which is the value function V . The optimal policy functions are obtained from conver-

gence of the corresponding n−period optimal policies.
Given u(0) = 0, the lower bound L can be taken to be zero. The upper bound M is obtained

from Assumption 2 (b). Boundedness below is not necessary for the argument to work. To

illustrate, consider two examples where u(c) = cα/α, α < 0, and u(c) = log(c).9 Note that the

latter also violates Assumption 2 (b).

For u(c) = cα/α, α < 0, it is clear that u(c) < 0. Thus, take M = 0. Because the plan saving

nothing and consuming all wealth (i.e., c0 = (1+ r)a+ws, ct = wst, and at = 0, t ≥ 1) is budget
feasible,

−∞ < ((1 + r)a+ ws)α/α+
β

1− β
(ws)α/α ≤ V (a, s) < 0,

for all (a, s) ∈ A× S. Take L(a, s) as the function on the left hand side of the above second
inequality.

For u(c) = log(c), one can similarly show that10

−∞ < log((1 + r)a+ ws) +
β

1− β
log(ws) ≤ V (a, s) ≤

∞X
t=0

βt log(ct)

≤
∞X
t=0

βt log

µ
(1 + r)t+2 − 1

r

¶
+

1

1− β
log (max(ws+ ra, a− a)) <∞,

for all (a, s) ∈ A× S. Then take L and M as the functions on the left side and the right side of

the above inequalities, respectively.

The following theorem states some properties of the value function V .

Theorem 3.2. Suppose that Assumptions 1 (a)-(b), 2 (a)-(b), 6, and 7 are satisfied. Then:

(i) V (a, s) is strictly increasing, strictly concave, and continuously differentiable in a on A for
each s ∈ S. Moreover, for all (a, s) ∈ A× S,

V1(a, s) = (1 + r)u
0(f(a, s)). (3.2)

(ii) If Assumption 1 (c) also holds, then V (a, s) is strictly increasing in s and V1(a, s) is

strictly decreasing in s, for each a ∈ A.

Monotonicity and concavity of the value function in the endogenous state variable a estab-

lished in part (i) are standard results. Equation (3.2) is the envelope condition. Differentiability

9For simplicity, I do not consider the case 0 < α < 1, for which all analysis in Section 3 goes through under the
additional assumption β(1 + r)α < 1 (see, e.g., [31]).
10Use the following fact established in the appendix: Given any initial state (a, s), any feasible consumption

plan (ct) must satisfy ct ≤ ct ≡ 1
r

£
(1 + r)t+1 − 1¤ (ws+ ra) + (1 + r)t+1(a− a).
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of the value function and the envelope condition are typically proved using the Benveniste and

Scheinkman Theorem (e.g., [43, Theorem 9.10]). However, this theorem is valid only for the

case where a is in the interior of A and g(a, s) is in the interior of Γ(a, s). I show by backward
induction that V is differentiable in a on the whole domain A and that the envelope condition
holds on the whole domain A× S.

Finally, monotonicity of the value function in shocks shown in part (ii) enables me to establish

the properties of the policy functions in Theorem 3.4. It is proved by backward induction and

the key condition is Assumption 1 (c) – monotonicity of Q.

The following theorem states the well-known necessary and sufficient conditions for optimality

(see [41, 42]). The proof is omitted.

Theorem 3.3. Suppose that Assumptions 1 (a)-(b), 2 (a)-(b), 6, and 7 are satisfied. The policy

functions f : A× S→ R+ and g : A× S→ A are optimal if and only if

(i) V satisfies the envelope condition (3.2) and

V1(a, s) ≥ β(1 + r)E
£
V1(g(a, s), s

0) | s¤ , with equality if g(a, s) > a; (3.3)

(ii) for all an+1 = g(an, sn) and sn ∈ S, n ≥ t ≥ 0,
lim
T→∞

βt+TE [V1(at+T , st+T )at+T+1 | st] = 0. (3.4)

Equation (3.3) is often called the Euler inequality. Using the envelope condition, it can be

rewritten as

u0((1 + r)a+ ws− g(a, s)) ≥ βE
£
V1(g(a, s), s

0) | s¤ , or
u0((1 + r)a+ws− g(a, s)) ≥ β(1 + r)E

£
u0((1 + r)g(a, s) + ws0 − g(g(a, s), s0)) | s¤ ,

with equality if g(a, s) > a. Equation (3.4) is the transversality condition. The Euler inequality

implies that the process of ‘discounted’ marginal utility βt(1 + r)tu0(ct), t ≥ 0, forms a super-
martingale so that the Martingale Convergence Theorem can be applied to study the long run

behavior of consumption and asset holdings.

The following theorem establishes properties of the policy functions.

Theorem 3.4. Suppose that Assumptions 1, 2 (a)-(b), 6, and 7 are satisfied.

(i) If 0 < β(1 + r) ≤ 1, then f(a, s) ≥ f(a, s) = ra+ ws > 0.
(ii) f is strictly increasing on A× S. For each s ∈ S, g(·, s) is increasing and strictly increasing

in a when g(a, s) > a.

(iii) If Assumption 2 (c) holds and if β(1 + r) ≤ 1, then g(a, ·) is increasing and strictly
increasing when g(a, ·) > a, a ∈ A.

(iv) lima→∞ f(a, s) =∞.
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Part (i) states that given 0 < β(1 + r) ≤ 1, if the consumer’s asset holdings are at the lowest
level a and he receives the smallest shock s, then his borrowing is constrained by the borrowing

limit, i.e., g(a, s) = a. Furthermore, in all other states, consumption weakly exceeds ra+ ws.

Monotonicity of the optimal consumption policy f follows from the wealth effect. Specifically,

an increase in either current asset holdings or current labor endowment shocks increases the

wealth of the consumer and leads to increased consumption. Monotonicity of the optimal asset

accumulation policy g in a follows from the following familiar argument (e.g., [43]). If g(a, s) > a,

the Euler inequality holds with equality. When a increases, the marginal utility cost u0((1+r)a+
ws− a0) decreases since u is strictly concave, while the marginal utility benefit βE [V1(a0, s0) | s]
does not change. Because as functions of a0, the marginal cost curve is upward sloping and
the marginal benefit curve is downward sloping by concavity of u and V (·, s), the optimal asset
accumulation a0 = g(a, s) must increase.

Part (iii) is important for the latter analysis.11 The intuition is as follows. Consider interior

solutions. When s increases, the marginal utility cost decreases, while the marginal utility

benefit also decreases because V1(a
0, ·) is decreasing and Q is monotonic in the sense of first-order

stochastic dominance. Whether g increases in s depends on which effect dominates. Only if the

decrease in marginal cost exceeds the decrease in marginal benefit, g increases in s. Assumptions

1 (b) and 2 (c) then come into play. The former guarantees that the decrease of marginal benefit

curve is small, while the latter ensures that the decrease of marginal cost curve is big enough so

that it dominates the former effect. Thus the overall effects lead to the increase of g in s.

Finally, part (iv) states that whenever assets grow without bound, consumption also grows

without bound. It is applied in the proofs of Lemma 3.6 and Theorem 3.8.

3.2. When Does the Borrowing Constraint Bind?

Equipped with the above properties of the value function and policy functions, this subsection

studies the effect of the borrowing constraint.

The following theorem shows that when β(1 + r) ≤ 1, there is a nontrivial set of states (a, s)
for which the borrowing constraint binds. Furthermore, this set is characterized explicitly. This

result generalizes [14, Proposition 2.1] to the case of unbounded utility functions and Markov

shocks.

Theorem 3.5. If Assumptions 1, 2, 6, and 7 are satisfied and if β(1 + r) ≤ 1, then there exists
a unique s∗ ∈ (s, s] satisfying

s∗ = max{s ∈ S : u0(ra+ws) ≥ βE
£
V1(a, s

0) | s¤}, (3.5)

11When shocks are i.i.d., Proposition 2 in [23] immediately delivers monotonicity of g without the assumptions
in (iii). For Markov shocks, this proposition cannot be applied because one of its condition is violated, i.e.,
u((1 + r)a+ ws− a0) is not supermodular in (a, s).
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Figure 3.1: The effects of the borrowing constraint on the policy functions.

and a unique function a∗ : [s, s∗]→ (a,∞) satisfying

u0((1 + r)a∗(s) + ws− a) = βE
£
V1(a, s

0) | s¤ , (3.6)

such that:

(i) g(a, s) = a and f(a, s) = (1 + r)a+ ws− a for a ∈ [a, a∗(s)] and s ∈ [s, s∗].
(ii) g(a, s) > a and f(a, s) = (1+r)a+ws−g(a, s), for all a > a∗(s) and s ∈ [s, s∗].Moreover,

g(a, s) > a for all a ∈ A and s ∈ (s∗, s].

The theorem is illustrated in Figure 3.1. There is a critical value s∗ for the shock and a
critical value a∗(s) for the asset holdings for each s ∈ [s, s∗]. In state (a, s∗), the consumer
borrows and his borrowing reaches the limit a. If the realization of shocks is better than s∗

(s > s∗), then for any current asset holdings, the consumer’s asset holdings tomorrow are strictly
higher than a. Namely, the borrowing constraint is never binding. However, if the realization

of endowment shocks s is smaller than s∗ (s < s∗), then the borrowing constraint is binding if
and only if current asset holdings do not exceed a∗(s). Moreover, if current asset holdings do
not exceed a∗(s), then the consumer consumes all of his wealth including savings and borrowing,
i.e., f(a, s) = (1 + r)a + ws − a, for a < a∗(s) and s < s∗. If one draws optimal consumption
as a function of his total wealth for a fixed realization of shocks, it will have a similar shape in
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Deaton [16, Figure 3] which is obtained from numerical examples.

The above theorem implies that when a consumer has small asset holdings and experiences

bad labor endowment shocks, then he tends to borrow and tends to be borrowing constrained.

3.3. Long-run Behavior of Consumption and Asset Holdings

The optimal policy functions f and g generate unique optimal plans (at)t≥1 and (ct)t≥0 for
problem (2.4):

at+1 = g(at, st), ct = f(at, st), t ≥ 0, (a0, s0) given. (3.7)

The objective of this subsection is to study the long-run behavior of (at) and (ct). It is well

known that if the shock process (st) is not i.i.d., then (at) and (ct) need not be first-order

Markov processes. So I first study the joint process (at, st)t≥0 which is in fact a first-order
Markov process. Then the long-run behavior of (ct, st)t≥0 can be deduced from (3.7).

Consider the transition function of the Markov process (at, st). By [43, Theorem 9.13], the

map Λ : (A× S)× B(A× S)→ [0, 1] defined by12

Λ(a, s;A×B) = 1A(g(a, s))Q(s,B), A×B ∈ B(A)×B(S), (3.8)

is the transition function generated by the shock s and the policy function a0 = g(a, s). Define
an operator M∗

Λ : P(A× S)→ P(A× S) by13

M∗
Λ(λ)(A×B) =

Z
A×S
Λ(a, s;A×B)λ(da, ds), A×B ∈ B(A)×B(S). (3.9)

Thus, M∗
Λ(λ)(A × B) is the probability that the state next period lies in the set A × B, given

that the current state is drawn according to the distribution λ. The n-step transition Λn and its

associated operator M∗n
Λ can be defined recursively in the usual fashion.

The following lemma shows that there is a unique compact ergodic set for the Markov process

(at, st) if β(1 + r) < 1.

