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ABSTRACT

Extreme market outcomes are often followed by a lack of liquidity and a lack of trade.  This

market collapse seems particularly acute for markets where traders rely heavily on a specific empirical

model such as in derivative markets. Asset pricing and trading, in these cases, are intrinsically model

dependent. Moreover, the observed behavior of traders and institutions that places a large emphasis on

"worst-case scenarios'' through the use of "stress testing'' and "value-at-risk'' seems different than Savage

rationality (expected utility) would suggest. In this paper we capture model-uncertainty explicitly using

an Epstein-Wang (1994) uncertainty-averse utility function with an ambiguous underlying asset-returns

distribution. To explore the connection of uncertainty with liquidity, we specify a simple market where

a monopolist financial intermediary makes a market for a propriety derivative security.  The

market-maker chooses bid and ask prices for the derivative, then, conditional on trade in this market,

chooses an optimal portfolio and consumption. We explore how uncertainty can increase the bid-ask

spread and, hence, reduces liquidity.  In addition, "hedge portfolios'' for the market-maker, an important

component to understanding spreads, can look very different from those implied by a model without

Knightian uncertainty. Our infinite-horizon example produces short, dramatic decreases in liquidity even

though the underlying environment is stationary.

Bryan R. Routledge Stanley E. Zin
GSIA, Carnegie Mellon University GSIA, Carnegie Mellon University
Pittsburgh, PA 15213-3890 Pittsburgh, PA 15213-3890
rout@sulawesi.gsia.cmu.edu and NBER

zin@cmu.edu



1 Introduction

In August 1998 an odd thing happened: the Russian government repudiated

debt. While this event had a large e�ect on the value of Russian bonds, the

event, by itself, is not odd. Long prior to August, yields on Russian govern-

ment bonds exhibited a signi�cant premium over comparable U.S. Treasury

securities, suggesting that default (or at least rescheduling) was not only possi-

ble but carried non-trivial probability. These bonds were undoubtedly ex ante

risky. The ex post default and the change in the bond's price can be viewed

simply as a realization from the distribution of possible payo�s (i.e., \risk

happens"). What is truly odd about the Russian-debt default, and the subse-

quent collapse of the prominent hedge-fund Long Term Capital Management,

was that during the crisis, markets for most emerging-markets debt exhibited

a severe lack of liquidity. Bid-ask spreads on emerging market debt increased

from 10-20 basis points to 60-80 basis points following the crisis.1 More dra-

matically, a number of market-makers withdrew from trading and did not

post quotations while others reported that the market became \one-sided."2

The lack of liquidity was not limited to the Russian debt market and emerging

market bonds. The \
ight-to-quality" made trading in corporate debt diÆcult

as bid-ask spreads increased dramatically.3 In addition, several initial public

o�erings, including that of Goldman Sachs, as well as several corporate bond

o�erings and were canceled, reportedly, due to a lack of liquidity.4

The extremely large change in �nancial prices, in particular the credit

spreads, observed over this period had little, if any, historical precedent. My-

1See International Monetary Fund (1998).
2See Bank of International Settlements (1999) report which surveyed market participants

following the crisis. The Wall Street Journal reported on November 16th, 1998, (page A1)
that \LTCM's partners: : : reported that their markets had dried up. There were no buyers,
no sellers. It was all but impossible to maneuver out of large trading bets."

3Bank of International Settlements (1999) reports that bid-ask spreads for U.K. AA
corporate bonds doubled and U.K. BAA bonds tripled.

4On October 7th, The Wall Street Journal reported (page A1) on liquidity in the corpo-
rate bond market: \According to [Scott's Fertilizer Company's] lead investment bankers at
Salomon Smith Barney, there is no bond market at any price."
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ron Scholes, a partner in Long-Term Capital Management (LTCM) at the

time of the Russian debt crisis noted the improbability of the events of Au-

gust 1998. One week after the Russian government default, the swap credit

spread increased 20 basis points (treasury bond yields versus AA rated debt

yields). The increase is ten standard deviations above historic norms.5 The

large and dramatic change in �nancial prices was not the only source of uncer-

tainty. There was uncertainty about the solvency of some U.S.-based �nancial

institutions. The Federal Reserve Bank's role in facilitating a recapitalization

of LTCM, a hedge fund, was unprecidented. More generally, there was uncer-

tainty about the Federal Reserve Bank's interest rate policy. The subsequent

rate cut on October 15, 1998, represented a change from in
ation targeting.6

Many economic models can incorporate unusual events like the Russian

crisis as rare events, structural breaks, or changes in the risk premiums. From

any of these perspectives, standard models would typically predict a capital

loss by some, a capital gain by others, and perhaps a change in the market-

price process. However, most models are unable to explain the drop in liquidity

that accompanies the crisis.7 The puzzle is not the large change in �nancial

prices, it is that people seem to stop trading. In this paper we investigate the

connection between uncertainty and liquidity.

The Russian debt crisis and market collapse is not unique. For example,

Summers (2000) recounts the �ve other major international �nancial crises

that took place during the 1990's involving economies in Mexico, Thailand,

Indonesia, South Korea, and Brazil. Domestically, there have been many mar-

ket collapses or crashes including the 1975 municipal bond crisis sparked by

5See Scholes (2000). Note that for a normal distribution, the probability of a 10 standard
deviation tail event is on the order of 10�24 which is roughly the likelihood of winning the
Powerball lottery three times in a row. It was also rumored at the time, that relative
to some of LTCM's empirical models, price changes of this magnitude represented a 23
standard deviation event. The likelihood for a normal distribution of such an observation is
on the order of 10�117 (for comparison, the number of atoms in the universe is on the order
of 1078).

6See Marshall (2001).
7Marshall (2001) models a liquidity crisis as a \bad" equilibrium in coordination a game

of asymmetrically informed lenders and borrowers.
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New York City's near default, various stock market crashes (1929, 1987, 1989),

and the collapse of the high-yield debt market in the early 1990's. While all of

these events have their unique aspects, they share two common features. First,

times of crises are associated with a greater degree of uncertainty. Almost by

de�nition, a crisis involves a substantial change in �nancial prices so the ex

ante likelihood of the event is low and the event is unusual. However, as in

the case of the Russian crisis, there is an increased degree of uncertainty. For

example, Prati and Sbracia (2001) documents that the dispersion in forecasts

of economic growth increased during the Asian �nancial crisis. Second, crises

are accompanied by a severe lack of liquidity. Following the various recent

international and domestic crises, liquidity disappeared. Bid-ask spreads in-

crease,8 people have diÆculty executing trades for existing �nancial securities,

and new bond and equity o�erings are postponed or canceled. In this paper we

investigate the connection between these two features. We investigate whether

severe reduction in liquidity, or a \market break" can result from \model un-

certainty." In particular, we focus on markets such as �nancial derivatives in

which traders must rely on an empirical model for the stochastic cash-
ow

process of an underlying security. This is a setting where asset pricing and

trading is intrinsically model-dependent. By specifying preferences that ex-

plicitly incorporate \model uncertainty" in a simple market-making setting,

we show how uncertainty and liquidity are related.

To study the uncertainty-liquidity connection, we focus on a �nancial inter-

mediary. The role of an intermediary is to facilitate trade. In well-developed

liquid markets, the role of an intermediary is the straightforward matching

of buyers and sellers (e.g., the specialist at the NYSE). In contrast, in more

specialized �nancial markets like \proprietary products," the intermediary par-

ticipates directly in the transaction. For example, according to Scholes (2000),

LTCM was in the \business of supplying liquidity." This type of intermedia-

tion requires an ability to value and hedge the �nancial contract that is being

provided. Typically, �rms attack this problem in two disjoint approaches.