Lemma 3.6. Under Assumptions 1, 2, 6, and 7, if β(1 + r) < 1, then:

(i) There exists a unique ergodic set K× S for the Markov process (at, st), where K = [a, a]
and a = min{a ∈ A : g(a, s) = a}. Moreover, any subset of (a,∞)× S is transient.

(ii) K ={a} if and only if u0(ra+ ws) ≥ βE [V1(a, s
0) | s].

The intuition behind part (i) is the following: If u0 has an asymptotic exponent, the marginal
utility of consumption is asymptotically constant for each realization of shocks when a is suffi-

ciently large. Thus, when a is sufficiently large, the consumer behaves as in the deterministic

12Note that 1 is an indicator function.
13By [43, Theorem 8.1-8.2], this operator is well defined.
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case. This implies that optimal savings eventually fall over time if β(1+r) < 1.More specifically,

there is a sufficiently large a0 such that g(a, s) < a for all a > a0 and all s ∈ S. Thus there exists
a fixed point of g(·, s). Taking the minimum of these fixed points yields a.

Part (ii) states that the borrowing constraint is eventually binding at all states if and only if

the borrowing constraint is binding when the shock is at the highest level and the current asset

holdings are at the borrowing limit.

The following theorem shows that if β(1 + r) < 1, then there is a unique ergodic measure λ∗

on B(A× S) and it corresponds to the unique fixed point of M∗
Λ, i.e., M

∗
Λ(λ

∗) = λ∗.

Theorem 3.7. Under Assumptions 1, 2, 6, and 7, if β(1 + r) < 1, then:

(i) There exists a unique ergodic measure λ∗ ∈ P(A × S) for the Markov process (at, st).
Moreover, λ∗ is positive on any open subset of the ergodic set K × S, where K × S is given in
Theorem 3.6. Finally, given any λ0 ∈ P(A× S), M∗n

Λ (λ0) converges weakly to λ
∗ as n→∞.

(ii) λ∗({a} × S) = λ∗([a, a∗(s)]× [s, s∗]) > 0 where a∗(s) is given in Theorem 3.5.

The proof applies a result stated in [35] or [17] using the following facts: (i) K×S is an ergodic
set; (ii) Λ has the Feller property; and (iii) Λ is irreducible (See Appendix B for definition).

Monotonicity of Q from Assumption 1 (c) and monotonicity of g established in Theorem 3.4 are

key to the proof. A similar proof is given in [14] for the case of i.i.d. shocks.

Note that it is straightforward to use [43, Theorem 12.12] or [23, Theorem 2] to prove the

existence of a unique invariant measure using monotonicity of M∗
Λ.
14 My result is stronger, i.e.,

the invariant measure is positive on any open subset of the ergodic set. Moreover, under λ∗ there
is a positive probability that the borrowing constraint is binding, i.e., λ∗({a} × S) > 0.

A final theorem considers long-run properties of the optimal plans (at) and (ct) if β(1+r) ≥ 1.

Theorem 3.8. Under Assumptions 1, 2, 6, and 7, if β(1 + r) > 1, or if β(1 + r) = 1 and

Assumption 3 holds, then limt→∞ at+1 =∞ and limt→∞ ct =∞ a.s..

This theorem extends [42, 1] to allow for Markov shocks and extends [13] to allow for un-

bounded utility. The underlying intuition is as follows. If the interest rate r exceeds the rate of

time preference 1/β−1, then the consumer wants to postpone consumption to the future so that
consumption eventually grows without bound. Because he is borrowing constrained, he has to

accumulate an infinitely large amount of assets to finance an infinitely large amount of consump-

tion in the long run. If r equals 1/β−1, then consumption will also grow without bound provided
that the consumer’s income is sufficiently stochastic as required by Assumption 3. The key tool

14Aiyagari [1] applies [43, Theorem 12.12] for the case of i.i.d. shocks. Huggett [24] applies [23, Theorem 2] for
the case of Markov shocks with only two states.
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for the argument is the Martingale Convergence Theorem which ensures that marginal utility of

consumption converges to zero if β(1 + r) > 1 and to a finite random variable if β(1 + r) = 1.

3.4. Comparative Statics Analysis

This subsection studies the following question: How do the optimal policies and invariant distri-

bution vary with changes in the discount factor β, the distribution of shocks or the transition

function Q, the borrowing limit a, or the degree of risk aversion? The main tool for the analysis

below is the lattice theory developed in [46, 23, 37].

When risk aversion varies, I consider only power utility, i.e., u(c) = cα/α, α < 0. Let the

exogenous parameter be ϕ which may represent β, r, a, α, or Q. Then write ϕ as an argument

for any function that depends on any of the noted parameters. Note that w can be written as a

function of r by (2.7)-(2.8) so that it is not treated as a parameter.

First define some partial orders.15 For any two probability measures ν and ν0 on some Borel
space, say ν ºFSD ν0 if

R
hdν ≥ R hdν 0 for any increasing and bounded function h. Say ν ÂFSD ν0

if
R
hdν >

R
hdν 0 for any strictly increasing and bounded function h. For any transition functions

Q and Q0, say Q ºc (Âc)Q0 if Q(s, ·) ºFSD (ÂFSD)Q0(s, ·) for each s ∈ S. For any sets Y and Y 0
in the real line, say Y ºs Y 0 if y ∧ y0 ∈ Y 0 and y ∨ y0 ∈ Y for any y ∈ Y and y0 ∈ Y 0.16 Finally,
when the set Y depends on a parameter ϕ, say that Y is (strictly) increasing in ϕ with respect

to some partial order º if (Y (ϕ) 6= Y (ϕ0)) Y (ϕ) ºs Y (ϕ0) for ϕ Â ϕ0.

Theorem 3.9. Let (βj , aj) satisfy Assumption 6, j = 1, 2. Under Assumptions 1, 2 (a)-(b), 6,

and 7, then: For every (a, s) ∈ A× S,
(i) g(a, s;β2) ≥ g(a, s;β1) if β2 > β1, and the strict inequality holds if g(a, s;β1) > a.

(ii) g(a, s;Q2) ≤ g(a, s;Q1) if Q2 ºc Q1, and the strict inequality holds if g(a, s;Q2) > a and
Q2 Âc Q1.

(iii) g(a, s; a2) ≥ g(a, s; a1) if 0 ≥ a2 > a1 and a ≥ a2.

When a consumer is more patient, he is not so eager to consume now. Consequently, he saves

more for future consumption. For part (ii), observe first that asset holdings and the realization

of shocks are strategic substitutes because V1(a, s) is strictly decreasing in s by Theorem 3.2.

Then one can show that asset holdings and the conditional distribution of shocks are strategic

substitutes using Assumption 1 (c). Thus, when the consumer anticipates that the distribution

of shocks tomorrow is better conditional on any state today, he has less incentive to save more in

order to buffer future endowment fluctuations because strategic substitution leads to a decrease

in the marginal benefit of an additional unit of saving, while the marginal cost does not change.

15See [46] and [23] for more details.
16This is the strong set order. Note that y ∧ y0 ≡ min{y, y0} and y ∨ y0 ≡ max{y, y0}.
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Finally, part (iii) demonstrates the numerical finding of Deaton [16] that the presence of borrowing

constraint is similar to that associated with a precautionary motive for saving. The intuition

is that when the consumer can borrow more, he has more freedom to use borrowing to buffer

endowment fluctuations, so there is less need to accumulate assets.

Theorem 3.10. Under Assumptions 1, 2, 6, and 7, let a∗(s) and s∗ be given in Theorem 3.5

and let K = [a, aj ] be given in Lemma 3.6 and λ∗ given in Theorem 3.7. If β(1 + r) < 1, then:

(i) K is strictly increasing in β and a, and strictly decreasing in Q and α.17

(ii) a∗(s) is strictly decreasing in β and strictly increasing in Q. Moreover, s∗ is decreasing
in β and increasing in Q.

(iii) λ∗ is increasing in β and a.

(iv) Eλ∗ [a] (r,β, a,Q) ≡
R
A×S aλ

∗(da, ds; r,β, a,Q) is continuous in (r,β, a) and increasing in
(β, a), where λ∗ is given in Theorem 3.7.

Part (i) says that the ergodic set is strictly larger if either discount factor β is increased or the

borrowing constraint is tightened, and it is strictly smaller if either the conditional distribution

Q(s, ·) is increased for all s or risk aversion 1−α is decreased. Part (ii) says that the set of states
at which the borrowing constraint is binding is strictly smaller if either β is increased or Q is

decreased. Except for monotonicity in risk aversion, these results are intuitive given the changes

of the optimal asset accumulation policy curve shown in Theorem 3.9.

For monotonicity of K in risk aversion, consider the equation determining a1 in Theorem 3.6,

which implies that the consumer saves a1 at state (a1, s). If his risk aversion 1 − α1 decreases

to 1 − α2 (α2 > α1), then the returns to savings decrease so that his savings decrease. Thus

K must decrease. The extra savings associated with high risk aversion also reflect stronger

precautionary savings motive. Note that this argument is applied only locally at the point

(a1, s). It does not carry over when comparing optimal policies globally because both the marginal

benefit and marginal cost vary in risk aversion and time-additive utility confounds risk aversion

and intertemporal substitution. Thus the change in invariant distribution is also ambiguous.

Part (iii) says that following an increase in either β or a, the invariant distribution becomes

better in the sense of the first-order stochastic dominance. This is because given any probability

measure over today’s states, if either β or a increases, the transition probability that asset

holdings and shocks tomorrow are at better states will be greater since asset accumulation policy

is better by Theorem 3.9 and the conditional distribution of shocks is better by Assumption 1

(c) (see (3.8)). Thus, the distribution of states tomorrow is better and the limiting invariant

distribution is also better by (3.9) and Theorem 3.7.18

17When α changes, I assume r > 0.
18The argument is roughly as follows (see [23, Corollary 3]). Let 2 index the larger value of β or a. Then

Λ2(a, s;A×B) ≥ Λ1(a, s;A×B) =⇒M∗2
Λ (λ) ºM∗1

Λ (λ) =⇒ λ∗2 = lim(M∗2
Λ )

n(λ∗1) º lim(M∗1
Λ )

n(λ∗1) = λ∗1.
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Note that although the optimal policy decreases monotonically in the transition function Q,

the invariant distribution does not necessarily vary monotonically. This is because given today’s

state (a, s), following an increase in Q, the realization of tomorrow’s shocks s0 is more likely to
be in good state by Assumption 1 (c) so that the conditional probability that the state tomorrow

(g(a, s), s0) is at good states is not necessarily greater (see (3.8)). This implies that given a
distribution of states today, the distribution tomorrow is not necessarily ordered and neither is

the limiting distribution.

Finally, continuity of Eλ∗ [a] follows from [43, Theorem 12.13]. Monotonicity of Eλ∗ [a] in

(β, a) follows from parts (i)-(iii). Note that Eλ∗ [a] represents the steady-state aggregate capital

supply for a given interest rate. Its properties play key roles in proving existence of stationary

equilibrium and in conducting comparative statics analysis on stationary equilibrium.

4. EXISTENCE AND PROPERTIES OF STATIONARY EQUILIBRIA

Consider now a continuum of consumers distributed over I = [0, 1] according to the Lebesgue

measure φ on B(I). As established in the preceding section, under suitable assumptions, for each
consumer i, the value function V i is a fixed point of the operator T i defined by (3.1) and there

exists a unique optimal asset accumulation policy gi solving the fixed point problem V i = T iV i.