8Becker, Chadha, and Sy (2000) document the increase in bid-ask spreads in foreign
exchange and interbank rates following the 1997-1998 Asian crisis.
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They use a model like Black and Scholes (1973) to calculate arbitrage bounds

and hedge trades for a �nancial contract. However since the �nancial model

is only an abstraction that is based on limited data, �rms typically \stress

test" their model to account for \model risk." For example, \Value at Risk"

calculates the loss potential over a speci�ed horizon for an arbitrarily speci-

�ed probability. A portfolio resulting from the sale of a �nancial contract and

an o�setting (perhaps dynamic) hedge position might have a 1% likelihood of

losing $50 million over the next two weeks. Exactly how large a tail to mea-

sure and what distributional assumption to make are left to judgment. What

is striking about the amount of attention paid to worst-case scenarios, stress

testing and value-at-risk calculations is that trader attitudes towards uncer-

tainty of the correctness of their model is distinct from the risk of stochastic

prices. That is, the preferences expressed by this behavior do not adhere to

the Savage (1954) axioms for expected utility rationality.

Savage rationality, in particular the independence or sure-thing axiom, im-

plies that preferences should not depend on the source of the risk. Uncertainty

about the appropriateness of a pricing model, \model uncertainty," is indis-

tinguishable from the risk inherent in the assumed stochastic process. The

Savage independence axiom implies that one can simply collapse the proba-

bility weighting across possible models (\uncertainty") with the probabilities

for payo�s (\risk") to represent behavior with a single probability measure for

states. However, in experimental settings, decision makers consistently violate

the independence axiom. For example, Ellsberg (1961), demonstrated that

individuals' decisions over lotteries could not be represented by an expected

utility decision rule. People expressed (revealed) a preference to \know the

odds" or an aversion to uncertainty. In the context of �nancial intermedia-

tion, not knowing the realization of an asset payo� (consumption risk) and not

knowing the probability measure for payo�s (model uncertainty) have di�erent

behavioral implications. This distinction between risk and uncertainty, �rst

described by Knight (1921), is axiomatized in Gilboa and Schmeidler (1989).

The resulting decision rule that captures uncertainty aversion is represented

by Choquet (1955) utility. Given a random variable ! 2 
, an agent chooses
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the optimal action, � 2 �, according to

max
�2�

�
min
�2�

E�[u(�; !)]
�
: (1)

Uncertainty is captured by the set of probability measures �. The aversion to

uncertainty manifests itself in the \min" operator that appears after the action

is chosen. If the set � is a singleton, then the decision rule is the standard

Savage rationality of expected utility.9 In this paper, we use the recursive

intertemporal formulation of uncertainty aversion of Epstein and Wang (1994)

and (1995). This speci�cation facilitates dynamic programming and preserves

dynamic consistency.10 The robust control framework of Hansen, Sargent,

and Tallarini (1999) is similar to the Epstein and Wang approach. In a linear-

quadratic model the mean return, for example, is chosen by a malevolent

nature. The result is the same \min" operator as in Choquet utility.

Our goal in the paper is to understand the relationship between model un-

certainty and liquidity. The Choquet representation of uncertainty aversion is

well de�ned. However, at any level of generality, \liquidity" is diÆcult to de-

�ne. Analogous to the vacuous distinction between unemployment and leisure

in a perfect labor market, parties choosing not to trade in a frictionless �nan-

cial market is not a lack of liquidity. Liquidity can only be de�ned relative to a

market friction. Models of liquidity must include a market friction like an im-

perfectly competitive market or asymmetric information. Within the context

of some market imperfection, liquidity is commonly measured as a \discount

for immediacy" (e.g. Grossman and Miller (1988)) or the \price impact of a

trade" (e.g. Kyle (1985)). In this paper we wish to study the relationship

between liquidity and uncertainty rather than market microstructure per se.

We, therefore, specify a rather simple market mechanism. We focus on the bid

9A closely related approach of Gilboa (1987) and Schmeidler (1989) models subjective
prior beliefs to be non-additive. In a coin toss, uncertainty aversion is captured by P (head)+
P (tail) < 1.

10Time inconsistent examples with uncertainty aversion is a concern since there is no
restriction that conditional events have less uncertainty than unconditional. Seidenfeld and
Wasserman (1993) de�ne and provide examples of this dilation of beliefs.
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and ask prices for a proprietary derivative security. The market-maker for this

derivative is assumed to be a monopolist in that market while the market for

the underlying security is frictionless. We therefore treat the bid-ask spread

and the associated probability that the market maker will make a trade, as a

measure of liquidity in the market for this derivative security.11

Speci�cally, we consider a �nancial intermediary who makes a market for

a propriety derivative security. This market maker chooses bid and ask prices

for the derivative to optimally tradeo� the probability of attracting a seller

or buyer with the current income and future utility implications implied from

a trade in the derivative. When there is ambiguity about the appropriate

probability distribution for the underlying security's cash 
ows, the market-

maker is uncertain about these dynamic consequences, which we model with

an Epstein-Wang uncertainty-averse utility function. We �nd that uncertainty

increases the bid-ask spread and, hence, reduces liquidity. In addition, \hedge

portfolios" for the market maker can look very di�erent from those implied by

a model without Knightian uncertainty.

In Section 2, we lay out the basic economic environment and describe the

market-makers problem. In Section 3, we explore some simple two-period

examples of the general model and in Section 4 extend these examples to an

in�nite time horizon. Section 5 concludes the paper.

2 The Model

The model we consider is that of a monopolist making a market in a derivative

asset as well as choosing optimal portfolio and consumption. The market-

maker sets a bid and ask price for a derivative whose payo� is X(Pt) � 0.12

11The setting we adopt here is similar to Ho and Stoll (1981) and related inventory-based
microstructure models.

12In order to maintain the intuitive bid-ask relation, 0 < b < a, we will only consider
derivatives with non-negative payo�s.

6



Trades by the market maker are discrete short, no-trade, or long events, de-

noted dt 2 f�1; 0; 1g. The \size" of a trade can be incorporated into the

de�nition of the derivative's payo�. For concreteness, our numerical examples

focus on the case of a one-period call option X(Pt) = smax(Pt � x; 0). The

parameter s determines the size or importance of each trade.

The demand for the derivative is summarized by the arrival of a random

willingness-to-trade ~vt. If ~vt is greater than or equal to the posted ask price,

at, then a \buy order" is received and the market maker must go short one

call (denoted as dt = �1), at a price of at. If the willingness-to-trade ~vt is

less than or equal to the posted bid price, bt, then the market maker must

go long one call (dt = 1), at a price of bt. If ~vt lies between the bid and ask

prices, no trade takes place (dt = 0). We assume the willingness to trade is

an i.i.d. process with �(v) = Prob(~v < v). The bid and ask prices determine

the likelihood of trade in the derivative with Prob(dt = �1) = [1� �(at)],

Prob(dt = 0) = [�(at)� �(bt)], and, Prob(dt = 1) = �(bt). For simplicity, we

assume �(v) is atomless and de�ne �(v) = @�(v)=@v.

The exogenous random arrival of a trade request is consistent with a num-

ber of deeper microstructure models. This simple speci�cation of the market

structure for the derivative lets us focus on the e�ect of return-uncertainty on

liquidity. Note that there is no uncertainty about the distribution governing

trade arrival. To explore uncertainty about the market microstructure itself,

a more detailed speci�cation of the market would be needed.

After the arrival of the request to trade, the market maker chooses an

optimal consumption and investment in a risky asset. This allows the mar-

ket maker the opportunity to dynamically hedge the realized position in the

derivative market.
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2.1 Investment Opportunities:

We denote as �t�1 the asset holdings brought into period t, �t the assets pur-

chased in period t to be carried into t + 1, Pt as the ex -dividend price of the

underlying risky asset, and Æt as the period-t dividend paid by the risky as-

set.13 The market for the underlying asset is assumed to be frictionless. ct is

period-t consumption and !t is the income of the market-maker in period t.

The period-t budget constraint is:

�t�1 (Pt + Æt) + !(yt; vt; dt�1; at; bt) = ct + �tPt : (2)

Total income, !(yt; vt; dt�1; at; bt), includes both exogenous income and

derivatives trading income. Exogenous period t income is denoted yt. The

market-making activity a�ects income both through the derivative position,

dt�1, carried into period t and through new trades in the derivative. The trad-

ing income in the current period depends on the choice of ask, at, and bid, bt,

and the realization of the willingness-to-trade, ~vt.