This policy function and shocks si induce a transition function Λi : (A× S)× B(A× S)→ [0, 1]

defined by Λi(a, s,A×B) = 1A(gi(a, s))Qi(s,B).
Define a function g : I ×A× S→ A by g(i, a, s) = gi(a, s). This function generates a unique

optimal allocation ((ait+1, c
i
t)t≥0)i∈I as follows:

ai1 = a1(i,ω) = g(i, a0(i), s0(i)), c
i
0 = c0(i,ω) = (1 + r)a0(i) + ws0(i)− a1(i,ω),

ait+1 = at+1(i,ω) = g(i, at(i,ω), st(i,ω)),

cit = ct(i,ω) = (1 + r)at(i,ω) + wst(i,ω)− at+1(i,ω), t ≥ 0. (4.1)

To facilitate aggregation, the optimal allocation ((ait+1, c
i
t)t≥0)i∈I must be admissible, i.e., as

functions of (i,ω), ait+1 = at+1(i,ω) and c
i
t = ct(i,ω) must be B(I)⊗Ft-measurable.

Lemma 4.1. Under Assumptions 1, 2, 4, 6, and 7, the optimal policy function g is a Caratheodory

function,19 and the optimal allocation ((ait+1, c
i
t)t≥0)i∈I is admissible.

4.1. Aggregation and the Law of Motion for Aggregate Distributions

A stationary equilibrium requires that although each consumer faces labor endowment risk, in

equilibrium risk disappears in the aggregate. In particular, the aggregate invariant distribution

19Namely, as a function of i, g(i, a, s) is B(I)-measurable for each (a, s) ∈ A× S and as a function of (a, s) it is
continuous for fixed i ∈ I.

21



must be a nonrandom measure. To ensure this, one typically invokes some law of large numbers

for a continuum of random variables.

When the assumption of independence of shocks across consumers is dispensed with, Feldman

and Gilles [19] show that there exists a probability space (Ω,F , P ) and a shock process (sit) such
that a law of large numbers for a continuum of random variables (sit)i∈I holds. I refer to this as
the Feldman-Gilles construction and adopt it throughout the analysis to follow.

To see how the Feldman-Gilles construction can be applied, consider the law of motion for

aggregate distributions. Let µi be the distribution of (sit) on B(S∞) induced by the transition
function Qi. Let (ait+1) be the optimal plan for consumer i so that a

i
t+1 = gi(ait, s

i
t) for some

(ait, s
i
t) ∈ A× S.
By definition (2.9) and Bayes’ Rule, for all A×B ∈ B(A)× B(S),

λt+1(A×B) = φ(i ∈ I : (ait+1, sit+1) ∈ A×B)

=

Z
A×S

φ(i ∈ I : (ait+1, sit+1) ∈ A×B | (amt , smt ) = (a, s),m ∈ I)φ(m ∈ I : (amt , smt ) ∈ da× ds).

Applying definition (2.9) again,

λt+1(A×B) =
Z
A×S

φ(i ∈ I : (ait+1, sit+1) ∈ A×B | (amt , smt ) = (a, s),m ∈ I)λt(da, ds)

Thus, the function Λt : A× S× B(A× S)→ [0, 1], defined by

Λt(a, s,A×B) = φ(i ∈ I : (ait+1, sit+1) ∈ A×B | (amt , smt ) = (a, s),m ∈ I), (4.2)

is the transition function for the sequence of aggregate distribution {λt}. If {Λt} is nonrandom,
then the sequence of aggregate distributions {λt} evolves deterministically provided that the
initial aggregate distribution λ0 is nonrandom.

Ex ante identical consumers. Consider first the case where each consumer has the same prefer-

ences and the same distribution of shocks, i.e., ui = u, βi = β, and µi = µ, for all i ∈ I.
Proposition 2 in [19] implies that there exists a probability space (Ω,F , P ) and a process

si = (sit), where s
i
t ≡ st(i,ω) is B(I)⊗ Ft-measurable, t ≥ 0, such that:

(i) For all i ∈ I, s(i, ·) has common distribution µ: P (ω ∈ Ω : si(ω) ∈ A) = µ(A), A ∈ B(S∞).
(ii) For all ω ∈ Ω, φ(i ∈ I : s(i,ω) ∈ A) = µ(A), A ∈ B(S∞).
The above two equations say that the empirical distribution of a sample of random variables

is the same as the theoretical distribution from which these random variables are drawn. Thus

the transition function for (sit), Q
i, satisfies that for all B ∈ B(S),

Qi(s,B) = Q(s,B) = P (ω ∈ Ω : sit+1(ω) ∈ B | sit(ω) = s) = φ(i ∈ I : sit+1 ∈ B | smt = s,m ∈ I).
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Since all consumers are ex ante identical, they choose the same optimal policy, i.e., gi = g for

all i ∈ I. Thus, by (4.2),

Λt(a, s,A×B) = φ(i ∈ I : (g(a, s), sit+1) ∈ A×B | smt = s,m ∈ I)
= 1A(g(a, s))φ(i ∈ I : sit+1 ∈ B | smt = s,m ∈ I)
= 1A(g(a, s))Q(s,B) =

Z
I
1A(g

i(a, s))Qi(s,B)φ(di).

That is, the aggregate transition function is equal to the transition function of the process (ait, s
i
t)

for any individual i ∈ I.

Countably many types of ex ante identical consumers. Let I be partitioned into countably many

disjoint measurable sets Ij such that I = ∪∞j=1Ij , qj = φ(Ij) > 0,
P∞
j=1 qj = 1, and let all

consumers in the set Ij be endowed with utility function u
j and discount factor βj . Furthermore,

all consumers in the set Ij have the same distribution of labor endowment shocks µ
j .

In this case, I apply Feldman-Gilles construction as follows: Let the probability space (Ω,F , P )
and the process (sit)i∈I be such that st : Ij ×Ω→ S is B(Ij)⊗ Ft-measurable and

P (ω ∈ A : si(ω) ∈ A) = µj(A), ∀i ∈ Ij ,
φ(i ∈ Ij : s

i(ω) ∈ A) = µj(A), ∀ω ∈ Ω, A ∈ B(S∞).

Then the transition function of (sit) for all i ∈ Ij , Qj , satisfies:

Qj(s,B) ≡ P (ω ∈ Ω : sit+1(ω) ∈ B | sit = s) = φ(i ∈ Ij : sit+1 ∈ B | smt = s,m ∈ Ij).

Since all consumers in Ij are ex ante identical and choose the same policy function g
j , it

follows from the previous case that the transition function for the aggregate distribution across

consumers in Ij is given by:

Λ
j
t (a, s,A×B) ≡ φ(i ∈ Ij : (ait+1, sit+1) ∈ A×B | smt = s,m ∈ Ij)

= φ(i ∈ Ij : (gj(a, s), sit+1) ∈ A×B | smt = s,m ∈ Ij)
= 1A(g

j(a, s))φ(i ∈ Ij : sit+1 ∈ B | smt = s,m ∈ Ij)
= 1A(g

j(a, s))Qj(s,B).

Then, by (4.2), the aggregate transition function can be written as:

Λt(a, s,A×B) =
∞X
j=1

φ(i ∈ Ij : (gj(a, s), sit+1) ∈ A×B | smt = s,m ∈ I)

=
∞X
j=1

1A(g
j(a, s))φ(m ∈ Ij)φ(i ∈ Ij : sit+1 ∈ B | smt = s,m ∈ Ij)

=
∞X
j=1

qj1A(g
j(a, s))Qj(s,B) =

Z
I
1A(g

i(a, s))Qi(s,B)φ(di).
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Thus the aggregate transition function is equal to the weighted average of the transition functions

across all types of consumers.

The above analysis can be summarized in the following lemma.

Lemma 4.2. Under Assumptions 1, 2, 4, 6 and 7, and the Feldman-Gilles construction, the

aggregate transition function is time invariant and given by Λ(a, s,A × B) ≡ R
I Λ

i(a, s,A ×
B)φ(di) =

R
I 1A(g

i(a, s))Qi(s,B)φ(di), for (a, s) ∈ A× S and A×B ∈ B(A)× B(S).

Remark 5. When there are uncountably many types of ex ante identical consumers, one can

apply a method described in [29].20 Specifically, let I and J be copies of [0, 1] and let ψ be a

Lebesgue measure on B(I×J) with the marginal φ on B(I) and the marginal q on B(J). One can
think of an element (i, j) ∈ I × J indexing a consumer i of type j. Let any variable x associated
with consumer i of type j be denoted by x(i,j). Consumers of the same type j have the same felicity

uj and the same distribution µj of labor endowment shocks, i.e., u(i,j) = uj , µ(i,j) = µj ,β(i,j) = βj .

Then one can apply the Feldman-Gilles construction to show that

Λt(a, s,A×B) =
Z
J
1A(g

j(a, s))Qj(s,B)q(dj) =

Z
I×J

1A(g
(i,j)(a, s))Q(i,j)(s,B)ψ(di, dj).

Note that the shocks processes (sit), i ∈ I, are generally correlated across consumers due to
the measurability requirement. This raises two questions: (i) Does correlation matter? (ii) Can

it be avoided?

With regard to the first question, correlation does not matter for all my results and inter-

pretations. This is because an individual’s decision depends only on his own individual state

and the aggregate distribution of individual states across the population (or market prices). It

does not depend on any other particular individual’s actions, even though he may realize that

his shocks are correlated with others. Furthermore, every individual knows that his own decision

does not affect the aggregate distribution or market prices. This is the cornerstone hypothesis of

competitive markets and anonymous games.21

Turn to the second question. It is known that if a continuum of random variables are in-

dependent and have a common distribution, then the process is not measurable and even has

no measurable standard modification with respect to the relevant product measure [28, 19, 44].

Judd [28] shows that there is a natural extension of the probability space so that this measura-

bility problem disappears. However, one has still to face the second difficulty. That is, the set of

sample realizations satisfying the law of large numbers has outer measure one and inner measure

zero, therefore this set is not measurable. However, Judd shows that there is an extension of the

20This case will not be considered in the later analysis.
21See [27, 7, 29] for further discussion.
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measure so that the law of large numbers is satisfied for these random variables. Sun [44] argues

that both this approach and the Feldman-Gilles construction are not a theory of the law of large

numbers for a continuum of random variables because the law depends critically on a particular

probability space and a particular process. He further argues that one has to go beyond the usual

continuum framework. In particular, he claims hyperfinite processes which are measurable with

respect to Loeb product spaces constitute the right class for the exact law of large of numbers.

This paper does not intend to propose a new theory of the law of large numbers. The purpose

is to demonstrate how one can apply some ‘law of large numbers’ such as the Feldman-Gilles

construction to dynamic economies so that aggregation removes individual risks.22

4.2. Existence of Equilibrium

It is useful to restate Definition 2.1 in a recursive form.

Definition 4.3. A recursive stationary (competitive) equilibrium ((V i, gi)i∈I , (r, w),λ) consists
of a system of constant prices (r, w) ∈ R2, a value function V : I ×A× S→ R, a policy function
g : I ×A× S→ A, and a probability distribution λ ∈ P(A× S) such that:

(i) Given prices (r, w), V i is a fixed point of T i in problem (3.1) and gi is the corresponding

optimal policy function for φ-a.e. i.