!(yt; vt; dt�1; at; bt) = yt + dt�1X(Pt) +

8>>><
>>>:

a; if vt � at

0; if bt < vt < at

�b; if vt � bt

(3)

The trading outcome also determines the position in the derivative dt the

market maker will carry forward into the next period. That is dt = �1 if

vt � at, dt = 0 if bt < vt < at, or dt = 1 if vt � bt.

The timing of events implied by this notation is shown in Figure 1. The

market maker enters period t with holdings in the underlying security of �t�1

which pay a dividend of Æt and are liquidated at the price Pt. Holdings in

the derivative of dt�1 have cash-
ows realized of X(Pt). Finally, he collects

13The dividend on the risky asset is helpful in constructing the simple numerical example
in Section 4. It is not needed for any of the analytical discussion or the two period example
in Section 3.

8



Figure 1: Model Time-Line
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Wt0 =

8><
>:

Wt + at if dt = �1
Wt if dt = 0
Wt � bt if dt = +1

dt =

8><
>:

�1 if vt > at

0 if bt � vt � at

+1 if vt < bt

Wt+1 =

8><
>:

�t(Pt+1 + Æt+1)�X(Pt+1) if dt = �1
�t(Pt+1 + Æt+1) if dt = 0
�t(Pt+1 + Æt+1) +X(Pt+1) if dt = +1

exogenous income of yt. Given this information, he chooses a bid price, bt,

and an ask price, at. After the bid and ask are set, the exogenous request for

a trade arrives, i.e., ~vt is realized. Knowing the outcome of the trade in the

derivative market, the market maker then chooses date t consumption, ct, and

investment in underlying risky security, �t.

2.2 Preferences:

The stochastic process governing the transition of the underlying security price

and exogenous income is assumed to be Markov, with transition density given

by

ProbfP 0; Æ0; y0 j P; Æ; yg = �(P; Æ; y) : (4)

If the market maker has uncertainty or ambiguity about these probabilities,

we will denote as � the set of all such distributions. As in Epstein and Wang

(1995), we assume that this set is time invariant. It should be thought of

as part of the investor's preferences, rather than the physical environment

since the uncertainty is only relevant if the agent's preferences are averse to

ambiguity. Also following Epstein and Wang, we assume that preferences are
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given by the utility function, U , that is the stationary, recursive speci�cation

of uncertainty aversion:

U(c0; ~c1; ~c2; : : :) = u(c0) + �min
�2�

E�U(~c1; ~c2; : : :) ; (5)

where 0 < � < 1 is a utility discount factor and u(c) is the single period utility

derived from consumption c. Standard Savage preferences are included in this

speci�cation. If the set � as a singleton, the agent adheres to Savage axioms.

2.3 Bellman Equation:

Combining the investment opportunity, the consumption implied by the bud-

get constraint (2), and the speci�cation of preferences, we can characterize

this problem as a dynamic program. The Bellman equation associated with

this program is given by:

V (�; d; P; Æ; y) = max
a;b

(
[1� �(a)]

�
max
�0

h
u(�(P + Æ) + y + dX(P ) + a� �0P )

+ �min
�2�

E�[V (�
0;�1; P 0; Æ0; y0)]

i�
+ [�(a)� �(b)]

�
max
�0

h
u(�(P + Æ) + y + dX(P )� �0P )

+ �min
�2�

E�[V (�
0; 0; P 0; Æ0; y0)]

i�
+ �(b)

�
max
�0

h
u(�(P + Æ) + y + dX(P )� b� �0P )

+ �min
�2�

E�[V (�
0; 1; P 0; Æ0; y0)]

i�)
:

(6)

V (�; d; P; Æ; y) is the value function. It depends on the �ve state variables:

the position in the asset, the position in the derivative, the realized price for

the asset, the realized dividend, and the realization for the exogenous income.

The portfolio (and hence consumption), are chosen after the realization of ~v,

which along with a and b, determines the outgoing position in the derivative.

The outgoing position in the derivative, d0, characterizes the future e�ect from
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the derivative trading (i.e., a, b, ~v need not be included in the list of state

variables).

Although closed-form solutions for the optimal policies of this dynamic

program are unavailable, there are many computational algorithms that can

be used to solve numerical versions of this model. When the set � is not

a singleton, the computational burden associated with solving this problem

can be signi�cantly greater than in the standard expected utility model. The

additional non-linear program necessitated by the uncertainty averse prefer-

ences (minimizing over distributions) increases computation time. Routledge,

Trick, and Zin (2000) o�er some new approaches to this problem that may

yield signi�cant computational gains.

3 Two-Period Model

To better understand the connection between uncertainty and liquidity, we

�rst examine a simpler, two-period (t = 0; 1) version of the economy. Here,

the market maker makes a market in a derivative of the single risky asset at

period zero and the derivative payo�s at period one. The single risky asset,

whose prices are P0 and P1, trades in a perfect market. In this section, the

dividend is zero, Æ0 = Æ1 = 0, and exogenous income, y0 and y1 are non-

stochastic.

3.1 Portfolio Choice with Uncertainty Aversion

Since the portfolio is chosen after the realization of trade in the derivative, we

can consider the portfolio choice and the market-making activity separately.

To do this, write the Bellman equation in two parts. The full market-maker

problem is discussed in Section 3.2. However, before characterizing the optimal

period zero bid and ask prices, we �rst consider the choice of the optimal

11



consumption and portfolio. How Knightian uncertainty a�ects the optimal

portfolio turns out to be very important to understanding the market-making

problem.

The portfolio problem is the inner maximization over �0 in equation (6).

Note that a portfolio choice determines consumption via the budget constraint.

That is, c0 = !0 � �P0 and c1 = !1 + �P1. De�ne the indirect total utility

function U(d; a; b) as follows:

U(d; a; b) = max
�

�
u (!0 � �P0) + �min

�2�
E� [u (!1 + �P1)]

�
(7)

The two-period version of income, equation (3), is

!0 = y0 +

8>>><
>>>:
�b if d = 1

0 if d = 0

a if d = �1

; and !1 = y1 + dX(P1) (8)

Since U(d; a; b) is conditional on the realization for the trade in the derivative

market, the ask and bid prices have implications only for period-zero income.

Therefore, U(d; a; b) does not depend on a or b if d = 0. Similarly, it does not

depend on ask price, a, if a \buy" order occurred and d = 1. Finally, U does

not depend on the bid price b if a \sell" order d = �1 was received. Therefore,

we can summarize equation (7) with three functions. Denote U0 when there

is no trade in the derivative (d = 0), Ub when the market maker has paid b

and is long the derivative (d = 1), and Ua for when the market maker sold the

derivative for a and holds a short position (d = �1).

For concreteness, consider the portfolio choice for three di�erent agents

i 2 f1; 2; Kg. Two Savage individuals are captured with �1 = f�1g and �2 =

f�2g. An individual with an aversion to Knightian uncertainty is represented

by �K = f�1; �2g. Obviously, to make this example interesting, �1 6= �2.

For Savage individuals i = 1; 2, the optimal portfolio is characterized by

12



the standard �rst order condition.

�u0(w0 � �iP0)P0 + �E�i

h
u0(w1 + �iP1)P1

i
= 0 (9)

Figures 2 and 3 plot total utility (right-hand-side of (7)) against portfolio hold-

ings, �, given income and prices. The utility is plotted for each distribution �1

and �2 and the Savage-optimal portfolios, �1 and �2, are indicated. For expo-

sition, the utility function is quadratic and the distribution, �i, is summarized

by its mean and variance.

The Knight agent's utility in Figures 2 and 3 is the lower envelope of the

two Savage agents. There are two possibilities for how the optimal portfolio

of the Knight individual is characterized. First, the aversion to uncertainty

can make the Knight agent act according to the worst-case probability distri-

bution. Here, the Knight agent simply looks like a pessimistic or \worst-case"

Savage agent. Distribution �1 is the worst-case near �1 in Figure 2 since

E�1 [u (!1 + �1P1)] < E�2 [u (!1 + �1P1)] :
14 In this case, �K = �1 and the opti-

mal portfolio satis�es the �rst-order condition in equation (9). The de�nition

of worst-case depends on the correlation between period-one income and the

asset payo�. Since, as we will explore below, market-making activity in
u-

ences this correlation, the distribution that is considered as worst-case may

depend on the market-maker's position in the derivative.