(ii) Given prices (r, w), the firm maximizes profits, i.e., r = F1(K, 1)−δ, w = F2(K, 1), where
K =

R
A×S aλ(da, ds).

(iii) Markets clear:
R
A×S sλ(da, ds) = 1.

(iv) λ is an invariant distribution, i.e., for all A×B ∈ B(A)× B(S),

λ(A×B) =
Z
A×S

Z
I
1A(g

i(a, s))Qi(s,B)φ(di)λ(da, ds).

It merits emphasis that (iv) can be justified by Lemma 4.2. Moreover, the equilibrium wage

rate w can be written as a function of r by (2.7)-(2.8). Thus, the interest rate is in fact the only

price that needs to be determined in equilibrium.

Given a recursive stationary equilibrium ((V i, gi)i∈I , (r, w),λ), a stationary equilibrium can

be constructed as follows. Let the initial aggregate distribution be λ, i.e., λ0(A×B) = φ(i ∈ I :
(ai0, s

i
0) ∈ A×B) = λ(A×B) for all A×B ∈ B(A) × B(S). Let the allocation ((ait+1, cit)t≥0)i∈I

be defined by (4.1). Then using Lemma 4.1, it can be shown that (((ait+1, c
i
t)t≥0)i∈I , (r, w),λ)

constitutes a stationary equilibrium.

22Sun [45] applies the theory developed in [44] to study a static pure exchange economy. It remains to be seen
how one can apply his theory to dynamic economies such as the Bewley-style model studied here.
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One key step of the construction of an equilibrium is to find the invariant aggregate distribu-

tion. The following lemma establishes that the measure given by (2.12) is an invariant aggregate

distribution.

Lemma 4.4. Let λ∗i be an invariant distribution of the joint process of asset holdings and shocks
for consumer i. If i 7→ λ∗i(D) is B(I)-measurable for each D ∈ B(A× S), then the measureR
I λ
∗iφ(di) is the invariant aggregate distribution.

This lemma and item (iii) in Definition 4.3 put a restriction on the shock process (sit). Specif-

ically, since the marginal of λ∗i on S is the invariant distribution of the process (sit) for each i ∈ I,
the following restriction must hold:Z

A×S
sλ(da, ds) =

Z
I

Z
A×S

sλ∗i(da, ds)φ(di) = 1.

That is, the average of the mean values of all shocks with respect to their invariant distributions

must be equal to the exogenously given aggregate labor supply.

Now, the existence of a stationary equilibrium can be established.

Theorem 4.5. Under Assumptions 1-5, there exists a stationary equilibrium (((ait+1, c
i
t)t≥0)i∈I , (r∗, w∗),λ)

such that βi(1 + r∗) < 1 for φ-a.e. i provided that the borrowing limit a satisfies ra+w(r)s ≥ ε

for some ε > 0 and r ∈ (−δ, 1/βmin − 1). Furthermore, under these conditions, there is no sta-
tionary equilibrium with the interest rate r and the wage w satisfying r ≥ 1/βi − 1 for positive
φ-measure of i.

It has been shown that deterministic version of the Bewley-style model exhibits an extreme

distribution of capital in a stationary equilibrium. That is, only the most patient consumer

determines the aggregate capital stock so that the equilibrium interest rate is equal to the rate

of time preference of the most patient consumer (e.g., [6]). Theorem 4.5 shows that this result

does not carry over to the Bewley-style model.

In the Bewley-style model, the equilibrium interest rate is less than that in the deterministic

case. Furthermore, aggregate savings are higher than that in the deterministic case. These ex-

tra precautionary savings reflect the fact that consumers’ income is random and only partially

insured. This result is the key implication of the Bewley-style model. It implies that hetero-

geneity, incomplete markets, borrowing constraint, and uncertainty play important roles in the

determination of the wealth distribution, aggregate savings and the interest rate.

Because the interest rate r∗ and the wage rate w∗ in any stationary equilibrium satisfy

r∗a+w∗s > 0 and βi(1+r∗) < 1 for φ-a.e. i, all partial equilibrium results established in Section
3 are valid for stationary equilibria. In particular, Theorem 3.7 and Lemma 4.4 imply that it

is a necessary feature that the borrowing constraint binds for a positive mass of consumers in

stationary equilibrium.23

23A similar result is established in [26] under stronger conditions.
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The intuition behind Theorem 4.5 is as follows. For both the deterministic case and uncer-

tainty case, if r is larger than the rate of time preference of the most patient consumer (denoted

by %), then consumption will grow without bound. This violates the resource constraint given

Assumption 5 so that in any stationary equilibrium r must not exceed %. In the deterministic

case, if r equals %, then the most patient consumer can demand any asset level bigger than a in

the long run and all other consumers are borrowing constrained. Furthermore, if r is less than %,

then all consumers will be borrowing constrained. In fact, the unique steady-state equilibrium

for the deterministic case is characterized by r = %. By contrast, in the uncertainty case, r

cannot equal % because if so, it follows from Theorem 3.8 that consumption of the most patient

consumer would grow without bound, contradicting the resource constraint. Importantly, if r

is less than %, there exists an ergodic set and an ergodic measure for the joint process of asset

holdings and shocks (Theorem 3.7). Moreover, the expected asset holdings and aggregate asset

demand move continuously with respect to r and increase to infinity as r approaches %. Thus,

Theorem 4.5 is obtained as illustrated in Figure 2.1.

4.3. Properties of Equilibria

Wealth distribution. I first consider the situation where there are two types of consumers who

differ in only one of the following parameters: discount factors, the degrees of risk aversion,

borrowing limits, and distributions of endowment shocks. How are aggregate capital and wealth

distributed between these two types of consumers?

Let the discount factor, the borrowing limit and the transition function of endowment shocks

of a type j consumer be βj , aj and Qj respectively, j = 1, 2. When consumers differ in risk

aversion, I restrict attention to a particular class of utility functions of the form uj(c) = cα
j
/αj ,

αj < 0, j = 1, 2. Let the mass of type j consumers be qj (q1 + q2 = 1). The following theorem

follows from Theorems 3.7, 3.10 and Lemma 4.4, the proof of which is omitted.

Theorem 4.6. Given the assumptions in Theorem 4.5, consider the stationary equilibrium

(((ait+1, c
i
t)t≥0)i∈I , (r, w),λ). Corresponding to type j, let a∗j(s) and s∗j be given in Theorem

3.5 and let Kj = [aj , aj ] be given in Lemma 3.6 and λ∗j given in Theorem 3.7. Then:

(i) The aggregate distribution is given by λ = q1λ
∗1 + q2λ∗2. Furthermore, if β2 > β1 or

a2 > a1, then λ∗2 ºFSD λ∗1.

(ii) Aggregate savings and aggregate wealth for type j consumers are given by qj
R
A×S aλ

∗j(da, ds)

and qj

h
(1 + r)

R
A×S aλ

∗j(da, ds) + w
R
A×S sλ

∗j(da, ds)
i
, respectively.

(iii) The mass of type j consumers who are borrowing constrained is qjλ
∗j([aj , a∗j(s)]×[s, s∗j ]).

Furthermore, if β2 > β1 or Q1 Âc Q2, then a∗2(s) < a∗1(s) and s∗2 ≤ s∗1.
(iv) If β2 > β1, or a2 > a1, or Q1 Âc Q2 or α2 < α1, then a2 > a1 and the consumers whose

assets exceed a1 are of type 2 and their mass is q2λ
∗2((a1, a2]× S).
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It is observed from the data that the poorest twenty percent of the population have near

zero wealth on average, whereas the richest five percent of the population hold roughly half of

aggregate wealth. Such skewness in wealth cannot be generated from the Bewley-style model

with ex ante identical consumers as shown by the numerical results of [1] and [30]. However,

Krusell and Smith [30] show by numerical example that differences in discount factors can gen-

erate large degrees of skewness. The above theorem establishes this possibility analytically and

also demonstrates that other factors such as differences in population, risk aversion, borrowing

constraints, and distributions of shocks can also help to explain this pattern. For instance, if the

fraction of consumers (q2) whose conditional distribution of shocks is stochastically dominated

is sufficiently small, then the mass of consumers who hold large capital stock (more than a1),

q2λ
∗2((a1, a2]×S), is small. Furthermore, the mass of consumers who are borrowing constrained,P2
j=1 qjλ

∗j([a, a∗j(s)]× [s, s∗j ]), is large.
The above theorem also implies that: (a) When the two types of consumers have equal mass,

aggregate savings and wealth for consumers with higher discount factor or tighter borrowing

constraint are strictly greater than for those with lower discount factor or looser borrowing

constraint. (b) The mass of type 2 consumers who are borrowing constrained is less than that

of type 1 consumers if every type 2 consumer has a higher discount factor or his conditional

distribution shocks is stochastically dominated. (c) The consumers who hold sufficiently large

assets are of the type who have higher discount factor, or tighter borrowing constraint, or greater

degree of risk aversion, or worse conditional distribution of shocks.

Comparative statics. Note that uniqueness of equilibrium is not guaranteed because the aggregate

capital supply curve is not necessarily monotonic in the interest rate so that it may cross the

aggregate capital demand curve more than once. Nevertheless, one can still conduct comparative

statics analysis on the set of equilibria using the partial order ºs defined in Section 3.4.

Theorem 4.7. Under Assumptions 1-5, if the borrowing constraint is tightened, or if the dis-

count factor is increased for almost every consumer, then the set of equilibrium interest rates

decreases provided that the constraint on borrowing limits given in Theorem 4.5 is satisfied.

The intuition behind this theorem is that if the borrowing constraint is tightened or if the

discount factors are increased, then Theorem 3.10 (iv) and Lemma 3.7 imply that aggregate

capital supply increases. Since the aggregate capital demand is fixed, the result then follows (see

Figure 2.1).
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A. Appendix: Existence and Properties of The Value and Policy Functions

Proofs of Theorems 3.1-3.2:

Recall problem (3.1):

Tv(a, s) = sup
a0∈Γ(a,s)

u((1 + r)a+ ws− a0) + βE
£
v(a0, s0) | s¤ , (A.1)

where v : A× S→ R and Γ(a, s) = [a, (1 + r)a+ ws].

Assume that Assumption 2 (a) holds and that v satisfies the following properties:

Property 1. For each s ∈ S, v(·, s) is increasing, concave and continuously differentiable on A.
Property 2. For each a ∈ A, v1(a, ·) is decreasing on S.

Since v is continuous and concave and u is continuous and strictly concave, there exists a

unique maximizer of problem (A.1), k. As a function of (a, s), k is continuous by the Maximum

Theorem. The corresponding optimal consumption policy c : A× S→ R is given by c(a, s) =
(1 + r)a+ ws− k(a, s). Then for all (a, s) ∈ A× S,

Tv(a, s) = u((1 + r)a+ ws− k(a, s)) + βE
£
v(k(a, s), s0) | s¤ . (A.2)

Note that c(a, s) > 0 since u0(0) =∞ from Assumption 2 (a).

The first-order condition for problem (A.1) is given by

u0(c(a, s)) ≥ βE
£
v1(k(a, s), s

0) | s¤ with equality if k(a, s) > a. (A.3)

This condition is also sufficient for optimality by concavity.

Lemma A.1. Suppose u satisfies Assumption 2 (a) and v satisfies property 1. For fixed s ∈ S,
if k(a, s) = a for some a ∈ (a, a], then there exists a unique a0 ≥ a such that k(ea, s) > a for allea > a0, and k(ea, s) = a and

∂Tv

∂a
(ea, s) = (1 + r)u0((1 + r)ea+ ws− a),

for all ea ∈ [a, a0].
Proof: If k(a, s) = a for some a ∈ (a, a], then (A.3) holds. By Assumption 2 (a), u0(c(a, s)) =
u0((1 + r)a+ ws− a) is strictly decreasing in a and it goes to 0 as a→∞. Moreover, Property
1 implies that v1(a, s

0) > 0. Thus, the Intermediate Value Theorem and (A.3) imply that there

is a unique a0 ≥ a such that it satisfies the properties in the lemma. Finally, the equality in the
lemma follows from differentiation of (A.2) at ea ∈ [a, a0].
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The following proposition shows that Tv inherits some properties of v. I first state strong

versions of properties 1-2.

Property 10. For each s ∈ S, v(·, s) is strictly increasing, strictly concave and continuously
differentiable on A.

Property 20. For each a ∈ A, v1(a, ·) is strictly decreasing on S.

Proposition A.2. Suppose that Assumptions 1 (a)-(c), 2 (a), 6, and 7 hold. If v satisfies prop-

erties 1-2, then the function Tv satisfies properties 10 and 2. Furthermore, if v(·, s) is strictly
concave for each s ∈ S and satisfied property 2, then Tv satisfies property 20. Finally, for all
(a, s) ∈ A× S,

∂Tv

∂a
(a, s) = (1 + r)u0(c(a, s)). (A.4)

The proof uses the following lemma. Let ek be the optimal asset holdings and ec be optimal
consumption for problem (A.1) when v is replaced by the function ev : A× S→ R. Let kn be the
optimal asset holdings and cn be optimal consumption for problem (A.1) when v is replaced by

the function vn : A× S→ R.

Lemma A.3. Suppose that Assumption 2 (a) holds.

(i) If v ≤ ev for any function ev : A× S→ R, then Tv ≤ Tev.
(ii) If v and ev satisfy the properties 1-2 and v1 ≤ ev1 then k ≤ ek and c ≥ ec.
(iii) If v satisfies properties 1-3, vn(a, s) increases to v(a, s) and vn1 (a, s) increases to v1(a, s)

for all (a, s) ∈ A× S as n → ∞, then Tvn(a, s) increases to Tv(a, s) and kn(a, s) increases to
k(a, s) for each (a, s) ∈ A× S.

Proof: Part (i) is obvious from (A.1).

(ii) Since (1 + r)a+ws > a and u0(0) =∞, c(a, s) > 0 and ec(a, s) > 0. Suppose k > ek. Then
k > a. By the first-order condition (A.3) and v1 ≤ ev1,

βE
£ev1(k, s0) | s¤ ≥ βE

£
v1(k, s

0) | s¤ = u0((1 + r)a+ws− k)
> u0((1 + r)a+ ws− ek) ≥ βE

hev1(ek, s0) | si .
Thus, by concavity of ev, k < ek. This is a contradiction.

(iii) If vn1 increases to v1 and v
n(a, s) increases to v(a, s), then vn(a, s) = vn(a, s)+

R a
a v

n
1 (x, s)dx

increases to v(a, s) = v(a, s) +
R a
a v1(x, s)dx. By parts (i)-(ii), Tv

n(a, s) increases to a limit, de-

noted by v, and kn increases to a limit, denoted by k. It remains to show that v = Tv and

k = k.

I first show that k = k by considering two cases.
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1. k(a, s) = a. Then kn = k = a, cn(a, s) > 0 for all n sufficiently large. By the first-order

condition (A.3), u0((1 + r)a + ws − a) ≥ βE [vn1 (a, s
0) | s] for all n sufficiently large. By

the Monotone Convergence Theorem, u0((1 + r)a + ws − a) ≥ βE [v1(a, s
0) | s] . Since the

objective function of problem (A.1) is strictly concave by assumption, the above first-order

condition is also sufficient for optimality. Thus k = k = a.

2. k(a, s) > a. Then for sufficiently large N, kn > a for n > N. Consider two cases. Since

u0(0) = ∞, cn(a, s) > 0 for all n > N. Then kn satisfies the first-order condition: u0((1 +
r)a + ws − kn) = βE [vn1 (k

n, s0) | s] . Letting n → ∞, k = k from the same argument as

above.

Finally, show that v = Tv. This follows from the Monotone Convergence Theorem and

Tv(a, s) = u((1 + r)a+ ws− k) + βE
£
v(k, s0) | s¤

= lim
n→∞u((1 + r)a+ ws− k

n) + βE
£
vn(kn, s0) | s¤

= lim
n→∞Tv

n(a, s) = v, for all (a, s),

as desired.

Proof of Proposition A.2: The proof consists of two steps.

Step 1. Show that Tv satisfies property 1 0 and (A.4).

The strict monotonicity and concavity of Tv follow from standard argument. I then show the

remaining properties by considering two cases.

Case 1. k(a, s) > a for all a > a and s ∈ S. Then one can apply the Benveniste and
Scheinkman Theorem [43, Theorem 9.10] to deliver differentiability of Tv and (A.4).

Case 2. k(a, s) = a for some a > a and for any s ∈ S. Then by Lemma A.1 there is an a0 > a
such that for fixed s and all ea < a0,

∂Tv

∂a
(ea, s) = (1 + r)u0((1 + r)ea+ ws− a),

and for all ea > a0, k(ea, s) > a. Thus if ea > a0, from the preceding case, Tv(·, s) is continuously
differentiable and satisfies (A.4). Taking the right derivative in (A.4) and left derivative in the

above equation at a0 yields the same value. Thus Tv(·, s) is continuously differentiable and
satisfies (A.4).

Combining the above two cases and using the continuity of u0, one obtains that ∂Tv
∂a (a, s) =

u0(ra+ ws) and that Tv has property 10 and satisfies (A.4) on A× S.
Step 2. Show that Tv has property 2 or 2 0.

Suppose that v(a, s) has property 2. If k(a, s) = a then c(a, s) = (1+r)a+ws−a is increasing
in s. By the envelope condition (A.4) and u00 < 0, ∂Tv/∂a is strictly decreasing in s.
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If k(a, s) > a, then (1 + r)a+ ws > a. The first-order condition is given by

u0(c(a, s)) = βE
£
v1((1 + r)a+ ws− c(a, s), s0) | s

¤
,

Fixing c(a, s), when s increases, the R.H.S. of the above equation (strictly) decreases since v1(a, s)

is (strictly) decreasing in a and s by the hypothesis and Q is monotone by Assumption 1 (c).

Thus, since u00 < 0, c(a, s) = (1+ r)a+ws− k(a, s) must be (strictly) increasing in s. Using the
envelope condition (A.4) yields ∂Tv

∂a (a, s) = (1 + r)u
0(c(a, s)). Since u0 is strictly decreasing and

c(a, s) is (strictly) increasing in s, ∂Tv(a, s)/∂a is (strictly) decreasing in s for each a ∈ A.

Define a sequence of functions {V n} recursively by V 0 = 0 and V n+1 = TV n. Let kn+1 :

A× S→ R be the optimal asset accumulation policy function of problem (A.1) when v = V n. The
optimal consumption policy cn+1 : A× S→ R is given by cn+1(a, s) = (1+ r)a+ws−kn+1(a, s).
Then it is trivial that c1(a, s) = (1 + r)a+ ws− a and k1(a, s) = a.

Since u0(0) =∞, cn(a, s) > 0 for all n. Then by induction and Proposition A.2,

V n+1(a, s) = u(cn+1(a, s)) + βE
£
V n(kn+1(a, s), s0) | s¤ , (A.5)

V n+11 (a, s) = (1 + r)u0(cn+1(a, s)). (A.6)

By the Maximum Theorem cn and kn are continuous functions for all n. Moreover, each V n

satisfies other properties stated in Proposition A.2.

Lemma A.4. Suppose Assumptions 1 (a)-(c), 2, 6, and 7 hold. Then:

(i) {V n}, {V n1 } and {kn} are increasing sequences of functions, and {cn} is a decreasing
sequence of functions.

(ii) There exist two functions L : A × S → R and M : A × S → R such that −∞ <

L(a, s) ≤ V n(a, s) ≤ V (a, s) ≤ M(a, s) < ∞, for all n ≥ 1 and all (a, s) ∈ A× S. Furthermore,
limt→∞E

£
βtM(at, st) | s0

¤
= 0 for all feasible plans (at) and all (a0, s0) ∈ A× S.

Proof: (i) It can be shown that V 1(a, s) = u((1 + r)a+ ws− a) and V 11 (a, s) = (1 + r)u0((1 +
r)a + ws − a). So V 11 (a, s) > V 01 (a, s) = 0, V 1(a, s) ≥ V 0(a, s) = 0, k1 ≤ k2, and c1 ≥ c2 by
Lemma A.3 (ii). Thus by (A.4), V 21 (a, s) = (1+ r)u

0(c2(a, s)) ≥ (1+ r)u0(c1(a, s)) = V 11 (a, s). By
induction and Lemma A.3, one can show that {kn}, {V n} and {V n1 } are increasing sequences,
and that {cn} is a decreasing sequence of functions.

(ii) Since u(0) = 0 and u is increasing, one can take L = 0. It is also straightforward to show

that V n(a, s) ≤ V (a, s) for all n ≥ 0. Observe that one can rewrite the budget constraint as

ct + ba0t+1 = (1 + r)bat + zt,
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where bat ≡ at − a ≥ 0 and 0 ≤ zt ≡ ra+wst ≤ ra+ws for all t ≥ 0. Then it can be shown that
any feasible consumption plan (ct) must satisfy:

ct = zt + (1 + r)bat − ba0t+1 ≤ zt + (1 + r)bat ≤ zt + (1 + r) [(1 + r)bat−1 + zt−1]
= zt + (1 + r)zt−1 + (1 + r)2bat−1 ≤ · · · ≤ zt + (1 + r)zt−1 + · · ·+ (1 + r)tz0 + (1 + r)t+1ba0
≤ 1

r

£
(1 + r)t+1 − 1¤ (ws+ ra) + (1 + r)t+1(a0 − a) ≡ ct(a0).

If r < 0, then ct(a) ≤ a− ws/r − 2a for all t ≥ 0. Thus,

V (a, s) ≤ E
" ∞X
t=0

βtu(ct(a0))

#
= u(a−ws/r − 2a)/(1− β) <∞.

Take M(a, s) = u(a− ws/r − 2a)/(1− β).

If r ≥ 0,then ct(a) grows without bound. By Assumption 2 (b), one can show that for any
0 < σ < γ, there exists a xσ > 0 large enough such that for all c > xσ, u

0(c) ≤ c−σ, or

u(c) ≤ ξ1
c1−σ − 1
1− σ

+ ξ2 ≡ u(c),

where ξ1 > 0 and ξ2 are constants that depend on xσ (e.g., [42, Lemma 3.3.2]). Since γ > 1, one

can take σ = 1. Because ct(a) grows without bound, there exists a minimal time t0 such that

ct(a) > xσ for all t ≥ t0. Thus,

V (a, s) ≤
t0−1X
t=0

βtu(ct(a)) +
βt0ξ2
1− βt0

+ ξ1

∞X
n=t0

βn log(cn(a)).