The de�nition of the worst-case distribution will also depend on the port-

folio. In Figure 2 very large long or short positions in the asset switch the

characterization of worst-case to �2 (note that �2 has a larger variance than

�1). However, for portfolios in the neighborhood of �K (which is equal to �1),

distribution �1 is always the worst-case. In contrast, Figure 3 is an example

where, at the optimal Knight portfolio, there is no portfolio-free characteriza-

tion of the worst-case. This is the second possibility for the characterization

14This condition implies that E�2

�
u
�
!1 + �2P1

��
> E�1

�
u
�
!1 + �2P1

��
.
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Figure 2: Optimal Portfolio: Quadratic Example 1
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Note: The �gure depicts the utility from each of two distributions (low mean/low

variance versus high mean/high variance) as a function of the investment in the risky

asset �. In this example, the Knightian-uncertainty portfolio choice is equivalent to

assuming the low mean/low variance distribution and Savage expected utility.

of the Knight-optimal portfolio and occurs when

E�1 [u (!1 + �1P1)] > E�2 [u (!1 + �1P1)] and

E�2 [u (!1 + �2P1)] > E�1 [u (!1 + �2P1)] :
(10)

In this situation, there is not a clear worst case distribution and the Knight

agent acts like neither of the Savage agents �K 6= �1 and �K 6= �2. At �K, a

marginal change in the portfolio alters which distribution is considered worst-

case and uncertainty is of �rst-order importance.

When equation (10) holds, the optimal Knight portfolio is not character-

ized by a �rst-order condition. Instead, the optimal portfolio for the Knight

individual occurs at the intersection of the utility calculated under the two
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Figure 3: Optimal Portfolio: Quadratic Example 2
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Note: The �gure depicts the utility from each of two distributions (low mean/low

variance versus high mean/high variance) as a function of the investment in the

risky asset �. In this example, the Knightian-uncertainty portfolio choice di�ers

signi�cantly from the Savage expected-utility choice under either distribution.

distributions. That is, �K , solves

E�1

h
u
�
w1 + �KP1

�i
= E�2

h
u
�
w1 + �KP1

�i
(11)

and �K lies between �1 and �2.15

The behavior of the Knight trader in these two cases is distinct. Consider,

for example, how the Knight's optimal portfolio responds to a change in initial

income, w0. In the situation where the Knight's portfolio is identical to a

pessimistic Savage portfolio it is de�ned by the �rst order condition (see Figure

2). Di�erentiating equation (9) implies that 0 < @�K

@!0
< 1

P0
. However, in the

15Equation (11) may have multiple solutions. However, the optimal portfolio is the only
solution that lies in the interval between �1 and �2. This is because, for Savage individuals,
the �rst-order condition is necessary and suÆcient.
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case where there is no portfolio-free characterization of the worst-case as in

Figure 3, equation (11) determines the optimal portfolio and @�K

@!0
= 0. Due to

the �rst-order nature of the uncertainty, the optimal portfolio of the Knight

agent is insensitive to changes in initial wealth. This is true even for discrete

changes in initial income. As long as equation (10) holds at the new level

of income, !0, even large changes in initial income will not alter the optimal

Knight holdings of the risky asset.

3.1.1 Convex Uncertainty

Thus far, Knightian uncertainty has been characterized by the discrete set,

�K = f�1; �2g. This represents uncertainty between two alternative models.

A natural alternative characterization of uncertainty is be to allow mixing be-

tween the two discrete models. Consider a case where Knightian uncertainty

is de�ned by the convex set �C = f��1 + (1� �)�2j� 2 [0; 1]g. Since expec-

tations are linear in probabilities, adding the convex hull to the set of possible

distributions does not alter behavior. In particular, the optimal portfolio, �C ,

for a Knight trader with this convex uncertainty, �C , will be identical to a

Knight trader with the discrete set of models, �K; that is �C = �K. However,

since �C is convex, by the min-max theorem,

max
�

n
u(c0) + � min

��2�C
E�� [u(c1)]

o
= min

��2�C
max
�

n
u(c0) + �E��[u(c1)]

o
(12)

Therefore, there exists a Savage individual with beliefs �� = ��1 + (1� �)�2

whose optimal portfolio is identical to the Knight's; that is �C = ��. Figure

4 is identical to Figure 3 except utility is plotted for additional distributions.

In this case the optimal Knight portfolio, �C , is the same as that of a Savage

individual whose beliefs are given by � = 0:1. One can not distinguish between

a Savage individual with beliefs ��=0:1 and Knight trader with uncertainty of

�C simply by observing the portfolio choice. However, the two traders are

distinguished by other behavior. For example, the Savage individual reacts in

the usual way to a change in initial income, 0 < @��

@!0
< 1

P0
. This is not true
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Figure 4: Optimal Portfolio: Convex Uncertainty
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Note: The �gure depicts the utility under several of the possible distributions �C =

f��1 + (1���2j� 2 [0; 1]g) as a function of the investment in the risky asset �. In

this case, the optimal Knight portfolio, �C = �K is the same as a Savage portfolio

with � = 0:1, ��=0:1

of the Knight portfolio. As before, @�C

@!0
= 0. When initial income changes,

the optimal Knight portfolio can still be represented by a particular Savage

agent's choice. However, it will be a di�erent-looking Savage. That is, when

0 < � < 1, a change in endowment requires a changes in the beliefs if one

is to mimic the Knight portfolio with a Savage individual. As in Figure 3,

the uncertainty is of �rst-order importance. Since the relevant aspects of

Knightian uncertainty are present in the simple discrete-set characterization,

PiK, we focus on this speci�cation in the remainder of the paper.
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3.2 The Market Maker Problem

Given a characterization of the portfolio problem and the resulting indirect

utility, the market-maker problem at period zero in the two-period model is

given by

max
a;b

�
[1� �(a)]Ua + [�(a)� �(b)]U0 + �(b)Ub

�
: (13)

Recall that the demand for the derivative asset is captured by the arrival of a

trader with a valuation ~v with distribution �(v) = Prob(~v < v). In choosing

the bid and ask prices, the tradeo� for the market maker is straightforward.

Choosing a high value for the ask will generate more revenue should a high-

value trader arrive. However, it lowers the probability of such a trade actually

arriving. Likewise, choosing a low value for the bid will allow the market

maker to obtain the future cash 
ows of the derivative for a low price should

a low-value trader arrive, but it lowers the probability of such a trade actually

arriving. In both cases, the period-zero income e�ect that results from a trade

is o�set by the period-one income e�ect of the derivative's payo�.

3.2.1 Example

To explore the e�ects of uncertainty on the bid-ask spread, we examine a

numerical example of the two period economy. Preferences, u, in this example

are quadratic and exogenous income, y0 and y1, is constant. The example

considers a market-maker for a call option X(Pt) = smax(0; P1 � 1:5) with

s = 1. The demand for the derivative is summarized by the arrival of a

random willingness-to-trade ~v with �(v) as uniform on the interval [0:5; 1:5].

The current price, P0 = 0:9. The distribution(s) of the underlying asset's

period one payo�, P1; is assumed to be binomial with equally likely values of

~P1 =

8<
: �m + �m

�m � �m
(14)
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Figure 5: Bid and Ask as Uncertainty Increases
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Note: The expected-utility market maker is willing to raise his bid price as volatility

increases, whereas the market maker with an aversion to Knightian uncertainty does

not.

which implies a mean of �m and a variance of �2m. There are two possible

distributions or models, �m for m 2 f1; 2g, for the underlying asset. Two

Savage market-makers are captured by �1 = f�1g and �2 = f�2g. The Knight

market-maker with uncertainty aversion, is represented by �K = f�1; �2g.

Model m = 1 has a mean and standard deviation variance of 0:9. Model 2

has a mean and standard deviation that we range from 0:7 to 1:8. For the

di�erent economies we consider, as the distribution in Model 2 moves further

away from the distribution in Model 1, uncertainty increases.