As shown in section 3.1,
P∞
n=t0

βn log(cn(a)) is finite. Thus, one can takeM(a, s) as the function

on the R.H.S. of the above inequality.

Proof of Theorem 3.1:

(i) Since {V n(a, s)} is an increasing sequence and bounded above, it converges to a finite limit
V∞(a, s). To show V∞ is a fixed point of T, let c∞ and a∞ be the optimal consumption and

asset accumulation policies for problem TV∞. Then since (c∞, a∞) is also feasible for problem
V n = TV n−1,

0 ≤ TV∞(a, s)− V n(a, s) ≤ TV∞(a, s)− u(c∞)− βE
£
V n−1(a∞, s0) | s¤

= βE
£
V∞(a∞, s0) | s¤− βE

£
V n−1(a∞, s0) | s¤ .

Thus letting n→∞ and using the Monotone Convergence Theorem, the expression on the R.H.S.

of the above equality goes to 0. This implies that V∞ is a fixed point of T. Since V n is continuous

for each n by the Maximum Theorem, V∞ is lower semicontinuous by Dini’s Theorem.

I claim that V∞ = V. By [43, Theorem 9.2], it suffices to show that limt→∞ βtE [V∞(at, st) | s0] =
0 for all feasible plans (at) and all (a0, s0) ∈ A× S. This is true by Lemma A.4.
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To show continuity of V , define a sequence of functions {V ∗n(a, s)} by V ∗0(a, s) =M(a, s) <
∞ and V ∗n(a, s) = TnV ∗0(a, s). Then since TV ∗0(a, s) ≤ V ∗0(a, s), Lemma A.3 implies that
{V ∗n} is a decreasing sequence of functions. Moreover, V ∗n is a continuous function by the
Maximum Theorem for each n. Since V ∗n ≥ 0 by Assumption 2 (a), {V ∗n} converges to a finite
function V ∗∞ pointwise. By Dini’s Theorem, V ∗∞ is upper semicontinuous. Similar to the

previous argument, one can show that V ∗∞ is a fixed point of T.

Because limt→∞ βtE [V ∗∞(at, st) | s0] = 0 for all feasible plans (at) and all (a0, s0) ∈ A× S by
Lemma A.4, it follows from [43, Theorem 9.2] that V ∗∞ = V. Thus V is both lower semicontinuous

and upper semicontinuous so that V is continuous.

To show uniqueness of fixed points of T in V, suppose that there is another fixed point of T,
say v ∈ V. Then since 0 ≤ v(a, s) ≤M(a, s), Lemma A.3 implies that V∞(a, s) = limn→∞ Tn0 ≤
v = limn→∞ Tnv ≤ limn→∞ TnM(a, s) = V ∗∞. Thus V ∗∞ = v = V∞ = V .

(ii) By Lemma A.4, {kn(a, s)} is an increasing sequence of functions. Since this sequence is
bounded above by (1+ r)a+ws, it converges to a finite limit, denoted by g(a, s). It follows that

the corresponding sequence of optimal consumption polices {cn(a, s)} converges to a finite limit,
denoted by f(a, s) = (1+r)a+ws−g(a, s). Letting n→∞ in (A.5) and using limn→∞ kn(a, s) =
g(a, s), one obtains that g(a, s) is a maximizer for problem V (a, s) = TV (a, s). Because V is

continuous and strictly concave, the optimal policy g : A× S→ A must be a continuous function
by the Maximum Theorem.

Proof of Theorem 3.2:

(i) By Proposition A.2, it can be inductively shown that V n(·, s) satisfies the desired properties
of monotonicity, concavity and differentiability. Moreover, V n1 (·, s) is bounded in [a, a]. Thus by
the Monotone Convergence Theorem and (A.6),

V (a, s)− V (a, s) = lim
n→∞ [V

n(a, s)− V n(a, s)] = lim
n→∞

Z a

a
V n1 (x, s)dx

= (1 + r) lim
n→∞

Z a

a
u0(cn(x, s))dx = (1 + r)

Z a

a
u0(f(x, s))dx.

So V is continuously differentiable in a and satisfies (3.2). Monotonicity and concavity of V

follow from induction or [43, Corollary 1, p.52].

(ii) By induction and Proposition A.2, one can show that V n1 (a, s) is strictly decreasing in s for

each a ∈ A. Thus the limit V1(a, s) as n→∞ is decreasing in s for each a ∈ A. Moreover, V1(a, s)
must be strictly decreasing in s since V1(a, s) = ∂TV/∂a and ∂TV/∂a is strictly decreasing in s

by Proposition A.2. Monotonicity of V (a, s) in s can be similarly shown by the above induction

argument. Since it is standard [43, Theorem 9.11], I omit the detail.

Proof of Theorem 3.4:
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(i) Since 0 < β(1 + r) ≤ 1 and V1(a, ·) is strictly decreasing by Theorem 3.2 (ii),

V1(a, s) > E
£
V1(a, s

0) | s¤ ≥ β(1 + r)E
£
V1(a, s

0) | s¤ . (A.7)

Thus, Theorem 3.3 implies that g(a, s) = a. It follows that f(a, s) = ra + ws > 0. Then by

monotonicity of f shown below, f(a, s) ≥ f(a, s) = ra+ ws.
(ii) Monotonicity of f follows from the envelope condition (3.2) and Theorem 3.2. Mono-

tonicity of g(·, s) follows from standard argument (e.g., [43]).

(iii) Let s1 < s2. If g(a, s1) = a, then g(a, s2) ≥ a. So suppose that g(a, s1) > a, but g(a, s1) ≥
g(a, s2). Then by the budget constraint, f(a, s2) = (1+r)a+ws2−g(a, s2) ≥ f(a, s1)+w(s2−s1).
Thus, by the Mean Value Theorem,

u0(f(a, s1))− u0(f(a, s2)) = u00(bc)(f(a, s1)− f(a, s2)) ≥ ηw(s2 − s1), (A.8)

where bc ∈ [f(a, s1), f(a, s2)] and the inequality follows from Assumption 2 (c).

Since β(1 + r) ≤ 1, it follows that

βE
£
V1(g(a, s

1), s0) | s1¤− βE
£
V1(g(a, s

2), s0) | s2¤
≤ βE

£
V1(g(a, s

1), s0) | s1¤− βE
£
V1(g(a, s

1), s0) | s2¤
= β(1 + r)

Z
S
u0(f(g(a, s1), s0))

£
Q(s1, ds0)−Q(s2, ds0)¤

≤ β(1 + r)u0(ra+ ws)
Z
S

¯̄
Q(s1, ds0)/ds0 −Q(s2, ds0)/ds0¯̄ ds0

≤ u0(ra+ ws)
Z
S

¯̄
Q(s1, ds0)/ds0 −Q(s2, ds0)/ds0¯̄ ds0,

where the first line follows from concavity of V (·, s0) and the supposition that g(a, s1) ≥ g(a, s2),
the second line from the envelope condition, and the third line from part (i). Thus, use (A.8)

and the Euler inequality to derive

u0(f(a, s2)) + ηw(s2 − s1) ≤ u0(f(a, s1)) = βE
£
V1(g(a, s

1), s0) | s1¤
≤ βE

£
V1(g(a, s

2), s0) | s2¤+ u0(ra+ ws)Z
S

¯̄
Q(s1, ds0)/ds0 −Q(s2, ds0)/ds0¯̄ ds0.

Finally, apply the Euler inequality for g(a, s2) > a to obtain

ηw(s2 − s1) ≤ u0(ra+ ws)
Z
S

¯̄
Q(s1, ds0)/ds0 −Q(s2, ds0)/ds0¯̄ ds0.

This is a contradiction because Assumption 1 (b) and (2.5) imply thatZ
S

¯̄
Q(s1, ds0)/ds0 −Q(s2, ds0)/ds0¯̄ ds0 < κ(s2 − s1) ≤ ηw

u0(ra+ ws)
(s2 − s1).

Remark 6. In the general equilibrium analysis, w and r are endogenous. Given (2.6) and the

assumptions that ra+ ws > ε and w ≥ w, one can still establish this result using the preceding
three equations.
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(iv) If u is unbounded, then V (a, s) is also unbounded as a → ∞. This is because the plan
saving nothing and consuming all wealth is budget feasible so that

V (a, s) ≥ u((1 + r)a+ws) +E
∞X
t=1

βtu(wst)→∞, as a→∞.

Suppose that f(a, s) is bounded above by d < ∞. Then V (a, s) ≤ u(d)/(1 − β), which is a

contradiction. If u is bounded, then the argument follows from [13, Lemma 2].

Proof of Theorem 3.5:

I first show (3.5). If u0(ra + ws) ≥ βE [V1(a, s
0) | s], then g(a, s) = a. Thus s∗ = s satisfies

(3.5). Now suppose u0(ra + ws) < βE [V1(a, s) | s] . By (A.7), u0(ra + ws) > βE [V1(a, s
0) | s] .

Noting that u0(ra + ws) and βE [V1(a, s
0) | s] are continuous and strictly decreasing in s by

Theorem 3.2 and Assumptions 1- 2, one can apply the Intermediate Value Theorem to obtain

that there exists a unique s < s∗ < s such that (3.5) holds as illustrated in Figure A.1.

Turn to the proof of (3.6). From Figure A.1, one can see that if s > s∗, then

βE
£
V1(a, s

0) | s¤ > u0(ra+ ws) ≥ u0((1 + r)a+ws− a).
Thus, there is no a ∈ [a,∞) such that βE [V1(a, s0) | s] = u0((1 + r)a+ ws− a). If s < s∗, then

0 < βE
£
V1(a, s

0) | s¤ < u0(ra+ ws) = max
a∈A

u0((1 + r)a+ws− a).

Moreover, by Assumption 2, lima→∞ u0((1+ r)a+ws− a) = 0. Thus, by the Intermediate Value
Theorem, there exists a unique a∗ > a satisfying (3.6).

(i) If a ∈ [a, a∗(s)] and s ∈ [s, s∗], then

u0(f(a, s)) ≥ u0(f(a∗, s)) = βE
£
V1(a, s

0) | s¤ ,
where the inequality follows from monotonicity of f(·, s) by Theorem 3.4 (ii) and concavity of u,

the equality from (3.6). Thus, it follows from Theorem 3.3 that g(a, s) = a for every a ∈ [a, a∗(s)]
and s ∈ [s, s∗].

(ii) If a > a∗(s) and s ∈ [s, s∗), then by (3.6) and Theorem 3.3 and strict concavity of V (·, s)
from Theorem 3.2,

β(1 + r)E
£
V1(g(a, s), s

0) | s¤ ≤ V1(a, s) < V1(a∗(s), s) = β(1 + r)E
£
V1(a, s

0) | s¤ .
Thus, strict concavity of V (·, s) implies that g(a, s) > a. Finally, if s ∈ (s∗, s], then by (3.5) and
concavity of u, βE [V1(a, s

0) | s] > u0(ra+ws) ≥ u0((1+r)a+ws−a). Thus, Theorem 3.3 implies
that g(a, s) > a.
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s s

βE[V1(a, s
0) | s]

u0(ra+ ws)

s∗

u0(ra+ ws)
¡µ

βE[V1(a, s
0) | s]

¡¡ª

s

βE[V1(a, s
0) | s]

u0(ra+ ws)

Figure A.1: Determination of s∗
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B. Appendix: Long-Run Behavior of Consumption and Asset Holdings

Proof of Lemma 3.6:

I first prove two lemmas.