Figure 5 depicts the e�ect on the bid and ask prices as uncertainty in-

creases. The market maker with an aversion to Knightian uncertainty main-

tains a constant bid price, whereas a Savage market maker will allow the bid

price to rise to re
ect the higher value of the derivative. The a�ect that this

has on the bid-ask spread is depicted in Figure 6, and the a�ect on the prob-
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Figure 6: Bid-Ask Spread as Uncertainty Increases
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ability of a trade is depicted in Figure 5. As depicted in these �gures, it is

possible for model uncertainty to completely eliminate the willingness of a

uncertainty-averse market-maker to provide liquidity, while a market maker

who is not averse to this uncertainty, but is merely a pessimistic expected

utility maximizer, will continue to provide liquidity.

3.2.2 Determinants of Spreads

In the preceding example, the liquidity provided by a Knight market-maker

was always less than or equal to the liquidity provided by a market maker

with Savage preferences. To explore why this occurs, consider the �rst-order

conditions for the market-maker problem in equation (13).

1� �(a)

�(a)

 
@Ua

@a

!
= Ua � U0 (15a)
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Figure 7: Probability of a Trade as Uncertainty Increases
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�
@Ub

@b

!
= Ub � U0 : (15b)

Denote the optimal portfolio from the solution equation (7) as �ia when the

market maker has received a and is short the derivative (d = �1) and de�ne

�ib and �i
0
analogously (for i 2 f1; 2; Kg). For both Savage and Knight traders

@Ua
@a

and @Ub
@b

are given by

@Ua

@a
= u0

�
y0 + a� �iaP0

�
(16a)

@Ub

@b
= �u0

�
y0 � b� �ibP0

�
: (16b)

For Savage preferences, equation (16) is the envelope condition. For the Knight

market-maker, the envelope condition holds when the optimal portfolio is iden-

tical to a worst-case Savage and is de�ned by the �rst-order condition (9).

When there is no portfolio-free characterization for the worst-case distribu-

tion as in equation (10) and Figure 3, equation (16) holds since @�Ka
@a

= 0 and
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@�K
b

@b
= 0. This simpli�es the characterization of the optimal bid and ask prices

since Knightian uncertainty only e�ects the right-hand-side of equation (15)

indirectly through the optimal portfolio. Equation (16) is a useful property

since it facilitates decomposing the ask-bid �rst-order condition to isolate the

e�ects of Knightian uncertainty.

Market-making activity has implications for income at both date zero and

date one (see equation (8)). Denote Ub=0 as the total indirect utility from a

long position in the derivative acquired at zero cost. Similarly, we can denote

Ua=0 as the total indirect utility from a short position in the derivative when

no compensating period-zero ask is received. Using this notation and equation

(16), we can re-write the equation (15) to decompose the �rst-order condition

to highlight period-zero and period-one income e�ects of derivative trade.

�
1� �(a)

�(a)
u0
�
y0 + a� �iaP0

�
+ Ua � Ua=0 = U0 � Ua=0 (17a)

�(b)

�(b)
u0
�
y0 � b� �ibP0

�
+ Ub=0 � Ub = Ub=0 � U0 (17b)

| {z } | {z } | {z }
trade period 0 period 1

arrival income income

Consider the optimal ask price given by equation (17a). The left-hand side of

(17a) captures the basic trade-o� in terms of period zero income. The �rst

term shows that a larger ask price decreases the likelihood of a trade arrival

(and decreases marginal utility of period-zero consumption if a trade arrives).

The second term, Ua � Ua=0, captures the bene�t of a larger ask price has on

utility if a trade does occur. The left-hand side of (17a) is increasing in a.

The right-hand side of (17a), U0 � Ua=0, captures only the disutility from the

e�ect that a short position in the derivative has on period-one income. Since

X(P ) � 0 a short position, given no adjustment in period zero income (a = 0),

makes the market-maker worse o� (U0 � Ua=0 > 0). Since the right-hand side
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Figure 8: Utility-Based Spreads
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Note: The �gure depicts the utility as a function of the investment in the risky asset

�. The solid lines depict the utility under the case where the market-maker is long

the derivative at cost b = 0 (left), has no position in the asset (center), is short the

derivative at ask price of zero, a = 0 (right). The peak of each of these three lines

determines the right-hand-side of equation (17). The dashed lines show the utility

in the long (left) and short (right) cases given the optimal bid and ask price.

includes only the period-one income e�ect of the derivative cash-
ow, it is

independent of a. The decomposition for equation (17b) has an analogous

interpretation. The left-hand side of (17b) increasing in the bid price, b, and

the right-hand side independent of the bid, b.

Based on equation (17), all else equal, ask prices are higher when U0�Ua=0

is large and bid prices are lower when Ub=0�U0 is small. In this case, spreads

are large and the market is less liquid. Figure 8 plots utility as a function of

the investment in the risky asset � and is analogous to Figures 2 and 3. The

solid lines depict the utility under the case where the market-maker is long the
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derivative at cost b = 0 (solid line at left), has no position in the asset (solid

line in center), is short the derivative at ask price of zero, a = 0 (solid line

at right). The distance between the peaks determines the right-hand-side of

equation (17). If the distance U0 � Ua=0 is large, the market-maker's optimal

ask will be large to o�set the large utility cost of the short-position at period

one. At the optimal ask, Ua (peak of dashed line on right) must lie above U0.

At the optimal ask, Ua � U0 > 0 since the market maker can choose to set

the ask price arbitrarily large and drive the probability of the short position

to zero.16 Similarly, if the distance between Ub=0 and U0 is small, the bene�t

from being long the derivative is small and the market-maker has little room

to bid aggressively for the derivative. Again, note that at the optimal bid Ub

(peak of dashed line on left) must lie above U0.

The decomposition in (17) is also helpful since it highlights the e�ect of

Knightian uncertainty on bid-ask spreads. Since the left-hand-sides of (17)

are concerned with the impact of ask and bid prices on period zero income,

uncertainty about the distribution of period one income plays no direct role.

The only way the left-hand-sides of (17) can behave di�erently for a Savage

market-maker relative to a Knight market-maker is through di�erences in the

optimal portfolio. In contrast, since the right-hand-sides of (17) concerns

period one income, uncertainty has a direct e�ect.

Knightian uncertainty will lower all three levels of utility in Figure 8. That

is relative to the Savage market makers, UK
a < U i

a, U
K
0

< U i
0
, and UK

b < U i
b ,

for i = 1; 2. Consider, for example, the case where the optimal portfolio for

the Knight and the Savage market-makers, with no position in the derivative,

yields consumption that is close to riskless, and, hence, without ambiguity.

In this case, UK
0
� U i

0
and a Knightian market-maker bid-ask spread will be

larger than a Savage. That is: aK � ai and bK � bi (for i = 1; 2 Savage

market makers). However, if U i
0
is a�ected by uncertainty, then it is possible

that the Knight market-maker posts a bid or ask that is more aggressive. This

occurs when the the derivative position \hedges ambiguity." In particular,

16Substitute equation (16) into (15) and not the left-hand side is positive.
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the di�erence UK
0
� UK

a=0 may be smaller for a Knight market-maker than

a Savage if the worst-case distribution in the UK
0

case di�ers from the case

in UK
a=0. In this case, the optimal Knight market-maker may post a more

aggressive (lower) ask.

3.2.3 Market Structure

Non-zero bid-ask spreads are, of course, directly related to our assumption

of a monopolist market-maker. Interestingly, the di�erence between bid-ask

spread of a Knight market maker relative to a Savage market-maker is also

closely linked to the market structure. For example, consider the e�ect of

making a small trade in a call option. De�ne X(P1) = smax(P1 � x; 0) and

let s ! 0.17 Since period-one income is continuous in s, indirect utility in

equation (7) is continuous in s even under Knightian uncertainty. Therefore

the right-hand-sides of equation (17) are both zero as s ! 0. Therefore,

Knightian uncertainty can have no direct impact on bid-ask spreads. It will

only a�ect spreads indirectly through the e�ect on the optimal portfolio..

More generally, uncertainty aversion itself cannot be the source of a bid-ask

spread. Consider the case where, in addition to arbitrarily small trades in the

derivative, the market-maker faces Bertrand competition. In Bertrand compe-

tition, the ask prices will simply be the compensating period zero income that

o�sets the disutility from a short position in the derivative security. That is

the ask price, a, solves Ua � U0 = 0 and the bid price, b, solves Ub � U0 = 0.

Figure 9 plots the indirect utility (at the optimal portfolio) as a function of

the position in the derivative, d, and the size of derivative payo�, s, with

X(P1) = smax(P1 � 1:5; 0) (the same call option as in the previous exam-

ple). This plot lets us consider arbitrarily small long and short positions in

the derivative. The plot shows Savage expected utility preferences under the

two possible distributions. For the Savage market-maker, the indirect utility

17Ask and bid prices need to rede�ned to be \per unit" so that the market maker pays
s � b to go long and gets s � a to go short.
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Figure 9: Total Indirect Utility as size of derivative payo�, s, Varies Continu-
ously
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For �xed parameters, the size of the position in the derivative, d � s, is varied.

The payo� in the derivative is X(P1) = smax(P1 � 1:5; 0) and trades are discrete

d 2 f�1; 0; 1g. The total utility shown is at the optimal portfolio.

is di�erentiable in s. In particular, small positive and small negative positions

in the derivative have an equal (but opposite) e�ect on utility. Therefore,

bid-ask spreads are zero (i.e., a = b). For the Knightian-uncertain market-

maker in the same setting, this is true almost everywhere. The lower line in

Figure 9 represents the indirect utility of the Knightian market-maker. For

small and large values of s, the Knightian indirect utility is the same as the

worst case Savage (as in Figure 2). For intermediate values of s, the Knightian

indirect utility is strictly lower as in the case when the uncertainty aversion is

of �rst-order importance (see Figure 3). However, only at two points in Figure

9 is the Knightian market maker's indirect utility kinked (non-di�erentiable)

and, hence, only at these two points does the ask price exceed the bid. These

kink points occur where both (9) and (10) simultaneously occur. Since these
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two points are unlikely to occur (of zero measure), when markets are friction-

less, Knightian uncertain preferences are not suÆcient to generate a bid-ask

spread.18

To apply our model to the market collapse related to the 1998 Russian

bond default, for example, it is not suÆcient that a market-maker like LTCM

is uncertainty averse. It is also important the the trades in the derivative be

large and that the market-maker has some degree of market power in order

for Knightian uncertainty to e�ect market liquidity. Interestingly, the Bank of

International Settlements (1999) lists the increased concentration of market-

making activity as one of the factors that ampli�ed the crisis. Given the

important interaction between market frictions and Knightian uncertainty, we

leave the question of an optimal market design given uncertainty to future

research.

3.2.4 Hedging Derivatives Positions

Figures 2 and 3 helped characterize the optimal Knight portfolio independent

of the market-making activity. However, it is interesting to consider how the

optimal portfolio responds to a change in the position in the derivative. Look-

ing back at equation (17), the optimal portfolio appears in most of the terms.

Therefore, Knightian uncertainty has an e�ect on bid-ask spreads indirectly

through the optimal portfolio. Moreover, hedging derivative positions in the

underlying markets is an important facet of market making. The popularity of

models like Black and Scholes (1973) is in their ability to provide an o�setting

trade that hedges a position in the derivative. The ability to hedge positions is

essential for a �nancial intermediary like LTCM to leverage their capital into

18This is in contrast to comments in both Dow and Werlang (1992) and Epstein and
Wang (1995). More generally, in representative agent, endowment economies, Knightian
uncertainty is rarely locally relevant. For example, Knightian uncertainty can create an
indeterminacy in equilibrium (Epstein and Wang (1994) and (1995)). However, in economies
with aggregate risk and uncertainty only about aggregate endowment, the representative
agent's Knightian utility is di�erentiable and prices are unique. See Epstein (2001).
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Figure 10: Hedging a Short Call Position: \Natural"
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Note: The �gure depicts the utility from each of two distributions as a function of

the investment in the risky asset �. The lower line for each distribution represents is

from a short position in the call option. The \o" is optimal portfolio of the Knight

market-maker given no position, �K
0

(upper left), and given a short position in the

call option, �Ka=0 (lower right)

large positions. In our two-period example, we can also look at the e�ect of

model uncertainty on the trades used to hedge a position in the derivative. In

our setting, the market is not complete, so market-makers cannot o�set the

full position in the derivative. However, the change in the optimal portfolio

due to a trade in the derivative captures the hedging behaviour of the market-

maker. For example, consider the optimal portfolio in the case where there is

no derivative position relative to a short position in the derivative. De�ne the

\hedge portfolio" induced by this short position in the call as �ia � �i
0
.

Figure 10 depicts this hedge portfolio for a short call position in a log-utility

version of the two-period model. (The switch to logarithmic utility adds some

asymmetry to the utility function relative to the quadratic case.) In this
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Figure 11: Hedging a Short Call Position: \Unnatural"
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Note: The �gure depicts the utility from each of two distributions as a function of

the investment in the risky asset �. The lower line for each distribution represents is

from a short position in the call option. The \o" is optimal portfolio of the Knight

market-maker given no position, �K
0
(upper right), and given a short position in the

call option, �Ka=0 (lower left)

example, the short call position is hedged by buying more of the underlying

asset. This is a natural hedging strategy and is consistent with the behavior

of any Savage market maker. However, with a slightly di�erent con�guration

of uncertainty, Figure 11 depicts a very strange situation. The short position

in the call option is hedged by reducing investment in the underlying asset.

The optimal portfolio, in response to a short position in the call option, has

shifted left. The reason for this odd behavior is that, in this case, when d = 0,

the optimal portfolio was not given by the solution to the �rst condition as

in equation (9) and uncertainty is of �rst-order importance. In this case, the

optimal portfolio of the Knight trader does not resemble either of the Savage

traders. Since the optimal portfolio is given by (11), it does not respond in
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a natural way to the derivative position. When the optimal portfolio is given

by (11), the optimal hedge portfolio is not constrained to be either positive or

less than one as it would be for Savage market makers.

4 In�nite-Horizon Model

Building on our understanding of the two-period example, we now return to the

in�nite-horizon model summarized in equation (6). We focus on a relatively

simple portfolio problem so that we can highlight the role of market making in

the derivative. Assume that the underlying security price follows a two-state

Markov process with Pt 2 f0:75; 1:25g with transition probabilities speci�ed

below. To ensure that the portfolio problem is well speci�ed, it is necessary to

assume the asset also carries a stochastic dividend. Without some additional

cash-
ow, the optimal portfolio is an arbitrarily large short-sale position in

the case Pt = 1:25. Therefore, we assume the underlying asset pays a dividend

that also follows a two state Markov process, Æt 2 f0; 0:4g. As in the previous

section, we will consider two Savage market makers with beliefs, �1 = f�1g and

�2 = f�2g, and a Knight market maker with uncertainty represented by �K =

f�1; �2g. For both possible models, �1 and �2, the states are i.i.d.. The two

price and two dividend states produces a four state Markov process of (Pt; Æt)

2 f(0:75; 0); (0:75; 0:4); (1:25; 0); (1:25; 0:4)g with transition probabilities,

�1 =

2
6666664

0:1875 0:5625 0:0625 0:1875

0:1875 0:5625 0:0625 0:1875

0:1875 0:5625 0:0625 0:1875

0:1875 0:5625 0:0625 0:1875

3
7777775

�2 =

2
6666664

0:1250 0:1250 0:3750 0:3750

0:1250 0:1250 0:3750 0:3750

0:1250 0:1250 0:3750 0:3750

0:1250 0:1250 0:3750 0:3750

3
7777775 :

(18)
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This distribution produces asset returns that are state-dependent. For dis-

tribution �1, a more pessimistic view, the mean (standard deviation) asset

return is 0:63 (0:36) when Pt = 0:75 and �0:02 (0:22) when Pt = 1:25. The

�2 distribution is more optimistic with mean (standard deviation) asset return

of 0:73 (0:40) in the Pt = 0:75 states and 0:04 (0:24) in the Pt = 1:25 states.

Other parameters used in the example are: utility is log, exogenous income is

constant at yt = 12:750, and � = 0:8.