Lemma B.1. Given Assumptions 1, 2, 6, and 7, if β(1 + r) < 1, then g(a, s) < a for a > a.

Proof: Since V1(a, ·) is decreasing by Theorem 3.2 (iii) and β(1 + r) < 1, using Theorem 3.3

yields:

V1(a, s) ≥ E
£
V1(a, s

0) | s¤ > β(1 + r)E
£
V1(a, s

0) | s¤ ,
for any a > a. Thus, if g(a, s) ≥ a > a, then by Theorem 3.3, V1(a, s) = β(1+r)E [V1(g(a, s), s

0) | s] .
This contradicts the above inequality by strict concavity of V1(·, s0).

Lemma B.2. Given Assumptions 1, 2, 6, and 7, if β(1 + r) < 1 and w ≥ w, then there exists a
finite ea > a such that g(a, s) < a whenever a > ea for all s ∈ S.
Proof: Since g(a, s) ≥ g(a, s) for all a ∈ A by Theorem 3.4 (iii), (1 + r)a + ws − g(a, s) ≤
(1 + r)a+ ws− g(a, s). This implies that

f(a, s)− w(s− s) ≤ f(a, s) or f(a, s)
f(a, s)

≤ 1 + w(s− s)/f(a, s).

By the envelope condition (3.2), Assumption 2 (b), and Theorem 3.4 (iv), one can deduce

that for a large enough,

V1(a, s)/V1(a, s) = u
0(f(a, s))/u0(f(a, s)) ≤

·
f(a, s)

f(a, s)

¸ρ2
≤ [1 + w(s− s)/f(a, s)]ρ2 ,

where ρ2 > γ. Thus, lima→∞ V1(a, s)/V1(a, s) ≤ 1. On the other hand, since V1 is decreasing in
s, V1(a, s) ≥ V1(a, s). Thus, lima→∞ V1(a, s)/V1(a, s) = 1. Since β(1+ r) < 1, there exists a finiteea > a large enough such that for all a > ea,

V1(a, s) > β(1 + r)V1(a, s) ≥ β(1 + r)E
£
V1(a, s

0) | s¤ .
Finally, use a similar argument in the proof of Lemma B.1 to conclude g(a, s) < a.

Proof of Lemma 3.6: Since g(a, s) ≥ a, g(a, s) < a for a sufficiently large from Lemma B.2,

and g(a, s) is continuous from Theorem 3.4, there exists a ∈ A such that g(a, s) = a. Define a as

a ≡ min{a ∈ A : g(a, s) = a}. (B.1)
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If u0(ra+ws) < βE [V1(a, s) | s], then g(a, s) > a so that a > a. Otherwise, Theorem 3.3 implies

g(a, s) = a so that a = a.

Define K = [a, a]. To show that K× S is the unique ergodic set, it is sufficient to show that (a)
once the process (at, st) has entered K× S there is zero probability that the process will depart
from it; (b) once the process (at, st) has entered any set disjoint from K× S, there is probability
1 that the process will depart from it. That is, such a set is transient.

For part (a), if (at, st) ∈ K× S, then by Theorem 3.4 and the definition of a, (B.1), a ≤
at+1 = g(at, st) ≤ g(a, s) = a. Thus one can inductively show that (an, sn) ∈ K× S for any n ≥ t.

For part (b), there are two types of sets to consider, depicted as (a, a1] × S and [a1, a2] × S
in Figure B.1. For the set (a, a1] × S suppose that at some date t, (at, st) ∈ (a, a1] × S. Since
g(a, s) ≤ g(a, s) < a for any (a, s) ∈ (a, a1] × S as shown in Figure A.1. By monotonicity of
g established in Theorem 3.4, one can inductively show that the sequence {an}n≥t defined by
an+1 = g(an, sn) is strictly decreasing for any sequence of shocks {sn}n>t. Thus there is an N
large enough such that aN ≤ a with probability 1.

a a
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡450 line

a a1 a2

g(a, s)

g(a, s)

Figure B.1: Ergodic set.

Turn to the set [a1, a2]×S. Suppose that (at, st) ∈ [a1, a2]×S, at some date t. Since g(a, s) < a
for a > a by Lemma B.1 and g(a, ·) is continuous by Theorem 3.2, there exists an bs > s such

that for any s ≤ bs, g(a, bs) < a. Thus the sequence {at+n, st+n}, defined by at+1 = g(at, st),
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at+n+1 = g(at+n, st+n) and st+n ≤ bs for n > 0, is strictly decreasing. Thus, for any sequence of
shocks {st+n}n>1 such that s ≤ st+n ≤ bs, aN < a1 for N sufficiently large. The probability of

this occurrence is at least ζ given by:

ζ =

Z bs
s
· · ·
Z bs
s

Z bs
s
Q(sN−1, dsN )Q(sN−2, dsN−1) · · ·Q(st, ds1) > 0.

Thus, with probability at least ζ, the sequence {(at+n, st+n)}n≥0 leaves [a1, a2] × S and never
returns. Consequently, the expected number of visits to [a1, a2]×S is at mostP∞

j=1(1−ζ)j <∞.
This implies that [a1, a2]× S is a transient set.

Proof of Theorem 3.7:

If a = a, the results are trivial. Consider now a > a.

(i) The proof follows from the following facts and [17] or [35, Theorem 6.1].

Fact 1. Feller property: Λ has the Feller property because the policy function g is continuous

and Q satisfies the Feller property (see [43, Exercise 8.10]).

Fact 2. Ergodicity: K× S is the unique ergodic set as shown in the preceding theorem.
Fact 3. Irreducibility: Any open subset A×B of K×S can be reached by a sequence starting

from any point (a0, s0) ∈ K× S in a finite number of steps with positive probability.
Partition K× S into two subsets, denoted by (K× S)1 (the area above the 450 line in Figure

B.1) and (K× S)2 (the area below the 450 line in Figure B.1). For any point (a, s) ∈ (K× S)1,
g(a, s) > a and for any point (a, s) ∈ (K × S)2 , g(a, s) < a. Then the desired result can be

easily established (e.g., [17, Theorem 4.2]) because the probability that the next period state

(g(a0, s0), s0) starting from (a0, s0) enters any open subset of (K× S)1 or (K× S)1 is positive.
(ii) Using the definition of λ∗ and Theorem 3.5, one can show that there is an a∗(s) > a given

in (3.6) such that

λ∗({a} × S) =

Z
A×S

1{a}(g(a, s))Q(s,S)λ∗(da, ds) = λ∗((a, s) ∈ A× S : g(a, s) = a)
= λ∗([a, a∗(s)]× [s, s∗]) > 0.

where the first equality follows from invariance of λ∗ and the last inequality from part (i).

Proof of Theorem 3.8:

The proof follows the idea in [13, Theorems 2 and 4] where there is no restriction on shock

process (st) such as stationarity and where u is bounded, increasing and strictly concave, but

not necessarily differentiable. I omit the details. The key observation is that the process βt(1 +

r)tu0(ct), t ≥ 0, is a nonnegative bounded supermartingale even for unbounded utility u by
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Theorem 3.3. Moreover, a lemma [13, Lemma 2] used in the proof of [13, Theorem 4] is still valid

for unbounded utility by Theorem 3.4 (iv).

C. Appendix: Comparative Statics Analysis

Proof of Theorem 3.9:

For weak monotonicity, I adapt arguments from [23]. So I only sketch the key step. For strict

monotonicity, I exploit first-order conditions for interior solutions. Rewrite problem (3.1) as

Tv(a, s;β, a,Q) = sup
a0∈Γ(a,s;a)

u((1 + r)a+ ws− a0) + βE
£
v(a0, s0;β, a,Q) | s¤ ,

where v : A× S→ R and Γ(a, s; a) = [a, (1 + r)a+ ws]. Let

H(a, s, a0;β, a,Q) = u((1 + r)a+ws− a0) + β

Z
S
v(a0, s0;β, a,Q)Q(s, ds).

(i) For weak monotonicity in β, it suffices to show that H(a, s, a0;β) is supermodular in
(a, a0,β) if v(a0, s0;β) is supermodular in (a0,β). In fact, if v(a0, s0;β) is supermodular in (a0,β),
then for β2 ≥ β1 and a

0
1, a

0
2 ∈ A,

v(a01 ∨ a02, s0;β2)− v(a01, s0;β2) ≥ v(a02, s0;β1)− v(a01 ∧ a02, s0;β1)

Multiplying the LHS by β2 and the RHS by β1 preserves the preceding inequality. Thus,

βE [v(a0, s0;β, Q) | s] is supermodular in (a0,β) and so is H(a, s, a0;β,Q).
For strict monotonicity in β, suppose g(a, s;β1) = g(a, s;β2) for some (a, s) ∈ A× S such

that g(a, s;β1) > a. Then by the first-order conditions,

u0((1 + r)a+ ws− g(a, s;β1)) = β1E
£
u0((1 + r)g(a, s;β1) + ws0 − g(g(a, s;β1), s0;β1)) | s¤

u0((1 + r)a+ ws− g(a, s;β2)) = β2E
£
u0((1 + r)g(a, s;β2) + ws0 − g(g(a, s;β2), s0;β2)) | s¤

one can derive that

β1E
£
u0((1 + r)g(a, s;β1) + ws0 − g(g(a, s;β1), s0;β1)) | s¤

= β2E
£
u0((1 + r)g(a, s;β2) + ws0 − g(g(a, s;β2), s0;β2)) | s¤

= β2E
£
u0((1 + r)g(a, s;β1) + ws0 − g(g(a, s;β1), s0;β2)) | s¤ .

Since g(g(a, s;β1), s0;β1) ≤ g(g(a, s;β1), s0;β2) if β1 < β2 as shown before, and since u0 is strictly
decreasing, the above equality is a contradiction to the fact that β1 < β2.

(ii) For weak monotonicity in Q, it suffices to show that H(a, s, a0;Q) is supermodular in
(−a,−a0, Q) if v(a0, s0;Q) is supermodular in (−a0, Q) and in (−a0, s0), and it is increasing in
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s0.24 This is because Tv(a, s;Q) is supermodular in (−a,−a0;Q) by [23, Lemma 1], and it is
supermodular in (−a0, s0) and increasing in s0 by Proposition A.2. Then one can adapt the

argument in the proof of [23, Proposition 2].

If v(a0, s0;Q) is supermodular in (−a0, Q), then for Q2 ºc Q1 and a01, a02 ∈ A,
v(a01 ∧ a02, s0;Q2)− v(a01, s0;Q2) ≥ v(a02, s0;Q1)− v(a01 ∨ a02, s0;Q1)

Integrating the LHS with respect to Q2(s, ds
0) and the RHS with respect to Q1(s, ds0) pre-

serves the preceding inequality because Q2(s, ·) ºFSD Q1(s, ·) and v(a0, s0; ·) is supermodular in
(−a0, s0), which implies that as functions of s0 both the LHS and RHS are increasing in s0. Thus,
β
R
v(a0, s0;Q)Q(s, ds0) is supermodular in (−a0, Q) and so is H(a, s, a0;Q).
For strict monotonicity, suppose g(a, s;Q1) = g(a, s;Q2) for some (a, s) ∈ A× S such that

g(a, s; ;Q2) > a. Then one can similarly derive that

1

1 + r

Z
S
V1(g(a, s;Q

1), s0;Q1)Q1(s, ds0)

=

Z
S
u0((1 + r)g(a, s;Q1) + ws0 − g(g(a, s;Q1), s0;Q1))Q1(s, ds0)

=

Z
S
u0((1 + r)g(a, s;Q2) + ws0 − g(g(a, s;Q2), s0;Q2))Q2(s, ds0)

=

Z
S
u0((1 + r)g(a, s;Q1) + ws0 − g(g(a, s;Q1), s0;Q2))Q2(s, ds0)

≤
Z
S
u0((1 + r)g(a, s;Q1) + ws0 − g(g(a, s;Q1), s0;Q1))Q2(s, ds0)

=
1

1 + r

Z
S
V1(g(a, s;Q

1), s0;Q1)Q2(s, ds0).