4.1 Portfolio Choice

The optimal portfolio in the case where there is no market-making activity,

is shown in Figure 12. In each state, the Knight portfolio policy lies between

the two Savage portfolio policies. This feature is similar to the discussion of

the two period example of Figures 2 and 3. Unlike the Savage portfolio, the

Knight portfolio policy has a region that is 
at. In this region, the uncertainty

is of �rst-order importance since there is no portfolio-free characterization of

the worst-case distribution and the optimal portfolio, �Kt , is independent of

the asset holdings at the start of the period, �Kt�1.

In the absence of market-making, Knightian uncertainty does not dramat-

ically alter the portfolio behavior of a trader. While the optimal policy di�ers

in the case of a Knight trader, it does not, by itself, have a dramatic e�ect

on the time-series behavior of the portfolio holdings. To see this consider the

simulation presented in Figure 13. Since there are two possible probability

measures describing the evolution of price and dividend, the results show the

simulation conducted under both distributions �1 and �2. The time-series

behavior of the optimal Knight portfolio is constrained by the fact that it is

bounded by the Savage-optimal portfolios state-by-state. Knight portfolio is

never dramatically di�erent than the Knight.
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Figure 12: Portfolio Policy for Two Savage Traders and a Knight Trader
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The optimal portfolio, �i, as a function of the previous asset holdings, is shown.

Each sub-plot is a di�erent value of the price-dividend state. The portfolio policy is

shown for a Savage trader with beliefs �1 = f�1g, a Savage trader with �2 = fpi2g,

and an uncertainty averse Knight trader with beliefs �K = f�1; �2g. �1 and �2 are

de�ned in equation (18).
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Figure 13: Optimal Portfolio Time Series
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For a simulation of the economy, the optimal realized portfolio, �it, is shown for three

traders: a Savage market maker with beliefs �1, a Savage with beliefs �2, and a

Knight market maker with uncertainty averse beliefs represented by �K = f�1; �2g.

One period of the simulation consists of drawing a price Pt and a dividend Æt The

top panel is simulated under �1 and the bottom panel is simulated under �2 (see

equation (18) for parameters).
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4.2 Market-Maker Policies

We use the same example to consider the in�nite-horizon version of the market-

maker problem. The derivative asset is a call option based on the ex -dividend

price; that is X(Pt) = smax(Pt � x). We set the strike price at x = 1:0 and

the derivative size at s = 1:0. The demand for the derivative is summarized by

the arrival of a random willingness-to-trade ~v, where ~v is distributed uniformly

on the interval [0:1; 0:2]. Again, we consider the behavior of the two Savage

market makers and an uncertainty averse, Knight, market maker.

Figures 14 and 15 summarize the bid and ask policy for the Savage market

maker with beliefs �1 and �2 respectively. The �gure shows the probability

of a trade occurring, 1 � [�(at) � �(bt)], as a function of the state variables.

For the Savage market-maker with beliefs �1, the bid and ask prices for the

derivative are close to constant. The bid and ask prices are set such that the

probability of trade is close to 0.5. For the Savage market-maker with the more

optimistic beliefs of �2 (see equation (18)), the probability for trade is slightly

higher in the case where the underlying price is low (Pt = 0:75). Note, for

both Savage market makers, the optimal bid-ask policy is not that sensitive to

the position in the underlying security, �t�1 (not sensitive to current wealth).

Figure 16 summarizes the bid and ask policy for the uncertainty averse

Knight market-maker. Notice that the bid-ask behavior, re
ected in the prob-

ability of trade, is much more sensitive to the incoming asset position, �t�1.

It is also the case that the probability of trade can fall quite low (to 0.3).

The low probability of trade for the Knight market-maker coincides with the

case where the optimal portfolio is not sensitive to initial wealth since there is

no portfolio-free worst-case distribution and the portfolio is not characterized

by a �rst-order-condition. Figure 17 shows the portfolio policy. Recall that

the optimal asset position is chosen after the realization of the trade in the

derivative and so depends on both previous, dt�1, and current, dt, position in

the derivative. (The asset policy function for the two Savage traders is similar

to that shown in Figure 12, so it is not repeated.) The regions where the
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Figure 14: Probability of Trade - Savage �1
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The �gure shows the probability of a trade occurring given the bid and ask policy

that solves equation (6) for the Savage market-maker with beliefs �1 . The proba-

bility of a trade is calculated as 1� [�(at)��(bt)]. The probability of as a function

of the state variables: previous position in the derivative, dt�1 previous position in

the portfolio, �t�1,current asset price, Pt, and current asset dividend, Æt.

35



Figure 15: Probability of Trade - Savage �2
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The �gure shows the probability of a trade occurring given the bid and ask policy

that solves equation (6) for the Savage market-maker with beliefs �2 . The proba-

bility of a trade is calculated as 1� [�(at)��(bt)]. The probability of as a function

of the state variables: previous position in the derivative, dt�1 previous position in

the portfolio, �t�1,current asset price, Pt, and current asset dividend, Æt.
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Figure 16: Probability of Trade - Knight
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The �gure shows the probability of a trade occurring given the bid and ask policy

that solves equation (6) for the Knight market maker with uncertainty aversion

represented by �K = f�1; �2g. The probability of a trade is calculated as 1 �

[�(at) � �(bt)]. The probability of as a function of the state variables: previous

position in the derivative, dt�1 previous position in the portfolio, �t�1,current asset

price, Pt, and current asset dividend, Æt.
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Figure 17: Optimal Portfolio - Knight �2
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The �gure shows the optimal portfolio that solves equation (6) for the Knight mar-

ket maker with uncertainty aversion represented by �K = f�1; �2g. The optimal

portfolio is a function of the state variables: current, dt, and previous, dt�1 position

in the derivative, previous position in the portfolio, �t�1,current asset price, Pt, and

current asset dividend, Æt.
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probability for derivative trade is low occur, for example, when Pt = 1:25,

Æt = 0, dt�1 = 1, and �t � 2 (see lower-left panel of Figure 16). This situ-

ation corresponds to the lower three panels of Figure 17 where dt�1 = 1. In

particular, the lower two lines. Note that the lack of liquidity is occurring at

a point where the portfolio policy function is 
at which is where Knightian

uncertainty is of �rst-order importance.

4.3 Time Series Behavior

To better understand the implications of these policy functions, it is helpful to

simulate realizations for the economy. A simulation consists of drawing a price

Pt, dividend Æt, and willingness to trade, ~vt and applying the optimal policies

for ask and bid prices and the portfolio. The results are for a simulation of

10,000 periods of the economy under both of the possible probability measures,

�1 and �2, that describe the evolution of prices and dividends.

Figure 18 shows a realized path of bid and ask prices for the three market-

makers. Fifty periods are shown. The two Savage traders di�er in their beliefs

about the likelihood of next period's price and dividend. The more optimistic

Savage market-maker, �1, tends to have a higher bid and ask price for the

derivative. It is not the case that the Knight market-maker simply adopts the

worst-case bid and ask. In other words, the derivative is not valued as a stand-

alone investment according to the worst-case distribution. Were this to be the

case, the Knight market-maker would adopt the optimistic Savage's ask and

the pessimistic Savage's bid.19 However, as was discussed in the two-period

portfolio choice case, uncertainty aversion manifests in behavior that is more

complicated than simply the worst case since the characterization of the worst

case can depend on the portfolio choice.

19If one is considering a long position in a call option, the worst-case distribution has a
low mean and low variance for the underlying asset. If one is going short a call, the worst
case is a high mean and high variance.
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Figure 18: Simulated Bid and Ask Prices
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For a simulation of the economy, the optimal realized ask and bid prices are shown

for three market-makers: a Savage market maker with beliefs �1, a Savage with

beliefs �2, and a Knight market maker with uncertainty averse beliefs represented

by �K = f�1; �2g. One period of the simulation consists of drawing a price Pt,

dividend Æt, and willingness to trade, ~vt. Of the 10,000 periods simulated, 50

periods are shown. The top panel is simulated under �1 and the bottom panel is

simulated under �2 (see equation (18) for parameters.