Since V1(g(a, s;Q
1), s0;Q1) is strictly decreasing in s0 by Theorem 3.2 (ii), the above inequality

is a contradiction to that fact that Q2(s, ·) strictly first-order stochastically dominates Q1(s, ·).
(iii) For weak monotonicity in a, observing Γ(a, s; a) is ascending in a, it suffices to show that

H(a, s, a0; a) is supermodular in (a, a0, a) if v(a0, s0; a) is supermodular in (a0, a). This is immediate
because the dependence of H on a is through only v(a0, s0; a).

Proof of Theorem 3.10:

For parts (i)-(ii), I prove only monotonicity of K in α. Then the rest follows from Theorem 3.9.

Let α1 < α2 < 1. Then by Theorem 3.6, a1 satisfies the equation:

(ra1 + ws)α
1−1 = β(1 + r)E

h
(ra1 + ws0)α

1−1 | s
i
.

Thus,

1 = β(1 + r)E

"
(ra1 + ws0)α1−1

(ra1 + ws)α1−1
| s
#
> β(1 + r)E

"
(ra1 + ws0)α2−1

(ra1 + ws)α2−1
| s
#
.

24Note that V is supermodular in (−a, s) since V1(a, s) is decreasing in s by Theorem 3.2 (ii).
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If r > 0, then the expression on the RHS of the inequality is strictly decreasing in a1. Thus the

solution for y to the equation:

(ry + ws)α
2−1 = β(1 + r)E

h
(ry +ws0)α

2−1 | s
i
,

is strictly smaller than a1. Then since a2 is determined by the smallest solution to the above

equation as shown in Theorem 3.6, a2 < a1.

For (iii), because g(a, s;β, a) is increasing in (β, a) by Theorem 3.9, the associated Markov

operator M∗
Λ can be ordered in the sense of first-order stochastic dominance (see (3.8)-(3.9)).

Moreover, the operator M∗
Λ is monotone by monotonicity of g and Q. Then, since λ

∗ is the limit
of M∗n

Λ (λ0) for any λ0 ∈ P(A× S) by Theorem 3.7, monotonicity of λ∗ in (β, a) follows from [23,

Corollary 3]. Finally, for part (iv), continuity of Eλ∗ [a] follows from a straightforward application

of [43, Theorem 12.13]. Monotonicity follows from parts (i)-(iii).

D. Appendix: Existence and Properties of Equilibria

Proof of Lemma 4.1:

Let v : I × A× S→ R be a Caratheodory function that is B(I)-measurable for fixed (a, s) ∈
A× S and continuous for fixed i ∈ I. Consider consumer i’s decision problem:

Tvi(a, s) = max
a0∈Γ(a,s)

ui((1 + r)a+ws− a0) + βi
Z
A×S

vi(a0, s0)Qi(s, ds0)

where Γ(a, s) = [a, (1 + r)a + ws]. Under Assumption 4, Tvi(a, s) is B(I)-measurable for fixed
(a, s) ∈ A× S by the Measurable Maximum Theorem (see [3, Theorem 17.18]). It is also continu-
ous for fixed i ∈ I by the usual Maximum Theorem. Thus it is a Caratheodory function. Because
the fixed point of T, V i(a, s), satisfies V i(a, s) = limn→∞ Tn0, V i(a, s) is also B(I)-measurable
for fixed (a, s) ∈ A× S. Note that Theorem 3.1 has demonstrated that V i is a continuous func-

tion for fixed i ∈ I under Assumptions 1 (a)-(b), 2, and 6-7. Thus V i(a, s) is a Caratheodory
function. Finally, apply the Measurable Maximum Theorem and the Maximum Theorem again

to conclude that the optimal policy function (i, a, s) 7→ g(i, a, s) corresponding to the problem

TV i(a, s) = V i(a, s) is a Caratheodory function.

I now use induction on t to prove that (i,ω) 7→ at+1(i,ω) is B(I)⊗ Ft-measurable. First, as
functions of (i,ω), ai0 and s

i
0 are B(I)⊗F0-measurable. It follows from [3, Lemma 4.48] that the

function (i,ω) 7→ (i, a0(i), s0(i)) (from I × Ω to I × A × S) is (B(I) ⊗ F0,B(I) ⊗ B(A) ⊗ B(S))-
measurable. Note that g is B(I)⊗B(A)⊗B(S)-measurable because g is a Caratheodory function
(see [3, Lemma 4.50]). Thus, by [3, Lemma 4.51], ai1 = a1(i,ω) = g(i, a0(i), s0(i)) is B(I)⊗ F0-
measurable.

Suppose now that (i,ω) 7→ at(i,ω) is B(I)⊗Ft−1-measurable. Of course, it is also B(I)⊗Ft-
measurable. Then observing that (i,ω) 7→ sit(ω) is B(I) ⊗ Ft-measurable, the argument in the
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preceding paragraph can be carried out in the same way so that (i,ω) 7→ at+1(i,ω) is B(I)⊗Ft-
measurable. Finally, it follows immediately from the budget constraint (2.1) that (i,ω) 7→ ct(i,ω)

is B(I)⊗ Ft-measurable.

Proof of Lemma 4.4:

Noting that Lemma 4.2 implies that the aggregate transition function λ is given by

λ(a, s,A×B) =
Z
I
1A(g

i(a, s))Qi(s,B)φ(di), A×B ∈ B(A)× B(S),

it suffices to show that

λ
0
(A×B) =

Z
A×S

Z
I
1A(g

i(a, s))Qi(s,B)φ(di)λ(da, ds)

=

Z
I

Z
A×S

Z
I
1A(g

i(a, s))Qi(s,B)φ(di)λ∗i(da, ds)φ(di)

=

Z
I

Z
I

Z
A×S

1A(g
i(a, s))Qi(s,B)λ∗i(da, ds)φ(di)φ(di)

=

Z
I

Z
I
λ∗i(A×B)φ(di)φ(di) =

Z
I
λ∗i(A×B)φ(di),

where the second equality follows from (2.12) by hypothesis, the third equality from the Fubini

Theorem, and the fourth from the invariance of λ∗i.

Proof of Theorem 4.5:

I will construct a recursive stationary equilibrium. Then a stationary equilibrium can be

obtained in the way described in Section 4.2. Note that the resource constraint (2.11) follows

from aggregating the budget constraint (2.1) and using homogeneity of F.

Recall that the equilibrium wage rate w = w(r) = F2(F
−1
1 (r + δ), 1) > 0. Let Y be the set

of all r ∈ (−δ, 1/βmin − 1) such that ra + ws ≥ ε > 0. Clearly, Y 6= ∅ (since 0 ∈ Y) and
Assumptions 6-7 hold for all r ∈ Y.

Step 1. Show the properties of the capital supply function under Assumptions 6-7. For all

r ∈ Y and r < 1/βi−1 for φ-a.e. i, equation (2.7) and Assumption 5 imply that F1(K, 1) = r+δ <
1/βi−1+δ ≤ 1/βmin−1+δ. The latter expression is equal to F1(K) by the definition in Remark

4. It follows from Assumption 5 and (2.8) that K ≥ K and w = F2(K, 1) ≥ F2(K, 1) = w, where
w is defined in Remark 4. Given (2.6), Remark 6 after the proof Theorem 3.4 (iii) implies that

the optimal asset accumulation policy is monotonic in the realization of shocks. Furthermore, all

results in Section 3 still apply. In particular, there exists an invariant distribution λ∗i for φ-a.e. i.
Lemma 4.1 implies that λ∗i(r) is B(I)-measurable so that one can apply Lemma 4.4 to obtain the
invariant aggregate distribution λ(r) =

R
I λ
∗i(da, ds; r)φ(di). Let the aggregate capital supply be

Ks(r) =
R
A×S aλ(da, ds; r), r ∈ Y. Note that the Feldman-Gilles construction ensures that the

labor market clears, i.e., (2.10) holds, and that λ is a nonrandom distribution.
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Consider a typical consumer and suppress the agent index. By Theorem 3.10, Eλ∗ [a] is a

continuous function of r for r < 1/β − 1 and r ∈ Y. Furthermore, by Lemma 3.6 and Theorem
3.8, it goes to infinity as r increases to 1/β − 1, and goes to a ≤ 0 as r decreases below to the
value r0 such that

u0(r0a+ws) ≥ βE
£
V1(a, s

0) | s¤ = β(1 + r0)E
£
u0(r0a+ws0) | s¤ ,

where the last equality follows from the envelope condition (3.2) and g(a, s0) = a (a ≤ g(a, s0) ≤
g(a, s) = a). r0 must be less than 1/β − 1 because u0(r0a+ws) < E £u0(r0a+ ws0) | s¤ from the

concavity of u and w > 0.

The above properties are inherited by the aggregate capital supplyKs(r) =
R
I

R
A×S aλ

∗i(da, ds; r)φ(di)
as illustrated in Figure 2.1. Specifically, Ks(r) approaches infinity as r goes up to 1/βi − 1 for
positive φ-measure of i and approaches a as r goes below r0i for φ-a.e. i.

Step 2. Show the properties of the capital demand function. The capital demand function is

given byKd(r) = F−11 (r+δ), which is continuous and decreasing in r such that limr→∞Kd(r) = 0

and limr→−δKd(r) =∞ as illustrated in Figure 2.1.

Step 3. Show the existence of an equilibrium. From steps 1-2 and the Intermediate Value

Theorem, there is an interest rate r∗ ∈ Y such that capital market clears, i.e., Kd(r) = Ks(r)

(see Figure 2.1). Moreover, r∗ < 1/βi−1 for φ-a.e. i. Let w∗ = F2(F−11 (r∗+δ), 1). Let (V i, gi)i∈I
be the value and policy functions and λ be the invariant aggregate distribution, established in

section 3, corresponding to r∗ and w∗. Then ((V i, gi)i∈I , (r∗, w∗),λ) constitutes a stationary
equilibrium in a recursive form.

To establish the second statement in the theorem, suppose that there exists a stationary

equilibrium in which ra+ ws > 0 and βi(1 + r) ≥ 1 for positive φ-measure of i. Then Theorem
3.8 implies that ait+1

a.s.→ ∞ as t→∞ for these consumers. This implies that the aggregate capital

stock satisfies
R
I a

i
tφ(di)→∞ as t→∞ since each consumer’s asset holdings are bounded below

by a. On the other hand, by Assumption 5 the maximal sustainable capital stock Kmax is finite.

It follows from the resource constraint (2.11) that
R
I a

i
tφ(di) must be finite for all t, which leads

to a contradiction.
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