40



Relative to the Savage market-makers, the uncertainty aversion of the

Knight market-maker produces a less liquid market for the derivative in that

the probability of trade is lower. Figure 19 shows the steady-state distribution

for the likelihood of trade in any given period (based on a simulation). For all

three traders, the median likelihood of trade is close to 0.5. The more opti-

mistic Savage, �2, has periods of higher liquidity. The Knight market-maker,

has slightly lower median trade likelihood. Figure 20 shows the frequency of

the position in the derivative. For all three market makers there is a higher

frequency of short positions than long. This is speci�c to the parameterization

of the example. As expected, the more pessimistic Savage market-maker, �2,

is less likely to take a long position in the derivative.

For the Knight market-maker, there is a small frequency of very low liq-

uidity realizations. Figure 21 shows a sample path for the time-series of the

probability of trade. With the Knight market-maker, the market experiences

short, infrequent dips in liquidity where the probability of trade drops dra-

matically. As discussed previously, this drop in liquidity coincides with the

case where uncertainty is of �rst-order importance and there is no portfolio-

free worst-case distribution. In these cases, the portfolio choice of the Knight

and the bid-ask behavior are distinct from behavior under either of the Savage

traders. In these times of crisis, the Knightian behavior is not representable

by a worst-case Savage trader.

In the simulation without any market-making activity shown in Figure 13,

the realized path for the optimal portfolio of the Knight trader is bounded

by the portfolio position of the two Savage traders. This is not surprising,

given this relationship holds state-by-state (see Figure 12). In this setting,

the realized path of the state variables Pt and Æt is common across trader

types. However, in the case where the trader is also a market maker, the

optimal portfolio is not just a function of the exogenous state variables Pt

and Æt. It also depends on the position in the derivative, dt. Since the bid

and ask policies of the di�erent market makers di�er, the realized path in the

derivative need not be common across all market-maker types. It is therefore
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Figure 19: Frequency for Probability of Trade in the Derivative

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100
Frequency of probability of trade − under model 1

Probability of Trade in derivative (Prob[d=−1 or d=1])

F
re

qu
en

cy
 (

%
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100
Frequency of probability of trade − under model 2

Probability of Trade in derivative (Prob[d=−1 or d=1])

F
re

qu
en

cy
 (

%
)

Savage 1
Savage 2
Knight  

The �gure is a histogram of the probability of trade based on 10,000 simulation

periods. The probability of a trade is calculated as 1� [�(at)��(bt)] and depends

on the optimal ask and bid prices chosen by the three types of market makers. The

three market makers are a Savage market maker with beliefs �1, a Savage with

beliefs �2, and a Knight market maker with uncertainty averse beliefs represented

by �K = f�1; �2g. One period of the simulation consists of drawing a price Pt

and a dividend Æt The top panel is simulated under �1 and the bottom panel is

simulated under �2 (see equation (18) for parameters.)

42



Figure 20: Frequency for Probability of Trade in the Derivative
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The �gure is a histogram of the position in the derivative, dt based on 10,000

simulation periods. The position in the derivative is the outcome of the optimal

bid and ask prices the realization of the willingness to trade ~vt. The frequency is

shown for a Savage market maker with beliefs �1, a Savage with beliefs �2, and a

Knight market maker with uncertainty averse beliefs represented by �K = f�1; �2g.

One period of the simulation consists of drawing a price Pt and a dividend Æt The

top panel is simulated under �1 and the bottom panel is simulated under �2 (see

equation (18) for parameters.)
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Figure 21: Simulated Probability of Trade in the Derivative
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The �gure is a realized path for the probability of trade. Of 10,000 simulation peri-

ods, a representative 50 periods are shown. The probability of a trade is calculated

as 1� [�(at)��(bt)] and depends on the optimal ask and bid prices chosen by the

three types of market makers. The three market makers are a Savage market maker

with beliefs �1, a Savage with beliefs �2, and a Knight market maker with uncer-

tainty averse beliefs represented by �K = f�1; �2g. One period of the simulation

consists of drawing a price Pt and a dividend Æt The top panel is simulated under

�1 and the bottom panel is simulated under �2 (see equation (18) for parameters.)
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not necessarily the case that the realized portfolio of the Knight market maker

be bounded by the Savage portfolio. However, in the simulation, it is the

case that �1t � �Kt � �2t . This is seen in Figure 22. In this entire simulation,

as in the portion shown in the �gure, the portfolio of the Knight market-

maker is bounded by the two Savage portfolios. For completeness, we also

show the frequency of portfolio holdings in Figure 23. Not surprisingly, the

pessimistic Savage market-maker, �1, typically has lower asset holdings and is

more frequently short. The more optimistic market-maker, �2, is more often

long. The distribution for the Knight market-maker lies in between.

5 Conclusions

In a simple model of liquidity provision by a monopoly market-maker, an aver-

sion to Knightian uncertainty can signi�cantly reduce liquidity. The market-

maker in our model chooses bid and ask prices for a derivative security to opti-

mally tradeo� the probability of attracting a trade with the current and future

income of a particular derivatives position. When there is ambiguity about

the appropriate probability distribution for the underlying security's future

cash-
ows, the market maker is uncertain about the dynamic consequences of

their derivatives trading. This uncertainty increases the market-maker's bid-

ask spreads and reduces liquidity. For example, in an in�nite-horizon model

with a stationary environment, the optimal behavior of the market maker

can produce short and dramatic decreases in liquidity in situations where an

expected-utility market maker would exhibit no such decrease. Surprisingly,

the uncertainty aversion does not produce markets that are always less liq-

uid. Much of the time, the uncertainty aversion manifests itself in the form

of the \worst-case" distribution. In these situations, the bid-ask behavior is

similar to a Savage market-maker { albeit a Savage with pessimistic beliefs.

However, in some situations, the uncertainty is of �rst-order importance and

there is no obvious characterization of the worst-case distribution. In these

cases, the Knightian liquidity is much smaller than an otherwise similar Savage
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Figure 22: Simulated Portfolio Holdings
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The �gure is a realized path for the optimal portfolio. Of 10,000 simulation periods,

a representative 50 periods are shown. The portfolio path is shown for three market

makers are a Savage market maker with beliefs �1, a Savage with beliefs �2, and a

Knight market maker with uncertainty averse beliefs represented by �K = f�1; �2g.

One period of the simulation consists of drawing a price Pt and a dividend Æt The

top panel is simulated under �1 and the bottom panel is simulated under �2 (see

equation (18) for parameters.)
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Figure 23: Frequency for Portfolio Holdings
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The �gure is a histogram of the portfolio in the underlying asset, �t based on 10,000

simulation periods. The frequency is shown for a Savage market maker with beliefs

�1, a Savage with beliefs �2, and a Knight market maker with uncertainty averse

beliefs represented by �K = f�1; �2g. One period of the simulation consists of

drawing a price Pt and a dividend Æt The top panel is simulated under �1 and the

bottom panel is simulated under �2 (see equation (18) for parameters.)
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market-maker.

Much of the understanding of the in�nite-horizon example is generated

from a simple two-period version of the model. By characterizing the opti-

mal bid and ask prices into their e�ect on trade arrival, current income, and

future income, we isolate the e�ect of Knightian uncertainty. For example,

model uncertainty and uncertainty aversion alone are not suÆcient to reduce

liquidity. Signi�cant liquidity e�ects require an interaction between uncer-

tainty aversion and the market structure. Non-competitive market-making,

relatively large discrete trades, and an aversion to Knightian uncertainty are

all necessary to generate liquidity e�ects that are signi�cantly di�erent from

standard Savage expected utility models. Finally, \hedge portfolios" for the

market-maker, which are an important component to understanding spreads

and liquidity, can look very di�erent from those implied by a model without

Knightian uncertainty.

The paper leaves several important questions open to future research. Fu-

ture work will extend the set of traded securities to explore the connection

between uncertainty and liquidity spill-over e�ects like the \
ight to quality"

and \contagion." The unusual nature of the hedge portfolio produced by a

Knightian uncertain trader suggest that such uncertainty as a natural con-

duit for contagion. In addition, a model with a larger set of securities will

allow us to explore \ambiguity hedging" which can be thought of as a natural

counterpart to standard \risk hedging."
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